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Abstract

Finding the right food in a supermarket for
someone’s dietary needs is challenging due to
the large variety of food products. One possi-
ble solution is to build a nutrition information
dataset and a food search engine. This engine
would allow consumers to find their desired
food product by placing constraints on the nu-
trition factors and ranking the obtained results
based on their criteria. However, collecting
nutrition information for tens of thousands of
food products is time-consuming, and an au-
tomatic method is desired. This paper investi-
gates the problem of automatic extraction of nu-
trition information from nutrition strings. For
this purpose, it introduces a dataset of nutrition
strings collected from different websites and
their corresponding nutrition information. The
nutrition extraction problem can be viewed as a
slot filling problem, and two transformer-based
methods from the literature are evaluated. The
paper also introduces a specialized algorithm
based on dynamic programming, and evaluates
it as well as the transformer-based methods and
GPT-4 and GPT-40, with encouraging results.

1 Introduction

The United States and the entire world are facing
an obesity epidemic, with more than 42% of the
adults in the USA being obese. Obesity is strongly
associated with heart disease, diabetes, high blood
pressure, and even certain forms of cancer.
Consumers have a hard time losing weight, in
part because it is hard to find what foods fit their di-
etary needs from the thousands of food items from
supermarkets by examining their nutrition informa-
tion, one item at a time. It would be therefore desir-
able that the nutrition information of all products
from supermarkets be organized into a searchable
database where consumers could quickly search for
products satisfying their particular criteria. How-
ever, building such a database requires the extrac-
tion of nutrition information from different web-

sites containing the nutrition information of the
food products, either as a text string or as a picture,
or both.

This paper focuses on the problem of extracting
the nutrition information values of food products
from text strings. Given a string containing the nu-
trition information (a nutrition string), the problem
is to automatically extract the values of the desired
fields such as Calories, Total Fat, Saturated Fat,
Sodium, Protein, Fiber, etc.

As such, this problem can be regarded as the
intent classification task of a slot filling problem.
In NLP, the classification task in slot filling is to
extract the values of well-defined slot types of given
queries. It is referred to as the process of retrieving
information in order to convert the user intent into
explicit instructions. This project can be seen as
a slot filling problem where the slot types are the
nutrition items.

For this purpose, two popular slot filling methods
are investigated: JointBERT (Chen et al., 2019) and
CTRAN (Rafiepour and Sartakhti, 2023), trained
on our nutrition string data with slot labels. For
instance, the text "Calories 90" is expected to be
labeled as "Calories_item Calories_value," which
offers a clear matching between the nutrition item
"Calories" and its value "90.".

However, there are still several limitations of
these slot filling labeling methods, such as in-
creased training time for longer strings. For that
reason, this paper also introduces in Section 4 a
novel method based on dynamic programming to
address the same problem.

In conclusion, this paper brings the following
contributions:

* It proposes a new knowledge extraction prob-
lem, the extraction of nutrition information
values from nutrition strings, which has not
received much attention in the literature.

e It introduces a dataset of 26,165 nutrition
strings collected from various websites, to-



gether with their associated ground truth nu-
trition values.

¢ It shows how this problem can be viewed as
a slot filling problem, evaluating state-of-the-
art slot filling transformers such as JointBERT
(Chen et al., 2019) and CTRAN (Rafiepour
and Sartakhti, 2023).

* It introduces a novel dynamic programming-
based algorithm for addressing the nutrition
extraction problem.

e It performs experiments on the newly intro-
duced nutrition dataset, evaluating the pro-
posed DP-based method, the JointBERT and
CTRAN slot filling methods as well as GPT-4
and GPT-40, which can also be used to extract
information from nutrition strings.

The full dataset and the code used in this paper will
be shared on GitHub.

1.1 Related Work

Related work can be divided into work on nutrition
extraction datasets and slot filling methods.
Nutrition extraction datasets. To our knowledge,
there exists no nutrition extraction dataset simi-
lar to the one introduced in this paper, containing
nutrition strings and associated ground truth val-
ues. FoodDB (Harrington et al., 2019) introduces
a database of UK foods and their associated nutri-
tion information and chemical composition. The
data is in the form of an online table containing the
chemical compound and nutrition information of
foods, without the nutrition strings. The data was
collected from web pages and snapshots based on
Optical Character Recognition (OCR). However,
the dataset contains generic information such as
protein content in breakfast cereal and pasta rather
than on specific food products.

Slot filling methods. There has been quite a lot
of research addressing the slot filling problem. Ex-
amples include recurrent neural network (RNN)
based methods such as (Mesnil et al., 2015; Liu
and Lane, 2016; Wang et al., 2018), convolutional
neural network (CNN) based methods such as
(Xu and Sarikaya, 2013; Vu, 2016), and also the
Transformer encoder-based BERT models (Chen
et al., 2019), and Transformer-based CNN methods
(Rafiepour and Sartakhti, 2023).

There are several Spoken Language Understand-
ing (SLU) datasets widely used for evaluating slot
filling methods. A related dataset called SLURP
(Bastianelli et al., 2020) is a collection of audio
recordings. Anther dataset, Snips (Coucke et al.,

Length Slots

Dataset Size |Mean Max |Slots|per String
Snips 14484 9.0 35 | 72 4.6
ATIS 5871 | 11.1 46 | 120 4.1

NutriX (ours)|26164|244.0 1209| 78 42.6

Table 1: A comparison of some existing Slot Filling
datasets and our dataset.

2018), comes from a voice platform that includes
queries with the intent outputs, such as "Play-
Musics" and "GetWeather". The ATIS dataset
(Hemphill et al., 1990) is a series of strings for
a flight-booking system, which has higher similar-
ity outputs than the other two datasets. Both the
Snips and ATIS datasets are widely used in Slot
Filling research.

A data format similar to (Goo et al., 2018) for
the ATIS dataset was used in this paper to label the
nutrition extraction dataset for slot filling. One of
the challenges was the length difference between
the strings of these datasets and the nutrition strings.
The nutrition strings are much longer (most of them
over 200 words per string), and there are more
slot labels in each string, which may lead to much
longer computational time for training.

In Table 1 are shown some statistics about two
existing datasets, Snips (Coucke et al., 2018) and
ATIS (Hemphill et al., 1990), in comparison with
the proposed NutriX dataset. In this table, the size
column represents the number of strings in the each
dataset. The mean and maximum string length
are shown in the Length Mean and Max columns
respectively. Slots represents the total number of
labeled categories in each dataset. Slots per String
is the average number of slots in each string. From
Table 1 one could see that the Nutrix dataset is
quite challenging having longer strings and more
slots per string than the other two datasets.

2 Constructing the Nutrition Extraction
Dataset
The nutrition extraction dataset consists of a num-
ber of nutrition strings and their associated nutrition
information. It is organized as a table with differ-
ent food products as rows, and the nutrition string
and corresponding nutrition items as columns. An
example of a nutrition string is given in Figure 1.
The dataset construction can be divided into
three main tasks:
1. Collection of nutrition strings from websites.
2. Semi-automatic construction of the ground

truth table based on the nutrition strings.
3. Manual verification and correction of the con-

structed nutrition table.



Nutritional InfolngredientsAllergensNutritional
InformationServing Size: 125Calories: 90 Calories
From Fat: 35Amount Per ServingPercentage Daily
ValueCalcium8% Vitamin A15% Vitamin C30%Iron
4%Percentage Amount of Calories allergenno
allergen information90calCalories4gTotal Fat 3g
Fiber 3g Protein 410 mg Sodium

Figure 1: Nutrition string example.

These tasks will be discussed in the following
subsections, together with the challenges induced
by the variability of the collected nutrition strings.

2.1 Nutrition String Collection

The workflow for collecting nutrition strings from
the web is illustrated in Figure 2.

Create webdriver Collect Product
environment Urls

L, Collect Nutrition Strings
from Product Urls

Figure 2: Workflow for collecting nutrition strings.

The nutrition strings were collected from the
manufacturers or retailers’ websites. A web scrap-
ing technique was used to collect data from these
websites with the Requests (Foundation, 2024) and
Selenium (Muthukadan, 2024) Python libraries.
As many websites were built using Asynchronous
JavaScript and XML (AJAX) techniques, a web
driver was used to control the browser in a Python
environment and collect the information from the
response sent by the server. Web pages written in
AJAX can change only parts of the page without
reloading the whole page as the page is scrolled
down and new content is loaded from the website.

As shown in Table 2, four datasets were collected
from different sources for a total of 26,165 strings.

The ’Manufacturers’ dataset comes from more
than 20 manufacturers, with 2,117 strings. Each
manufacturer has a different string format, and for
this reason, it is the most complex and challeng-
ing of the four datasets. The *TraderJoes’ dataset
with 1,166 strings, the Publix’ dataset with 16,848
strings, and the *Target’ dataset were acquired from
the retailers’ website by web scraping. The *Trader-
Joes’ dataset is collected from its own website
(TraderJoes, 2025), while *Publix’ and ’Target’ are
from the Instacart website (Instacart, 2025). It was
easier to extract the nutrition items and values from
strings in these three datasets than from the *Manu-
facturers’ dataset. The ’Manufacturers’ dataset con-
tains food product information with strings without
line endings between nutrition items, while the
other three datasets have strings with new lines to
separate the nutrition items, making it easier to

length
dataset size |mean max | source
Manufacturers 2117 | 115 1194 |Manufact
TraderJoes 1165 | 91 426 | Retailer
Publix (Instacart)|16848| 281 1209| Retailer
Target (Instacart) | 6034 | 119 151 | Retailer
Combined 24047| 231 1209| Retailer
NutriX 26164| 244 1209 all

Table 2: The nutrition datasets and their sources. The
length mean and max in this table are the average and
max word counts for the strings in each dataset.

label these datasets based on the line-ending infor-
mation automatically.

2.2 Challenges

Extracting nutrition information from the string
data faces several challenges that need to be over-
come. An example of a raw nutrition string was
given in Figure 1. In this string, words are not al-
ways separated by space. For instance, the word
“InfolngredientsAllergensNutritional” should be
separated into 4 words. In this case, words can
still be split through the capital letters.

Generally, the nutrition values and the units of
measure are placed after the nutrition item keyword
in the nutrition string, but there are still some ex-
ceptions. For example, at the end of this text, the
measure “90” is right before the item “Calories,”
and the measure “4 gram” is also located before
the item “Total Fat”.

Nutritional InfolngredientsAllergensNutritionalinformation
Serving Size: 125Calories: 90 Calories From Fat: 35Calcium
8% Vitamin A15%Vitamin C30%lron 4% information90cal
Calories4gTotal Fat 3g Fiber 3g Protein 410 mg Sodium

Figure 3: Nutrition string split example 1

In Figure 3 is shown an example of how a string
is expected way to be split. Blue words are nutrition
items such as Calories and Protein, red words are
values, green words are the unit of measures, and
black words should be ignored. Each nutrition item
should be matched to one value combined with
their unit, before or after the item.

Figure 4 is another nutrition string example. The
measures are more complex than in Figure 3. For
instance, the item “Fat” has the value “0.5g” and
also “1 % after that, which means 0.5 grams is 1%
of the daily value of “Fat” given by the FDA. The
value "2,000" here is not supposed to match any
nutrition item even though it has the nutrition item
keyword "calories" after it. The values and their
percentage value should also be combined together
and matched to a single item.

In summary, extracting nutrition information



Nutrition Facts 3.5 Servings Per Container Serving

Size 1/2 cup(122g) Amount Per Serving Calories 45*
Fat 0.5g 1% Saturated 0g 0% Trans 0g Polyunsaturated
0g Monounsaturated 0g Cholesterol 0Omg 0% Sodium
5mg 0% Total Carb 10g 4% Fiber 3g 10% Total Sugars
5g Incl. 0g Added sugar Protein 1g Vitamin D Omcg
Calcium 20mg Iron 1mg Potassium 330mg Vitamin A
950mcg * The (DV) tells you how much a nutrient in a
serving of food contributes to a daily diet. 2,000 calories
a day is used for general nutrition advice.

Figure 4: Nutrition string split example 2

from nutrition strings faces several challenges:

1. The name of a nutrition item in the nutri-
tion string differs from the column name in
the database. For example, the name in the
database is “total fat” but the corresponding
name in the nutrition string is “fat”.

2. Different names of serving sizes such as
pieces, tsp, and varying units of measure, e.g.,
mL, g, mg, oz, %, etc. Also different versions
of the same unit of measure: oz, floz, fl oz, fl
oz (US Ounce).

3. The placement of the associated value before
or after the nutrition item name, e.g., “Calo-
ries: 90” or “Includes Og Added Sugars”.

4. No space between nutrition items and num-
bers, e.g., “3gProtein4d10mgSodium”.

5. Nutrition values can be duplicated with per-
centage measures and should be combined
together. For example, ”Carbohydrates 36 g
13 % should be combined as a single item,
which means the product contains 36 grams
of carbohydrates, which is 13 % of the daily
value suggested by the FDA.

6. False matching of some nutrition items with
others, e.g., incorrectly matching ’Calories
from Fat” with ”Calories” and Fat”.

2.3 Constructing the Ground Truth Table

For the TraderJoes, Publix, and Target datasets, the
strings were collected in two ways: one in which
the nutrition items are separated by the end-of-line
symbol "\n" and one as strings without end-of-line.
The end-of-line format is an aid to generate the
ground truth table for training and evaluation be-
cause each nutrition item and their measures with
units are located on a single line. This feature
is specific to the TraderJoes, Publix, and Target
datasets, but not to the Manufacturers dataset, and
can be exploited to generate the ground truth for
these three datasets. However, in Section 5, we will
evaluate methods that are capable of processing all
datasets, where each string is given as a single line.

The ’Manufacturers’ dataset is collected as
strings without any line breaks between nutrition

items. The ground truth table for this dataset was
constructed manually with the help of ChatGPT.
Dataset Verification. The verification of the cor-
respondence between the nutrition strings and the
ground truth values for the four datasets was done
manually, by visual inspection of the strings and
their associated values.

3 Slot Filling Methods for Nutrition
Information Extraction

This section poses the extraction of nutrition infor-

mation as a slot filling problem and shows how to

train deep learning models for this purpose.

Slot filling can be seen as the classification of
an input string for subsequent extraction of the cor-
responding information. For example, from the
string "Arrive in Atlanta on December 20th" for
a ticket booking system, the keyword "Atlanta"
should be placed in the predefined slot "Destina-
tion" and "December" and "20th" would be placed
into the "Time of Arrival" slot by the algorithm. In
this case, keywords "Arrive" and "on" will be put
into the slots "Other" or "0".

Compared to standard slot filling problems, such
as the ticket booking example above, the prob-
lem of nutrition information extraction has its own
challenges because the input string is much longer
(could be even 1000 words or longer) and the num-
ber of slots is quite large (78 slots).

The example above showed how the slot filling
method was used to predict the intent of the input
query. In this project, the intent is clear and the
goal will be the prediction of slot labels.

The models used in this paper are JointBERT
(Chen et al., 2019) and CTRAN (Rafiepour and
Sartakhti, 2023), both having great slot label pre-
diction performance on the Snips (Coucke et al.,
2018) and ATIS (Hemphill et al., 1990) datasets.

3.1 Data Preprocessing

One major challenge for applying slot filling meth-
ods is the lack of spaces between words, nutrition
items, and numbers. Capital letters are good refer-
ences for inserting spaces between words. For in-
stance, in Figure 1, "Nutritional InfolngredientsAl-
lergens"” can be split into four words.

In this paper, spaces are inserted before capital
letters and punctuations, e.g., ":", and before and
after numbers, to split the strings into words. Other
methods, such as tokenizers or Bayesian optimiza-
tion (Moss et al., 2020) could be used to separate
words in strings. A pretrained BERT tokenizer,
such as (Moi and Patry, 2023), can also split words



Data Serving Size: 125Calories: 90 Fat: 3g ... 410mgSodium
Preprocessing v
l Serving Size : 125 Calories : 90 Fat: 3 g ... 410 mg Sodium
. 1_SS 2_SS 0 SS_val Calories 0 Calories_val Fat 0
Slot Labeling Fat_val Fat_unit ... Sodium_val Sodium_unit Sodium

Figure 5: Labeling strings for Slot Filling training

based on spaces and capital letters.

3.2 Labeling Strings for Slot Filling Training

A special type of labeling needs to be obtained for
training slot filling neural networks, in which each
word needs to be labeled, as illustrated in Figure 5.
The slot labels contain the nutrition items, values,
and their units of measure. The irrelevant words
are labeled with *0’. The keyword "Serving Size"
is a nutrition item with two words; therefore it
is labeled as (1_SS) and (2_SS). In the example
string in Figure 4, the substring "Fat 0.5g 1%"
contains the keyword "Fat’, measure ’0.5’, unit of
measure ’g’, and the percent Daily Value (%DV)
"1%’, which will be defined as four slot labels, Fat’,
’Fat_val’, Fat_unit’, and Fat _dv’.

The slot labels for each nutrition string in Trader-
Joes, Publix, and Target datasets were generated
from the string dataset that contained the nutrition
items separated by the end-of-line symbol, as men-
tioned in Section 2.3.

Data . Serving Size 120.00 g Servings Per Container 1
Preprocessing Amount Per Serving Calories 70 ... Protein 1 g

<Nutrition_Fact> -> [Serving:1_SS][Size:2_SS][120.00:SS_val]
[9:SS_unit][Servings:1_SPC][Per:2_SPC][Container:3_SPC][1:

SPC_val][Amount:0][Per:0][Serving:0][Calories:Calories][70:Ca

lories_val]...[Protein:Protein][1:Protein_val][g:Protein_unit]

Figure 6: Prediction for Slot Filling models

3.3 Training details

In this paper, the pre-trained uncased BERT base
model, (i.e. the bert-base-uncase model) (Devlin
et al., 2018) was used for both the JointBERT
and CTRAN methods. The number of training
epoch were the default settings from the two pa-
pers, where JointBERT was trained with initial
learning rate 5e-5 using a linear schedule for 10
epochs, and CTRAN was trained with learning rate
le-3 in encoder, le-4 in decoder and le-4 in the
BERT layer using StepLR scheduler for 50 epochs.
The maximum length of the strings was set to 200,
which contains almost all of the nutrition informa-
tion in the nutrition datasets. Batch sizes were set
to be 128 in JointBERT and 16 in CTRAN.

4 A Dynamic Programming Method for
Nutrition Extraction

This section presents an unsupervised method for
slot filling based on Dynamic Programming, that

Serving Size: fl25Calories: 90 ...Iron [@%
informationf@0calCalories. . [410mgSodium

Nutrition Value
Detection

Unit of Measure
Detection

Nutrition Keyword
Detection

Serving Size: 125Calories: 90 ...Iron 4%
information90¢alCalories...410mgSodium

Serving Size} 125Calories}: 90 ...[fronj4_%
information90_calCalories...410_mgSodium

Serving Size: 125Calories: 90 ...Iron 4_%
information90_calCalories...410_mgSodium

Others

Figure 7: Nutrition string splitting workflow
does not need any training. The whole method is
described in Algorithm 1. Its steps are discussed in
detail in the following subsections.

Algorithm 1 Nutrition Information Extraction by
Dynamic Programming

Input: Nutrition string .S
Output: Nutrition items and their values

1: Proprocess string S by adding spaces before
capital letters and special characters

Detect nutrition values

Detect units of measure

Detect nutrition items

Preprocess for DP

Apply DP

Preprocessing uses the approach discussed in
Section 3.1, based on adding spaces before capital
letters and certain special characters.

AN A

4.1 Detecting Nutrition Values and Units of
Measure

The first step in the DP approach is to detect the
numbers and their locations in the string. The num-
bers are defined as contiguous sequences of charac-
ters from {0,1,..,9,°.”,-"/,” *’}. These num-
bers include integers, decimals, numbers with thou-
sand separators, fractions and mix-fractions such
as ’10’,°1.5%,°2,000’, °3/4’ and *1-2/5’. They are
detected together with the start and end locations
in the string using regular expressions in Python.
Then the string is split into substrings based on the
locations of the numbers, and hence each substring
contains only words and symbols but no numbers.

After that, units of measure are detected whether
they are right at the beginning of substrings. The
units of measure are taken from a dictionary of 116
units containing ’g’,’mg’,’0z’,’ floz’, etc.

After the units of measure are detected, the num-
bers are combined with the units of measure into a
single substring using "_". For example, the value
"1" combined with the unit of measure "mg" will
be "1_mg". In some cases after the numbers+unit
of measure there is another number+%, the percent
Daily Value (%DV), such as "0.5 g 1 %". In such



cases, all four items (two numbers and two units of
measure) are combined, obtaining "0.5_g_ 1_%".
This whole conglomerate represents a candidate nu-
trition value, with its unit of measure and possibly
its %DV.

4.2 Nutrition Item Detection

The next step is to detect whether the substrings
contain any keywords for the nutrition items we are
trying to extract. The nutrition items are detected
using a list of 19 possible keywords, ’Servings Per
Container’, ’Serving Size’, *Calories’, "Fat’, ’Sat-
urated Fat’, *Trans Fat’, ’Cholesterol’, *Sodium’,
’Carbohydrate’, *Fiber’, *Sugars’, *Added Sugars’,
’Protein’, *Vitamin A’, ’Vitamin C’, ’Vitamin D’,
’Calcium’, ’Iron’, "Potassium’, and their variations,
such as ’fat’, ’total fat’, ’saturated’, ’saturates’, etc.
For each detected item, the start and end location in
the string and the corresponding nutrition item are
recorded. In the case of the ambiguous nutrition
items such as "Fat’ and ’Saturated Fat’, the items
with more words will be detected before to those
with fewer words. Once any of the items is de-
tected, the detected nutrition item will be removed
from the substring and the next possible nutrition
item will be searched in the current substring.

For example, in the string "Total Fat 0.5 g Total
Saturated Fat O g Total Trans Fat 0g", the substring
"Total Saturated Fat" will be tested if ’Saturated
Fat’ is contained. Since ’Saturated Fat’ is detected,
it will be removed from the substring and the pro-
gram will detect whether the next item ’Fat’ is
contained in the substring "Total". This method
also works in the case of the substring "Servings
Per Container Serving Size" in Figure 4, which
contains more than one nutrition item. In this case,
both ’servings per container’ and ’serving size’ will
be detected.

The substrings that are left at the end of nutri-
tion item detection are text to be ignored. These
ignored texts will be joined with an adjacent nutri-
tion item and will be considered as a single node
for Dynamic Programming in Section 4.3.

4.3 Overview of Dynamic Programming

Dynamic programming is an efficient globally op-
timal algorithm for minimizing an additive cost on
a chain of nodes V1, ..., V,,, each having a set of
possible labels (values) I; € L.

Let 0% (i) be the unary cost for node V}, taking
value ¢, and 6 (4, j) be the binary cost for node Vj,
taking value ¢ and node V. taking value j.

Original
String

|Servwng S\ze|: @251Ca\orles|: @(5)...|informationl./\41'07;@
o v —

Nutrition v, \A
items: Serving Size " (ignored text) - - -

125 Calories X

i

07Ny .- 2

" " Serving Size |{ 0

Serving Size 125 (\g)‘ )| Calories 90

410mg Sodium

Serving Size Calories Sodium

Sodium

Figure 8: Dynamic Programming
Under these assumptions, dynamic program-
ming obtains the global optimum of the minimiza-
tion problem:

n—1
min[» " 0;(L) + > 0i(li,lig1)]. (D)
=1 =1

leLn 4

It does so in a recursive manner by memoriz-
ing My(j), the minimum cost of the partial opti-
mization problem on V7, ..., Vj with the label of V},
being j:

k—1
M.(j) = mi 0,(1) + 0,(1i, i), (2
1(5) 1653,112_]-;[ (L) + 0;(Ls, li1)]. (2)

The vectors My (j) are computed recursively,
with the first one being M (j) = 0, and the follow-
ing ones as:

Mi41(5) = rlréiLn[Mk(l) + 0 (1) + 0k (1, 5)]. (3

Finally, the optimum is obtained by minimizing:
min[Mn (1) + 0n (D)), @

and the optimal solution can be traced back by
memorizing the argmin for Eq. (4) and each step
of Eq. (3), and tracing back the optimum starting
from n down to 1.

4.4 Dynamic Programming for Matching
Nutrition Values to Items

At this step, the nutrition string has already been
split into nutrition values and some nutrition items
and ignored texts between them.

The problem is now how to match the nutrition
items with the nutrition values, assuming that the
value could be before or after the nutrition item.
For that purpose, dynamic programming (DP) is
used to find the matches.

To use DP to match the nutrition items to values,
the DP nodes V7, ..., V,, are the detected nutrition
items in the order they are in the string. The labels
L = {0, 1, 2} take three values, defining whether
the corresponding nutrition value is before the item
(I = 0), after the item (! = 2) and does not have a
match (I = 1).

The unary cost 05 (7) is the cost that a certain
nutrition item matches the values before or after in
the string based on the units of measure of those
values. For example, the nutrition item "Protein" is



Unit type\j| 0 1 2 ZX (1) if
Preferred | 1 999 1 R
Other 10 999 10 > 1011
a) 0(j) b) 01(4, 7)

Table 3: Unary costs 05 (j) and binary costs 0y (3, j)
used in dynamic programming.

"n_n

more likely to be matched to a value with unit "g
but not "mg", and hence the cost of "g" in this case
will be smaller than "mg". The dimension of the
unary cost 6 (j) for each nutrition item is 3.

The cost values for each nutrition item that is
matched to nutrition values having different units
are defined based on matching to a preferred unit
of measure or not, as shown in Table 3, a).

The preferred units of measure are:

1. No unit for: ’Servings Per Container’, *Calo-

ries’ and ignored text.

2. Any unit except no unit for *Serving Size’.

3.’g’ for: ’Total Fat’, *Saturated Fat’, *Trans

Fat’, ’Carbohydrate’, ’Dietary Fiber’, *Total
Sugars’, *Added Sugars’, and ’Protein’.

4. ’mg’ for: *Cholesterol’ and ’Sodium’.

5. ’mg’ or "%’ for: *Vitamin A’, ’Vitamin C’, ’ Vi-

tamin D’, ’Calcium’, ’Iron’ and "Potassium’.

The pairwise cost 0 (i, 7) is the cost of having
node k with label ¢ and node k + 1 with label j. If
the label of V}, is 2 (i.e., "after"), there should be a
high cost to have the label of V1 be 0 (i.e., "be-
fore") because that would assign the same nutrition
value to two items. Thus, the cost should be larger
in this case than in other combinations. The values
of O (i, 7) in our experiments are given in Table 3,
b).

5 Experiments

Experiments were performed on a Windows 11
computer with a 13th Gen Intel(R) Core(TM) i7-
13700HX 2.10 GHz processor with 32GB RAM
and an RTX 4060 GPU with 8GB memory.

Experiments were performed on the nutrition
extraction dataset introduced in Section 2, with its
parts shown in Table 2.

Because the ’Manufacturers’ dataset contains
food product information from strings without line
breaks between nutrition items, the "Manufacturers’
dataset could not be labeled for slot filling, so it
was only used as a test set for all methods.

The other three parts: TraderJoes, Publix and
Target were merged into a ’Combined’ dataset con-
taining 24047 observations, shown as ’Combined’
in Table 2.

The methods that were evaluated are: JointBERT
(Chen et al., 2019), CTRAN (Rafiepour and Sar-
takhti, 2023), GPT-4 (OpenAl, 2024a), GPT-40
(OpenAl, 2024b), and the proposed dynamic pro-
gramming (DP) method described in Section 4.

GPT-4 and GPT-40 were queried using Python
and their respective API from the OpenAl library
(https://openai.com/api/).Each prompt in
the GPT-4 and GPT-40 API includes the model to
be used, i.e., "gpt-4", "gpt-40" and "gpt-40-mini",
and the message part with the nutrition strings and
the request to extract the nutrition items and their
values. The response of the prompts were collected
and evaluated using the GT table.

The other three methods were implemented in
Python. For JointBERT and CTRAN, their GitHub
implementations from https://github.com/mon
ologg/JointBERT and https://github.com/r
afiepour/CTRAN were used.

JointBERT and CTRAN were trained as de-
scribed in Section 3. Training each fold of the
JointBERT took an average of 1.1 hours for 10
epochs and for CTRAN took 16.5 hours for 50
epochs.

The methods that require training (JointBERT
and CTRAN) were evaluated with four-fold cross-
validation on the ’Combined’ dataset. The model
trained on each one of the folds was also used to
evaluate the "Manufacturers’ dataset.

The unsupervised methods (GPT-4, GPT-40 and
DP) were evaluated on the entire dataset.

The DP algorithm took around 49 msec per
query while the JointBERT took 13 msec and
CTRAN took 396 msec per query. Querying GPT-
40 using the API took about 4097 msec per query.

5.1 Evaluation Measure

The ground truth (GT) table of each dataset was
used to create the baseline for evaluation and to cal-
culate the precision and recall of each food product
(row) by matching the predicted and GT values for
each nutrition item.

The overall precision and recall are computed
by averaging the precision and recall in each row,
and the F1-score is calculated based on the overall
precision and recall.

The precision is defined as the ratio p = M/N,
where N is the number of nutrition items that are
output by the method, and M is the number of
nutrition items from the output that are matched to
the GT table items.

The recall is defined as the ratio r = M/A,
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Method [ Prec(std.) [Recall(std.)| Fi(std.) |
Combined dataset, N=24047
JointBERT|[98.6(0.01)[ 89.9(0.05) [94.0(0.02)

CTRAN (99.9(0.01)| 99.9(0.01) |99.9(0.00)
GPT-4 95.5 83.1 88.9
GPT-40 95.4 90.0 92.6
DP 98.9 95.4 97.1

Manufacturers dataset, N=2117
JointBERT |83.2(0.03)| 78.6(0.06) {80.8(0.03)

CTRAN (93.9(0.02)| 91.4(0.02) |92.6(0.01)
GPT-4 90.3 80.9 854
GPT-40 92.2 85.7 88.8
DP 98.1 99.4 98.7

Table 4: Nutrition extraction evaluation. Shown are
the precision, recall, and F}-scores of the five methods,
with best results in bold.

where A is the total number of nutrition items that
are in the GT table, and M is the number of items
from the GT table that are found in the output.
The F} measure has the usual definition in terms
of the precision p and recall r, F} = 2pr/(p + 7).

5.2 Results

The results are shown in Table 4, with the methods
that require training having mean (and std.) test
values on the four cross-validation folds.

From Table 4 one can see that the I} scores on
the Combined dataset are almost consistently better
than those on the Manufacturers dataset because
the Combined dataset strings are more homoge-
neous, hence easier to process. GPT and GPT-40
have good performance on the Combined dataset,
and both JointBERT and CTRAN have similar pre-
cision results, while CTRAN has better recall on
both the Combined dataset and the Manufactur-
ers dataset. The proposed DP method has a stable
performance on both datasets and outperforms the
other methods on the more challenging *Manufac-
turers’ dataset.

GPT-4 and GPT-40 provide a convenient Python
API environment for sending input prompts con-
taining the nutrition strings and the request. But
one disadvantage of GPT-4 is that each prompt
is irrelevant to others, which means that the user
has to give very specific prompts such as: "Ex-
tract the nutrition item Protein from this string."
for each string; otherwise they cannot expect sta-
ble results. Moreover, although it is not necessary
to train a model on GPT-4 and GPT-4o, it takes a
much longer time querying strings than the other
methods. ChatGPT does have a good performance
on extracting the nutrition items from strings, but

Method Prec|Recall| I}

DP 98.1| 99.4 (98.7

No preprocessing|95.2| 93.1 [94.1
No binary cost |76.8| 72.9 |74.8

Table 5: Ablation study on the Manufacturers dataset.

users have to type in the strings repeatedly in the
message bar manually unless using a web driver.
Ablation study. An ablation study of the DP
method introduced in this paper is shown in Table
5. It evaluates the importance of the preprocess-
ing step and the binary cost in the obtained result.
The performance is poor without the binary cost
from Table 3. In this case, nutrition items may be
matched to same values in the strings. The pre-
processing step is less important than the binary
cost. However, this step was also necessary for slot
filling methods, i.e., JointBERT and CTRAN.

6 Conclusion

This paper introduced the NLP problem of extract-
ing nutrition information from nutrition strings,
which is a slot-filling problem that has not received
attention in the NLP literature. In this regard,
the paper provides a nutrition extraction dataset
called NutriX containing more than 26,000 nutri-
tion strings and their associated ground truth nu-
tritional information. The paper shows how the
dataset was collected and annotated, and the chal-
lenges facing this problem compared to other slot
filling problems, such as long strings and a large
number of slots per string.

The paper also shows how to view the nutrition
extraction problem as a slot filling problem and
how to train deep learning models on this data.
Moreover, the paper introduces a novel method
based on dynamic programming for the same task.

Finally, experiments on the provided dataset
show that the problem is not trivial, and one part
of the dataset called the "Manufacturers’ dataset is
quite challenging where the proposed DP method
works best among the five methods evaluated, in-
cluding two GPT-4 versions.

Future work includes collecting more data and
training a classifier that will predict the food cat-
egory (e.g. pizza, hot dogs, ice cream, etc.) from
the nutrition string. The ultimate goal is to build a
food search engine that anybody can use to search
food products that fit their specific dietary needs.



Limitations

There are some limitations for the methods used in
this paper:

1. Training data from various resources is im-
portant for the supervised learning methods
to have better prediction in complex nutrition
strings dataset.

2. Data preprocessing is also necessary for both
JointBERT and CTRAN (Slot-Filling meth-
ods) since the slot labels should be separated
by space.

3. Manual verification and correction of the con-
structed ground truth table is needed.

4. GPT-4 and GPT-40 are convenient inputting
queries, but both of them take longer time to
generate the results than other methods.

5. The DP method performs well on both the
Combined and Manufactures datasets in this
paper. However, in the nutrition item de-
tection step, a prebuilt dictionary to convert
ambiguous nutrition items is needed. For
instance, both of the items ’Potas.’ and
"Potassium’ represent the same nutrition item.
Therefore, once the new dataset is collected,
the prebuilt dictionary should bee updated
manually.
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