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N-Gram Induction Heads for In-Context RL:
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Abstract
In-context learning allows models like transform-
ers to adapt to new tasks from a few examples
without updating their weights, a desirable trait
for reinforcement learning (RL). However, exist-
ing in-context RL methods, such as Algorithm
Distillation (AD), demand large, carefully curated
datasets and can be unstable and costly to train
due to the transient nature of in-context learning
abilities. In this work, we integrated the n-gram
induction heads into transformers for in-context
RL. By incorporating these n-gram attention pat-
terns, we considerably reduced the amount of data
required for generalization and eased the training
process by making models less sensitive to hy-
perparameters. Our approach matches, and in
some cases surpasses, the performance of AD in
both grid-world and pixel-based environments,
suggesting that n-gram induction heads could im-
prove the efficiency of in-context RL.

1. Introduction
In-context learning is a powerful ability of pretrained au-
toregressive models, such as transformers (Vaswani et al.,
2023) or state-space models (Gu et al., 2022). In contrast to
fine-tuning, in-context learning is able to effectively solve
downstream tasks on inference without explicitly updating
the weight of a model, making it a versatile tool for solving
wide range of tasks (Agarwal et al., 2024). Originated in the
language domain (Brown et al., 2020), the in-context ability
has quickly found its applications in Reinforcement Learn-
ing (RL) for building agents that can adaptively react to the
changes in the dynamics of the environment. This trait al-
lows researchers to use In-Context Reinforcement Learning
(ICRL) as a backbone for the embodied agents (Elawady
et al., 2024) or to benefit from its adaptation abilities for do-
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Figure 1. Performance comparison for different number of training
goals between our method and Algorithm Distillation (AD), an
in-context reinforcement learning method (Laskin et al., 2022).
Our method demonstrates similar performance with less training
goals (128 vs. 512) and in general outperforms the baseline. See
Section 4 for results.

main recognition in order to build generalist agents (Grigsby
et al., 2024).

Notably, in-context reinforcement learning methods require
specifically curated data, which can be demanding to obtain
(Nikulin et al., 2024b). In addition, the in-context ability
itself is transient (Singh et al., 2024) and it is difficult to pre-
dict its emergence from cross-entropy loss alone (Agarwal
et al., 2024), making the training of such models unstable
and expensive in terms of training budget. Our work takes
initial steps toward addressing these challenges by intro-
ducing modifications to the transformer’s attention heads,
which can accelerate training and reduce the amount of data
required for in-context learning to emerge.

In our work, we propose integrating an n-gram induction
head into the ICRL model. As we demonstrate, these heads
can improve model performance in low-data settings and
reduce hyperparameter sensitivity while introducing only
a few additional hyperparameters that are straightforward
to optimize. We provide experimental evidence on Dark
Room, Key-to-Door and Miniworld environments, covering
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N-Gram Induction Heads for In-Context RL

both discrete and visual observation spaces.

To summarize our main contributions, in this paper we show
that N-Gram attention heads:

• Decrease the amount of data needed for generaliza-
tion on novel tasks. By utilizing n-gram heads, it is
possible to reduce the total number of transitions in
training data by a maximum of 27x compared to the
original method of Laskin et al. (2022). The results are
presented in Section 4.

• Help mitigate hyperparameter sensitivity in ICRL
models, contributing to more stable training. By em-
ploying n-gram heads, one may need less time search-
ing for a good set of hyperparameters. The results are
presented in Section 4.

• Can be used in the environments with visual ob-
servations. However n-grams are originally found in
discrete structures (e.g. natural language texts), we
show it is possible to detect repeating patterns in the
sequences of images. The details of the implementa-
tion are presented in Appendix C and the results of the
experiment are shown in Section 4.

2. Method
2.1. Algorithm Distillation

We build our method on Algorithm Distillation (Laskin et al.,
2022) and use it as our baseline. It is an in-context reinforce-
ment learning algorithm that distills the policy improvement
operator by training a transformer model on specifically ac-
quired data. As training data, the authors propose to use the
learning histories of many RL algorithms that are trained to
solve different tasks in the multi-task environment. After
pretraining on such data, the model is able to solve unseen
tasks entirely in-context by interacting with an environment
without explicitly updating weights of the model.

More formally, if we assume that a dataset D consists of
learning histories, then

D :=
{
(τg1 , ..., τ

g
n) ∼

[
Asource

g |g ∈ G
] }

,

where τgi = (o1, a1, r1, ..., oT , aT , rT ) is a trajectory gener-
ated by a source algorithm from Asource

g for a goal g from
a set of all possible goals G, and oi, ai, ri are observations,
actions and rewards, respectively.

Such data might be difficult to obtain, since the aforemen-
tioned process requires training thousands of RL algorithms
solving different tasks to obtain enough learning histories.
In addition, AD suffers the same problems as any in-context

algorithm. Learning the optimal solution can be delayed by
a tendency of transformers to learn simple structures at first
(Edelman et al., 2024). Moreover, the nature of in-context
ability is unstable and can fade into in-weights regime as
the training progresses, considerably complicating the emer-
gence of adaptation ability (Singh et al., 2024).

2.2. N-Gram Attention

To address simplicity bias and improve data efficiency, we
include an n-gram attention layer (Akyürek et al., 2024) as
one of the transformer layers. This type of layer has been
shown to effectively reduce simplicity bias and enhance
in-context performance. Essentially, it directly incorporates
the computation of n-gram statistics into the transformer, in-
stead of relying on them to develop naturally over time. The
attention pattern that is calculated from the input sequence
and used in N-Gram Head (NGH) is defined as:

A(n)ij ∝ 1[(∧n
k=1xi−k = xj−k−1)] .

After that, we apply a projection and add a residual to the
output:

NGHn
(
hl
)
= W1h

l +W2A(n)⊤hl ,

where n is the length of n-grams, W1 and W2 are learnable
projection matrices and hl is an embedding from a previous
transformer layer. In simple terms, we look for n-gram
occurrences and with the help of A(n) attention pattern
force gradients to flow only through tokens that co-occur in
the sequence.

Following Akyürek et al. (2024), we also implement an
N-Gram layer, which closely resembles a traditional trans-
former layer. The layer consists of a head NGHi that is
processed through a MLP and then added to the residual
stream:

NGLn
(
hl
)
= hl + MLP[NGHn(hl)].

In the original paper, the authors used text tokens from
the input sequence for n-gram matching. We lack such
an opportunity when dealing with image observations, so
we ought to use quantization in order to enable n-gram
matching. The implementation details of the quantization
process and how matching is performed are described in the
Section 2.3.

2.3. N-Gram Matching

To find n-grams in environments with a discrete observation
space, we use raw input sequence. However, since we are
working in RL setting, the input sequence has a form of
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Figure 2. Results on Key-to-Door. We demonstrate the ability of our method to generalize when the task diversity is limited. We fix the
total number of goals with 100, significantly shrinking the number of learning histories. Keep in mind that for the baseline method to
converge to a model with the same performance, it needs 2048 goals and 2048 learning histories (Laskin et al., 2022). We show that
our method needs 27x less data comparing to baseline (see Appendix F for justification). The baseline method can no longer converge
with that few data and its performance plateaus with the increasing number of hyperparameter assignments, while N-Gram model shows
near-optimal performance.

(s0, a0, r0, . . . , sn, an, r0), so in our experiments we tested
two approaches. We either compare the equivalence of full
transitions (ai−1, ri−1, si) = (aj−1, rj−1, sj) or just states
(si = sj).

In case of pixel-based observations, We cannot directly
match raw images, as even slight variations can result in
a mismatch. To address this, we use Vector Quantization
(VQ) (van den Oord et al., 2017; Gersho & Gray, 1991) to
quantize observations into the vectors from a codebook. We
pretrain a ResNet (He et al., 2016) encoder-decoder model
with a VQ bottleneck, which is trained to reconstruct the
input image. After pretraining, each image is mapped into
a 4× 4 matrix of indices, and we use these for the n-gram
matching. We count a match only if all the indices in the
matrix are equal.

Before training starts, we use the VQ model to label images
from a dataset with their indices and then train both causal
and n-gram attention layers simultaneously. During the
evaluation, we only make a forward pass of the VQ model
in order to get the latent vectors and indices for n-gram
matching.

3. Experiment Setup
3.1. Evaluation Protocol

We set up and follow a specific evaluation protocol to show-
case the benefits of using N-Gram layers in the ICRL setting.
We use a random search over the hyperparameter space. Re-
porting aggregated hyperparameter search results instead of
cherry-picking the best runs allows us to demonstrate the
hyperparameter sensitivity of each method. To ensure that

in each experiment a model has processed an equal amount
of data, we fixed the batch size and limited the number of
gradient steps during a run to 10K.

We evaluate the models on previously unseen goals that
were not included in the training dataset. In the Dark Room
environment, the number of evaluation goals varies across
experiments and corresponds to all goals excluded from the
training set. For instance, if a model is trained on 20 goals,
it is evaluated on the remaining 60 goals. For Key-to-Door
evaluation, we use 100 unseen goals and 50 unseen goals
for Miniworld Key-to-Door.

To show the difference between our method and the baseline,
we choose to report the Expected Maximum Performance
metric (EMP) (Dodge et al., 2019; Kurenkov & Kolesnikov,
2022). By doing so, we do not report the best performance of
a single checkpoint, rather we show the expected maximum
performance for a certain computational budget. Using this
approach, we simultaneously compare our method with a
baseline in terms of ease of training and maximum achieved
performance. The exact hyperparameter assignment setups
are shown in Appendix G.

4. Results
N-Gram layers can make the search for optimal hyperpa-
rameters quicker. To demonstrate the effect of N-Gram
layers on the hyperparameter sensitivity of the model, we
perfrorm a random search over the core transformer hyper-
parameters that do not change the parameter count of the
model. The effect of N-Gram heads is illustrated in Figure 6.
In the top row, we fix the number of training tasks at 60 and
vary the number of learning histories. It can be seen that the
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Figure 3. Results on Miniword environments. We show that our
method is applicable not only for environments with discrete ob-
servations, but also for the image-based ones. The settings of
the Miniworld environments are similar to Dark Room and Key-
to-Door. The main outcome of these experiments is that we can
successfully implement n-gram matching in for images and get
similar results to the discrete environments. The details of the
setup are described in Section 4.
model with n-gram layers can find the optimal parameters
faster than the baseline model. For 1K learning histories,
finding the optimal model requires just over 20 hyperparam-
eter assignments, while the baseline model needs more than
400. When the number of tasks varies, the baseline model
quickly saturates at suboptimal performance and asymptoti-
cally improves thereafter, whereas the n-gram model reaches
optimal performance in about 15 assignments. Full-length
plots are available in Figure 9.

N-Gram layers improve data-efficiency of ICRL algo-
rithm. In real-world data, there are often many trajectories
per task, but the number of distinct tasks is limited. (Yu
et al., 2019; Gallouédec et al., 2024). In such cases, a desir-
able quality of the model is its ability to avoid overfitting
on the training data while generalizing to unseen tasks. Our
hypothesis here is that incorporating N-Gram layers into the
model can help build a more data-efficient model and en-
hance generalization by capturing sequential patterns within
trajectories.

To show the effect of N-Gram layers when task diversity
in data is low, we set up an experiment in the Key-to-Door
environment, since it possesses 6.5K tasks in total. To simu-
late low task diversity, we fix the number of training goals
by 100 and sample another 100 unseen goals for evaluation.
It can be observed from Figure 2 that the baseline method is
struggling to produce a model that is able to generalize to
unseen goals in such a low data setting. In turn, our method
demonstrates performance on par with what Laskin et al.
(2022) report in their work. We note that compared to AD,
our method needs 27x less data, detailed computations are
provided in Appendix F.

N-Gram layers can be used with images as observations.
It is relatively straightforward to match n-grams in discrete

settings, like text or grid-world environments. The problem
arises when the observation space is image-based. We can-
not directly compare the images, as even a slight camera
rotation would invalidate a match; however, they may still
correspond to the same state.

To address this, we need a model that disregards minor
differences in its encoding and instead focuses on state-
representative details, such as the color of the wall the agent
sees and its distance from the wall. We utilize the Vector
Quantization (van den Oord et al., 2017) technique for this
reason, the details of n-gram matching are described in
Section 2.3.

We transfer the Dark Room and Key-to-Door setting into
a 3D environment Minigrid, where an agent receives a
3 × 64 × 64 RGB image as an observation. We observed
similar differences in performance of the N-Gram and base-
line models. N-Gram layer is able to reduce the number of
hyperparameter assignments needed to find a model with
near-optimal performance in both Miniworld-Dark (Room,
omitted for brevity) and Miniworld-Key-to-Door environ-
ments, see Figure 5. In a low-data regime, N-Gram layers
also improve performance compared to the baseline. As
shown in Figure 3, N-Gram layers enhance performance in
both environments.

5. Conclusion and Future Work
In our work we show that incorporating n-gram induction
heads can sufficiently ease training of in-context reinforce-
ment learning algorithms. Our findings are threefold: (i)
we show that n-gram heads can fairly decrease sensitivity
to hyperparameters of ICRL models; (ii) we demonstrate
that our method is able to generalize from much fewer data
than the baseline Algorithm Distillation (Laskin et al., 2022)
approach. (iii) however the original n-gram heads were de-
signed for discrete spaces, we showed it is possible to adapt
the approach to environments with visual observations by
utilizing vector quantization techniques. We speculate that
n-gram heads are useful in ICRL due to the imperfect nature
of in-context learning itself: a tendency of transformers to
converge to simple solutions first (Edelman et al., 2024),
and the transitivity of the in-context ability itself (Singh
et al., 2024).

Although we believe our findings are promising, there are
some limitations of the current work. Further research
is needed to investigate the behavior of N-Gram heads in
more comprehensive environments, e.g. XLand-Minigrid
(Nikulin et al., 2024a) or Meta-World (Yu et al., 2019).
Additionally, while image observations account for a signifi-
cant portion of RL applications, exploring methods to apply
N-Gram heads to proprioceptive continuous states could
provide further insights.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

N-Gram Induction Heads for In-Context RL

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, R., Singh, A., Zhang, L. M., Bohnet, B., Chan, S.,

Anand, A., Abbas, Z., Nova, A., Co-Reyes, J. D., Chu,
E., et al. Many-shot in-context learning. arXiv preprint
arXiv:2404.11018, 2024.
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A. Related Work
In-context RL. The key feature behind ICRL is the adaptation ability of a pretrained agent. In general, it relies on
the transformer’s ability to infer a task from the history of interactions with an environment. Müller et al. (2021) show
that transformers are capable of Bayesian inference, which is known for its applicability to reasoning under uncertainty
(Ghavamzadeh et al., 2015). Laskin et al. (2022) proposed to pretrain a transformer on the learning histories of RL algorithms
which allows it to implicitly learn the policy improvement operator. During inference on unseen tasks, a transformer is
able to improve its policy by observing a context and inferring a task from it. However, such an approach requires specific
datasets, which may be expensive to collect (Nikulin et al., 2024b). To address this, it has been proposed to generate datasets
following the noise curriculum instead of training thousands of RL agents (Zisman et al., 2024), perform augmentations
of existing data (Kirsch et al., 2023) or filter out irrelevant data (Schmied et al., 2024). Our work follows the direction
of democratizing data restrictions, but instead of working with data, we introduce a model-centric approach, making a
transformer to perform in-context reinforcement learning with less data.

N-Gram and Transformers. N-Gram statistical models have been known for decades and used in the statistical approach
to language modeling (Brown et al., 1992; Kneser & Ney, 1995). More recent approaches (Roy et al., 2022; Liu et al., 2024)
study the application of n-grams to transformer models, finding that they can increase overall performance. Akyürek et al.
(2024) discover that a transformer implicitly implements the 2-gram attention pattern when solving the in-context learning
task, which authors denote as a higher order of induction head (Olsson et al., 2022). They explicitly implement 1-, 2-, and
3-gram attention layers and observe a significant reduction in perplexity of the pretrained models. Another work (Edelman
et al., 2024) directly investigates the behavior of n-gram induction heads during the training process. The authors find that
transformers are biased towards simple solutions, thus making it problematic for higher-order induction heads to appear. To
our knowledge, we are the first to apply these findings in a decision-making setting.

B. Environments

Figure 4. (Left) The Key-to-Door environment. The key and the door are shown for illustrative purposes only; the agent does not see their
location during training. (Right) An observation from the Miniworld environment.

Dark Room is an MDP grid-world environment with discrete state and action spaces The grid size is 9× 9, where an agent
has 5 possible actions: up, down, left, right and do nothing. The goal is to find a target cell, the location of which is not
known to the agent in advance. The episode length is fixed at 50 time steps, after which the agent is reset to the middle of
the grid. The reward r = 1 is given for every time step the agent is on the goal grid, otherwise r = 0. The agent does not
know the position of the goal, hence it is driven to explore the grid. The environment consists of 80 goals in total, excluding
the starting square.

Dark Key-to-Door is a POMDP environment, similar to Dark Room, but with a more complicated task. The agent first
needs to find a square with a key, and then only to find a door. The reward is given when the key is found (r = 1) and
once the door is opened (also r = 1), after which the episode ends. The agent then resets to a random grid. The maximum
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episode length is 50, and since we can control the location of the key and door, there are around 6.5k possible tasks. The key
difference of Key-to-Door compared to Dark Room is that an agent needs to use the memory to recall whether or not the key
was collected to adapt its exploration strategy and successfully solve the task. We do not provide any hints after the key was
collected, which makes the environment only partially observed.

Both Key-to-Door and Dark Room serve as a good starting point for testing the in-context ability in an RL setting. Despite
its simple grid-structure, AD still needs a substantial amount of data to start showing decent performance, and these
environments serve as a testbed to show N-Gram Layers help with data efficiency.

Miniworld is a 3D environment with an RGB 64 × 64 images as observations and a discrete action space. We test our
method in two settings of Miniworld, the first resembling Dark Room and the latter Key-to-Door. The agent can perform
three actions: move a step ahead and turn the camera left or right, no lateral movement is allowed. The episode length is 50
for Miniworld-Dark Room and 100 for Miniworld-Key-to-Door.

The Miniworld-based environments are of special interest, because while it was trivial to search for n-grams with discrete
states, pixel-based observations are not so easily comparable. The details of n-grams matching for Miniworld are described
in Section 2.3

C. Implementation Details
We take a GPT-2 as a backbone, borrowing the implementation of a Decision Transformer (Chen et al., 2021) from the CORL
library (Tarasov et al., 2024). As input, the transformer receives a tuple (ai−1, ri−1, si) of actions, rewards, and observations
that are combined into a single token through a linear map to reduce the length of the sequence. The implementation of the
N-Gram layer is taken from (Akyürek et al., 2024) with a few minor modifications to match our implementation of a causal
transformer layer. The parameter count of our model is 20M.

For Dark Room and Key-to-Door we use a simple embedding layer to map states, actions, and rewards into the model space.
For Miniworld-based environments, we pretrain a VQ model on images (as described in the previous subsection) and use its
encoder to embed pixel-based observations into latent vectors. Actions and rewards are processed using an embedding layer.
We set the context length of the transformer so that there are at least two episodes in it, to maintain cross-episodic context.

To ensure that our implementation of a baseline (AD) can solve the environments, we present the performance of a baseline
that is trained on optimal hyperparameters in Appendix I.

D. Data Collection
Algorithm Distillation introduce several requirements on the structure of the data. It should be comprised of learning
histories, i.e. there should be an implicit ordering in data from the least to the most effective policy. To produce such
histories, we used a combination of approaches.

For grid-world environments, we use a table Q-Learning algorithm (Watkins & Dayan, 1992) and save (si, ai, ri) transitions.
In image-based environments, we use the approach described in Zisman et al. (2024). For this, we implement an oracle
agent and design a decaying noise schedule. It allows us to collect the learning histories faster than training any model-free
RL algorithm from scratch for each task. The rest of the data collection process remains unchanged.

Throughout the text we use the terms learning histories and tasks. The task is a predefined grid or a pair of grids an agent
must come to upon it receives a reward. The learning history is an ordered collection of states, actions and rewards an RL
algorithm observed (or produced) while learning to solve a single task. When we say we generated a dataset of n tasks with
m learning histories, it means for each of the task there are at least ⌊m

n ⌋ learning histories per task. Unlike Laskin et al.
(2022), we distinguish between tasks and learning histories, as it is often the case with real data when many trajectories
correspond to only a few tasks (Yu et al., 2019; Gallouédec et al., 2024).

E. Additional Experiments
E.1. N-Gram layers do not significantly expand hyperparameter search space

N-Gram layer introduce new hyperparameters to optimize, such as n-gram length and position of the layer to which N-Gram
layer is inserted. A natural question arises: do these hyperparameters also require extensive search, and how sensitive is the
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Table 1.

(a) Ablation on n-gram length

N-Gram max EMP

1-gram 0.74 ± 0.02
2-gram 0.71 ± 0.01
3-gram 0.76 ± 0.05

(b) Ablation on N-Gram layer
position

Position EMP

[1] 0.69 ± 0.03
[2] 0.69 ± 0.02
[1, 2] 0.67 ± 0.005

(c) Comparison of baseline
and a random n-gram mask

Model EMP

Permuted 0.51 ± 0.03
Baseline 0.52 ± 0.02

model to them?

To address this question, we conducted six random hyperparameter searches in Miniworld-Dark, ablating either the layer
position or the n-gram length while keeping one variable fixed. For the n-gram length search, we fixed the position at [1]
(after the first layer), whereas for the layer position HP search, we set the n-gram length to 1. Following (Akyürek et al.,
2024), we do not insert N-Gram layer as the first or last layer. While searching for the optimal n-gram length, we consider
”up to” a given n-gram. For example, a 2-gram includes both a 1-gram and a 2-gram together. We continue to report the
EMP metric, but here we present only the final value achieved after all hyperparameter assignments (full plots are available
in Appendix H).

Table 1(a) and Table 1(b) show that there is no significant difference between neither the n-gram length, nor the position of
the N-Gram layer inside a transformer. This may indicate that there is little to no overhead in hyperparameter search caused
by introduction of N-Gram layers.

E.2. Inserting N-Gram layers does not hurt the performance of a baseline algorithm

Another concern when working with N-Gram layers is whether they can affect the performance of a baseline model.
Hypothetically, this can occur if the quantization model fails to correctly identify which image observations correspond to
the same underlying state, rendering the n-gram matching mechanism ineffective.

We designed the following experiment to test this hypothesis. Using VQ as an n-gram extraction tool, we follow the standard
procedure described in Section 2.3, with one key modification. After matching, we shuffle the n-gram attention matrix
A(n)ij , effectively simulating a completely ineffective N-Gram attention layer that selects incorrect observations as n-gram
matches. Like in the previous experiment, we run a random HP search in Miniworld-Dark environment and report the EMP
calculated for the last hyperparameter assigned.

We compare the model with the permuted n-gram mask with the baseline model without the N-Gram layer, the results
are shown in Table 1(c). No significant difference is observed between the two models, suggesting that when the n-gram
matching mechanism is flawed, the model’s performance remains comparable to that of a model without an N-Gram layer.

F. Calculation of Transitions in Data
In appendix I of Laskin et al. (2022) they mention that AD is more data-effective than source algorithm and report the size
of a dataset. The total number of data needed to achieve an approximate of 1.81 return on Key-to-Door 1 is reported as

(...) on 2048 Dark Key-to-Door tasks for 2000 episodes each.

The estimate of total number of transitions to generate for AD, considering the maximum length of an episode in Key-to-Door
is 50 steps, equals: 2048× 2000× 50 = 204.8M transitions.

We generate 100 unique training tasks and then sample 750 train task with repetition from the original 100. Then we make
200 training episodes for each task. In total, we get 750× 200× 50 = 7.5M transitions, which is more than 27x less data.

1since no accurate data of plots was published, we used free-to-use WebPlotDigitizer for Fig. 6 in AD paper
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Figure 5. Experiments on hyperparameter sensitivity in 3D environments. We show the same pattern that was observed in discrete
environments: the N-Gram layer makes the hyperparameter search faster than for the baseline model. More details about environments
and n-gram matching are described in Section 4. (Left) Results on Miniworld-Dark. The N-Gram layer model is trained on 50 goals, the
baseline model is on 60. For evaluation, 20 goals were used. (Right) Results on Miniworld-Key-to-Door. Both N-Gram and baseline
models were trained on 2K goals and evaluated on 100 unseen goals.

G. HP Search Setups
We use weights and biases sweep for running sweeps. All of the sweep setups are available by this clickable link [will be
available for camera-ready version].

We also report the setup of hyperparameter sweep in the table below.

Table 2. Hyperparameter Configurations

(a) Grid Environments

Parameter Distribution Values

batch size - 1024
embedding dropout Uniform [0.0, 0.9]
seq len - [60, 100, 160, 200]
subsample - [4, 8, 10, 20, 50]
residual dropout Uniform [0.0, 0.5]
ngram head pos - [1], [2], [1, 2]
ngram max - [1, 2]
label smoothing Uniform [0.0, 0.8]
learning rate Log Uniform [1e-4, 1e-2]
weight decay Log Uniform [1e-7, 2e-2]
pre norm - [true, false]
normalize qk - [true, false]
hidden dim - 512
update steps - 10000

(b) MiniWorld environments

Parameter Distribution Values

batch size - 1024
embedding dropout Uniform [0.0, 0.8]
seq len - [100, 150, 200]
subsample - [8, 16, 32]
residual dropout Uniform [0.0, 0.8]
ngram head pos - [1], [2], [1, 2]
ngram max - [1, 2]
label smoothing Uniform [0.0, 0.8]
learning rate Log Uniform [5e-4, 1e-2]
weight decay Log Uniform [1e-7, 2e-2]
pre norm - [true, false]
normalize qk - [true, false]
hidden dim - 512
update steps - 10000
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Figure 6. Results on Dark Room. We search through hyperparameters in random order and report expected maximum performance
(Dodge et al., 2019). We also constrain the number of optimization steps by 10K and use equal batch size to ensure both methods use the
same amount of data. The top row shows experiments with different number of learning histories, with the total number of training goals
fixed. It is seen that our method needs much less hyperparameter assignments (20 for 1K histories) to find the optimal model, while the
baseline performance increases only asymptotically (full plots are shown in Appendix H). The number of traning tasks for this experiment
is 60. The bottom row presents experiments with varied number of goals and fixed number of learning histories. Our method makes it
possible to find the optimal hyperparameters with only 15 hyperparameter assignments, while the baseline fails to work in such low data
conditions. However, none of the methods can learn to generalize from only 10 goals. The number of learning histories for this task is 1K.
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Figure 7. Full length plots for Key-to-Door. For 200 learning histories we halted the random search early, since it was obvious the
performance has stalled.
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Figure 8. Full length plots for Dark Room. Some of the computations halted earlier for the same reason as in Figure 7
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Figure 9. Full length plots for ablation experiments in Miniworld-Dark environment.

I. Performance of AD on Key-to-Door and Dark Room
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Figure 10. AD performance on Dark Room and Key-to-Door. This plot shows that our implementation of AD demonstrates optimal
performance given the right hyperparameters.
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