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Abstract001

Transformer-based encoder models such as002
BERT and RoBERTa perform well on NLP003
tasks but are computationally intensive for004
deployment. We propose Clustering-Based005
Knowledge Distillation with Sentence Prun-006
ing, a novel framework that combines multi-007
teacher distillation with structure-aware sen-008
tence selection to improve student model effi-009
ciency. Our method integrates teacher outputs010
via validation-aware ensembling and prunes011
redundant sentences using semantic similarity012
and TF-IDF-based scoring. Experiments across013
GLUE, AG News, and PubMed RCT demon-014
strate that our method consistently enhances015
student model performance, achieving 95.4%016
accuracy on SST-2, the highest accuracy on AG017
News (91.14%) and PubMed RCT (78.00%),018
and improved accuracy on RTE through sen-019
tence pruning. Ablation studies confirm the020
effectiveness of jointly applying clustering and021
pruning. Our framework offers a practical and022
scalable solution for deploying compact models023
in resource-limited environments.024

1 Introduction025

Transformer-based pre-trained models, such as026

BERT, RoBERTa, and GPT, have set new stan-027

dards in NLP tasks and achieved state-of-the-028

art performance across classification, inference,029

and generation (Koroteev, 2021; Delobelle et al.,030

2020; Achiam et al., 2023). However, their sub-031

stantial computational requirements pose chal-032

lenges for real-world deployment, particularly in033

low-power and constrained computing environ-034

ments(Jiao et al., 2020). To address this challenge,035

Knowledge Distillation (KD) has been widely036

adopted as an effective model compression tech-037

nique that transfers knowledge from a large teacher038

model to a smaller student model, enabling ef-039

ficient inference while maintaining high perfor-040

mance. Despite its effectiveness, conventional041

knowledge distillation (KD) methods face several042

limitations. While a variety of KD techniques— 043

including those that align intermediate representa- 044

tions, such as MiniLM (Wang et al., 2020), Tiny- 045

BERT, and CoDIR (Zhang et al., 2023)—have been 046

proposed to enrich the transfer process beyond out- 047

put distributions, many of these approaches still 048

struggle to effectively capture inter-sentence de- 049

pendencies. These aspects are particularly crucial 050

for complex NLP tasks such as natural language 051

inference and summarization (Wei et al., 2024). 052

Moreover, most existing KD frameworks adopt 053

a single-teacher paradigm, which inherently limits 054

the diversity and richness of knowledge imparted 055

to the student (Pham et al., 2023). This lack of 056

heterogeneity in supervision can lead to reduced 057

generalization, especially when the teacher model 058

fails to cover all linguistic variations relevant to the 059

task. Furthermore, transferring knowledge directly 060

from a large, complex teacher model can introduce 061

noisy or overly sophisticated signals, which may 062

overwhelm the capacity of compact student models 063

and hinder effective learning (Yuan et al., 2024). 064

Distillation
Method

Teacher
Acc. (%)

Student
Acc. (%)

Discrepancy
Acc. (%)

AVER-Student 81.41 64.75 –16.66
EBKD-Student 81.57 64.66 –16.91
MMKD-Student 79.13 64.87 –14.26

Table 1: Comparison of teacher and student accuracies
across distillation methods: AVER (Fukuda et al., 2017),
EBKD (Kwon et al., 2020), and MMKD (Wei et al.,
2024).

Despite the use of ensemble teachers, we ob- 065

serve a noticeable discrepancy between teacher 066

ensemble accuracy and the final performance of 067

the student model. As summarized in Table 1, al- 068

though the EBKD strategy achieves the highest 069

ensemble accuracy (81.57%), it yields a lower stu- 070

dent accuracy (64.66%) compared to the MMKD 071

method (64.87%). Interestingly, MMKD—despite 072

being associated with the lowest ensemble accuracy 073
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(79.13%)—outperforms other methods in terms of074

student generalization.075

This result indicates that a higher ensemble076

teacher accuracy does not necessarily translate077

to improved student performance. In particular,078

the MMKD approach, which individually distills079

knowledge from multiple teacher models rather080

than aggregating their predictions, appears to better081

preserve the diversity of knowledge. Such diversity082

facilitates more robust learning signals, thereby en-083

hancing the generalization ability of the student084

model. These findings highlight that the methodol-085

ogy of ensemble integration significantly affects the086

quality of distilled knowledge, suggesting that se-087

lecting appropriate ensemble-distillation schemes088

is critical for maximizing student performance.089

To overcome these limitations, we propose090

Clustering-based Knowledge Distillation with091

Sentence Pruning Processing, a novel frame-092

work that enhances knowledge transfer by inte-093

grating multiple teacher models while refining the094

input representation through sentence-level prun-095

ing. Our method utilizes Clustering-based model-096

ing of inter-sentence relationships, which aggre-097

gates knowledge from multiple teacher models098

to enhance robustness and diversity while model-099

ing inter-sentence relationships through clustering-100

based representation. This approach effectively101

retains essential information, optimizing the stu-102

dent model’s learning process. This work makes103

the following methodological contributions:104

• We present a clustering-based pruning105

method that selects key sentences using TF-106

IDF and cluster centrality within semantic107

groups.108
• We design a unified framework that integrates109

multi-teacher distillation with pruning to en-110

hance efficiency and robustness.111
• We enable efficient lightweight student112

training by combining a performance-113

weighted teacher ensemble and selective input114

pruning.115

2 Related Work116

2.1 Knowledge Distillation117

Knowledge Distillation (KD) is a widely adopted118

model compression technique that facilitates119

knowledge transfer from a large, high-capacity120

teacher model to a smaller, lightweight student121

model (Gu et al., 2024). The core idea is to guide122

the student using soft targets—typically the output123

probability distributions or intermediate represen- 124

tations—produced by the teacher. 125

These soft labels encode semantic similarity 126

among classes, offering richer signals than hard 127

labels (Gao, 2023). To smooth the transfer process, 128

temperature scaling is often used to soften logits, 129

helping the student mimic the teacher’s confidence 130

distribution more effectively. Beyond output align- 131

ment, KD has expanded to include intermediate- 132

layer feature matching, where the student aligns 133

its hidden states with those of the teacher (Haidar 134

et al., 2021; Zhang et al., 2024). This enables 135

the student to benefit from hierarchical abstraction 136

learned by the teacher. Recent research has intro- 137

duced extensions such as attention-guided layer 138

alignment (Passban et al., 2021), structured hidden- 139

state distillation (Zhou et al., 2022), and relational 140

knowledge selection (Xu et al., 2020), further en- 141

hancing transfer effectiveness. 142

KD has proven successful across diverse NLP 143

tasks—including classification, question answer- 144

ing, and inference—by enabling smaller models 145

to inherit generalization capabilities from larger 146

ones (Song et al., 2022; Yuan et al., 2021). Re- 147

inforcement learning-based KD frameworks (Qiu 148

et al., 2022; Hong et al., 2021) and adaptive su- 149

pervision strategies (Du et al., 2020) have also 150

emerged, offering dynamic and data-aware distilla- 151

tion paradigms. These developments position KD 152

as a flexible and powerful framework for training 153

compact yet capable models, laying the founda- 154

tion for broader ensemble distillation techniques 155

discussed next. 156

2.2 Limitations of Existing Approaches 157

While conventional knowledge distillation (KD) 158

has proven effective in compressing large models, 159

it suffers from several notable limitations. First, 160

single-teacher distillation restricts the diversity 161

of knowledge transferred to the student model, of- 162

ten resulting in limited generalization, particularly 163

in linguistically diverse tasks (Yuan et al., 2021; 164

Wu et al., 2022). To overcome this, ensemble- 165

based KD has been introduced, wherein multiple 166

teacher models provide more comprehensive and 167

diverse supervision. However, naively aggregat- 168

ing outputs—such as averaging logits—can lead to 169

conflicting or redundant knowledge, which may 170

confuse or overwhelm the student (Shao and Chen, 171

2023). Moreover, such aggregation fails to account 172

for the varying reliability of individual teachers, es- 173

pecially across different input distributions. Recent 174
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studies have proposed adaptive weighting and rein-175

forcement learning-based teacher selection mecha-176

nisms (Du et al., 2020; Qiu et al., 2022), yet these177

still struggle to filter out noisy or overly com-178

plex signals. This is particularly problematic when179

the student model has limited capacity, as it can-180

not effectively absorb dense or conflicting super-181

vision (Fan et al., 2021; Yuan et al., 2021). As182

a result, existing ensemble KD methods remain183

suboptimal in balancing supervision diversity with184

the student’s representational limits. These chal-185

lenges underline the need for a more structured186

and selective approach to ensemble knowledge187

distillation—one that not only aggregates diverse188

knowledge but also prunes irrelevant or noisy con-189

tent prior to student training.190

3 Method191

As illustrated in Figure 1, our proposed framework192

comprises three core components. First, we employ193

a validation-aware ensemble distillation strategy194

(LR-Dev-Ensemble), where multiple teacher mod-195

els are combined using logistic regression trained196

on the validation set, allowing the framework to197

weigh each teacher’s output based on its generaliza-198

tion ability. Second, a clustering-based sentence199

pruning module analyzes the sentence similarity200

structure, clusters semantically related sentences201

based on cosine similarity, and dynamically prunes202

redundant or low-importance sentences using TF-203

IDF-based thresholds within each cluster. Finally,204

the student model is trained using both soft tar-205

gets from the ensembled teachers and hard labels206

from the ground truth, optimized via a combined207

loss function that integrates KL divergence and208

cross-entropy. This integrated design ensures that209

the student receives both diverse and compressed210

knowledge, improving generalization while reduc-211

ing computational cost.212

3.1 Ensemble-Based Knowledge Distillation213

We adopt a single ensemble strategy, referred to214

as LR-Dev-Ensemble, to combine the outputs of215

multiple teacher models. LR-Dev-Ensemble is216

a validation-aware ensemble strategy that trains a217

logistic regression model on development data to218

learn optimal weights for combining teacher out-219

puts. Unlike uniform or fixed-weight averaging,220

it dynamically reflects each teacher’s reliability,221

offering a more discriminative and generalizable222

soft target for student training. In this approach, a223

logistic regression model is trained using the val- 224

idation set outputs of each teacher model to learn 225

the optimal combination weights. These weights 226

reflect the generalization ability of each teacher and 227

are used to form a weighted ensemble distribution. 228

This weighting mechanism enables more effective 229

knowledge transfer, as higher weights are assigned 230

to teachers with better validation performance. 231

Formally, for a given input x, let the softmax 232

output of the i-th teacher model be Pteacheri(y|x). 233

The final ensemble distribution is computed as: 234

Pensemble(y|x) =
N∑
i=1

αi · Pteacheri(y|x), (1) 235

where αi denotes the learned weight for teacher 236

i, subject to
∑N

i=1 αi = 1. 237

The ensemble output Pensemble(y|x) is then 238

used as a soft target to train the student model 239

by minimizing the Kullback–Leibler (KL) diver- 240

gence between the student output and the ensemble 241

distribution. 242

This validation-aware weighted ensemble ap- 243

proach enables more robust and efficient knowl- 244

edge transfer, as it down-weights less reliable teach- 245

ers and avoids misleading or noisy supervision sig- 246

nals. Consequently, the student model benefits 247

from a more informative and generalizable training 248

signal. 249

3.2 Clustering-based Sentence Pruning 250

Ensemble distillation provides a comprehensive 251

and nuanced representation of knowledge; however, 252

directly utilizing outputs from multiple teacher 253

models often introduces redundancy. This in- 254

creases computational overhead and may degrade 255

the training efficiency of the student model. 256

To address this, we propose a clustering-based 257

sentence pruning strategy that systematically re- 258

moves redundant or less informative sentences 259

while preserving semantic relevance. 260

As shown in Figure 1, the pruning process be- 261

gins by modeling pairwise sentence similarities, 262

where each sentence is compared based on cosine 263

similarity between their embeddings: 264

wij = cos(Evi ,Evj ) =
Evi ·Evj

∥Evi∥∥Evj∥
(2) 265

Next, we apply a clustering algorithm to group 266

semantically similar sentences. The purpose of 267

clustering is not only to group related sentences 268
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Figure 1: Overview of the Multi-Teacher Knowledge Distillation Framework with Clustering-Based Sentence
Pruning

but also to constrain importance scoring within se-269

mantically coherent subsets. Rather than treating270

clustering as a standalone step, we leverage it to de-271

fine context-aware local neighborhoods, enabling272

more precise computation of sentence importance273

relative to local context. This localized perspective274

helps our method avoid global importance bias and275

improves structural preservation during pruning.276

We compute the importance of each sentence277

through a composite scoring mechanism that re-278

flects both lexical frequency and structural cen-279

trality. Formally, the importance score I(vi) of280

sentence vi is defined as:281

I(vi) = λ · TFIDF (vi) + (1− λ) · Centrality(vi) (3)282

Here, TFIDF (vi) denotes the aggregated283

TF-IDF score of words in sentence vi, and284

Centrality(vi) is measured as the cosine similar-285

ity between the sentence embedding and the cen-286

troid of its cluster:287

Centrality(vi) = cos(Evi , ck), ck =
1

|Ck|
∑

vj∈Ck

Evj

(4)288

This formulation ensures that only semantically289

meaningful and structurally important sentences290

are retained within each cluster, thereby improving291

the efficiency of downstream student training while292

preserving essential contextual information.293

After pruning, we retain the pre-computed294

sentence embeddings of the selected sen-295

tences—originally generated from the teacher296

encoder—and feed them into the student model 297

as inputs. This preserves structural and semantic 298

consistency between the teacher’s supervision 299

signals and the student’s internal representation. 300

Consequently, the student learns from a compact, 301

structure-aware representation distilled from 302

diverse teacher outputs. 303

3.3 Student Model Training 304

In our framework, the student model is trained 305

using both soft labels generated by the LR-Dev- 306

Ensemble strategy and hard labels from the ground 307

truth. As introduced in Section 3.1, LR-Dev- 308

Ensemble learns optimal weights over multiple 309

teacher models based on validation performance, 310

yielding a soft target distribution that reflects the 311

relative strengths of each teacher. This enhances 312

supervision quality by providing a more robust and 313

generalizable signal for student training. The stu- 314

dent model is optimized using a composite loss 315

function that combines Cross-Entropy (CE) loss 316

and Kullback-Leibler (KL) divergence, weighted 317

by a coefficient λ ∈ [0, 1]: 318

Ltotal = (1− λ) · LCE + λ · LKL (5) 319

Before loss computation, the student input is re- 320

fined via a clustering-based sentence pruning mod- 321

ule, which filters redundant or noisy sentences to 322

reduce input length while preserving semantic rel- 323

evance. Note that pruning is applied only on the 324

student-side inputs, while teacher soft targets are 325

computed from the original, unpruned sequences. 326

This decoupled design allows the student to benefit 327
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from full teacher supervision with minimal input328

overhead. Pruning operates within each semantic329

cluster, preserving local discourse structure. Sen-330

tence embeddings are first used to compute pair-331

wise cosine similarities, from which we calculate332

a threshold τ = µ+ α · σ, where µ and σ are the333

mean and standard deviation of all similarity scores.334

Sentence pairs with similarity above this threshold335

are grouped together, and clusters are formed by336

identifying sets of mutually similar sentences.337

As shown in Table 8, our model maintains robust338

performance across a range of cluster configura-339

tions. This is attributed to our scoring mechanism,340

which balances lexical importance (TF-IDF) and341

structural centrality. Together, LR-Dev-Ensemble342

supervision and structure-aware pruning enable ef-343

ficient and effective training of compact student344

models, improving both inference speed and gener-345

alization.346

4 Experiments347

4.1 Experimental Setup and Data Statistics348

We evaluate our method on six tasks from the349

GLUE benchmark (Wang et al., 2018), including350

RTE (textual entailment), QQP (paraphrase detec-351

tion), QNLI (Rajpurkar et al., 2016) (QA-based352

inference), SST-2 (Socher et al., 2013) (sentiment353

analysis), MNLI-m (Williams et al., 2017) (multi-354

genre entailment), and MRPC (Dolan and Brockett,355

2005) (paraphrase detection). We further test on356

AG News (Zhang et al., 2015), a four-class topic357

classification task, and PubMed RCT (Dernoncourt358

and Lee, 2017), a biomedical sentence classifica-359

tion dataset. Together, these tasks form a diverse360

benchmark for evaluating the generalization of our361

approach. Dataset statistics are shown in Table 2.362

Dataset #Train #Dev #Test
RTE 2,490 277 3,000
QQP 363,849 40,430 390,965
QNLI 104,743 5,463 5,463
SST-2 67,349 872 1,821
MNLI-m 392,702 9,815 9,796
MRPC 3,668 408 1,725
AG News 101,000 9,000 7,600
PubMed RCT 180,000 10,000 10,000

Table 2: Statistics of the datasets used in our experi-
ments. In addition to standard GLUE tasks (e.g., RTE,
QQP, QNLI), AG News and PubMed RCT are included
for evaluating document classification and biomedical
summarization respectively.

4.2 Baseline Models and Implementation 363

Details 364

For evaluating our approach, we compared it 365

against multiple baseline methods. Vanilla Knowl- 366

edge Distillation (V-KD) (Hao et al., 2023) 367

trains student models using a single teacher, 368

such as BERT12 or RoBERTa12. U-Ensemble 369

Teacher(Yang et al., 2020), averages the outputs 370

of all teacher models by assigning them equal 371

weights. Rand-Single-Ensemble Teacher(Fukuda 372

et al., 2017), randomly selects a teacher model 373

for each mini-batch to generate soft targets for 374

student training. W-Ensemble Teacher(Chebotar 375

and Waters, 2016), applies pre-determined, fixed 376

weights to each teacher model. LR-Ensemble 377

Teacher employs a Logistic Regression-based ap- 378

proach to adaptively compute the optimal weights 379

for teacher models. Depending on whether the 380

weights are learned from the training set or the 381

development set, the method is referred to as LR- 382

Train-Ensemble and LR-Dev-Ensemble, respec- 383

tively. For the teacher models, we fine-tuned 384

widely-used transformer architectures, including 385

BERT12 and RoBERTa12, where the subscript 12 386

denotes that each model consists of 12 transformer 387

layers. To construct student models, we utilized 388

simplified versions of BERT, incorporating 4 and 6 389

transformer layers, denoted as BERT4 and BERT6, 390

respectively. This aligns with the methodology 391

presented in Patient KD (Sun et al., 2019). 392

4.3 Experimental Setup 393

Our experiments followed the Patient KD frame- 394

work. The student models, BERT4 and BERT6, 395

were initialized using the bottom 4 and 6 lay- 396

ers of BERT-Base. Their distillation process in- 397

volved tuning hyperparameters such as tempera- 398

ture T values {5, 10, 20}, loss balance coefficients 399

α {0.2, 0.5, 0.7}, and γ values {0.3, 0.5, 0.7, 0.9}, 400

optimized based on the development set. 401

For fine-tuning the teacher models, we uti- 402

lized publicly available pre-trained weights from 403

BERT12 and RoBERTa. The training setup in- 404

cluded learning rates of {1e− 5, 2e− 5, 5e− 5}, 405

a batch size of 32, a sequence length of 128, and 4 406

training epochs. The best-performing model was 407

selected based on accuracy on the development set. 408

To enhance the distillation process, a logistic 409

regression-based policy function was employed for 410

teacher selection, optimized using Monte Carlo 411

policy gradients (Williams, 1992). 412
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4.4 Comparison to Baselines413

Following pretraining, Knowledge Distillation414

(KD) and Teacher Selection (TS) models (Ye et al.,415

2020; Amara et al., 2022; Lee et al., 2023) were416

trained iteratively in an alternating manner.417

Model (T=Teacher) Params FLOPs Avg. GLUE Score
BERT-B (T) 109M 22.5B 80.6
BERT-L (T) 340M 110B 81.6
RoBERTa-B (T) 125M 40B 91.1
D6← BERT 67M 11.3B 77.5
D4← BERT 52M 7.6B 74.8
BERT-B← B+L 109M 22.5B 82.5
D6← B+R 67M 11.3B 83.0
D4← B+L 52M 7.6B 72.0

Table 3: Summary of teacher/student models: model
size, FLOPs, and average GLUE accuracy. Abbrevi-
ations: D6/D4 = DistilBERT with 6/4 layers, B+L
= BERT-Base + BERT-Large, B+R = BERT-Base +
RoBERTa-Base, (T) = Teacher.

Table 3 demonstrates that our proposed frame-418

work consistently delivers strong performance419

across a wide range of teacher-student configura-420

tions. The student model D6 ← B+R, distilled421

from both BERT and RoBERTa, achieves the high-422

est average GLUE score of 83.0, confirming the423

effectiveness of multi-teacher distillation. Even424

in cases with reduced model capacity, such as D4425

← B+L, our method maintains competitive per-426

formance (72.0), showing that it generalizes well427

across various model sizes and teacher combina-428

tions. This highlights that existing ensemble-based429

distillation strategies offer meaningful performance430

improvements and serve as strong foundations for431

further enhancement.432

4.5 Main Results433

Table 4 compares multiple knowledge distillation434

strategies, highlighting differences in teacher se-435

lection and aggregation. Baseline methods such436

as Rand-Single-Ensemble and W-Ensemble adopt437

random or uniform teacher usage, while LR-Dev-438

Ensemble and Best-Single-Ensemble utilize dev-439

set-guided selection. MT-BERT-Ensemble em-440

ploys joint training, and RL-KD variants leverage441

reinforcement learning with three reward types:442

prediction accuracy (reward1), logit similarity (re-443

ward2), and task-specific metrics (reward3).444

Our method outperforms existing approaches445

on large-scale tasks such as MNLI-m (87.17) and446

SST-2 (95.4), demonstrating strong generaliza-447

tion. In particular, the method achieves the high-448

est accuracy on AG News (91.14) and PubMed449

RCT (78.00), confirming the scalability of our sen-450

tence pruning and RL-KD strategy to long-text 451

and document-level classification. Although per- 452

formance on MRPC and RTE is slightly lower, this 453

is primarily due to the limited size and seman- 454

tic variability of these datasets, which constrain 455

the effectiveness of reward-based teacher selec- 456

tion. Nonetheless, our method remains valid and 457

robust, as it consistently improves performance on 458

large-scale tasks and maintains competitive accu- 459

racy even under low-resource scenarios. The in- 460

tegration of sentence-level teacher representation 461

further facilitates context-aware knowledge trans- 462

fer. 463

Table 5 presents the impact of sentence pruning 464

on accuracy and F1 score across three GLUE tasks: 465

SST-2, RTE, and QNLI. The pruning process led to 466

varying effects on model performance, with accu- 467

racy retention differing across tasks. In the SST-2 468

dataset, the pruning rate was 5.7%, resulting in a 469

marginal decrease of 0.50% in accuracy and 0.34% 470

in the F1 score, indicating that the model remained 471

relatively robust to pruning. Conversely, in the RTE 472

dataset, pruning led to a significant improvement 473

in accuracy, increasing from 64.29% to 68.75% 474

(+4.5%), with a corresponding F1 score increase 475

of +2.6%. This suggests that pruning effectively 476

removed non-informative sentences, thereby en- 477

hancing model performance. In contrast, for QNLI, 478

which had a pruning rate of 31.7%, the accuracy 479

decreased slightly by 0.62%, and the F1 score was 480

reduced by 0.35%. These results indicate that while 481

pruning improves computational efficiency, its im- 482

pact on accuracy is task-dependent. 483

Table 6 compares the performance of various 484

clustering methods on the MNLI-m dataset, in- 485

cluding our proposed Clustering-Based Sentence 486

Pruning method, as well as K-Means, Spec- 487

tral, Agglomerative, Mean Shift, and Gaussian 488

Mixture Model (GMM). Among all approaches, 489

the Clustering-Based Sentence Pruning method 490

achieves the highest classification accuracy (82%) 491

and the best silhouette score (0.65), indicating supe- 492

rior overall performance in both task-specific and 493

structural clustering metrics. 494

K-Means, a centroid-based algorithm that parti- 495

tions data by minimizing within-cluster variance, 496

shows relatively high accuracy (78%) but a lower 497

silhouette score (0.58), suggesting weaker cohe- 498

sion among clusters. Spectral Clustering, which 499

leverages graph Laplacians and eigenvectors of 500

similarity matrices, performs moderately due to 501

its sensitivity to pairwise similarity noise. 502
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Teacher Student Strategy MNLI-m (Acc.) MRPC (Acc.) RTE (Acc.) SST-2 (Acc.) AG News (Acc.) PubMed RCT (Acc.)
Rand-Single-Ensemble BERT6 V-KD 80.7 77.7 61.7 90.6 87.2 72.1
W-Ensemble BERT6 V-KD 77.2 81.1 62.1 90.6 86.3 73.4
LR-Dev-Ensemble BERT6 V-KD 81.1 80.6 64.6 90.8 88.5 74.2
Best-Single-Ensemble BERT6 V-KD 80.5 80.4 66.1 90.3 88.1 74.6
MT-BERT-Ensemble BERT6 RL-KD – – 75.7 94.6 90.2 76.5
RL-KD (reward1) BERT6 RL-KD 82.0 82.8 67.1 91.7 89.3 75.2
RL-KD (reward2) BERT6 RL-KD 82.1 82.1 67.2 91.4 89.5 75.4
RL-KD (reward3) BERT6 RL-KD 81.6 83.3 68.2 92.3 90.1 76.8
Our Method BERT6 RL-KD 87.17 70.9 60.7 95.4 91.14 78.00

Table 4: Performance comparison with state-of-the-art knowledge distillation strategies using BERT6 as the student
model across seven classification tasks. Our proposed Clustering-Based Knowledge Distillation with Sentence
Pruning shows consistent improvement over strong KD baselines, particularly in document-level tasks (AG News,
PubMed RCT).

Task Prune Acc ∆Acc. F1 ∆F1
Rate (%) Base Pruned (%) Base Pruned (%)

SST-2 5.7 51.72 51.22 -0.50 39.27 38.93 -0.34
RTE 32.8 64.29 68.75 +4.5 53.46 56.02 +2.6
QNLI 31.7 44.32 43.70 -0.62 39.09 38.74 -0.35

Table 5: Impact of Sentence Pruning on Accuracy and
F1 Score.

Clustering Method Accuracy (%) Silhouette Score
Clustering-Based Sentence Pruning (Ours) 82 0.65
K-Means Clustering 78 0.58
Spectral Clustering 75 0.52
Agglomerative Clustering 76 0.56
Mean Shift Clustering 71 0.51
Gaussian Mixture Model (GMM) 77 0.57

Table 6: Comparison of accuracy and silhouette score
across different clustering methods on the MNLI-m
dataset.

Agglomerative Clustering, a hierarchical bottom-503

up approach, produces stable but average results504

in both accuracy and silhouette score. Mean Shift,505

which shifts data points toward local density max-506

ima, performs worse in both metrics, likely due507

to over-fragmentation in high-dimensional space.508

GMM, a probabilistic model that treats the data as509

a mixture of Gaussians, shows a balanced perfor-510

mance (77% accuracy and 0.57 silhouette score),511

but still falls short of our Clustering-Based Sen-512

tence Pruning Method.513

Overall, the results highlight that our Clustering-514

Based Sentence Pruning method is more effective515

for sentence-level representation grouping in distil-516

lation tasks, providing both semantically coherent517

clusters and improved downstream accuracy.518

Pruning Method Accuracy (%) Training Time (min)
No Pruning (Original) 84.52 7.40
Saliency-Based Pruning 81.67 7.05
Clustering-Based Sentence Pruning (Ours) 83.91 7.35
Entropy-Based Pruning 81.06 7.26

Table 7: Performance comparison of sentence pruning
methods on the MNLI dataset. The proposed method
combines TF-IDF scoring and cluster-based sentence
centrality to prune redundant content.

Table 7 summarizes the evaluation results of var-519

ious sentence pruning techniques applied to the 520

MNLI dataset. The Original setting, which uses 521

the full input text without pruning, achieves the 522

highest accuracy of 84.52% and serves as the per- 523

formance upper bound. However, it also incurs the 524

longest training time (7.40 minutes), as it processes 525

all sentences during model training. 526

In contrast, pruning-based methods reduce train- 527

ing time by selecting a subset of informative sen- 528

tences. The proposed Clustering-Based Sentence 529

Pruning (Ours) method achieves a competitive 530

accuracy of 83.91%, while slightly increasing train- 531

ing time to 7.35 minutes compared to other prun- 532

ing techniques. This marginal increase reflects the 533

cost of more refined sentence selection via struc- 534

tural similarity and TF-IDF analysis, which en- 535

ables the model to retain semantically meaningful 536

content more precisely. Saliency- and Entropy- 537

based methods show lower accuracies (81.67% and 538

81.06%, respectively), implying potential informa- 539

tion loss due to reliance on local gradient signals 540

or prediction uncertainty. 541

Number of Clusters
Matched

Accuracy (%)
Mismatched

Accuracy (%)
3 81.12 81.71
5 81.34 81.91
7 81.30 81.79
10 81.36 81.66

Table 8: Ablation study results on the MNLI dataset
with varying cluster counts. The matched set consists of
in-domain examples, while the mismatched set contains
out-of-domain examples.

To examine the effect of cluster granularity in 542

structure-aware knowledge distillation using sen- 543

tence similarity, we conducted an ablation study 544

by varying the number of clusters ({3, 5, 7, 10}). 545

Table 8 presents evaluation results on the MNLI 546

dataset, using both the matched set (in-domain) and 547

the mismatched set (out-of-domain), which serve 548

to assess generalization performance. 549

The student model demonstrated stable perfor- 550

7



mance across settings, with matched accuracy rang-551

ing from 81.12% to 81.36%, and mismatched accu-552

racy between 81.66% and 81.91%. While matched553

accuracy slightly improved with more clusters—554

peaking at 10 clusters—the best mismatched perfor-555

mance (81.91%) was observed at 5 clusters. This556

suggests that moderate clustering offers a trade-off557

between semantic granularity and generalizability.558

Fewer clusters may lead to under-separation of di-559

verse sentences, while excessive clustering could560

reduce intra-cluster coherence.561

These results highlight the importance of select-562

ing an appropriate cluster count in structure-aware563

knowledge distillation using sentence similarity.564

4.6 Ablation Study565

Method Accuracy (%)
Clustering + Pruning 87.42
Clustering Only 85.18
Pruning Only 83.26
No Processing 81.09

Table 9: Ablation study results on the MNLI dataset.
Combining clustering and pruning yields the highest
accuracy.

The results in Table 9 present the performance566

impact of different sentence processing strategies567

on the MNLI dataset. Notably, the Clustering568

with Pruning configuration achieves the highest569

accuracy of 87.42%, clearly outperforming all570

other baselines. This demonstrates that combining571

semantic-aware sentence selection (clustering) with572

redundancy reduction (pruning) leads to comple-573

mentary effects that enhance model performance.574

Comparatively, applying Clustering Only results575

in 85.18% accuracy, outperforming the Pruning576

Only (83.26%) setting. This suggests that semantic577

clustering contributes more to the model’s gener-578

alization capability than structural pruning alone.579

Finally, the No Processing baseline achieves the580

lowest accuracy at 81.09%, highlighting the ef-581

fectiveness of incorporating both clustering and582

pruning mechanisms into the knowledge distilla-583

tion framework.584

5 Conclusion585

In this study, we proposed a Clustering-Based586

Knowledge Distillation with Sentence Pruning587

framework that combines multi-teacher distilla-588

tion and structure-aware pruning to improve589

student model efficiency and generalization. Our590

method selectively filters redundant content using591

clustering and TF-IDF scoring, preserving key se- 592

mantics. Experiments across tasks including SST-2, 593

RTE, QNLI, AG News, and PubMed RCT show 594

that our approach achieves strong accuracy with 595

reduced inference cost. It also attains top perfor- 596

mance on document-level tasks such as AG News 597

(91.14) and PubMed RCT (78.00). While minor 598

drops occur on tasks like QNLI, the overall trade- 599

off remains favorable. Our results highlight the 600

framework’s suitability for resource-constrained 601

deployment, offering a scalable and effective strat- 602

egy for compact model training. 603

6 Limitations 604

Although the proposed method demonstrates strong 605

performance across diverse benchmarks, it exhibits 606

comparatively lower accuracy on MRPC and RTE 607

due to dataset-specific challenges. In MRPC, the 608

task relies on fine-grained lexical overlap between 609

sentence pairs, which can be inadvertently dis- 610

rupted by pruning. RTE requires entailment deci- 611

sions based on minimal context, often involving im- 612

plicit reasoning, which may not be adequately cap- 613

tured through sentence-level clustering or teacher 614

aggregation. These limitations indicate that task- 615

specific adaptations, such as overlap-preserving 616

pruning or external knowledge integration, may 617

further improve performance on such datasets. 618
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