
Automatic Extraction of Nutrition Information from Nutrition Strings

Anonymous ACL submission

Abstract

Finding the right food in a supermarket for001
someone’s dietary needs is challenging due to002
the large variety of food products. One possi-003
ble solution is to build a nutrition information004
dataset and a food search engine. This engine005
would allow consumers to find their desired006
food product by placing constraints on the nu-007
trition factors and ranking the obtained results008
based on their criteria. However, collecting009
nutrition information for tens of thousands of010
food products is time-consuming, and an au-011
tomatic method is desired. This paper investi-012
gates the problem of automatic extraction of nu-013
trition information from nutrition strings. For014
this purpose, it introduces a dataset of nutrition015
strings collected from different websites and016
their corresponding nutrition information. The017
nutrition extraction problem can be viewed as a018
slot filling problem, and two transformer-based019
methods from the literature are evaluated. The020
paper also introduces a specialized algorithm021
based on dynamic programming, and evaluates022
it as well as the transformer-based methods and023
GPT-4 and GPT-4o, with encouraging results.024

1 Introduction025

The United States and the entire world are facing026

an obesity epidemic, with more than 42% of the027

adults in the USA being obese. Obesity is strongly028

associated with heart disease, diabetes, high blood029

pressure, and even certain forms of cancer.030

Consumers have a hard time losing weight, in031

part because it is hard to find what foods fit their di-032

etary needs from the thousands of food items from033

supermarkets by examining their nutrition informa-034

tion, one item at a time. It would be therefore desir-035

able that the nutrition information of all products036

from supermarkets be organized into a searchable037

database where consumers could quickly search for038

products satisfying their particular criteria. How-039

ever, building such a database requires the extrac-040

tion of nutrition information from different web-041

sites containing the nutrition information of the 042

food products, either as a text string or as a picture, 043

or both. 044

This paper focuses on the problem of extracting 045

the nutrition information values of food products 046

from text strings. Given a string containing the nu- 047

trition information (a nutrition string), the problem 048

is to automatically extract the values of the desired 049

fields such as Calories, Total Fat, Saturated Fat, 050

Sodium, Protein, Fiber, etc. 051

As such, this problem can be regarded as the 052

intent classification task of a slot filling problem. 053

In NLP, the classification task in slot filling is to 054

extract the values of well-defined slot types of given 055

queries. It is referred to as the process of retrieving 056

information in order to convert the user intent into 057

explicit instructions. This project can be seen as 058

a slot filling problem where the slot types are the 059

nutrition items. 060

For this purpose, two popular slot filling methods 061

are investigated: JointBERT (Chen et al., 2019) and 062

CTRAN (Rafiepour and Sartakhti, 2023), trained 063

on our nutrition string data with slot labels. For 064

instance, the text "Calories 90" is expected to be 065

labeled as "Calories_item Calories_value," which 066

offers a clear matching between the nutrition item 067

"Calories" and its value "90.". 068

However, there are still several limitations of 069

these slot filling labeling methods, such as in- 070

creased training time for longer strings. For that 071

reason, this paper also introduces in Section 4 a 072

novel method based on dynamic programming to 073

address the same problem. 074

In conclusion, this paper brings the following 075

contributions: 076

• It proposes a new knowledge extraction prob- 077

lem, the extraction of nutrition information 078

values from nutrition strings, which has not 079

received much attention in the literature. 080

• It introduces a dataset of 26,165 nutrition 081

strings collected from various websites, to- 082

1



gether with their associated ground truth nu-083

trition values.084

• It shows how this problem can be viewed as085

a slot filling problem, evaluating state-of-the-086

art slot filling transformers such as JointBERT087

(Chen et al., 2019) and CTRAN (Rafiepour088

and Sartakhti, 2023).089

• It introduces a novel dynamic programming-090

based algorithm for addressing the nutrition091

extraction problem.092

• It performs experiments on the newly intro-093

duced nutrition dataset, evaluating the pro-094

posed DP-based method, the JointBERT and095

CTRAN slot filling methods as well as GPT-4096

and GPT-4o, which can also be used to extract097

information from nutrition strings.098

The full dataset and the code used in this paper will099

be shared on GitHub.100

1.1 Related Work101

Related work can be divided into work on nutrition102

extraction datasets and slot filling methods.103

Nutrition extraction datasets. To our knowledge,104

there exists no nutrition extraction dataset simi-105

lar to the one introduced in this paper, containing106

nutrition strings and associated ground truth val-107

ues. FoodDB (Harrington et al., 2019) introduces108

a database of UK foods and their associated nutri-109

tion information and chemical composition. The110

data is in the form of an online table containing the111

chemical compound and nutrition information of112

foods, without the nutrition strings. The data was113

collected from web pages and snapshots based on114

Optical Character Recognition (OCR). However,115

the dataset contains generic information such as116

protein content in breakfast cereal and pasta rather117

than on specific food products.118

Slot filling methods. There has been quite a lot119

of research addressing the slot filling problem. Ex-120

amples include recurrent neural network (RNN)121

based methods such as (Mesnil et al., 2015; Liu122

and Lane, 2016; Wang et al., 2018), convolutional123

neural network (CNN) based methods such as124

(Xu and Sarikaya, 2013; Vu, 2016), and also the125

Transformer encoder-based BERT models (Chen126

et al., 2019), and Transformer-based CNN methods127

(Rafiepour and Sartakhti, 2023).128

There are several Spoken Language Understand-129

ing (SLU) datasets widely used for evaluating slot130

filling methods. A related dataset called SLURP131

(Bastianelli et al., 2020) is a collection of audio132

recordings. Anther dataset, Snips (Coucke et al.,133

Length Slots
Dataset Size Mean Max Slots per String
Snips 14484 9.0 35 72 4.6
ATIS 5871 11.1 46 120 4.1
NutriX (ours) 26164 244.0 1209 78 42.6

Table 1: A comparison of some existing Slot Filling
datasets and our dataset.
2018), comes from a voice platform that includes 134

queries with the intent outputs, such as "Play- 135

Musics" and "GetWeather". The ATIS dataset 136

(Hemphill et al., 1990) is a series of strings for 137

a flight-booking system, which has higher similar- 138

ity outputs than the other two datasets. Both the 139

Snips and ATIS datasets are widely used in Slot 140

Filling research. 141

A data format similar to (Goo et al., 2018) for 142

the ATIS dataset was used in this paper to label the 143

nutrition extraction dataset for slot filling. One of 144

the challenges was the length difference between 145

the strings of these datasets and the nutrition strings. 146

The nutrition strings are much longer (most of them 147

over 200 words per string), and there are more 148

slot labels in each string, which may lead to much 149

longer computational time for training. 150

In Table 1 are shown some statistics about two 151

existing datasets, Snips (Coucke et al., 2018) and 152

ATIS (Hemphill et al., 1990), in comparison with 153

the proposed NutriX dataset. In this table, the size 154

column represents the number of strings in the each 155

dataset. The mean and maximum string length 156

are shown in the Length Mean and Max columns 157

respectively. Slots represents the total number of 158

labeled categories in each dataset. Slots per String 159

is the average number of slots in each string. From 160

Table 1 one could see that the Nutrix dataset is 161

quite challenging having longer strings and more 162

slots per string than the other two datasets. 163

2 Constructing the Nutrition Extraction 164

Dataset 165

The nutrition extraction dataset consists of a num- 166

ber of nutrition strings and their associated nutrition 167

information. It is organized as a table with differ- 168

ent food products as rows, and the nutrition string 169

and corresponding nutrition items as columns. An 170

example of a nutrition string is given in Figure 1. 171

The dataset construction can be divided into 172

three main tasks: 173

1. Collection of nutrition strings from websites. 174

2. Semi-automatic construction of the ground 175

truth table based on the nutrition strings. 176

3. Manual verification and correction of the con- 177

structed nutrition table. 178

2



Nutritional InfoIngredientsAllergensNutritional
InformationServing Size: 125Calories: 90 Calories
From Fat: 35Amount Per ServingPercentage Daily
ValueCalcium8%Vitamin A15%Vitamin C30%Iron
4%Percentage Amount of Calories allergenno
allergen information90calCalories4gTotal Fat 3g
Fiber 3g Protein 410 mg Sodium

Figure 1: Nutrition string example.

These tasks will be discussed in the following179

subsections, together with the challenges induced180

by the variability of the collected nutrition strings.181

2.1 Nutrition String Collection182

The workflow for collecting nutrition strings from183

the web is illustrated in Figure 2.184

Figure 2: Workflow for collecting nutrition strings.

The nutrition strings were collected from the185

manufacturers or retailers’ websites. A web scrap-186

ing technique was used to collect data from these187

websites with the Requests (Foundation, 2024) and188

Selenium (Muthukadan, 2024) Python libraries.189

As many websites were built using Asynchronous190

JavaScript and XML (AJAX) techniques, a web191

driver was used to control the browser in a Python192

environment and collect the information from the193

response sent by the server. Web pages written in194

AJAX can change only parts of the page without195

reloading the whole page as the page is scrolled196

down and new content is loaded from the website.197

As shown in Table 2, four datasets were collected198

from different sources for a total of 26,165 strings.199

The ’Manufacturers’ dataset comes from more200

than 20 manufacturers, with 2,117 strings. Each201

manufacturer has a different string format, and for202

this reason, it is the most complex and challeng-203

ing of the four datasets. The ’TraderJoes’ dataset204

with 1,166 strings, the ’Publix’ dataset with 16,848205

strings, and the ’Target’ dataset were acquired from206

the retailers’ website by web scraping. The ’Trader-207

Joes’ dataset is collected from its own website208

(TraderJoes, 2025), while ’Publix’ and ’Target’ are209

from the Instacart website (Instacart, 2025). It was210

easier to extract the nutrition items and values from211

strings in these three datasets than from the ’Manu-212

facturers’ dataset. The ’Manufacturers’ dataset con-213

tains food product information with strings without214

line endings between nutrition items, while the215

other three datasets have strings with new lines to216

separate the nutrition items, making it easier to217

length
dataset size mean max source
Manufacturers 2117 115 1194 Manufact
TraderJoes 1165 91 426 Retailer
Publix (Instacart) 16848 281 1209 Retailer
Target (Instacart) 6034 119 151 Retailer
Combined 24047 231 1209 Retailer
NutriX 26164 244 1209 all

Table 2: The nutrition datasets and their sources. The
length mean and max in this table are the average and
max word counts for the strings in each dataset.

label these datasets based on the line-ending infor- 218

mation automatically. 219

2.2 Challenges 220

Extracting nutrition information from the string 221

data faces several challenges that need to be over- 222

come. An example of a raw nutrition string was 223

given in Figure 1. In this string, words are not al- 224

ways separated by space. For instance, the word 225

“InfoIngredientsAllergensNutritional” should be 226

separated into 4 words. In this case, words can 227

still be split through the capital letters. 228

Generally, the nutrition values and the units of 229

measure are placed after the nutrition item keyword 230

in the nutrition string, but there are still some ex- 231

ceptions. For example, at the end of this text, the 232

measure “90” is right before the item “Calories,” 233

and the measure “4 gram” is also located before 234

the item “Total Fat”. 235

Figure 3: Nutrition string split example 1

In Figure 3 is shown an example of how a string 236

is expected way to be split. Blue words are nutrition 237

items such as Calories and Protein, red words are 238

values, green words are the unit of measures, and 239

black words should be ignored. Each nutrition item 240

should be matched to one value combined with 241

their unit, before or after the item. 242

Figure 4 is another nutrition string example. The 243

measures are more complex than in Figure 3. For 244

instance, the item “Fat” has the value “0.5g” and 245

also “1 %” after that, which means 0.5 grams is 1% 246

of the daily value of “Fat” given by the FDA. The 247

value "2,000" here is not supposed to match any 248

nutrition item even though it has the nutrition item 249

keyword "calories" after it. The values and their 250

percentage value should also be combined together 251

and matched to a single item. 252

In summary, extracting nutrition information 253

3



Figure 4: Nutrition string split example 2

from nutrition strings faces several challenges:254
1. The name of a nutrition item in the nutri-255

tion string differs from the column name in256

the database. For example, the name in the257

database is “total fat” but the corresponding258

name in the nutrition string is “fat”.259
2. Different names of serving sizes such as260

pieces, tsp, and varying units of measure, e.g.,261

mL, g, mg, oz, %, etc. Also different versions262

of the same unit of measure: oz, floz, fl oz, fl263

oz (US Ounce).264
3. The placement of the associated value before265

or after the nutrition item name, e.g., “Calo-266

ries: 90” or “Includes 0g Added Sugars”.267
4. No space between nutrition items and num-268

bers, e.g., “3gProtein410mgSodium”.269
5. Nutrition values can be duplicated with per-270

centage measures and should be combined271

together. For example, ”Carbohydrates 36 g272

13 %” should be combined as a single item,273

which means the product contains 36 grams274

of carbohydrates, which is 13 % of the daily275

value suggested by the FDA.276
6. False matching of some nutrition items with277

others, e.g., incorrectly matching ”Calories278

from Fat” with ”Calories” and Fat”.279

2.3 Constructing the Ground Truth Table280

For the TraderJoes, Publix, and Target datasets, the281

strings were collected in two ways: one in which282

the nutrition items are separated by the end-of-line283

symbol "\n" and one as strings without end-of-line.284

The end-of-line format is an aid to generate the285

ground truth table for training and evaluation be-286

cause each nutrition item and their measures with287

units are located on a single line. This feature288

is specific to the TraderJoes, Publix, and Target289

datasets, but not to the Manufacturers dataset, and290

can be exploited to generate the ground truth for291

these three datasets. However, in Section 5, we will292

evaluate methods that are capable of processing all293

datasets, where each string is given as a single line.294

The ’Manufacturers’ dataset is collected as295

strings without any line breaks between nutrition296

items. The ground truth table for this dataset was 297

constructed manually with the help of ChatGPT. 298

Dataset Verification. The verification of the cor- 299

respondence between the nutrition strings and the 300

ground truth values for the four datasets was done 301

manually, by visual inspection of the strings and 302

their associated values. 303

3 Slot Filling Methods for Nutrition 304

Information Extraction 305

This section poses the extraction of nutrition infor- 306

mation as a slot filling problem and shows how to 307

train deep learning models for this purpose. 308

Slot filling can be seen as the classification of 309

an input string for subsequent extraction of the cor- 310

responding information. For example, from the 311

string "Arrive in Atlanta on December 20th" for 312

a ticket booking system, the keyword "Atlanta" 313

should be placed in the predefined slot "Destina- 314

tion" and "December" and "20th" would be placed 315

into the "Time of Arrival" slot by the algorithm. In 316

this case, keywords "Arrive" and "on" will be put 317

into the slots "Other" or "0". 318

Compared to standard slot filling problems, such 319

as the ticket booking example above, the prob- 320

lem of nutrition information extraction has its own 321

challenges because the input string is much longer 322

(could be even 1000 words or longer) and the num- 323

ber of slots is quite large (78 slots). 324

The example above showed how the slot filling 325

method was used to predict the intent of the input 326

query. In this project, the intent is clear and the 327

goal will be the prediction of slot labels. 328

The models used in this paper are JointBERT 329

(Chen et al., 2019) and CTRAN (Rafiepour and 330

Sartakhti, 2023), both having great slot label pre- 331

diction performance on the Snips (Coucke et al., 332

2018) and ATIS (Hemphill et al., 1990) datasets. 333

3.1 Data Preprocessing 334

One major challenge for applying slot filling meth- 335

ods is the lack of spaces between words, nutrition 336

items, and numbers. Capital letters are good refer- 337

ences for inserting spaces between words. For in- 338

stance, in Figure 1, "Nutritional InfoIngredientsAl- 339

lergens" can be split into four words. 340

In this paper, spaces are inserted before capital 341

letters and punctuations, e.g., ":", and before and 342

after numbers, to split the strings into words. Other 343

methods, such as tokenizers or Bayesian optimiza- 344

tion (Moss et al., 2020) could be used to separate 345

words in strings. A pretrained BERT tokenizer, 346

such as (Moi and Patry, 2023), can also split words 347

4



Figure 5: Labeling strings for Slot Filling training

based on spaces and capital letters.348

3.2 Labeling Strings for Slot Filling Training349

A special type of labeling needs to be obtained for350

training slot filling neural networks, in which each351

word needs to be labeled, as illustrated in Figure 5.352

The slot labels contain the nutrition items, values,353

and their units of measure. The irrelevant words354

are labeled with ’0’. The keyword "Serving Size"355

is a nutrition item with two words; therefore it356

is labeled as (1_SS) and (2_SS). In the example357

string in Figure 4, the substring "Fat 0.5g 1%"358

contains the keyword ’Fat’, measure ’0.5’, unit of359

measure ’g’, and the percent Daily Value (%DV)360

’1%’, which will be defined as four slot labels, ’Fat’,361

’Fat_val’, ’Fat_unit’, and ’Fat _dv’.362

The slot labels for each nutrition string in Trader-363

Joes, Publix, and Target datasets were generated364

from the string dataset that contained the nutrition365

items separated by the end-of-line symbol, as men-366

tioned in Section 2.3.367

Figure 6: Prediction for Slot Filling models

3.3 Training details368

In this paper, the pre-trained uncased BERT base369

model, (i.e. the bert-base-uncase model) (Devlin370

et al., 2018) was used for both the JointBERT371

and CTRAN methods. The number of training372

epoch were the default settings from the two pa-373

pers, where JointBERT was trained with initial374

learning rate 5e-5 using a linear schedule for 10375

epochs, and CTRAN was trained with learning rate376

1e-3 in encoder, 1e-4 in decoder and 1e-4 in the377

BERT layer using StepLR scheduler for 50 epochs.378

The maximum length of the strings was set to 200,379

which contains almost all of the nutrition informa-380

tion in the nutrition datasets. Batch sizes were set381

to be 128 in JointBERT and 16 in CTRAN.382

4 A Dynamic Programming Method for383

Nutrition Extraction384

This section presents an unsupervised method for385

slot filling based on Dynamic Programming, that386

Figure 7: Nutrition string splitting workflow
does not need any training. The whole method is 387

described in Algorithm 1. Its steps are discussed in 388

detail in the following subsections. 389
Algorithm 1 Nutrition Information Extraction by
Dynamic Programming

Input: Nutrition string S
Output: Nutrition items and their values

1: Proprocess string S by adding spaces before
capital letters and special characters

2: Detect nutrition values
3: Detect units of measure
4: Detect nutrition items
5: Preprocess for DP
6: Apply DP

Preprocessing uses the approach discussed in 390

Section 3.1, based on adding spaces before capital 391

letters and certain special characters. 392

4.1 Detecting Nutrition Values and Units of 393

Measure 394

The first step in the DP approach is to detect the 395

numbers and their locations in the string. The num- 396

bers are defined as contiguous sequences of charac- 397

ters from {0, 1, .., 9, ’.’,’-’,’/’, ’ ’,’,’}. These num- 398

bers include integers, decimals, numbers with thou- 399

sand separators, fractions and mix-fractions such 400

as ’10’, ’1.5’, ’2,000’, ’3/4’ and ’1-2/5’. They are 401

detected together with the start and end locations 402

in the string using regular expressions in Python. 403

Then the string is split into substrings based on the 404

locations of the numbers, and hence each substring 405

contains only words and symbols but no numbers. 406

After that, units of measure are detected whether 407

they are right at the beginning of substrings. The 408

units of measure are taken from a dictionary of 116 409

units containing ’g’,’mg’,’oz’,’floz’, etc. 410

After the units of measure are detected, the num- 411

bers are combined with the units of measure into a 412

single substring using "_". For example, the value 413

"1" combined with the unit of measure "mg" will 414

be "1_mg". In some cases after the numbers+unit 415

of measure there is another number+%, the percent 416

Daily Value (%DV), such as "0.5 g 1 %". In such 417

5



cases, all four items (two numbers and two units of418

measure) are combined, obtaining "0.5_g__1_%".419

This whole conglomerate represents a candidate nu-420

trition value, with its unit of measure and possibly421

its %DV.422

4.2 Nutrition Item Detection423

The next step is to detect whether the substrings424

contain any keywords for the nutrition items we are425

trying to extract. The nutrition items are detected426

using a list of 19 possible keywords, ’Servings Per427

Container’, ’Serving Size’, ’Calories’, ’Fat’, ’Sat-428

urated Fat’, ’Trans Fat’, ’Cholesterol’, ’Sodium’,429

’Carbohydrate’, ’Fiber’, ’Sugars’, ’Added Sugars’,430

’Protein’, ’Vitamin A’, ’Vitamin C’, ’Vitamin D’,431

’Calcium’, ’Iron’, ’Potassium’, and their variations,432

such as ’fat’, ’total fat’, ’saturated’, ’saturates’, etc.433

For each detected item, the start and end location in434

the string and the corresponding nutrition item are435

recorded. In the case of the ambiguous nutrition436

items such as ’Fat’ and ’Saturated Fat’, the items437

with more words will be detected before to those438

with fewer words. Once any of the items is de-439

tected, the detected nutrition item will be removed440

from the substring and the next possible nutrition441

item will be searched in the current substring.442

For example, in the string "Total Fat 0.5 g Total443

Saturated Fat 0 g Total Trans Fat 0g", the substring444

"Total Saturated Fat" will be tested if ’Saturated445

Fat’ is contained. Since ’Saturated Fat’ is detected,446

it will be removed from the substring and the pro-447

gram will detect whether the next item ’Fat’ is448

contained in the substring "Total". This method449

also works in the case of the substring "Servings450

Per Container Serving Size" in Figure 4, which451

contains more than one nutrition item. In this case,452

both ’servings per container’ and ’serving size’ will453

be detected.454

The substrings that are left at the end of nutri-455

tion item detection are text to be ignored. These456

ignored texts will be joined with an adjacent nutri-457

tion item and will be considered as a single node458

for Dynamic Programming in Section 4.3.459

4.3 Overview of Dynamic Programming460

Dynamic programming is an efficient globally op-461

timal algorithm for minimizing an additive cost on462

a chain of nodes V1, ..., Vn, each having a set of463

possible labels (values) li ∈ L.464

Let θk(i) be the unary cost for node Vk taking465

value i, and θk(i, j) be the binary cost for node Vk466

taking value i and node Vk+1 taking value j.467

Figure 8: Dynamic Programming
Under these assumptions, dynamic program- 468

ming obtains the global optimum of the minimiza- 469

tion problem: 470

min
l∈Ln

[
n∑

i=1

θi(li) +
n−1∑
i=1

θi(li, li+1)]. (1) 471

It does so in a recursive manner by memoriz- 472

ing Mk(j), the minimum cost of the partial opti- 473

mization problem on V1, ..., Vk with the label of Vk 474

being j: 475

Mk(j) = min
l∈Lk,lk=j

k−1∑
i=1

[θi(li) + θi(li, li+1)]. (2) 476

The vectors Mk(j) are computed recursively, 477

with the first one being M1(j) = 0, and the follow- 478

ing ones as: 479

Mk+1(j) = min
l∈L

[Mk(l) + θk(l) + θk(l, j)]. (3) 480

Finally, the optimum is obtained by minimizing: 481

482min
l∈L

[Mn(l) + θn(l)], (4) 483

and the optimal solution can be traced back by 484

memorizing the argmin for Eq. (4) and each step 485

of Eq. (3), and tracing back the optimum starting 486

from n down to 1. 487

4.4 Dynamic Programming for Matching 488

Nutrition Values to Items 489

At this step, the nutrition string has already been 490

split into nutrition values and some nutrition items 491

and ignored texts between them. 492

The problem is now how to match the nutrition 493

items with the nutrition values, assuming that the 494

value could be before or after the nutrition item. 495

For that purpose, dynamic programming (DP) is 496

used to find the matches. 497

To use DP to match the nutrition items to values, 498

the DP nodes V1, ..., Vn are the detected nutrition 499

items in the order they are in the string. The labels 500

L = {0, 1, 2} take three values, defining whether 501

the corresponding nutrition value is before the item 502

(l = 0), after the item (l = 2) and does not have a 503

match (l = 1). 504

The unary cost θk(j) is the cost that a certain 505

nutrition item matches the values before or after in 506

the string based on the units of measure of those 507

values. For example, the nutrition item "Protein" is 508

6



Unit type\j 0 1 2
Preferred 1 999 1

Other 10 999 10

i\j 0 1 2
0 1 1 1
1 1 1 1
2 10 1 1

a) θk(j) b) θk(i, j)
Table 3: Unary costs θk(j) and binary costs θk(i, j)
used in dynamic programming.

more likely to be matched to a value with unit "g"509

but not "mg", and hence the cost of "g" in this case510

will be smaller than "mg". The dimension of the511

unary cost θk(j) for each nutrition item is 3.512

The cost values for each nutrition item that is513

matched to nutrition values having different units514

are defined based on matching to a preferred unit515

of measure or not, as shown in Table 3, a).516

The preferred units of measure are:517

1. No unit for: ’Servings Per Container’, ’Calo-518

ries’ and ignored text.519

2. Any unit except no unit for ’Serving Size’.520

3. ’g’ for: ’Total Fat’, ’Saturated Fat’, ’Trans521

Fat’, ’Carbohydrate’, ’Dietary Fiber’, ’Total522

Sugars’, ’Added Sugars’, and ’Protein’.523

4. ’mg’ for: ’Cholesterol’ and ’Sodium’.524

5. ’mg’ or ’%’ for: ’Vitamin A’, ’Vitamin C’, ’Vi-525

tamin D’, ’Calcium’, ’Iron’ and ’Potassium’.526

The pairwise cost θk(i, j) is the cost of having527

node k with label i and node k + 1 with label j. If528

the label of Vk is 2 (i.e., "after"), there should be a529

high cost to have the label of Vk+1 be 0 (i.e., "be-530

fore") because that would assign the same nutrition531

value to two items. Thus, the cost should be larger532

in this case than in other combinations. The values533

of θk(i, j) in our experiments are given in Table 3,534

b).535

5 Experiments536

Experiments were performed on a Windows 11537

computer with a 13th Gen Intel(R) Core(TM) i7-538

13700HX 2.10 GHz processor with 32GB RAM539

and an RTX 4060 GPU with 8GB memory.540

Experiments were performed on the nutrition541

extraction dataset introduced in Section 2, with its542

parts shown in Table 2.543

Because the ’Manufacturers’ dataset contains544

food product information from strings without line545

breaks between nutrition items, the ’Manufacturers’546

dataset could not be labeled for slot filling, so it547

was only used as a test set for all methods.548

The other three parts: TraderJoes, Publix and549

Target were merged into a ’Combined’ dataset con-550

taining 24047 observations, shown as ’Combined’551

in Table 2.552

The methods that were evaluated are: JointBERT 553

(Chen et al., 2019), CTRAN (Rafiepour and Sar- 554

takhti, 2023), GPT-4 (OpenAI, 2024a), GPT-4o 555

(OpenAI, 2024b), and the proposed dynamic pro- 556

gramming (DP) method described in Section 4. 557

GPT-4 and GPT-4o were queried using Python 558

and their respective API from the OpenAI library 559

(https://openai.com/api/).Each prompt in 560

the GPT-4 and GPT-4o API includes the model to 561

be used, i.e., "gpt-4", "gpt-4o" and "gpt-4o-mini", 562

and the message part with the nutrition strings and 563

the request to extract the nutrition items and their 564

values. The response of the prompts were collected 565

and evaluated using the GT table. 566

The other three methods were implemented in 567

Python. For JointBERT and CTRAN, their GitHub 568

implementations from https://github.com/mon 569

ologg/JointBERT and https://github.com/r 570

afiepour/CTRAN were used. 571

JointBERT and CTRAN were trained as de- 572

scribed in Section 3. Training each fold of the 573

JointBERT took an average of 1.1 hours for 10 574

epochs and for CTRAN took 16.5 hours for 50 575

epochs. 576

The methods that require training (JointBERT 577

and CTRAN) were evaluated with four-fold cross- 578

validation on the ’Combined’ dataset. The model 579

trained on each one of the folds was also used to 580

evaluate the ’Manufacturers’ dataset. 581

The unsupervised methods (GPT-4, GPT-4o and 582

DP) were evaluated on the entire dataset. 583

The DP algorithm took around 49 msec per 584

query while the JointBERT took 13 msec and 585

CTRAN took 396 msec per query. Querying GPT- 586

4o using the API took about 4097 msec per query. 587

5.1 Evaluation Measure 588

The ground truth (GT) table of each dataset was 589

used to create the baseline for evaluation and to cal- 590

culate the precision and recall of each food product 591

(row) by matching the predicted and GT values for 592

each nutrition item. 593

The overall precision and recall are computed 594

by averaging the precision and recall in each row, 595

and the F1-score is calculated based on the overall 596

precision and recall. 597

The precision is defined as the ratio p = M/N , 598

where N is the number of nutrition items that are 599

output by the method, and M is the number of 600

nutrition items from the output that are matched to 601

the GT table items. 602

The recall is defined as the ratio r = M/A, 603

7

https://openai.com/api/
https://github.com/monologg/JointBERT
https://github.com/monologg/JointBERT
https://github.com/monologg/JointBERT
https://github.com/rafiepour/CTRAN
https://github.com/rafiepour/CTRAN
https://github.com/rafiepour/CTRAN


Method Prec(std.) Recall(std.) F1(std.)
Combined dataset, N=24047
JointBERT 98.6(0.01) 89.9(0.05) 94.0(0.02)

CTRAN 99.9(0.01) 99.9(0.01) 99.9(0.00)
GPT-4 95.5 83.1 88.9

GPT-4o 95.4 90.0 92.6
DP 98.9 95.4 97.1

Manufacturers dataset, N=2117
JointBERT 83.2(0.03) 78.6(0.06) 80.8(0.03)

CTRAN 93.9(0.02) 91.4(0.02) 92.6(0.01)
GPT-4 90.3 80.9 85.4

GPT-4o 92.2 85.7 88.8
DP 98.1 99.4 98.7

Table 4: Nutrition extraction evaluation. Shown are
the precision, recall, and F1-scores of the five methods,
with best results in bold.

where A is the total number of nutrition items that604

are in the GT table, and M is the number of items605

from the GT table that are found in the output.606

The F1 measure has the usual definition in terms607

of the precision p and recall r, F1 = 2pr/(p+ r).608

5.2 Results609

The results are shown in Table 4, with the methods610

that require training having mean (and std.) test611

values on the four cross-validation folds.612

From Table 4 one can see that the F1 scores on613

the Combined dataset are almost consistently better614

than those on the Manufacturers dataset because615

the Combined dataset strings are more homoge-616

neous, hence easier to process. GPT and GPT-4o617

have good performance on the Combined dataset,618

and both JointBERT and CTRAN have similar pre-619

cision results, while CTRAN has better recall on620

both the Combined dataset and the Manufactur-621

ers dataset. The proposed DP method has a stable622

performance on both datasets and outperforms the623

other methods on the more challenging ’Manufac-624

turers’ dataset.625

GPT-4 and GPT-4o provide a convenient Python626

API environment for sending input prompts con-627

taining the nutrition strings and the request. But628

one disadvantage of GPT-4 is that each prompt629

is irrelevant to others, which means that the user630

has to give very specific prompts such as: "Ex-631

tract the nutrition item Protein from this string."632

for each string; otherwise they cannot expect sta-633

ble results. Moreover, although it is not necessary634

to train a model on GPT-4 and GPT-4o, it takes a635

much longer time querying strings than the other636

methods. ChatGPT does have a good performance637

on extracting the nutrition items from strings, but638

Method Prec Recall F1

DP 98.1 99.4 98.7
No preprocessing 95.2 93.1 94.1

No binary cost 76.8 72.9 74.8
Table 5: Ablation study on the Manufacturers dataset.
users have to type in the strings repeatedly in the 639

message bar manually unless using a web driver. 640

Ablation study. An ablation study of the DP 641

method introduced in this paper is shown in Table 642

5. It evaluates the importance of the preprocess- 643

ing step and the binary cost in the obtained result. 644

The performance is poor without the binary cost 645

from Table 3. In this case, nutrition items may be 646

matched to same values in the strings. The pre- 647

processing step is less important than the binary 648

cost. However, this step was also necessary for slot 649

filling methods, i.e., JointBERT and CTRAN. 650

6 Conclusion 651

This paper introduced the NLP problem of extract- 652

ing nutrition information from nutrition strings, 653

which is a slot-filling problem that has not received 654

attention in the NLP literature. In this regard, 655

the paper provides a nutrition extraction dataset 656

called NutriX containing more than 26,000 nutri- 657

tion strings and their associated ground truth nu- 658

tritional information. The paper shows how the 659

dataset was collected and annotated, and the chal- 660

lenges facing this problem compared to other slot 661

filling problems, such as long strings and a large 662

number of slots per string. 663

The paper also shows how to view the nutrition 664

extraction problem as a slot filling problem and 665

how to train deep learning models on this data. 666

Moreover, the paper introduces a novel method 667

based on dynamic programming for the same task. 668

Finally, experiments on the provided dataset 669

show that the problem is not trivial, and one part 670

of the dataset called the ’Manufacturers’ dataset is 671

quite challenging where the proposed DP method 672

works best among the five methods evaluated, in- 673

cluding two GPT-4 versions. 674

Future work includes collecting more data and 675

training a classifier that will predict the food cat- 676

egory (e.g. pizza, hot dogs, ice cream, etc.) from 677

the nutrition string. The ultimate goal is to build a 678

food search engine that anybody can use to search 679

food products that fit their specific dietary needs. 680

8



Limitations681

There are some limitations for the methods used in682

this paper:683

1. Training data from various resources is im-684

portant for the supervised learning methods685

to have better prediction in complex nutrition686

strings dataset.687

2. Data preprocessing is also necessary for both688

JointBERT and CTRAN (Slot-Filling meth-689

ods) since the slot labels should be separated690

by space.691

3. Manual verification and correction of the con-692

structed ground truth table is needed.693

4. GPT-4 and GPT-4o are convenient inputting694

queries, but both of them take longer time to695

generate the results than other methods.696

5. The DP method performs well on both the697

Combined and Manufactures datasets in this698

paper. However, in the nutrition item de-699

tection step, a prebuilt dictionary to convert700

ambiguous nutrition items is needed. For701

instance, both of the items ’Potas.’ and702

’Potassium’ represent the same nutrition item.703

Therefore, once the new dataset is collected,704

the prebuilt dictionary should bee updated705

manually.706

References707

Emanuele Bastianelli, Andrea Vanzo, Pawel Swietojan-708
ski, and Verena Rieser. 2020. SLURP: A spoken lan-709
guage understanding resource package. In Proceed-710
ings of the 2020 Conference on Empirical Methods711
in Natural Language Processing (EMNLP), pages712
7252–7262, Online. Association for Computational713
Linguistics.714

Qian Chen, Zhu Zhuo, and Wen Wang. 2019. BERT715
for joint intent classification and slot filling. CoRR,716
abs/1902.10909.717

Alice Coucke, Alaa Saade, Adrien Ball, Théodore718
Bluche, Alexandre Caulier, David Leroy, Clément719
Doumouro, Thibault Gisselbrecht, Francesco Calt-720
agirone, Thibaut Lavril, Maël Primet, and Joseph721
Dureau. 2018. Snips voice platform: an embedded722
spoken language understanding system for private-by-723
design voice interfaces. Preprint, arXiv:1805.10190.724

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and725
Kristina Toutanova. 2018. BERT: pre-training of726
deep bidirectional transformers for language under-727
standing. CoRR, abs/1810.04805.728

Python Software Foundation. 2024. Requests: Http for 729
humans. https://pypi.org/project/requests/. 730
[Online; accessed 15-May-2025]. 731

Chih-Wen Goo, Guang Gao, Yun-Kai Hsu, Chih-Li Huo, 732
Tsung-Chieh Chen, Keng-Wei Hsu, and Yun-Nung 733
Chen. 2018. Slot-gated modeling for joint slot filling 734
and intent prediction. In Proceedings of the 2018 735
Conference of the North American Chapter of the 736
Association for Computational Linguistics: Human 737
Language Technologies, Volume 2 (Short Papers), 738
pages 753–757, New Orleans, Louisiana. Association 739
for Computational Linguistics. 740

Richard Andrew Harrington, Vyas Adhikari, Mike 741
Rayner, and Peter Scarborough. 2019. Nutrient com- 742
position databases in the age of big data: fooddb, 743
a comprehensive, real-time database infrastructure. 744
BMJ Open, 9(6). 745

Charles T. Hemphill, John J. Godfrey, and George R. 746
Doddington. 1990. The ATIS spoken language sys- 747
tems pilot corpus. In Speech and Natural Language: 748
Proceedings of a Workshop Held at Hidden Valley, 749
Pennsylvania, June 24-27,1990. 750

Instacart. 2025. Instacart retailer website. https:// 751
www.instacart.com/. [Online; accessed 15-May- 752
2025]. 753

Bing Liu and Ian R. Lane. 2016. Attention-based recur- 754
rent neural network models for joint intent detection 755
and slot filling. CoRR, abs/1609.01454. 756

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao, Yoshua 757
Bengio, Li Deng, Dilek Hakkani-Tur, Xiaodong 758
He, Larry Heck, Gokhan Tur, Dong Yu, and Geof- 759
frey Zweig. 2015. Using recurrent neural networks 760
for slot filling in spoken language understanding. 761
IEEE/ACM Trans. Audio, Speech and Lang. Proc., 762
23(3):530–539. 763

Anthony Moi and Nicolas Patry. 2023. HuggingFace’s 764
Tokenizers. 765

Henry B. Moss, Daniel Beck, Javier Gonzalez, David S. 766
Leslie, and Paul Rayson. 2020. BOSS: bayesian opti- 767
mization over string spaces. CoRR, abs/2010.00979. 768

Baiju Muthukadan. 2024. Selenium with python. http 769
s://selenium-python.readthedocs.io/. [On- 770
line; accessed 15-May-2025]. 771

OpenAI. 2024a. Models of gpt-4. https://platfo 772
rm.openai.com/docs/models/gpt-4. [Online; 773
accessed 15-May-2025]. 774

OpenAI. 2024b. Models of gpt-4 omni. https:// 775
platform.openai.com/docs/models/gpt-4o. 776
[Online; accessed 15-May-2025]. 777

Mehrdad Rafiepour and Javad Salimi Sartakhti. 2023. 778
Ctran: Cnn-transformer-based network for natural 779
language understanding. Engineering Applications 780
of Artificial Intelligence, 126:107013. 781

9

https://doi.org/10.18653/v1/2020.emnlp-main.588
https://doi.org/10.18653/v1/2020.emnlp-main.588
https://doi.org/10.18653/v1/2020.emnlp-main.588
https://arxiv.org/abs/1902.10909
https://arxiv.org/abs/1902.10909
https://arxiv.org/abs/1902.10909
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1805.10190
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://pypi.org/project/requests/
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.18653/v1/N18-2118
https://doi.org/10.1136/bmjopen-2018-026652
https://doi.org/10.1136/bmjopen-2018-026652
https://doi.org/10.1136/bmjopen-2018-026652
https://doi.org/10.1136/bmjopen-2018-026652
https://doi.org/10.1136/bmjopen-2018-026652
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://aclanthology.org/H90-1021
https://www.instacart.com/
https://www.instacart.com/
https://www.instacart.com/
https://arxiv.org/abs/1609.01454
https://arxiv.org/abs/1609.01454
https://arxiv.org/abs/1609.01454
https://arxiv.org/abs/1609.01454
https://arxiv.org/abs/1609.01454
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://arxiv.org/abs/2010.00979
https://arxiv.org/abs/2010.00979
https://arxiv.org/abs/2010.00979
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://selenium-python.readthedocs.io/
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://platform.openai.com/docs/models/gpt-4o
https://doi.org/10.1016/j.engappai.2023.107013
https://doi.org/10.1016/j.engappai.2023.107013
https://doi.org/10.1016/j.engappai.2023.107013


TraderJoes. 2025. Trader joe’s retailer website. https:782
//www.traderjoes.com/. [Online; accessed 15-783
May-2025].784

Ngoc Thang Vu. 2016. Sequential convolutional neural785
networks for slot filling in spoken language under-786
standing. In Interspeech 2016, pages 3250–3254.787

Yu Wang, Yilin Shen, and Hongxia Jin. 2018. A788
bi-model based rnn semantic frame parsing model789
for intent detection and slot filling. Preprint,790
arXiv:1812.10235.791

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional792
neural network based triangular crf for joint intent793
detection and slot filling. In 2013 IEEE Workshop on794
Automatic Speech Recognition and Understanding,795
pages 78–83.796

10

https://www.traderjoes.com/
https://www.traderjoes.com/
https://www.traderjoes.com/
https://doi.org/10.21437/Interspeech.2016-395
https://doi.org/10.21437/Interspeech.2016-395
https://doi.org/10.21437/Interspeech.2016-395
https://doi.org/10.21437/Interspeech.2016-395
https://doi.org/10.21437/Interspeech.2016-395
https://arxiv.org/abs/1812.10235
https://arxiv.org/abs/1812.10235
https://arxiv.org/abs/1812.10235
https://arxiv.org/abs/1812.10235
https://arxiv.org/abs/1812.10235
https://doi.org/10.1109/ASRU.2013.6707709
https://doi.org/10.1109/ASRU.2013.6707709
https://doi.org/10.1109/ASRU.2013.6707709
https://doi.org/10.1109/ASRU.2013.6707709
https://doi.org/10.1109/ASRU.2013.6707709

	Introduction
	Related Work

	Constructing the Nutrition Extraction Dataset
	Nutrition String Collection
	Challenges
	Constructing the Ground Truth Table

	Slot Filling Methods for Nutrition Information Extraction
	Data Preprocessing
	Labeling Strings for Slot Filling Training
	Training details

	A Dynamic Programming Method for Nutrition Extraction
	Detecting Nutrition Values and Units of Measure
	Nutrition Item Detection
	Overview of Dynamic Programming
	Dynamic Programming for Matching Nutrition Values to Items

	Experiments
	Evaluation Measure
	Results

	Conclusion

