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Abstract

Effective robotic exploration in continuous domains requires planning trajectories
that maximize coverage over a predefined region. A recent development, Stein
Variational Ergodic Search (SVES), proposed parallel ergodic exploration (a key
approach within the field of robotic exploration), via Stein variational inference that
computes a set of candidate trajectories approximating the posterior distribution
over the solution space trajectories. While this approach leverages GPU parallelism
well, the trajectories in the set might not be distinct enough, leading to a suboptimal
set. In this paper, we propose two key methods to diversify the solution set of
this approach. First, we leverage the signature kernel within the SVES framework,
introducing a pathwise, sequence-sensitive interaction that preserves the Markovian
structure of the trajectories and naturally spreads paths across distinct regions
of the search space. Second, we propose a derivative-free evolution-strategy
interpretation of SVES that exploits batched, GPU-friendly fitness evaluations and
can be paired with approximate gradients whenever analytic gradients of the kernel
are unavailable or computationally intractable. The resulting method both retains
SVES’s advantages while diversifying the solution set and extending its reach to
black-box objectives. Across planar forest search, 3D quadrotor coverage, and
model-predictive control benchmarks, our approach consistently reduces ergodic
cost and produces markedly richer trajectory sets than SVES without significant
extra tuning effort.

1 Introduction

Robotic exploration–the autonomous process by which robots survey unknown or partially mapped
environments to collect information, build maps, and accomplish tasks such as search-and-rescue,
environmental monitoring, or infrastructure inspection. The success of robotic exploration hinders
on the reliability of the robot to adapt its exploratory opteration in dynamic or unstructured settings
where pre-programmed paths may fail. A key approach within this field is ergodic search [1, 2], in
which trajectories are generated so that the robot’s time-averaged visitation frequency matches a
desired spatial distribution of information. By ensuring that time spent in each region is proportional
to its importance, ergodic search provides systematic, efficient coverage of the domain and avoids
both redundantly revisiting well-known areas and neglecting critical regions. In such applications
where a robot must systematically explore an area, having multiple, robust, high-quality and diverse
set of trajectories is critical to adapt to dynamic environments and quickly switch between search
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strategies. Moreover, a set of diverse solutions aid in avoiding "bad" local minima and lead to a better
optimization outcome.

Recent progress in curiosity- and information-based exploration has enabled robots to survey large,
unstructured environments [3–7]. However, most existing methods rely exclusively on an information-
maximizing strategy, which often leads to myopic behavior: agents greedily seek immediate gains in
information without regard for long-term, strategically advantageous states.

(a) RBF kernel (b) Signature kernel

Figure 1: illustrates the qualitative impact of our signature-kernel
enhancement: where trajectories generated using the RBF kernel (panel
a) not only cluster around the domain center but also produce rough,
lower-quality paths, the signature kernel (panel b) yields smooth, high-
quality trajectories that spread more uniformly across the entire domain,
achieving significantly richer ergodic coverage. These trajectories
were flown by Crazyflie drones in a real-world setting as part of the
experiment described in Section 7.2.

Ergodic exploration tech-
niques address this limita-
tion by casting exploration
as a coverage problem, op-
timizing time-averaged tra-
jectory statistics to ensure
sustained visitation of high-
information regions [8, 9].
Concretely, these methods
optimize the spatial distribu-
tion of trajectory dwell time
against an expected infor-
mation measure, allowing
robots to plan exploratory
paths that effectively handle
multi-modal search land-
scapes [1]. Despite their
demonstrated effectiveness,
current ergodic algorithms
still optimize only a single
search policy at a time, con-
straining a robot’s ability to
adapt when tasks or environments change.

Prior work has observed that the non-convex nature of the ergodic objective can yield multiple
locally optimal trajectories under different initializations [9]. Yet explicitly reasoning over—and
sampling from—a distribution of such trajectories is computationally prohibitive. Moreover, there
is no assurance that distinct initial conditions will avoid collapsing onto the same ergodic solution,
a critical shortcoming in online exploration scenarios where mode collapse can incur catastrophic
performance failures.

Stein variational inference methods show promise in providing the necessary tools to approximate
distributions of trajectories in a computationally tractable manner [10]. Motivated by these strengths,
[2] proposes Stein variational ergodic search (SVES), a formulation of ergodic exploration as a Stein
variational inference problem: by applying Stein variational gradient descent to the space of robot
trajectories. However, SVES neither fully exploits the inherent Markovian structure of trajectories nor
avoids a strong dependence on gradient information. Moreover, although SVES alludes to promoting
diversity among trajectories, it does not concretely define this notion or provide what “diversity”
entails.

Contributions: We address the challenges mentioned above by "diversifying" Stein Variational
Ergodic Search (SVES). Our approach is built on two complementary pillars. First, we leverage
the signature kernel similar to [11], enabling us to encode the intrinsic sequential (or Markovian)
and geometric properties of trajectories. The signature kernel naturally discriminates between subtly
different paths, thus promoting diversity. Second, we incorporate Stein Variational Covariance
Matrix Adaptation Evolution Strategy (SV-CMA-ES) [12] and Simultaneous Perturbation Stochastic
Approximation (SPSA) [13] into SVES, drawing on recent progress in Stein Variational Evolution
Strategies, this approach not only eliminates the need for gradients—often costly to compute—by
harnessing GPU parallelism, making it viable for real-time applications, but also enables the use of
complex non-differentiable or black-box loss functions and constraints. Later we show empirically
that this approach leads to better optimization results and a more diverse set of solutions.

Paper organization: The remainder of the paper is organized as follows. In Section 2 we formalize
the ergodic search problem, Section 3 reviews Stein variational ergodic search, Section 4 introduces
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the signature transform and signature kernel, Sections 5 and 6 present our diversification strategies
using the signature kernel and SV-CMA-ES respectively, Section 7 reports empirical results, Section
8 concludes and discusses the limitations and best practices.

2 Problem Statement

We consider a robot with state space X ⊆ Rn and control space U ⊆ Rm, whose continuous-time
dynamics are

ẋ(t) = f
(
x(t), u(t)

)
, x(0) = x0 ∈ X , u : [0, T ]→ U .

A robot’s space trajectory x(t) : [0, T ]→ X is defined as the solution of the corresponding initial-
value problem (integrated over time):

x(t) = x(0) +

∫ t

0

f
(
x(ξ), u(ξ)

)
dξ. (1)

We denote the set of all such finite-horizon trajectories by τ =
⋃

T>0 C0
(
[0, T ], X

)
, as the set of

all continuous trajectories defined on arbitrary finite time intervals. 1 The robot explores a bounded
domain S = [0, B0]× · · · × [0, Bv−1] ⊂ Rv, v ≤ n, via a projection g : X → S.

We assign each region of S an importance according to a target probability measure π. An ergodic
cost Eπ(x) intuitively measures how well a trajectory x ∈ τ covers S in proportion to π: it penalizes
regions that are under- or over-visited relative to their importance. 2 Driving Eπ(x)→ 0 therefore
ensures the robot spends time in each region proportional to its assigned importance (see Definition 5
in Appendix D a formal introduction on ergodic cost). Our objective is to compute feasible trajectories
that minimize this ergodic cost while satisfying the constraints of the system. Over a fixed horizon T ,
we solve

minimize
x(t)∈τ(X )

u(t)∈U, ∀t∈[0,T ]

Eπ(x(t)) (2)

subject to h1(x) = 0, h2(x) ≤ 0, ∀t ∈ [0, T ]

where initial conditions x(0) and trajectory constraints can be accounted for in the equality and
inequality constraints h1, h2 , e.g., ẋ = f(x, u) and u ∈ U .

In what follows, we develop Stein-variational and evolutionary-strategy methods to efficiently
generate diverse high-quality ergodic trajectories in parallel.

3 Stein variational ergodic search

SVES reformulates ergodic search (a problem where a robot must explore the domain S according to a
target distribution, see Appendix D) as an inference problem. A binary indicator O : τ(X )→ {0, 1},
flags trajectories that satisfy the optimality criterion. The likelihood of O = 1 given a trajectory x is
defined by p

(
O = 1 | x

)
= exp

(
−µ Eπ(x)

)
, where Eπ(x) is the ergodic cost and µ > 0 scales its

influence. By combining this likelihood with a prior p(x) over the space of trajectories via Bayes’ rule,
one can obtain the posterior p(x | O). We use Stein Variational Gradient Descent (SVGD) [10] (see
Appendix B), an iterative algorithm to approximate this posterior p(x | O) ∝ p(x) exp

(
−µ Eπ(x)

)
with a set of particles so that their empirical distribution approximates the target posterior. At each
iteration, particles are nudged toward to regions of high posterior density and while being repelled
from one another to promote coverage, thus forming a sample-based approximation of the true
posterior

Integrating dynamics and constraints: The dynamics and constraints h1(x) = 0, h2(x) ≤ 0, etc.,
can be folded into a composite cost

Jπ(x) = Eπ(x) + ρ(x) + c1 h1(x)
2 + c2 max{0, h2(x)}, (3)

1Throughout this paper we use the notation Cx(I, V ) := { f : I → V |
f (j) exists and is continuous on I for all 1 ≤ j ≤ x}, and C0(I, V ) := {f is continuous}.

2Since time is a limited resource, it is crucial to penalize excessive revisitations in order to maximize the
useful information gathered within a finite time budget.
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with ρ additional penalties and ci > 0. The likelihood is then given by p
(
x
)
= exp

(
−µJπ(x)

)
.

Throughout this paper, we set µ = 1.

3.1 SVES over state trajectories

We discretize a continuous trajectory x(t) into x = [x0, . . . , xT−1], and chose a Gaussian prior
p(x) = N (x̂, σ2I), where x̂ interpolates boundary states. SVGD maintains N “particles”, in our
case N trajectories {xi

r}Ni=1 and updates them via

ϕ∗
r(·) =

1

N

N∑
i=1

[k(xi
r, ·)(∇x log p(x

i
r)− µ∇xJπ(xi

r)) +∇xk(x
i
r, ·)], (4)

where r is an arbitrary SVGD iteration. The first SVGD term pulls particles toward low-cost ergodic
trajectories (or modes with high density) and is often referred to as the attractive force; the second,
the gradient of the kernel disperses them to preserve coverage and is referred to as the repulsive force.
Therefore, the choice of an effective kernel is essential for good mode coverage. A key insight to
note is that SVGD allows the N particles to be updated in parallel.

3.2 SVES over control sequences

Similar to before, one can optimize over discrete control sequences u = [u0, . . . , uT−1], with the
discretized dynamics xt+1 = F (xt, ut), x0 given, and a prior p(u) using SVGD and each control-
particle ui

r is updated by

ϕ∗
r(·) =

1

N

N∑
i=1

[k(ui
r, ·)(∇u log p(ui

r)− µ∇uJπ(xi
r|ui

r, x0)) +∇uk(u
i
r, ·)], (5)

In an MPC-style loop, usually only the first control action is applied, the state is estimated, and the
SVGD optimization is repeated for the shifted horizon.

See Appendix E for a more detailed introduction to SVES.

4 Signature Transform and Signature Kernel

The signature (transform) and its corresponding kernel [14] have proven to be highly effective in
diverse applications—ranging from robotics to deep learning—where data is naturally represented
as a continuous path [14–19]. Informally, the signature transform of a trajectory can be viewed as
analogous to the Fourier series, where the trajectory is represented as a countably infinite sequence.
We now introduce the signature (transform) of a path/trajectory and its corresponding kernel:
Definition 1. (Informal) Signature (transform) of a path [20]. Consider a continuous path
x : I → Rd on an interval I ⊂ R. For any subinterval [s, t] ⊂ I , the signature of x over [s, t] is
defined as the sequence

φ(x)s,t =
(
1,

∫
s<u1<t

dx(u1) , . . . ,

∫
s<u1<···<uk<t

dx(u1)⊗ · · · ⊗ dx(uk), . . .
)
, (6)

where ⊗ denotes the classical tensor product. This collection of iterated integrals captures the
essential features of the path and is invariant under reparameterization (i.e.,φ(x) = φ(x ◦ θ), for
some reparameterization θ).

Essentially one can view the path signature is a canonical linear embedding of any multivariate path
into an (infinite) series of iterated integrals. It is injective on all non-tree-like paths, meaning no
two such paths share the same signature (in practice one ensures non-tree-likeness by appending a
monotonic “time” coordinate). It also satisfies time-reversal duality: φ(x)a,b ⊗ φ(←−x )a,b = 1,
where 1 is the unit element and←−x (t) = x(a+ b− t).

One can approximate signature kernel reasonably well with the truncated signature transform of
level L ∈ N and [21, 22] provide efficient means to compute the truncated signature using Dynamic
Programming and approximate it using Random Fourier Features.
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Definition 2. (Informal) Signature Kernel Let I = [u, u′] and J = [v, v′] be two intervals, and
consider paths x ∈ C1(I,Rd) and y ∈ C1(J,Rd). The signature kernel ksig(x, y) : I × J → R is
defined by ksigs,t (x, y) = ⟨φ(x)s, φ(y)t⟩, where φ(x)s and φ(y)t denote the signatures of x and y
over the intervals [u, s] and [v, t], respectively.

Utilizing the kernel trick introduced in [20], one can efficiently compute the full (untruncated)
signature kernel. The kernel trick uses the following result:
Theorem 1. [20] (Informal) Let I = [u, u′] and J = [v, v′] be 2 intervals, and let x ∈ C1(I,Rd)
and y ∈ C1(J,Rd). Then the signature kernel kx,y satisfies the following partial differential equation:

∂2ksigs,t

∂s ∂t
(x, y) = ⟨ẋ(s), ẏ(t)⟩V ks,t(x, y),

subject to the boundary conditions ksigu,t (x, y) = 1 ∀t ∈ J, ksigs,v (x, y) = 1 ∀s ∈ I.

The resulting PDE formulation of the signature kernel enables its efficient computation using any
standard numerical scheme, such as finite difference, finite element, or other suitable methods for
hyperbolic equations. See Appendix G.5 for a formal introduction to the signature kernel and the
reasons why it makes a good feature map for trajectories.

5 Promoting diversity in SVES using signature kernels

The kernels used in the previous work on SVES [2] do not take full advantage of the Markovian
property of the trajectories. Hence, we propose to directly apply ksig in equations 4 and 5. Computing
the full (N ×N) Gram matrix for N trajectories of length T in Rd via dynamic programming incurs
a time complexity of O

(
N2 T 2 dc

)
, where c depends on the level of truncation of the signature

transform. By exploiting the kernel trick as stated in Theorem 1, the cost of evaluating the kernel
between any two paths can computed in as low as O

(
T 2 d

)
. Although forming the complete Gram

matrix still requires N2 such evaluations and hence retains an O(N2T 2d) overall cost, the underlying
PDE formulation admits efficient parallelization. In particular, when implemented with an explicit
finite–difference scheme on a suitably provisioned GPU, the per-pair computation can be driven down
to linear dependence on the trajectory length (in practice), yielding an effective wallclock complexity
of O

(
T d
)

under the assumption that the GPU can accommodate the required number of threads
[20].

6 Promoting Diversity in SVES using SV-CMA-ES

CMA-ES updates have been demonstrated to yield more efficient search steps than standard gradient
descent across a variety of benchmark problems [23–25]. Moreover, [26] empirically established
that SV-CMA-ES, a variant of SVGD that uses CMA updates, can surpass SVGD in update efficiency,
leading to faster and more accurate convergence to the ground truth under certain conditions. In the
spirit of these findings, we integrate SV-CMA-ES into the SVES framework in lieu of SVGD. A
background in SV-CMA-ES can be found in Appendix C. SVGD’s update requires computing the
gradient of the log density ∇ log p(x) (a process that typically involves multiple sequential back-
and-forth evaluations of the log-density, in practice) which can be very expensive [10]. However,
SV-CMA-ES updates involve the evaluation of a fitness function via many independent samples,
which turn is used to compute ∆j ≈ σj

∑m
k=1 wj,k yj,k. a gradient-free surrogate of ∇ log p(x)

(see C Equation 11). Consequently, on massively parallel hardware (e.g., GPUs), SV-CMA-ES may
reduce wall-clock time compared to gradient-based SVGD, in cases where computing the gradient of
the log density is very expensive or not available. In the case of Ergodic search, the fitness function
f(·) in the update (Equation 12) is instantiated as the ergodic cost Jπ(·).
Moreover, SV-CMA-ES’s gradient-free exploration–exploitation scheme further enhances trajectory
diversity: it simultaneously samples across multiple subpopulations (exploration) and then refines its
search by exploiting a select subset of high-fitness (elite) trajectories.

Evolution Strategies for Kernel Gradient Estimation: When the analytical gradient of the
kernel is not readily available or is computationally intractable, Simultaneous Perturbation Stochastic
Approximation (SPSA) may be employed. SPSA is a gradient-free technique for estimating gradients
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of black-box functions via simultaneous random perturbations [13]. SPSA, similar to SV-CMA-ES
performs multiple, independent kernel evaluations in parallel, thus can also exploit GPU parallelism to
deliver lower overall wall-clock execution times. We found that the noise from SPSA, in some cases
aids in breaking out of a "bad" local minima, but in most cases provide no significant performance
benefits. By coupling SV-CMA-ES with SPSA, we obtain a fully gradient-free algorithm for
generating ergodic trajectories, which is the method adopted in our experimental evaluation (and
hence we will refer to SV-CMA-ES coupled with SPSA as just SV-CMA-ES from this point on).

7 Experimental results

In this section, we present results to empirically demonstrate the effectiveness and applicability of the
methods discussed above in a variety of simulated and real experiments (and their exact setup can be
found in Appendix K). Specifically, we are interested in addressing the following:

1. How diverse are the trajectories produced using the signature kernel?

2. How ergodic are the trajectories produced with the signature kernel?

3. What are the convergence rates of SV-CMA-ES and SVGD?

4. How ergodic and diverse are the trajectories produced using SV-CMA-ES compared to
SVGD?

To address 1) and 2) we will benchmark the signature kernel with other well-known kernels, specifi-
cally, the RBF kernel, kernelized DTW, Global Alignement kernel and the Markov RBF kernel. A
brief description of these kernels can be found in Appendix G. At each iteration of the SVGD or
SV-CMA-ES a new bandwidth for the kernels was chosen using the median heuristic. We employed
the median heuristic for bandwidth selection because it is straightforward, computationally light, and
requires no manual tuning, making our method more accessible to users (refer to [27] for details on
the guarantees provided by the median heuristic).

(a) RBF Kernel (b) Kernelized DTW (c) Signature kernel

Figure 2: Top down projection of trajectories generated in experiment comparing kernels in section
7.2.1. Despite using a Gaussian prior that just interpolates start and goal, only the signature kernel’s
strong repulsive term steers trajectories around obstacles.

The diversity of N trajectories is measured by det(Kf ), where Kf ∈ RN×N is the Gram matrix
with entries(Kf )ij = kFréchet(xi,xj), where kFréchet is kernel build using the Fréchet distance. See
Appendix H for details.

7.1 Multiscale constrained exploration

7.1.1 Signature kernel performance

To evaluate the performance of the signature kernel within the SVES framework (using SVGD), we
instantiate ten distinct priors pk(·) for k = 1, . . . , 10 as detailed in Section 3.1 & E.2, each with
variance σ2 = 0.01. For each prior, we generate N = 6 trajectory samples and compare the kernels
according to the following criteria in SVES:
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Average trajectory cost, 1
N

∑N
i=1 Jπ(xi).1) Best trajectory cost, min1≤i≤N Jπ(xi).2)

Mean ergodic cost, 1
N

∑N
i=1 Eπ(xi).3) Trajectory diversity. − log

(
1−det(Kf )

)
4)

All Stein variational gradient updates employ a step size of ϵ = 0.01, and iterations are terminated
when

∥∥x(i) − x(i−1)

∥∥ < 1.25× 10−3 or maximum of 3000 iterations is reached. The experimental
results are summarized in Figure 3 and an elaborate statistical analysis can be found in Appendix J
(Table 2).

Figure 3: Aggregated performance comparison across five kernel categories. For each kernel, the four
side-by-side bars represent the average of 10 experimental runs for the metrics discussed in 7.1.1.

7.1.2 SV-CMA-ES vs SVGD

To assess the comparative performance of SV-CMA-ES and standard SVGD on the ergodic trajectory
optimization, we initialize both methods with N = 5 trajectories drawn from the same Gaussian prior
(variance σ2 = 0.01). All other hyperparameters are held constant. Here we use the RBF kernel. At
each optimization iteration, we record:

Average trajectory cost, 1
N

∑N
i=1 Jπ(xi).1) Best trajectory cost min1≤i≤N Jπ(xi).2)

Trajectory diversity, − log
(
1−det(Kf )

)
3)

Figure 4 illustrates the per-iteration evolution of these metrics. SV-CMA-ES maintains similar costs
compared to SVGD, while promoting trajectory diversity.

7.2 3D Coverage using the Crazyflie drone

7.2.1 Signature kernel performance

We follow the exact method used in section 7.1.1, but in example here set N = 10, ϵ = 0.02, and
iterations are terminated when

∥∥x(i) − x(i−1)

∥∥ < 1.25× 10−3 or a maximum of 1500 iterations is
reached.

The experimental results are summarized in Figure 5 and an elaborate statistical analysis can be
found in Appendix J (Table 3).
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Figure 4: Convergence results for different step sizes (defined as ϵ for SVES and αx for SV-CMA-ES
in Appendices B & C respectively) for the multiscale constrained exploration experiment.

Figure 5: Aggregated performance comparison across five kernel categories. For each kernel, the four
side-by-side bars represent the average of 10 experimental runs for the metrics discussed in 7.2.1.

7.2.2 SV-CMA-ES vs SVGD

We once again follow the method in section 7.1.2 with N = 5 trajectories. Figure 6 illustrates the
per-iteration evolution of these metrics.

7.3 Stein variational model-predictive control

7.3.1 Signature Kernel Performance

We instantiate ten distinct priors pk(·) for k = 1, . . . , 10 similar to 7.1.1. For each prior, we record
the following at each model predictive control (MPC) iteration j = 1, . . . , 200.

Average trajectory cost,
J̄ j := 1

N

∑N
i=1 J j

π (u
i).

1) Best trajectory cost,
J j,∗ := min1≤i≤N J j

π (u
i).

2)

Ergodic cost of the best trajectory,
Ej,∗ := Ejπ(ui) :
i = argmink∈{1,...,N} J j

π (uk).

3) Trajectory diversity,
Dj := − log

(
1−Kj

f

)4)
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Figure 6: Convergence results for different step sizes (defined as ϵ for SVES and αx for SV-CMA-ES
in Appendices B & C respectively) for the 3D coverage using the Crazyflie drone experiment.

Table 1: Aggregated metrics over all time steps for a single prior

RBF Signature Markov Kernelized

kernel RBF DTW

Total average trajectory cost:
∑200

j=1 J̄ j 563.14 581.27 764.08 554.92

Total best trajectory cost:
∑200

j=1 J j,∗ 377.83 351.83 468.82 375.13

Total ergodic cost of best trajectory:
∑200

j=1 Ej,∗ 262.09 239.73 319.88 262.09

Total trajectory diversity:
∑200

j=1 D
j 48.51 548.22 3395.45 57.46

The experimental results for one such prior are summarized Table 1. The experimental results for all
10 priors are summarized in Appendix J Table 4.

Markov RBF failed to converge to a meaningful solution in most of the MPC iterations—resulting in
essentially random trajectories and thus artificially high diversity values.

7.4 Ablations: kernel bandwidth sensitivity

We provide a small ablation study on the effect of the choice of bandwidth on kernels in the 3D
Coverage using the Crazyflie drone experiment from Section 7.2. Figure 7 compares 3 different
computationally light heuristics [28] (mean heuristic, Sliverman’s rule of thumb and Scott’s rule) for
selecting the bandwidth and Figure 8 shows the effect of manually tuning the kernel.

Figure 7: The 3D coverage using the Crazyflie drone experiment with different kernel bandwidth
selection heuristics. The plots report the mean over 10 random priors, with error bars indicating ±1
standard deviation.
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(a) Bandwitdh vs best trajectory cost (b) Bandwidth vs average trajectory cost

(c) Bandwidth vs mean ergodic cost (d) Bandwidth vs trajectory diversity

Figure 8: Impact of bandwidth selection on kernel performance in 3D coverage using the Crazyflie
drone experiment. Each sub-figure presents the mean over 5 random priors, with error bars indicating
±1 standard deviation.

8 Conclusion, Limitations and best practices

In summary, integrating the signature kernel into our ergodic search framework consistently lowers
ergodic cost and increases trajectory diversity, compared to standard choices by promoting more
effective mode coverage. Moreover, swapping in SV-CMA-ES further enhances exploration diversity,
while completely being a gradient-free approach, underscoring the practical benefits of our approach.
See Appendix J for the visual representation of the trajectories.

However our approach has several limitations. First, the runtime of the methods discussed in this
paper depends heavily on the available CPU/GPU parallelism and the dimensionality of the problem:
as the number of particles and dimensions increases, both communication and computation overhead
grow, which can degrade performance on hardware with limited cores/threads or when scaling to
very high dimensions. Second, the SV-CMA-ES instantiation usually requires performing a singular
value decomposition (SVD) or Cholesky factorization at every iteration. Consequently, the scalability
(and hence the real time applicability) of this method depends heavily on the problem size, use
case, cost of computing the gradients, available hardware etc., and practitioners should be aware of
these trade-offs. Future work could explore incorporating recent advances (e.g., diagonal covariance
matrices [29]) in vanilla CMA to improve efficiency. Third, while the signature kernel provides a very
strong repulsive force that promotes diverse exploration, it can also inadvertently push trajectories
into obstacles, outside bounded domains, etc. We noticed this specially in the example in section
7.3, which explains the higher total average trajectory cost. To mitigate these effects, practitioners
should consider using more conservative cost designs when employing the signature kernel, opting
for alternative kernels (e.g., RBF) that exert milder repulsion or running SVGD for more iterations
(see Appendix F for the exact convergence guarantees; we also recommend the reader to refer to
[2, 30]). Fourth, SV-CMA-ES does not provide rich theoretical guarantees provided by SVGD and
hence SVES. Finally, we did not explore the potential of the Fréchet Distance kernel for producing
diverse trajectories due to its computational cost.
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A Additional related work

Trajectory optimization Trajectory optimization encompasses a wide range of techniques that
initiate with a preliminary, suboptimal path and iteratively refine it to converge on a (potentially
local) optimum by minimizing an associated cost function. Foundational contributions in this domain
include Covariant Hamiltonian Optimization for Motion Planning (CHOMP) [31] and its related
approaches [32–34], which exploit the covariance of trajectories alongside Hamiltonian Monte
Carlo to perform annealed functional gradient descent. A significant drawback of these methods is
their reliance on fully differentiable cost functions. Stochastic Trajectory Optimization for Motion
Planning (STOMP) [35] overcomes this by estimating gradients from stochastic samples of noisy
trajectories, thereby accommodating cost functions that lack differentiability.

Another influential research direction involves quality diversity algorithms, notably the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) [36–38], which adopts a derivative-free strategy
using multivariate normal distributions to generate and update candidate solutions. Although CMA-
ES is robust and exhibits ergodic behavior capable of managing multimodal problems, it typically
requires multiple initializations and a higher number of evaluations compared to gradient-based
methods [39]. Other techniques, such as TrajOpt [40], solve sequential quadratic programs with
continuous-time collision checking; while these methods are efficient, they often yield only locally
optimal solutions and necessitate fine parametrization of waypoints. To mitigate this, [34] limit
the optimization to a Reproducing Kernel Hilbert Space (RKHS) with a squared-exponential kernel,
although this may overlook the cost contributions between sparsely distributed waypoints. Methods
proposed in GPMP [41–43] model trajectories as Gaussian Processes (GP) to obtain a maximum a
posteriori (MAP) solution.

More closely aligned with our approach, variational inference methods introduced in [44] and [45]
infer the posterior distribution over trajectories using Stein variational gradient descent (SVGD) or
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natural gradient updates. In contrast, the RKHS induced in SVMP fails to capture the sequential
dynamics of trajectories by treating them as static, high-dimensional vectors—resulting in reduced
repulsive forces and less coordination across functional dimensions. Kernel Signature Variational
Gradient Descent (SigSVGD) [11], overcomes these shortcomings by integrating path signatures to
explicitly encode the sequential structure of trajectories. This approach not only enhances diversity
but also increases the probability of discovering superior local optima. Furthermore, leveraging
insights from both motion planning and control-as-inference allows SigSVGD to extend naturally to
Model Predictive Control (MPC) frameworks (e.g., Stein Variational MPC (SVMPC) [46]), where
preserving the sequential structure of control trajectories is crucial.

Robotic exploration Robotic exploration is primarily concerned with steering agents into unknown
territories, while the coverage problem entails designing trajectories and strategically placing sensors
to ensure that a confined area is thoroughly examined. Early solutions often relied on discrete
grid-based strategies—employing methods such as advanced boustrophedon search patterns (the
antecedent to the lawnmower pattern [47]) and variations of the traveling salesperson problem
[48, 49]—to list all viable exploration routes. Although grid-based methods offer guarantees of
completeness, scaling these techniques to continuous domains is inherently difficult because the
number of potential trajectories becomes unbounded. Recent strategies in reinforcement learning
and information-driven exploration have sought to surmount these obstacles by using “curiosity”
measures [3, 4] derived from information theory [50]. However, many of these approaches tend to
be short-sighted, concentrating on immediate rewards and often settling on a single-mode solution,
which restricts the system’s overall flexibility.

Subsequent developments have brought forth ergodicity-based methods for exploration. By reducing
the disparity between the expected spatial information distribution and the time-averaged visitation
of a path [8], ergodic exploration techniques yield sophisticated coverage patterns across continuous
domains [1, 51]. In fact, the spectral, multi-scale structure of the ergodic metric [52] suggests the
existence of numerous exploitable local solutions—an element that is essential for resilient, real-time
exploration [53]. Despite these advances, a persistent challenge remains in devising methods that
compute sets of “good,” locally optimal ergodic trajectories which can facilitate efficient strategy
switching in dynamic scenarios.

Control as inference The control as inference framework has recently emerged as a powerful
perspective by recasting trajectory optimization issues within a probabilistic framework. The inherent
non-convexity of many robotic problems—due to complex dynamics and contact interactions—creates
significant hurdles for traditional gradient-based optimization techniques. Approaches such as
predictive sampling [54] and model-predictive path integral control (MPPI) [55, 56] have been
developed to mitigate these difficulties. However, these methods often produce only a single locally
optimal solution, thereby overlooking the potential for multiple, equally effective strategies. This
limitation is especially problematic in rapidly changing environments—for instance, in crowd-based
navigation—where relying on one trajectory can be inadequate [57, 58]. Moreover, the utilization
of optimal transport and variational techniques has shown promise by reformulating trajectory
optimization as an inference problem [58, 59]. These frameworks enable the approximation of
complex solution distributions that encompass multiple local optima, thus providing the necessary
flexibility for swift adaptation.

B Stein variational gradient descent (SVGD)

Variational inference often requires approximating an intractable posterior distribution p(x) by
a tractable distribution q(x) from a parameterized family of distributions D, typically through
the minimization of the Kullback-Leibler (KL) divergence. Stein Variational Gradient Descent
(SVGD) [10] offers a non-parametric approach that iteratively transports a set of particles {xi}ni=1 to
match the target distribution.

The core idea of SVGD is to gradually push the particles in the direction that most rapidly decreases
the KL divergence. Consider an incremental, smooth transform

T (x) = x+ ϵ ϕ(x),
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where ϕ(x) is a smooth perturbation function and ϵ > 0 is a small step size. A key theoretical result
shows that the derivative of the KL divergence with respect to ϵ (evaluated at ϵ = 0) is

d

dϵ
KL(q[T ]∥p)

∣∣∣∣
ϵ=0

= −Ex∼q

[
trace

(
Apϕ(x)

)]
, (7)

with the Stein operator defined as

Apϕ(x) = ∇ log p(x)ϕ(x)⊤ +∇xϕ(x).

This result, based on Stein’s identity, motivates the introduction of the kernelized Stein discrepancy
(KSD) as a measure of the mismatch between q(x) and p(x).

By constraining ϕ to lie within the unit ball of a reproducing kernel Hilbert space (RKHS) associated
with a positive definite kernel k(·, ·), one can derive a closed-form expression for the optimal
perturbation direction:

ϕ∗(·) = Ex∼q

[
k(x, ·)∇ log p(x) +∇xk(x, ·)

]
. (8)

Here, the first term in the expectation directs particles toward regions of high probability under p(x),
while the second term serves as a repulsive force, ensuring that the particles remain diverse and do
not collapse into a single mode.

The practical SVGD update for the particles is then given by

xi ← xi + ϵ ϕ̂∗(xi), (9)

where the empirical approximation of the optimal direction is

ϕ̂∗(x) =
1

n

n∑
j=1

[
k(xj , x)∇xj log p(xj) +∇xjk(xj , x)

]
. (10)

Notably, when n = 1 the update reduces to the standard gradient ascent used in maximum a posteriori
(MAP) estimation, whereas using multiple particles allows SVGD to capture the full posterior
distribution.

SVGD’s formulation as a functional gradient descent in an RKHS not only avoids the need to
compute Jacobians or their inverses but also scales well with large datasets by permitting mini-batch
approximations of ∇ log p(x) and allows for parallel computation of each particle. This scalability,
along with its ability to maintain particle diversity through the repulsive kernel term, makes SVGD an
attractive and efficient method for Bayesian inference—and it forms a key component in extensions
to more complex tasks.

C Stein variational covariance matrix adaptation evolution strategy

To overcome the reliance on gradient information in standard SVGD while retaining its powerful
repulsive interactions, Stein Variational Covariance Matrix Adaptation Evolution Strategy (SV-CMA-
ES) embeds the adaptive, natural-gradient-free CMA-ES into the multi-particle SVGD framework
[26]. Conceptually, each SVGD “particle” is no longer a point but the mean of its own Gaussian
search distribution. By interpreting the CMA-ES mean update as an estimate of the score function
∇ log p(x), we obtain a gradient-free yet highly explorative algorithm that tracks both local fitness
landscapes and global diversity.

Let n be the number of particles and m the sub-population size per particle. Particle i carries a
Gaussian

ξi,k ∼ N
(
xi, σ

2
iCi

)
, yi,k =

ξi,k − xi

σi
, k = 1, . . . ,m,

and we evaluate their fitness f(ξi,k). By ranking these m samples and selecting the top λ as the elite
sub-population, we assign recombination weights wi,k (non-zero only for those λ elites, which may
be positive or negative depending on their ranked fitness; see [39]).
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In vanilla SVGD each particle xi moves according to

xi ← xi + ϵ Ex∼q

[
∇ log p(x) k(x, xi) +∇xk(x, xi)

]
.

In SV-CMA-ES we replace the intractable score by the CMA-ES mean shift

∆j =

m∑
k=1

wj,k (ξj,k − xj) ≈ σj

m∑
k=1

wj,kyj,k, (11)

and approximate the expectation over all n Gaussians. The resulting SV-CMA-ES update is

xi ← xi +
αx

n

n∑
j=1

(
∆j k(xj , xi) +∇xjk(xj , xi)

)
, (12)

where αx subsumes the original SVGD step-size ϵ. This blend preserves SVGD’s repulsion through
∇k while guiding particles toward high-fitness regions via CMA-ES’s ∆j .

The self-adaptation of σi and Ci follows CMA-ES’s mechanisms:

λeff =
( m∑
k=1

w2
i,k

)−1

, (13)

h̄i =
∥pσ,i∥√

1− (1− ασ)2(t+1)
, (14)

hσ,i =

{
1, h̄i <

(
1.4 + 2

d+1

)
E∥N (0, I)∥,

0, otherwise,
(15)

d
(
hσ,i

)
= (1− hσ,i)αc (2− αc) (16)

w̄i,k =

{
wi,k, wi,k ≥ 0,

wi,k d
∥∥C−1/2

i yi,k
∥∥−2

, wi,k < 0.
(17)

pσ,i ← (1− ασ) pσ,i +

√
ασ(2− ασ)

λeff
C

− 1
2

i

∆i

σi
, (18)

σi ← σi exp
(ασ

dσ

(
∥pσ,i∥

E∥N (0,I)∥ − 1
))

, (19)

and

pc,i ← (1− αc) pc,i + hσ,i

√
αc(2− αc)

λeff

∆i

σi
, (20)

Ci ←
(
1 + d(hσ,i)− α1 − αλ

m∑
k=1

wi,k

)
Ci + α1 pc,ip

⊤
c,i + αλ

m∑
k=1

w̄i,k yi,ky
⊤
i,k. (21)

Practical considerations

The driving-force term in (12) averages over all n particles, which can shrink steps when modes are
distant and cause premature step-size reduction. To address this, one may employ a hybrid update
that uses only the particle’s own CMA-ES shift for the first term and retains the full repulsion:

xi ← xi + αx

( m∑
k=1

wi,k(ξi,k − xi) + γ(t)
1

n

n∑
j=1

∇xjk(xj , xi)
)
, (22)

where γ(t) is an annealing factor (e.g. γ(t) = max(log T
t , 1)) that gradually reduces repulsion to

fine-tune convergence near local optima and prevents premature convergence.
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Algorithm 1 Stein Variational CMA–ES

Require: kernel k(·, ·); sub-population size m; elite size λ; hyper-parameters αx, ασ, α1, αλ, αc, dσ;
n particles; T iterations

1: Initialize: (xi, σi, Ci) for i = 1, . . . , n
2: for t = 1, . . . , T do ▷ outer optimisation loop
3: for i = 1, . . . , n do ▷ one search distribution per particle

Sample sub-population
4: for j = 1, . . . ,m do
5: ξi,j ∼ N

(
xi, σ

2
iCi

)
6: yi,j ← (ξi,j − xi)/σi

7: end for
Evaluate & accumulate statistics

8: compute f(ξi,j) and ranks→ weights wi,j

9: ∆i ←
m∑

k=1

wi,k(ξi,k − xi)

10: ŷi ←
1

n

n∑
j=1

(
∆j k(xj , xi) +∇xj

k(xj , xi)
)

Update mean
11: xi ← xi + αx ŷi

Step-size (CSA)

12: λeff ←
( m∑
k=1

w2
i,k

)−1

13: pσ,i ← (1− ασ)pσ,i +

√
ασ(2− ασ)

λeff
C

−1/2
i ŷi

14: σi ← σi exp
(ασ

dσ

( ∥pσ,i∥
E∥N (0,I)∥ − 1

))
Covariance path & matrix

15: compute hσ,i and d(hσ,i) (CSA rule)

16: pc,i ← (1− αc)pc,i + hσ,i

√
αc(2− αc)

λeff
ŷi

17: Ci ←
(
1 + d(hσ,i)− α1 − αλ

m∑
j=1

wi,j

)
Ci + α1 pc,ip

⊤
c,i + αλ

m∑
j=1

w̄i,j yi,jy
⊤
i,j

18: end for
19: end for

All loops other than the outer optimization loop can be parallelized.

D Ergodic search and ergodic trajectory optimization

We denote the state space of a robot as X ⊆ X and the control space as U ⊆ U, where X and
U are some Banach spaces. We also denote the the continuous-time dynamics of the robot as
f(x, u) : X × U → TX , where TX denotes the tangent bundle of the state-space X . Next, a robot’s
space trajectory x(t) : R≥0 → X is defined as the solution to the following initial value problem

x(t) = x(0) +

∫ t

0

f(x(ξ), u(ξ)) dξ, (23)

with initial condition x(0) ∈ X , a control trajectory u(t) : R≥0 → U . In addition, we will
denote the bounded (and compact) domain (with bounds Bi) where the robot explores as S =
[0, B0]× . . .× [0, Bv−1], where v ≤ n. Let g(x) : X → S be a map that projects state space X to
exploration space S.
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Definition 3. Time-Averaged Trajectory Statistics [2]. Let L be the Lebesgue measure on R≥0

then for each T ∈ R≥0, the probability measure ΨT on S that defines the time-averaged trajectory
visitation statistics integrated along time [0, T ] is defined by

ΨT (A) :=
1

T
L
(
(g ◦ x)−1(A) ∩ [0, T ]

)
, (24)

for a A ⊂ S is a Borel set.
Definition 4. Ergodicity [2, 9, 8]. A trajectory x(t) is said to be ergodic with respect to a Borel
probability measure π on S if ΨT converges weakly to π as T →∞, formally,

lim
T→∞

∫
S
ϕ(s) dΨT (s) =

∫
S
ϕ(s) dπ(s), ∀ϕ ∈ C(S). (25)

The trajectory statistics measure can be simplified as an integral of delta functions, where∫
S
ϕ(s) dΨT (s) =

1

T

∫ T

0

ϕ(g ◦ x(t))) dt. (26)

Intuitively, a trajectory is ergodic with respect to the measure π if it explores A in a manner that is
commensurate with π as T →∞.
Definition 5. Ergodic Cost Function [2]. Given a probability measure π on S. A π-ergodic cost
function is defined as Eπ : τ(X )→ R such that for any infinite trajectory x(t) : R≥0 → X , if

lim
T→∞

Eπ(x|[0,T ])→ 0 (27)

then x(t) is ergodic, where
τ :=

⋃
T>0

C0([0, T ],X ), (28)

as the set of all continuous trajectories defined on arbitrary finite time intervals. Throughout this
article we stick to X = Rn and U = Rm and, we use the spectral methods and construct a metric in
the Fourier space to define the ergodic metric for trajectory optimization [2, 8, 52, 1].
Definition 6. Spectral Ergodic Cost Function. Let π be a probability measure on S. Let Kv ⊂ Nv

be the set of all integer k fundamental frequencies that define the cosine Fourier basis function

Fk(w) =
1

hk

v−1∏
i=0

cos

(
wikiπ

Li

)
(29)

where hk is a normalizing factor (see [8]). For a finite trajectory x(t) : [0, T ]→ X , let ΨT be the
measure defined in Eq. (24). The spectral ergodic cost function is defined as

Eπ(x) =
∑
k∈Kv

Λk

(
Ψk

T − λk
)2

(30)

=
∑
k∈Kv

Λk

(
1

T

∫ T

0

Fk(g ◦ x(t))dt−
∫
S
Fk(s)dπ(s)

)2

where Ψk
T and µk are the kth Fourier decomposition modes of ΨT and µ, respectively (using Eq. (26)),

and Λk = (1 + ∥k∥2)−
v+1
2 is a weight coefficient that places higher importance on lower-frequency

modes.

In particular, the spectral ergodic cost function defined for a probability measure π forms a metric [8].

Alternatively, one can use the kernel MMD to construct a ergodic metric for trajectories on any
generalized domains [60].

We now can formulate an (ergodic) trajectory optimization using the ergodic metric as
minimize
x(t)∈τ(X )

u(t)∈U, ∀t∈[0,T ]

Eπ(x(t)) (31)

subject to h1(x) = 0, ∀t ∈ [0, T ]

h2(x) ≤ 0, ∀t ∈ [0, T ]

where h1 are the quality constraints e.g., ẋ = f(x, u) and h2 are the inequality constraints.
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E Stein variational ergodic search

E.1 Likelihood of ergodicity and stein variations

Stein Variational Ergodic Search (SVES) [2] recasts the trajectory optimization problem as a (varia-
tional) inference problem. They begin by introducing a binary indicator function

O : τ(X )→ {0, 1},

which flags whether a given trajectory satisfies a desired optimality condition. Let π be a probability
measure defined on the exploration domain S . The likelihood that a trajectory x exhibits the desired
ergodic behavior through an ergodic cost function Eπ(x) is given by

p(O | x) = exp
(
−µ Eπ(x)

)
,

where µ > 0 is a scaling parameter that governs the influence of the ergodic cost.

By combining this likelihood with a prior p(x) over the space of trajectories via Bayes’ rule, one can
obtain the posterior p(x | O). This posterior is approximated using Stein Variational Gradient Descent
(SVGD). In this framework, the update direction that minimizes the Kullback-Leibler divergence
(from equation 8) is given by

ϕ∗(·) = Ex∼q

[
k(x, ·) (∇x log p(x)− µ∇xEπ(x)) +∇xk(x, ·)

]
(32)

where k(x, ·) is a positive definite kernel on the space of trajectories. This vector field steers each
trajectory sample toward regions of lower ergodic cost while ensuring diversity across samples.

E.2 Ergodic stein variational trajectory optimization

For computational tractability, we discretize trajectories. Let a trajectory be represented as

x = [x0, x1, . . . , xT−1],

with xt ∈ X . An empirical distribution over N discrete trajectory samples is given by

q̂ =
1

N

N∑
i=1

δxi .

Typically one assumes a Gaussian prior of the form

p(x) = N (x̂, σ2),

where x̂ is typically chosen as an interpolation between specified boundary conditions.

Constraints on the trajectory can be integrated into the cost likelihood function in the following form

Jπ(x) = Eπ(x) + ρ(x) + c1h1(x)
2 + c2 max(0, h2(x)) (33)

where c1, c2 are (positive) Lagrange multipliers that form an inner product with equality and inequality
functions h1, h2, and ρ : τ(X )→ R is any additional penalty terms on the trajectory x. 3 Now, the
ergodic Stein variational update step using Jπ is given by

ϕ∗
r(·) =

1

N

N∑
i=1

[k(xi
r, ·)(∇x log p(x

i
r)− µ∇xJπ(xi

r)) +∇xk(x
i
r, ·)]. (34)

using the kernel a k(x, ·). This procedure exploits the repulsive characteristics of the kernel to
prevent sample (or mode) collapse, thereby ensuring that the resulting trajectories remain diverse
well-dispersed and effective for exploration. It is crucial to note that maintaining diversity and
preventing mode collapse fundamentally depends on selecting an appropriate and effective kernel.
The algorithm outlining this procedure is as follows:

3One can use augmented Lagrangian or any interior point method to guarantee constraint satisfiable (although
in practice this may not be required in most cases). Alternatively one may choose integrate constraints as
described in [61]
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Algorithm 2 Stein Variational Ergodic Trajectory Opt.

1: input: measure π, domain S, map g : X → S, cost Jπ, prior p(x), kernel k(x, ·), step size ϵ,
iteration r = 0, initial trajectory samples {x0

i }Ni=1, termination condition γ
2: while Some convergence criterion do
3: for all samples i in parallel do
4: xi

r+1 ← xi
r + ϵ ϕ∗

r(x
i
r)

5: end for
6: r ← r + 1
7: end while
8: return: {xr

i }Ni=1, argmaxi exp
(
−µJπ(xr

i )
)

E.3 Ergodic stein variational control

This approach can easily be extended to the control domain by optimizing over sequences of control
inputs rather than trajectories directly. Let the control sequence be represented as

u = [u0, u1, . . . , uT−1],

and let the the system evolves according to the discrete-time dynamics

xt+1 = F (xt, ut), given x0.

We define an empirical distribution over control sequences by

q̂ =
1

N

N∑
i=1

δui ,

and assume a prior p(u) on the control sequences. With a kernel k(u, ·) defined on the control space,
the SVGD update for controls is expressed as

ϕ∗
r(·) =

1

N

N∑
i=1

[k(ui
r, ·)(∇u log p(ui

r)− µ∇uJπ(xi
r|ui

r, x0)) +∇uk(u
i
r, ·)], (35)

where Jπ(xi
r|ui

r, x0) represents the ergodic (with constraints) cost incurred by the trajectory gen-
erated under the control sequence ui starting from the initial state x0. This control formulation is
well-suited for online applications, where the first control action is executed and the sequence is
re-optimized at each time step to adapt to new information.

The algorithm summarizes the approach for control optimization within a model-predictive control
framework is as follows:

Algorithm 3 Stein Variational Ergodic Control

1: input: initial state x0, time horizon T , measure π, domain W , map g : X → S, prior p(u),
kernel k(u, ·), step size ϵ, prior control samples {u0

i }Ni=1, termination condition γ
2: r ← 0
3: while Some convergence criterion do
4: for all samples i in parallel do
5: ui

r+1 ← ui
r + ϵ ϕ∗

r(u
i
r)

6: end for
7: r ← r + 1
8: end while
9: return: {ur

i }Ni=1, i
∗ = argmaxi exp

(
−µJπ(ur

i )
)

10: apply u∗
0 to robot

11: /* shift controls */
12: for all samples i in parallel do
13: ui,0:T−2 ← ui,1:T−1

14: end for
15: /* sample state and return to input */
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F Convergence of SVGD in the Ergodic Search Setting

The work in [2] shows that the general convergence results for SVGD from [30] remain valid in the
ergodic search setting when using an RBF kernel. We now generalize this convergence result to any
differentiable kernel.

Consider a discretized ergodic search on a bounded state space X ⊂ Rn and a normalized workspace
W = [0, 1]v with T time points. Without loss of generality we set X = [0, 1]n, and thus SVGD acts
on the space X T = [0, 1]Tn. We fix a mapping g : X → X . Moreover, we work in the population
limit of infinitely many initial samples from the prior.

Let Eπ be the spectral ergodic cost function with respect to a measure π onW , and let p be the prior
on X T . Then the posterior

η := p(x | O) ∝ p(O | x) p(x)
can be written in the form

η ∼ exp
(
−µ Eπ(x) + log p(x)

)
. (27)

Define the potential function
V (x) = µ Eπ(x)− log p(x), (28)

as is standard in SVGD.

Furthermore, let k : X T ×X T → R be a positive definite kernel with associated RKHSH. Conver-
gence of SVGD is then characterized by the kernel Stein discrepancy (KSD). In particular, for any
measure q, its discrepancy to η is

KSDη(q) := ∥ϕ∗(q)∥2HT , (29)

where ϕ∗
q ∈ HT (noting X T ⊂ RTn) is given by

ϕ∗(q) = Ex∼q

[
k(x, ·)

(
∇x log p(x)− µ∇xEπ(x)

)
+ ∇xk(x, ·)

]
. (30)

In particular, KSDη(q) coincides with the norm of the SVGD update gradient ϕ∗
r in (32). Here we

define SVGD in the population limit in the same way as the finite-sample case. The population
gradient at iteration r is ϕ∗

r := ϕ∗(qr), where qr is the pushforward of qr−1 under the map Ur : X T →
X T ,

Ur(x) := x+ ϵ ϕ∗
r−1(x), (31)

with step size ϵ > 0 and initial distribution q0 = p.

Moreover, the convergence results in [30] rest on three assumptions on the kernel k, the potential V ,
and the updates Ur. Specifically, there exist constants B,C,M > 0 such that:

(A1) ∥k(x, ·)∥H ≤ B and ∥∇xk(x, ·)∥H ≤ B.
(A2) The Hessian HV of V in (28) is well-defined with operator norm ∥HV ∥op ≤M .
(A3) For all r, KSDη(qr) ≤ C.

Now we can formally state the generalized convergence guarantee from [2] as follows:
Theorem 2. Let X = [0, 1]n, let η = p(x | O) be the target with potential V from (28), and assume
p is smooth on X T . Let k be a positive kernel on X T with RKHS H. Then there exists a step size
ϵ < S, where S depends on B,C,M , such that

1

r

r∑
i=1

KSDη(qi) ≤
KL(p∥η)

cϵ r
, (32)

where cϵ is a constant depending on ϵ, M , and B.

Proof. This result is a special case of [30, Corollary 6], and in order to prove this result, we
must show that assumptions (A1), (A2), (A3) above hold. First, (A1) holds as long as the kernel
k is differentiable, and X T is a bounded domain. Next, we note that for a discrete path x =
[x0, . . . , xT−1], the spectral ergodic cost fucntion has the form

Eπ(x) =
∑
k∈Kv

Λk

(
1

T

T−1∑
t=0

Fk(g(xt))−
∫
W

Fk(w)dπ(w)

)2

, (36)
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which is smooth since Fk from Eq. (29) is smooth. Because the prior p is also smooth, the potential
V is smooth, and the Hessian is well-defined. Furthermore, the Hessian is bounded since X T is a
bounded domain, so (A2) is satisfied. Finally, since (A1) and (A2) is satisfied, it suffices to show
that

sup
r

∫
XT

∥x∥ dqr(x) <∞, (37)

to show (A3), from the discussion in [30, Section 5]. However, this is satisfied since qr is a probability
measure andWT is a bounded domain, so (A3) is satisfied.

G Kernels

G.1 Radial basis function (RBF) kernel

The Radial Basis Function (RBF) kernel [62], also known as the Gaussian kernel, is one of the
most widely used kernels in machine learning and other applications due to its strong theoretical
properties and practical performance. Given two inputs x, y ∈ Rd (In the case of our trajectories,
x = [x1, . . . , xT ] where xi ∈ Rn, we flatten them into a vector in RTn), the RBF kernel is defined as

kRBF(x, x
′) = exp

(
−∥x− x′∥2

2h2

)
, (38)

where h > 0 is the kernel bandwidth, and is chosen using the median heuristic. This choice of kernel
corresponds to an inner product in an infinite-dimensional reproducing kernel Hilbert space (RKHS),
making it a universal approximator under mild conditions on h.

G.2 Markov RBF kernel

Given two state trajectories

x = [x1, . . . , xT ], y = [y1, . . . , yT ],

we define a Markov kernel by decomposing similarity along the Markov chain:

kM(x,y) =
∑
t

k(xt, yt) +
∑

(t,t′)∈G

k(xt, yt′)

where each k is a some (positive definite) kernel and G is a graph of connected points separated by
time i.e., G chosen to encode the Markov-structure along time (typically the nearest-neighbour edges
t↔ t+ 1).

Choice of the temporal graph G. For a sparse Markov kernel one usually takes Gnn = {(t, t +
1)}T−1

t=1 , so that only nearest-neighbour time indices interact. This nearest-neighbour choice was the
one employed in the experiment described in section 7.2.

In the complete-graph variant used in the experiments in sections 7.1 & 7.3.

Gcomplete =
{
(t, s)

∣∣ 1 ≤ t ≤ T, 1 ≤ s ≤ T, t ̸= s
}
,

which connects every ordered pair of distinct time indices. Substituting this into the definition gives

kcomplete
M (x,y) =

T∑
t=1

T∑
s=1
s̸=t

k(xt, ys),

and dividing the double sum by T 2 simply rescales the kernel without affecting positive-definiteness
or SVGD updates.

A typical choice for the base kernel is the radial basis function (RBF) with bandwidth h set by, the
median heuristic in our experiments. This construction yields an expressive yet efficient measure of
trajectory similarity that honors the one-step dependence characteristic of Markov processes.
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G.3 Global alignment kernel

Let x = [x1, . . . , xn] and y = [y1, . . . , ym] be two trajectories (of possibly different lengths) in
Rd. Traditional vector kernels (e.g., Gaussian or polynomial) cannot directly handle variable-length
sequences nor account for temporal distortions. Dynamic alignment methods such as Dynamic Time
Warping (DTW) (see Appendix G.4) overcome this by finding an optimal alignment, but do not yield
positive-definite kernels in general.

The Global Alignment (GA) kernel [63] addresses these issues by summing over all possible align-
ments between x and y. Formally, let

A(x,y) =

{
π = ((i1, j1), . . . , (iL, jL)) :

1 = i1 ≤ i2 ≤ · · · ≤ iL = n,
1 = j1 ≤ j2 ≤ · · · ≤ jL = m,
(ik+1 − ik) ∈ {0, 1}, (jk+1 − jk) ∈ {0, 1}

}
be the set of all monotonic alignments between the indices of x and y. Given a local positive-definite
kernel (often called static kernel)

k : X × X −→ R,
the GA kernel is defined as

kga(x,y) =
∑

π∈A(x,y)

∏
(i,j)∈π

k
(
xi, yj

)
.

Intuitively, K(x, y) aggregates the similarity contributions of every alignment, acting as a “soft-max”
over DTW-like scores. In our experiments we chose the RBF kernel as the static kernel.

Positive definiteness. Under mild conditions on k (for instance, if both k and k/(1+k) are positive
definite), K is itself a Mercer kernel.

Efficient computation. Although |A(x,y)| grows exponentially, kga(x,y) admits a simple dy-
namic programming algorithm in O(nmd) time. Define

Mi,j =


1, i = j = 0,

0, i = 0 < j or j = 0 < i,

k(xi, yj)
(
Mi−1,j +Mi,j−1 +Mi−1,j−1

)
, i, j ≥ 1.

Then
K(x, y) = Mn,m.

This quadratic-time computation matches the complexity of standard DTW while incorporating richer
alignment information. And this can be further reduced to a wall-clock time complexity of O(md)
(without loss of generality on n and m) on a GPU that can accommodate the required number of
threads.

G.4 Kernelized dynamic time warping

Let x = [x1, . . . , xn] and y = [y1, . . . , ym] be two trajectories (of possibly different lengths) in Rd.
Traditional vector kernels cannot handle temporal misalignments and variable lengths inherent in
time-series comparison. Dynamic Time Warping (DTW) addresses this by computing an optimal
alignment path π∗ that minimizes the cumulative local distance:

δDTW(x,y) = min
π∈A(x,y)

|π|∑
i=1

∥∥xπ1(i) − yπ2(i)

∥∥2.
Kernelization of DTW (KDTW). [64] To turn DTW into a Mercer kernel many but very similar
ideas have been used, we will state 2 such ideas. One approach is to exponentiate the optimal cost,
yielding the dynamic time-alignment kernel:

kDTW1(x,y) = exp
( 1

2h2

(
− min

π∈A(x,y)

|π|∑
i=1

∥∥xπ1(i) − yπ2(i)

∥∥2)).
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An alternative, inspired by convolution kernels [65], is to exponentiate local distances first and then
maximize over alignments:

kDTW2(x,y) = max
π∈A(x,y)

1
|π|

|π|∑
i=1

exp
(
− 1

2h2

∥∥xπ1(i) − yπ2(i)

∥∥2).
Neither construction guarantees differentiability.

We use kDTW1 in our experiments and h is chosen using the median heuristic at every iteration of
SVGD or SV-CMA-ES. We approximated the gradient of the kDTW1 kernel using a centered finite-
difference scheme in our SVGD experiments. Although the KDTW kernels are not differentiable in
the classical sense, we observed no adverse effects in our experiments. Nevertheless, these theoretical
issues warrant careful attention in future work.

Computational complexity. Both kDTW1 and kDTW2 admit O(nmd) dynamic-programming
algorithms, replacing the usual min operations of DTW with exponentiation and max (or further
min) steps, while preserving quadratic time complexity. And this can be further reduced to a
wall-clock time complexity of O(md) (without loss of generality on n and m) on a GPU that can
accommodate the required number of threads.

G.5 Signature kernel

Definition 7. Signature (transform) of a path (or trajectory) [20]. Let V be a Banach space and
define the tensor algebra of formal power series

T ((V )) =
∏
k≥0

V ⊗k,

which is equipped with the natural operations induced by the tensor product and has the unit element
(1, 0, 0, . . . ).

Now, consider a continuous path x : I → V on a compact interval I ⊂ R with finite p-variation (for
some p < 2). For any subinterval [s, t] ⊂ I , the signature of x over [s, t] is defined as the sequence

φ(x)s,t =
(
1,

∫
s<u1<t

dx(u1) , . . . ,

∫
s<u1<···<uk<t

dx(u1)⊗ · · · ⊗ dx(uk), . . .
)
∈ T ((V )).

(39)
This collection of iterated integrals captures the essential features of the path and is invariant under
reparameterization.

Recall, the signature of a trajectory is injective (for all non-tree-like paths) and, remains unchanged
under any reparametrization. This invariance effectively filters out the complex, infinite-dimensional
group of symmetries. Moreover, the collection of linear functionals defined on the signature not
only forms an algebra under pointwise multiplication but also has the power to separate points [66].
Consequently, by the Stone–Weierstrass theorem, for any compact set C of continuous paths with
bounded variation, the set of such linear functionals is dense in the space of continuous real-valued
functions on C [67]. These properties together establish the signature as an ideal feature map for
representing our trajectories in ergodic search.

For a path x of finite p-variation with p > 1 the signature terms decay factorially [67]

∥∥∥∥∫
s<u1<···<uk<t

dx(u1)⊗ · · · ⊗ dx(uk)

∥∥∥∥
V ⊗k

≤
∥x∥kp,[s,t]

k!

where ∥x∥p,[s,t] is the p-variation of the path on [s, t]. Therefore, one can approximate signature
kernel reasonably well with the truncated signature transform of level L ∈ N,

φL
[s,t](x) =

(
1,

∫
s<u1<t

dx(u1), . . . ,

∫
s<u1<···<uL<t

dx(u1)⊗ · · · ⊗ dx(uL)

)
∈

∞⊕
k=0

V ⊗k,

(40)
where ⊕ denotes the direct sum, and [21] and [22] provide efficient means to compute the trun-
cated signature using Dynamic Programming and approximate it using Random Fourier Features,
respectively.
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Definition 8. Signature Kernel Let I = [u, u′] and J = [v, v′] be two compact intervals, and
consider paths x ∈ C1(I, V ) and y ∈ C1(J, V ), where V is a Banach space. The signature kernel
ksig(x, y) : I × J → R is defined by

ksigs,t (x, y) = ⟨φ(x)s, φ(y)t⟩, (41)

where φ(x)s and φ(y)t denote the signatures of x and y over the intervals [u, s] and [v, t], respec-
tively.

Utilizing the kernel trick introduced in [20], one can efficiently compute the full (untruncated)
signature kernel.
Theorem 3. Let I = [u, u′] and J = [v, v′] be compact intervals, and let x ∈ C1(I, V ) and
y ∈ C1(J, V ). Then the signature kernel kx,y satisfies the following linear, second-order hyperbolic
partial differential equation:

∂2ksigs,t

∂s ∂t
(x, y) = ⟨ẋ(s), ẏ(t)⟩V ks,t(x, y),

subject to the boundary conditions

ksigu,t (x, y) = 1 ∀t ∈ J, ksigs,v (x, y) = 1 ∀s ∈ I.

The resulting PDE formulation of the signature kernel enables its efficient computation using any
standard numerical scheme, such as finite difference, finite element, or other suitable methods.
An important point to note is the assumptions on Theorem 3, will be satisfied for any reasonable
discretizations of the trajectories and the domain over which the PDE is solved.

One must take extra cation if they wish to use the signature kernel in SV-CMA-ES, since the
trajectories produced in initial few iterations of SV-CMA-ES may not be very well behaved, can
produce very rough trajectories, breaking the assumptions of Theorem 3.

G.6 Median heuristic

The median heuristic [27] sets the bandwidth

h =
med

(
{∥xi − xj∥2}i<j

)
logN

,

using the empirical median of all pairwise distances among particles (divided by logN ) to provide a
robust, data-driven scale. We adopt

h =
med ({x})

logN
,

which yields slightly improved performance (in terms of computational speed) in our experiments.
Additionally, we employed the median heuristic for bandwidth selection because it is straightforward,
computationally light, and requires no manual tuning, making our method more accessible to users.
We recommend referring to [27] for more (theoretical) guarantees, advantages and details on the
median heuristic.

H Measuring trajectory diversity

One can interpret the kernel k(x,y) as a similarity measure between two trajectories x and y. In partic-
ular, for a normalized kernel function (i.e., k(x, x) = 1), k(x,y)→ 1 as x→ y, k(x,y)→
0 as ∥x− y∥ → ∞. Given a collection of trajectories {xi}Ni=1, one may quantify their diversity
by forming the Gram matrix K ∈ RN×N , Kij = k(xi,xj), Kii = 1, and computing its deter-
minant. Notably, det(K)→ 0 if xi → xj for any i ̸= j, det(K)→ 1 as ∥xi − xj∥ →
∞ for all i ̸= j, thereby providing a principled measure of particle diversity.

Throughout the experiments we shall use the following kernel for measuring diversity,

kFrechet(x, y) = exp

(
−dcontinuous Frechet(x, y)

2

2h2

)
(42)
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where dcontinuous Frechet(·, ·) is the (Continuous) Frechet distance (see Appendix I) and h = 0.1. We
denote the Gram matrix of this kernel with Kf .

One may choose any finite-valued kernel to measure diversity, we chose kFrechet simply due to the
fact that it has not been used in experiments to benchmark the signature kernel.

I Fréchet distance

The Fréchet distance [68] is a classical similarity measure between trajectories that respects both
spatial geometry and the ordering of points along each trajectory. Intuitively, it is the minimum
leash-length necessary for a person and a dog to walk along two continuous paths, each at its own
varying speed, without backtracking.
Definition 9 (Continuous Fréchet Distance). Let f, g : [0, 1] → (X , d) be continuous curves in a
metric space. A reparameterization is a continuous, nondecreasing, surjection α : [0, 1] → [0, 1]
satisfying

α(0) = 0, α(1) = 1,

(and similarly for β). The continuous Fréchet distance is

dContinuous Frechet(f, g) = inf
α,β

reparam.

max
t∈[0,1]

d
(
f(α(t)), g(β(t))

)
.

In our case with discretized trajectories in Rd,

x = [x1, . . . , xn], y = [y1, . . . , ym],

we use the discrete Fréchet distance.
Definition 10 (Discrete Fréchet Distance). A coupling of x and y is a pair of index sequences
σ = (σ(1), . . . , σ(K)) and τ = (τ(1), . . . , τ(K)) such that σ(1) = 1, σ(K) = n, τ(1) =
1, τ(K) = m, and each of σ, τ is non-decreasing with increments at most 1. The discrete Fréchet
distance is

dFrechet(x,y) = min
σ,τ couplings

max
k=1,...,K

∥xσ(k) − yτ(k)∥.

Computational complexity The continuous Fréchet distance can be computed in

O
(
dnm log(nm)

)
,

time [69, 70]. Here—and unlike most of the literature that treats d as a hidden constant—d varies in
our setting and so is made explicit in the O(·) notation.

Properties

• Metric Properties. The continuous Fréchet distance is only a pseudometric on the space
of parameterized curves—distinct parameterizations of the same geometric trace satisfy
dContinuous Frechet(f, g) = 0—but it induces a true metric on the quotient of curves under
reparameterization. In contrast, the discrete Fréchet distance dFrechet on point-sequences
satisfies all four metric axioms (non-negativity, symmetry, identity of indiscernibles, and the
triangle inequality) and therefore is a bona fide metric on the set of discrete trajectories

• Stability. If two curves f, f ′ and g, g′ satisfy ∥f − f ′∥∞ ≤ ε and ∥g − g′∥∞ ≤ ε, then∣∣d(f, g)− d(f ′, g′)
∣∣ ≤ ε.

• Order-sensitivity. Unlike the Hausdorff distance, the Fréchet distance respects the natural
parameterization of trajectories, making it especially powerful for comparing time-indexed
data.

Because of these advantages, the Fréchet distance has become a cornerstone in shape matching,
motion analysis, and trajectory mining.

J Additional results

J.1 Multiscale constrained exploration
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(a) RBF Kernel (b) Global Alignment Kernel (c) Signature kernel

Figure 9: Trajectories generated using different kernels in the multiscale constrained exploration
experiment comparing kernels in section 7.1.1.

(a) SVGD (ϵ = 0.05) (b) SV-CMA-ES (αx = 0.2)

Figure 10: Trajectories generated using SVGD and SV-CMA-ES in the multiscale constrained
exploration experiment comparing the SVGD and SV-CMA-ES in section 7.1.2.
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Table 2: Aggregated metrics across 10 priors for each kernel for the Multiscale constrained exploration

Kernel Metric Mean StdDev Min Max

RBF Best trajectory cost 0.4203 0.0297 0.3742 0.4833

Average trajectory cost 0.5152 0.0399 0.4190 0.5666

Mean ergodic cost 0.1816 0.0194 0.1308 0.1979

Trajectory diversity 2.2052 0.7413 1.0172 3.5636

Signature Kernel Best trajectory cost 0.4145 0.0564 0.3423 0.5479

Average trajectory cost 0.4916 0.0541 0.4065 0.5995

Mean ergodic cost 0.1677 0.0234 0.1295 0.2120

Trajectory diversity 3.3854 1.2080 1.8504 5.4397

Kernelized DTW Best trajectory cost 0.4249 0.0228 0.3925 0.4771

Average trajectory cost 0.5275 0.0457 0.4320 0.6185

Mean ergodic cost 0.1865 0.0229 0.1368 0.2215

Trajectory diversity 1.9260 0.6717 0.8498 3.3909

Markov RBF Best trajectory cost 0.5270 0.0496 0.4421 0.6267

Average trajectory cost 0.5346 0.0488 0.4501 0.6326

Mean ergodic cost 0.1762 0.0187 0.1519 0.2122

Trajectory diversity 0.00005 0.00002 0.00003 0.00009

Global Alignment Kernel Best trajectory cost 0.4767 0.0626 0.3763 0.6247

Average trajectory cost 0.5732 0.0599 0.4912 0.6928

Mean ergodic cost 0.1740 0.0299 0.1200 0.2274

Trajectory diversity 2.8324 1.3845 0.7104 5.5709
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J.2 3D Coverage using the Crazyflie drone

(a) SVGD (ϵ = 0.01) (b) SV-CMA-ES (αx = 0.1)

Figure 11: Top down projection of trajectories generated using SVGD and SV-CMA-ES in the 3D
coverage using the Crazyflie drone experiment comparing the SVGD and SV-CMA-ES in section
7.2.2.
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Table 3: Aggregated metrics across 10 priors for each kernel for the 3D coverage using the crazyflie
drone

Kernel Metric Mean StdDev Min Max

RBF Best trajectory cost 1.1923 0.0415 1.1105 1.2498

Average trajectory cost 1.3216 0.0213 1.2884 1.3700

Mean ergodic cost 0.7118 0.0172 0.6868 0.7380

Trajectory diversity 7.0293 1.0004 5.2130 8.4017

Signature Kernel Best trajectory cost 1.0071 0.0323 0.9503 1.0509

Average trajectory cost 1.1283 0.0171 1.0923 1.1596

Mean ergodic cost 0.5574 0.0143 0.5319 0.5798

Trajectory diversity 10.3330 1.0336 8.4339 11.4770

Kernelized DTW Best trajectory cost 1.0140 0.0247 0.9698 1.0588

Average trajectory cost 1.1413 0.0183 1.1026 1.1695

Mean ergodic cost 0.5702 0.0121 0.5412 0.5866

Trajectory diversity 8.9372 1.6642 6.0877 12.2700

Markov RBF Best trajectory cost 1.3248 0.0440 1.2547 1.4031

Average trajectory cost 1.4934 0.0310 1.4592 1.5560

Mean ergodic cost 0.8445 0.0257 0.8037 0.8860

Trajectory diversity 5.1746 1.3442 2.6743 7.4214

Global Alignment Kernel Best trajectory cost 1.1251 0.0347 1.0638 1.1850

Average trajectory cost 1.2507 0.0209 1.2183 1.2833

Mean ergodic cost 0.6489 0.0126 0.6245 0.6741

Trajectory diversity 7.3018 1.7350 4.4249 9.9842

J.3 Stein variational model-predictive control

32



Table 4: Aggregated metrics from Table 1 across all 10 priors.

Kernel Metric Mean StdDev Min Max

RBF Total best trajectory cost 382.347 14.278 377.832 422.982

Total average trajectory cost 574.443 35.744 563.140 676.174

Total ergodic cost of best trajectory 268.319 19.699 262.090 324.385

Total trajectory diversity 49.986 4.655 48.514 63.233

Signature Total best trajectory cost 360.060 23.569 340.256 420.901

Kernel Total average trajectory cost 592.608 46.984 552.196 719.126

Total ergodic cost of best trajectory 244.615 24.056 225.835 309.706

Total trajectory diversity 566.583 153.891 360.379 925.329

Markov Total best trajectory cost 476.244 23.475 468.820 543.055

RBF Total average trajectory cost 775.057 34.687 764.088 873.777

Total ergodic cost of best trajectory 328.503 27.263 319.882 406.095

Total trajectory diversity 3795.151 679.803 2050.583 4080.356

Kernelized Total best trajectory cost 364.486 13.236 347.587 383.277

DTW Total average trajectory cost 561.385 14.056 542.033 581.960

Total ergodic cost of best trajectory 256.216 13.246 240.409 276.713

Total trajectory diversity 68.739 12.963 55.162 98.367

K Implementational and experimental deatils

In this section we provide the full Implementational and experimental details.

K.1 Implementational details

Elite sample selection and log-rank weights for SV-CMA-ES In our experiments we rank the m
samples by selecting the top

λ =
⌊
m
5

⌋
as the elite sub-population, we assign positive log-rank recombination weights

wi,k =
log(λ+ 0.5)− log rk

λ∑
j=1

[
log(λ+ 0.5)− log j

] , rk = 1, . . . , λ,

and set wi,k = 0 for k > λ. (“Active” negative weights [39] are disabled in the present implementa-
tion.)

Enhancing the signature kernel’s performance A common enhancement is to first embed each
trajectory into a (possibly infinite-dimensional) feature space via a static feature map φstatic :
Rd −→ H, associated, for example, with a radial basis or Matérn kernel. Concretely, one defines

φstatic(x) :=
(
φstatic(x(i))

)T
i=1

.

Empirical studies demonstrate that this pre-lifting step substantially improves the performance of
the signature kernel. Therefore, the ergodic Stein variational update step in the state space using the
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signature kernel and a static kernel is given by

ϕ∗
r(·) =

1

N

N∑
i=1

[ksig(φstatic(x
i
r), φstatic(·))(∇x log p(x

i
r)−

µ∇xJπ(xi
r)) +∇xk

sig(φstatic(x)
i
r, φstatic(·))]. (43)

An analogous update applies in the control space. Throughout this paper, we emploied the feature
map corresponding to the radial basis kernel (RBF) (see Appendix G).

Hardware used All experiments were run on the a computer with:

1. Operating System: Ubuntu 20.04.6 LTS
2. CPU: AMD Ryzen 9 5900HS
3. RAM: 16 GB
4. GPU: NVIDIA GeForce RTX 3060
5. CUDA Version: 12.2

Assets used The codebases provided by the following works [2, 22, 20] and the GitHub repository
https://github.com/khdlr/softdtw_jax were either directly incorporated into our experi-
ments or proved essential as implementation references.

K.2 Experimental details

K.2.1 Multiscale constrained exploration

We consider the two-dimensional spatial domain S = [0, 100] × [0, 100] m, equipped with the
uniform measure π. To improve numerical conditioning, we introduce the affine mapping g : S →
[0, 1] × [0, 1], g(x) = x

100 .
4 Trajectories of dimension n = 2 and length T = 100 with a time

step of ∆t = 1 s are generated via Algorithm described in sections 3.1 & E.2. A maximum kmax = 8
of basis functions per dimension is employed for constructing the ergodic metric (see Appendix D
Definition 6). The cost functional is specified as

Jπ(x) = Eπ(x) + 1 cS(x) +

T−1∑
t=0

15
∥∥xt+1 − xt

∥∥2
2

+ 0.1
∥∥x0 − xinit

∥∥2
2
+ 0.1

∥∥xT − xfinal

∥∥2
2
+ 0.01 cobs(x) , (44)

where the obstacle penalty is defined by cobs(x) = max
(
0, ∥x− xc∥2 − r

)
, with xc and r denoting

the obstacle center and radius, respectively. The initial and final states, xinit and xfinal, are prescribed
on the boundary of S.

4This normalization does not affect the optimization, since the ergodic metric is defined in the Fourier spectral
domain on any periodic domain.
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Table 5: Full Hyperparameter overview of SV-CMA-ES in the multiscale constrained exploration
example

Hyperparameter Value

m 32

λ 6

σ
(0)
i 0.1 (initial self adaption rate)

ασ (λeff + 2)/(M + λeff + 5), where M is problem dimension,

i.e, for a trajectory with T time steps and in d dimensions, M = Td

dσ 1 + 2max
(
0,
√

λeff−1
M+1 − 1

)
+ ασ

αc (4 + λeff/M)/(M + 4 + 2λeff/M)

α1 2/
(
(M + 1.3)2 + λeff

)
αλ min

(
1− α1, 2(λeff − 2 + 1/λeff)/

(
(M + 2)2 + 2λeff/2

))
k(·, ·) RBF kernel

K.2.2 3D Coverage using the Crazyflie drone

We consider a three-dimensional domain S = [0, 3]× [0, 3]× [0.5, 1.5], equipped with the uniform
measure π. Trajectories are computed via Algorithm described in section 3.1 & E.2, using a cost
functional analogous to that of the multiscale forest example:

Jπ(x) = Eπ(x) + 0.1 cS(x) +

T−1∑
t=0

15
∥∥xt+1 − xt

∥∥2
2

+ 1
∥∥x0 − xinit

∥∥2
2
+ 0.1

∥∥xT − xfinal

∥∥2
2
+ 0.01 cobs(x) . (45)

The trajectory length is set to T = 150 with a time step of ∆t = 0.1s. A maximum kmax = 8 of basis
functions per dimension is employed for constructing the ergodic metric (see Appendix D Definition
6).

Table 6: Full Hyperparameter overview of SV-CMA-ES

Hyperparameter Value

m 32

λ 6

σ
(0)
i 0.2 (initial self adaption rate)

ασ (λeff + 2)/(M + λeff + 5), where M is problem dimension,

i.e, for a trajectory with T time steps and in d dimensions, M = Td

dσ 1 + 2max
(
0,
√

λeff−1
M+1 − 1

)
+ ασ

αc (4 + λeff/M)/(M + 4 + 2λeff/M)

α1 2/
(
(M + 1.3)2 + λeff

)
αλ min

(
1− α1, 2(λeff − 2 + 1/λeff)/

(
(M + 2)2 + 2λeff/2

))
k(·, ·) RBF kernel
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K.2.3 Stein variational model-predictive control

We consider coverage over a quad-modal target distribution

π(x) =
1

4

4∑
i=1

N
(
µi, σ

2
i I2
)
,

comprising four Gaussian components

η1 = (0.2, 0.2), σ1 =
1√
300

,

η2 = (0.85, 0.85), σ2 =
1√
300

,

η3 = (0.23, 0.75), σ3 =
1√
300

,

η4 = (0.75, 0.2), σ4 =
1√
300

,

on the unit-square domain S = [0, 1]× [0, 1]. The agent obeys single-integrator dynamics xt+1 =
xt +∆t ut, with ∆t = 0.1. Trajectory planning is carried out over a horizon of T = 20 time steps,
using N = 20 control-sequence samples per iteration. Each planning loop is executed for up to 200
iterations.

A maximum kmax = 10 of basis functions per dimension is employed for constructing the ergodic
metric (see Appendix D Definition 6). Ten obstacles are placed uniformly at random in S; each
obstacle moves at the same rate ∆t, with velocity directions sampled fromN (0, σ2) where σ = 0.01.

The cost functional for a control sequence u = (u0, . . . , uT−1) is defined as

Jπ(u) = Eπ(u) + cS(x) + 0.01
∥∥u∥∥2

2
+ 0.001

∑
t=0

∥∥xt+1 − xt

∥∥2
2
+ 100 cobs(x), (46)

with scaling parameter µ = 10. The initial control prior is taken as p(u) = N
(
0, 0.01 I

)
.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claim made in the abstract and introduction are supported in section 7

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in section 8.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Look at Appendix F.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: The exact experimental setup is are provides in sections 7 & Appendix K.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification: We extended the code used from the paper [2]. The work in this paper is closed
source and therefore we did not open our code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .

Justification: This paper does not introduce a machine learning based algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We do provide statistical data in section J. Although no p-test is performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This is provided in section K.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: We acknowledge the code of ethics and can guarantee that none of them were
violated.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: The social impact of this work is not quantifiable at the moment.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risk. The paper builds on a trajectory optimization
algorithm.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: They have been acknowledged in section K.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets, but will provide assets soon, and will
be documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLMs were used only for improving the english used in the paper and, writing
and debugging snippets of code. They were not used for any core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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