
Submitted by
Emmanouil Karystinaios

Submitted at
Institute of Computational
Perception

Supervisor and
First Evaluator
Gerhard Widmer

Second Evaluator
Markus Neuwirth

October 2024

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Symbolic Music Analysis
with Graph Neural Networks

Doctoral Thesis
to obtain the academic degree of

Doktor der technischen Wissenschaften

in the Doctoral Program

Technische Wissenschaften

Emmanouil Karystinaios: Symbolic Music Analysis
with Graph Neural Networks, , Doctoral Thesis, © March 2020 - October 2024

supervisors:
Gerhard Widmer
evaluators:
Gerhard Widmer
Markus Neuwirth

location:
Linz & Vienna

time frame:
March 2020 - October 2024

A B S T R A C T

In recent years, the intersection of artificial intelligence and music informatics has
gained significant traction. However, music analysis on symbolic music has not
been explored to its full extent. This work investigates the application of Graph
Neural Networks (GNNs) to diverse music analysis tasks on digitized classical
music scores.

Music analysis, as a scholarly field and as a set of techniques, is crucial for
comprehending and appreciating music. It systematically examines elements such
as harmony, melody, rhythm, form, and instrumentation, revealing the interplay
of compositional techniques and structural elements/patterns. Analyzing music
highlights foundational elements essential for creating new compositions.

This thesis examines the effectiveness of Graph Neural Networks (GNNs) on
music analysis tasks such as Cadence Detection, Roman Numeral Analysis, Com-
poser Classification, and Voice Separation, focusing on symbolic representations
(i.e., musical scores given in some machine-readable encoding). We argue that a
graph structure is a more natural representation for modeling a musical score than
the feature- or token-based representations that have been used so far.

Our study begins by detailing the intricacies of symbolic music representations
and the limitations of existing methods. We explore graph representations for music,
enabling graph learning models. The graph emerges as a natural representation
that encompasses the mixed hierarchical and sequential nature of a musical score.
We propose a new graph model for the score where vertices represent notes and
edges capture the relations between them.

In a first step, we experimentally compare graph representations to other model-
ing approaches such as piano rolls, note arrays, or custom descriptors on a number
of different music classification tasks. Next, we design GNN-based machine learning
models specifically for music analysis, capable of addressing the unique challenges
posed by music data and the targeted application. As a result, we obtain graph-
based models that demonstrate improved performance on benchmark datasets for
diverse analysis tasks. Furthermore, we develop a new generic graph convolution
block based on perception-inspired principles that further improve performance on
music understanding tasks. We present a framework for deriving and visualizing
explanations of the decisions made by our music-related GNNs. Finally, we develop
and publish a dedicated library for symbolic music graph processing in order to
reinforce the impact of this work in the research community.

Current AI trends suggest that Large Language Models (LLMs) and transformers
have the potential to solve a wide range of tasks in various fields. However, our
findings indicate that graphs can be more efficient for music analysis tasks. Thus,
the ultimate goal of this thesis is to establish graph-based modeling as a standard
approach to computational symbolic music analysis.

iii

A C K N O W L E D G M E N T S

First of all, I would like to thank my supervisor, Professor Gerhard Widmer, for
his support and patience throughout the past 4 years. His guidance has helped me
develop and realize many ideas while keeping a balance between PhD and normal
life.

I would also like to thank my second evaluator Markus Neuwirth for taking the
time and effort to review this thesis.

My PhD path has been unique in every way. I recognize that the accomplish-
ments during my journey would not have been there without all the people that
surrounded me and supported me. From my colleagues, I would like especially
thank Francesco Foscarin not only for copiloting most of the interesting work we
have produced but also for motivating and sometimes mentoring me. In addition,
I would like to thank Hamid Eghbal-Zadeh for introducing me to Graph Neural
Networks and mentoring me through the initial parts of my graph-based research.
I would also like to thank my colleagues Luis Carvalho, Lukas Martak, Charles
Brazier, and Alessandro Melchiorre for always being there, in particular, during the
peculiar Covid times.

Finally, I would like to thank my family who has always supported my decisions
and has ever been by my side. But, most of all, I would like to express my gratitude
towards my wife, Zitania Badat, because without her none of this would be possible.
Her support has been the guiding beacon that helped me to always keep track of
my priorities and my focus.

The research reported in this thesis has been carried out at the Institute of
Computational Perception (Johannes Kepler University Linz, Austria) and has been
funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, grant agreements No. 670035

(project ”Con Espressione”) and No. 101019375 (”Whither Music?”).

v

C O N T E N T S

i Introduction and Background
1 Introduction 3

1.1 The importance of Music Analysis 3

1.2 Deep Learning for Music Analysis 4

1.3 The Inherent Issues of Music Representation 4

1.4 Motivation and Vision 5

1.5 Organization 5

1.6 Outline 6

1.6.1 First Part 6

1.6.2 Second Part 6

References 9

Publications Making up this Thesis 9

2 Music Representations 11

2.1 Symbolic vs. Audio Representations 11

2.2 Symbolic Music Storage Formats 11

2.2.1 MIDI 12

2.2.2 Text-Based Formats 13

2.2.3 XML-Based Formats 13

2.3 Computational Representations of Symbolic Music 13

2.3.1 Matrix 13

2.3.2 Sequence 14

2.3.3 Graph 15

2.4 Libraries for Handling Music Notation Formats 15

2.4.1 Music21 15

2.4.2 Partitura 16

2.4.3 PrettyMidi 16

2.4.4 MidiTok 16

2.5 Focus on Symbolic Representation 16

References 17

3 Graph Neural Networks 19

3.1 Introduction to Graph Neural Networks 19

3.1.1 Challenges in Graph Representation 19

3.1.2 Emergence of Graph Neural Networks 19

3.1.3 Formal Definition of Graphs 20

3.1.4 Graphs and Heterophily 20

3.2 The Learning Blocks of Graph Neural Networks 22

3.2.1 Spectral Methods 23

3.2.2 Spatial Methods 24

3.2.3 Convolution in Heterogeneous Graphs 25

3.2.4 Hybrid Models for Graph Convolution 27

3.3 Taxonomy of Graph Neural Network Tasks 27

3.3.1 Node Classification 27

vii

viii contents

3.3.2 Link Prediction 28

3.3.3 Graph Classification 28

3.4 Training Techniques for Graph Neural Networks 29

3.4.1 Training on Small Graphs 29

3.4.2 Sampling Techniques for Large Graphs 30

3.4.3 Music Graphs and Sampling 31

3.5 Challenges and Future Directions 32

3.5.1 Deep Architectures 32

3.5.2 Dynamic Graphs 32

3.5.3 Scalability 32

3.5.4 Heterogeneous Graphs 33

3.5.5 Explainability and Interpretability 33

3.5.6 More Powerful Aggregation Functions 34

3.6 Conclusion 34

References 34

ii Individual Contributions
4 Symbolic Music Representations for Classification Tasks 41

4.1 Introduction 41

4.2 Related Work 42

4.3 Methodology 44

4.3.1 Representation Design 44

4.3.2 Modelling Pipelines 46

4.3.3 Tasks and Datasets 47

4.3.4 Training 47

4.4 Experiments and Results 47

4.4.1 Representations for Composer Classification 49

4.4.2 Complexity 50

4.4.3 Comparison of Feature Levels and Tasks 51

4.4.4 Transformer vs. GNN: Are We Learning the Same Set of
Musical Edges? 51

4.5 Discussion and future work 52

4.6 Acknowledgements 53

References 53

5 Cadence Detection 59

5.1 Introduction 59

5.2 Related Work 60

5.3 Modeling scores as a graph 61

5.3.1 Feature Overview 62

5.4 Problem Setting & Corpora 62

5.5 Model 63

5.5.1 Graph Convolutional Network 63

5.5.2 Dealing with Extreme Class Imbalance: Stochastic GraphSMOTE 64

5.6 Experiments 66

5.6.1 Quantitative Results 66

5.6.2 A Qualitative Look 70

5.7 Conclusion 71

contents ix

5.8 Acknowledgements 71

References 71

6 Roman Numeral Analysis 75

6.1 Introduction 75

6.2 Related Work 76

6.3 Methodology 78

6.3.1 Roman Numeral Analysis 78

6.3.2 Graph Representation of Scores 79

6.3.3 Model 80

6.4 Experiments and Corpora 81

6.4.1 Datasets 83

6.4.2 Configuration 83

6.5 Results 83

6.5.1 Quantitative Results 83

6.5.2 Configuration Study 84

6.5.3 Latest developments 86

6.5.4 A Musical Example 86

6.6 Conclusion 87

6.7 Acknowledgements 87

References 87

7 Monophonic Voice Separation 91

7.1 Introduction 91

7.2 Related Work 94

7.3 Approach 95

7.3.1 Graph Building 96

7.3.2 Node Features 96

7.3.3 Model 97

7.3.4 Loss 98

7.3.5 Postprocessing 99

7.4 Experiments 100

7.4.1 Datasets and Preprocessing 100

7.4.2 Main Experiment 102

7.4.3 Ablation Studies 102

7.5 Discussion 103

7.6 Conclusion and Future Work 105

References 106

8 Polyphonic Voice Separation 109

8.1 Introduction 109

8.2 Related Work 111

8.3 Methodology 112

8.3.1 Input Graph 112

8.3.2 Output Graph 112

8.3.3 Problem Simplification 113

8.3.4 Model 114

8.3.5 Postprocessing 115

8.3.6 Evaluation 115

8.3.7 From Network Prediction to Readable Output 116

x contents

8.4 Experiments 118

8.4.1 Datasets 118

8.4.2 Results 119

8.4.3 Qualitative Analysis 119

8.5 Conclusion and Future Work 121

8.6 Acknowledgements 121

References 121

9 Symbolic Music Graph Explanations 125

9.1 Introduction 125

9.2 Preliminary Concepts 126

9.2.1 GNN-based Approaches on Musical Scores 126

9.2.2 Explainability and Graphs 128

9.3 Our Approach 128

9.3.1 Cadence Detection Model 128

9.3.2 The SMUG-Explain Framework 129

9.3.3 Choice of Explainability Techniques 131

9.4 Qualitative Analysis 132

9.4.1 Mozart Piano Sonata K280 Mov. 2 132

9.4.2 Bach WTC Fugue 133

9.4.3 Chopin Nocturne in C minor op. 48 136

9.5 Conclusion and Future Work 136

9.6 Acknowledgements 137

References 137

10 Graph Convolution for Music 141

10.1 Introduction 141

10.2 Perceptual and Modeling Considerations 142

10.3 Graph Approaches to Musical Tasks 144

10.3.1 Graph from Musical Scores 144

10.3.2 Graph Convolution Operation 145

10.3.3 Monophonic Voice Separation 146

10.3.4 Composer Classification 146

10.3.5 Roman Numeral Analysis 146

10.3.6 Cadence Detection 147

10.4 Our Approach: MusGConv 147

10.4.1 Edge Features Computation 148

10.4.2 Edge Operation 149

10.4.3 Node Operation 150

10.5 Data 150

10.5.1 Data Sampling 151

10.5.2 Datasets 151

10.6 Experiments 152

10.6.1 Main Results 152

10.6.2 Ablation Studies 155

10.7 Conclusion and Future Work 155

References 156

11 A Library for Symbolic Music Graph Processing 161

11.1 Introduction 161

contents xi

11.2 Processing Music Scores with GNNs 162

11.2.1 Preprocessing: Constructing Graphs from Scores 162

11.2.2 Encoding: Graph Convolution 164

11.2.3 Sampling: Handling Graph Data for Training 164

11.2.4 Task-specific Modeling 166

11.3 Methodology 166

11.3.1 Preprocessing 166

11.3.2 Sampling 168

11.3.3 Model Designs 169

11.3.4 The Library 170

11.4 Evaluation 170

11.4.1 Pitch Spelling 170

11.4.2 Cadence Detection 170

11.4.3 Experiments 171

11.5 Conclusion 173

11.6 Acknowledgements 173

References 173

12 Conclusion & Future Work 177

12.1 Overview 177

12.2 Future Directions 178

Collective Bibliography 181

L I S T O F F I G U R E S

Figure 2.1 A musical score with highlighted elements of the score. 12

Figure 2.2 An example of MIDI messages on the left and the pianoroll
on the right. 12

Figure 2.3 Example of the Kern format 13

Figure 2.4 An example of a MusicXML score. 14

Figure 2.5 Example of a pianoroll segment. 14

Figure 2.6 Example of Midi Like tokenization of a musical score. Taken
from https://miditok.readthedocs.io/en/latest/tokenizations.

html 15

Figure 2.7 Example of a graph representation overlayed on a musical
score. Colors indicate the different types of relations. 15

Figure 3.1 An example of a heterogeneous graph. Two types of vertices
user and page and three types of edges (likes, follows and
cites) 21

Figure 3.2 A score graph depicted on an exerpt from Eric’s Satie Gnosserie
No. 1. The different colors of the edges stand for different
connection types. 21

Figure 3.3 Comparing the graph convolution architecture between a
homogeneous and a heterogeneous graph model. 26

Figure 4.1 Excerpt of Schubert’s Impromptu Op. 90 No.4 and its input
visualizations (from left to right): generic matrix, sequence
(REMI-like) and graph. 43

Figure 4.2 Left: front end for three representations, matrix, graph, and
sequence, from top to bottom. Right: fixed back end with
attention modules. 46

Figure 4.3 Model capacity vs. macro F1 score for each representation
approaches on the ASAP-composer task. 50

Figure 4.4 Visualization of graph edges (all edge types aggregated) and
the attention among NoteOn tokens for the first measures of
Mozart Piano Sonata No.12, 1st mvt. 52

Figure 5.1 Example graph creation from a score following the process
described in the text. Eon is denoted in blue, Econs in green,
and Edur in red. Global attributes such as time and key sig-
natures are added as node features. 61

Figure 5.2 Multi-hop Neighborhood sampling. vj is 3-hop neighbor
of vi. Color cues mark the k-hop neighborhoods occurring
within the ellipses. The arrows demonstrate a random walk
starting from vi and ending at vj. 64

https://miditok.readthedocs.io/en/latest/tokenizations.html
https://miditok.readthedocs.io/en/latest/tokenizations.html

list of figures xiii

Figure 5.3 Haydn’s String Quartet 29. Op.54 No.1 Mvt. II, mm. 33-45.
Showing the output of the Stochastic GraphSMOTE Network
for PAC prediction. True negatives are marked with red,
true positives with green, false positives with blue. A partial
analysis shows the chords towards the end of cadences and
highlights a modulating sequence where every sequence
ends with a cadential pattern, which counts as false positive
predictions by the network. 68

Figure 5.4 Predictions of Stochastic GraphSMOTE for fugue No.19,
J.S.Bach, Well-tempered Clavier. 70

Figure 6.1 A Roman Numeral analysis for two bars for four-part har-
mony in C major. Capital letters stand for major quality and
lowercase for minor quality. The third chord has a dominant
seven as its primary degree and the dominant of C major as
its secondary degree. The V6

5 indicates a major with a seven
quality in second inversion. The bass (lowest chord note) of
that chord is F sharp, the root is D, and the local key is C
major. 77

Figure 6.2 Different representations of the score excerpt shown in the
middle. Top: quantized time frame representation, bottom:
graph representation. 78

Figure 6.3 The proposed Architecture Chord-GNN 78

Figure 6.4 Post-processing of Roman Numeral predictions. 81

Figure 6.5 A comparison between the human annotation, Augmented-
Net, and ChordGNN on a passage of Haydn’s string quartet
op.20 No.3 movement 4. The red (wrong) markings on Hu-
man Analysis and AugNet (2022) are from [21] 85

Figure 7.1 Example of multi trajectory following for musical voice sep-
aration in a pitch-time space. Different trajectories are high-
lighted with different colors. Box (A) contains an example
of consecutive notes with the same pitch belonging to dif-
ferent voices. Box (B) contains an example of “distant” notes
belonging to the same voice. The musical excerpt is taken
from Bach’s Fugue in C-sharp major, BWV 872, measures
2-3-4. 92

Figure 7.2 The GMTT model architecture for link prediction. 97

Figure 7.3 Ground truth and prediction for Haydn String Quartet Op17

No2, 1st mvt., bars 25-26. False negative errors are high-
lighted with dashed arrows and false positive with solid
arrows. 104

Figure 8.1 Comparing different voice/staff assignments for two bars
from C. Debussy’s Estampes - Pagodes. (top) original; voices
can be inferred from the beam grouping and (horizontal
lines connecting notes), rests, and stem sharing, and are
colored for clarity. (bottom) hard-to-read rendition with voice
and staff assigned according to heuristics we propose as a
baseline. 110

xiv list of figures

Figure 8.2 Our Architecture. For simplification, we display the output
graph as having “hard” voice predictions, while these are
probabilities over voice candidates. 114

Figure 8.3 Output graph postprocessing. We do not display the pre-
dicted staff labels. 116

Figure 8.4 Comparison of voice and staff assignment between the origi-
nal score and our method on the first bars of C. Debussy’s
Estampes-Pagodes. Voice edges (red) and chord edges (blue)
are drawn for the original score (Ground Truth) and our
proposed approach (GNN). 120

Figure 9.1 An example of a score graph depicting the different graph
edge types in different colours. 127

Figure 9.2 A demonstration of the SMUG-Explain Web interface. In this
example, we view the first bars of Mozart’s Piano Sonata
K280 2

nd mvt. It includes a Roman numeral analysis and
the cadence label predicted by our model at the top. The
purple dashed lines are the produced explanation for the
note highlighted in red. Note the vertical connection line in
the very first bar, which is also a part of this explanation.
At the bottom, we can view the feature importance for the
explained note. 129

Figure 9.3 The first bars of the Fuga No. 5 of the Well-Tempered Clavier
book No. 1. On the top the score and the explanation of the
wrong prediction of the highlighted note in red. In the mid-
dle, the feature importance is visualized for the highlighted
note. On the bottom, a Schenkerian analysis of the segment
by [35] 134

Figure 9.4 Excerpt of Nocturne Op. 48, no. 1 in C minor by F. Chopin.
Top: excerpts of the explanation for Cadence on measure
24. Bar numbers are notated to the top left of each score
segment. Middle: Feature importance for the highlighted C4

note in red. Bottom: Middleground voice leading analysis
(from [36]). 135

Figure 10.1 Three alternative representations of note pitches in a musical
excerpt: (a) absolute representation in terms of MIDI pitch;
(b) relative pitch distance (ignoring the octave) in semitones
relative to the fundamental pitch specified by the key signa-
ture (here: C); (c) relative pitch distance in semitones from
the closest preceding note; in case of chords the order is
defined from bottom to top. 143

Figure 10.2 General architecture of our pipeline. The first part that pro-
duces the hidden node representation is common among all
tasks; the last module is task-specific. 144

Figure 10.3 Visualization of update for node u in our MusGConv block
(considering only one edge type), corresponding to Eqns. 10.11

and 10.8. 148

Figure 10.4 Relative Pitch features epitch
vu for the highlighted note u. 149

Figure 10.5 Ablation studies. 154

Figure 11.1 The general graph processing/training pipeline for sym-
bolic music scores involves several steps: i) Preprocess the
database of scores to generate input graphs; ii) Sample the
input graphs to create memory-efficient batches; iii) Form
a batch as a new graph with nodes and edges from various
input graphs; iv) Sample a subset of nodes (target nodes)
and their neighbors from the input graphs; v) Update the
target nodes’ representations through graph convolution to
create node embeddings; vi) Use these embeddings for task-
specific applications. Note that target nodes may include
all or a subset of batch nodes depending on the sampling
strategy. 163

Figure 11.2 Full graph vs neighbor sampling. The pink-colored nodes are
selected for convolution by message passing. With neighbor
sampling, the pink node is the one whose representation
is ultimately updated after convolution (however, for the
blue nodes also take part in the convolution process as its
context). 165

Figure 11.3 Sampling process per score. Top: sampled notes and their
neighbors; middle: score graph and sampling process; bot-
tom: sampling process for beats and measures. A randomly
selected note (in yellow) is first sampled. The boundaries
of the target notes are then computed with a budget of 15

notes in this example (pink and yellow notes). Then the
k-hop neighbors are fetched for the targets (light blue for
1-hop and darker blue for 2-hop). The k-hop neighbors are
computed with respect to the input graph (depicted with
colored edges connecting noteheads in the figure). We can
also extend the sampling process for the beat and measure
elements (introduced in Section 11.3.1). Note that the k-hop
neighbors need not be strictly related to a time window.
167

L I S T O F TA B L E S

Table 4.1 Composer classification results for all representations, on all
target subsets of our datasets on the composer classification
task using only basic level features. For each subset of data,
we present the accuracy score and the macro F1 score with
8-fold cross-validation. See Section 4.4.1 for explanation of
the parameters. 48

xv

xvi list of tables

Table 4.2 Accuracy of three identification tasks on the ASAP dataset,
with basic or higher-level features. 51

Table 5.1 Cadence nodes constitute less than 2% of all nodes. 63

Table 5.2 Results using half of the dataset for training, half for testing.
Bach: fugues no.1-12 were used for training, no.13-24 for
testing; Haydn: random 21:21 split. The pretrained network
was trained on the other dataset, i.e. Pretrained SGSMOTE for
Bach Fugues was pre-trained on string quartets, etc. Classifi-
cation is binary, the presented F1 scores are for the positive
class, i.e., the cadence (PAC: Perfect Authentic Cadence;
rIAC: root position Imperfect AC; HC: Half Cadence). 67

Table 5.3 Effect of neighbor convolution depth on PAC prediction in
Bach fugues. The F1 Note/Onset/Beat scores presented are
binary, i.e., for the PAC class. Depth refers to neighbor con-
volution depth. None means no graph convolution. 69

Table 5.4 Three-class cadence classification with two different feature
sets. Results were obtained by 5 fold cross validation (70%
of pieces for training, 10% validation, 20% testing); no pre-
training. Feature set all contains all features from Section
5.3.1; general excludes Category 3 cadence-specific engineered
features. 69

Table 6.1 Model comparison on two different test sets, the Beethoven
Piano Sonatas (BPS), and the full test set. RN stands for
Roman Numeral, RNalt for the alternative Roman Numeral
computations discussed in Section 6.3.1. RN(Onset) refers to
onset-wise prediction accuracy, all other scores use the CSR
score (see Section 6.5). Note that model CSM-T reports Mode
instead of Quality. 82

Table 6.2 Configuration Study: Chord Symbol Recall on Roman Nu-
meral analysis on the full test set. RN stands for Roman
Numeral, RNalt refers to the alternative Roman Numeral
computations discussed in section 6.3.1. WLoss stands for
the dynamically weighted loss described in Section 6.3, and
R-GradN stands for Rotograd with Gradient Normaliza-
tion. Every experiment is repeated 5 times with the same
ChordGNN model as Table 1 without post-processing. 84

Table 7.1 Main results comparing the State-of-the-art on Voice sepa-
ration with our approach. P stands for Precision, R stands
for Recall, and F1 for F1-score. All the presented metrics are
binary (only for the positive class, i.e. links). (+LA) stands
for linear assignment postprocessing. 101

Table 7.2 Ablation experiments, all the scores presented are binary
F1-scores without postprocessing (i.e., LA). Homogeneous de-
notes homogeneous graph message passing, SageConv de-
notes the GraphSage convolutional block, No regularization
means a regularization weight α = 0, Fixed Regularization has
α = 1, and GMMT is the model from Table 1, for compari-
son. 103

Table 8.1 Metrics for our the J-Pop and DCML test sets. “GNN” de-
notes our method, without postprocessing (“GNN wo Post”),
and without both postprocessing and chord prediction parts
(“GNN wo Chord wo Post”). All GNN model runs are re-
peated 5 times: ± refers to the standard deviation of results
across runs. 117

Table 8.2 Voice F1 score aggregated by bars with the same number
of voices in the ground truth, on the DCML Romantic Cor-
pus. Shibata et al. [5] is used with 1 and 2 voices per staff
(vps). 120

Table 9.1 Characterization score for the model explanations of ca-
dences per piece. The four methods are mentioned in Sec-
tion 9.3.3. SAL stands for Saliency, GBP for Guided Back-
propagation, DC for Deconvolution and IG for Integrated
Gradients. Highlighted values indicate the highest (best)
explanations in terms of characterization score. 131

Table 10.1 Experimental comparison with previous SOTA models. The
evaluation metric varies for the different tasks (see the cor-
responding subsections in Section 10.3). Marked in bold are
the best results when they are statistically significant. 153

Table 11.1 Results on the two tasks, in terms of accuracy (A) and F1

score, respectively. Values in bold are the best score per
metric; underlined values are the second best. All runs are
repeated 4 times. ± indicates standard deviation. 172

L I S T I N G S

A C R O N Y M S

xvii

Part I

I N T R O D U C T I O N A N D B A C KG R O U N D

1 I N T R O D U C T I O N

Music is a universally comprehensible language with a remarkable ability to tran-
scend cultural and linguistic boundaries. It encompasses a vast spectrum of styles
and genres, from the simple to the intricately complex. Within this diversity lies its
power to convey a wide range of sentiments.

Babbit [1] tells us that music can be understood from three different perspectives:
the music written by the composer, the music played by the musician, and the
music perceived by the listener. Music analysis is a pivotal discipline in unraveling
the complexities of musical compositions. Analysts delve into the fundamental
components of rhythm, harmony, melody, and beyond, pinpointing their individual
significance and collective impact. The analysis process is a step towards under-
standing compositions, uncovering hidden nuances, and deciphering the intricate
interplay between various musical elements.

1.1 the importance of music analysis

There are numerous theories and methods for music analysis, ranging from holistic
approaches to those focusing on specific elements like form, melody, or harmony.
For example, structural analysis entails the identification of formal frameworks
and sectional divisions within a piece. But even when focusing on particular
elements there are many approaches, for example, harmonic analysis can be viewed
through the lens of Roman numeral analysis, figured bass or pure chord progression
identification.

Other examples include melodic analysis, which examines the structure and
development of the melody, and rhythmic analysis, which focuses on meter, tempo,
and rhythmic patterns. Textural analysis looks at the spatial distribution of mu-
sical elements in polyphonic or homophonic textures, and expressive analysis
explores dynamic nuances, articulation, phrasing, and gestures that add depth to a
performance.

Historical and contextual analysis situates music within its socio-cultural context,
considering the composer’s biography, influences, and prevailing aesthetic trends.
Holistic frameworks like Schenkerian analysis or the Generative Theory of Tonal
Music (GTTM) reduce a piece to its hierarchical elements in terms of rhythm,
melody, and harmony.

Music analysis deepens the understanding of music, allowing listeners and
musicians to discern a piece’s structure and artistic intent. It fosters critical listening
and analytical skills, enhancing appreciation and engagement with various musical
genres and styles.

For performers, analysis informs interpretation, guiding decisions on tempo,
dynamics, phrasing, and other expressive nuances, enriching performances with

3

4 introduction

depth and authenticity. Composers gain inspiration and learning from analyzing
past works, expanding their musical vocabulary, and refining their craft.

Music analysis also contributes to ethnomusicological research, providing insights
into the historical, cultural, and stylistic dimensions of music. Through compara-
tive analysis, musicologists can trace the evolution of musical forms, techniques,
and genres across different periods and cultures. In short, music analysis is a
fundamental tool for understanding music.

1.2 deep learning for music analysis

Musical analysis has been a quintessential part of MIR including tasks such as
harmonic analysis, composer classification, motif detection, textural analysis, fugal
analysis, cadence detection, voice separation, score reduction, and many others.
Furthermore, the datasets for such music analysis tasks have been continuously
growing.

Deep learning approaches have been introduced to target many of the aforemen-
tioned tasks, focusing on learning from data. However, such data are still scarce
and too complex. Therefore, many approaches introduce inductive biases that assist
models to better model and understand music.

The inductive biases can be introduced on different levels such as the model-level
or at the representation level. The former concerns ways to inform models about
certain musical expectations and the latter focuses on how the music is represented
before it is fed to a model.

1.3 the inherent issues of music representation

Music in its digital form can be represented in many ways. There are two main
categories of musical representations, the audio-based representations and the
symbolic music representations. For audio, music is typically represented as a
waveform or as a transformation of it, such as a spectrogram. Symbolic means that
music is associated with symbols corresponding mostly to its written form, i.e. a
musical score.

Western classical sheet music is most often represented with staff notation.
However, representing this symbolic music form computationally and training
algorithms on that representation is not straightforward. Research has been inspired
by modeling scores similarly to audio spectrograms or even as language, and
more recently as graphs. Each representation comes with its own advantages and
drawbacks for designing and training deep learning models.

Pianorolls were originally perforated paper rolls used to operate a player piano,
as a physical form of music notation [2]. However pianorolls, in their current digital
form, can be viewed as a spectrogram representation of symbolic music containing
only the fundamental frequencies of the written notes. This point of view can be
advantageous when re-adapting powerful audio-based models. However, pianorolls
are sparse data and could also omit important information that inherently appears
in a score but not in a pianoroll.

1.4 motivation and vision 5

Language-inspired representations often treat symbolic music as language which
means they tokenize each symbol. Having a tokenized sequence is a huge advantage
because music can then be treated with powerful transformer models that have
been dominating the AI-field in the past few years. However, representing music as
a series of tokens removes the hierarchical nature of music which is present in the
score, particularly for polyphonic music.

Finally, graph-based representation has been a new and relatively unexplored
alternative that can in principle capture sequential and hierarchical relations be-
tween notes. It is more intuitive from a musical point of view and graph neural
networks that can process graph data have been increasingly popular since 2017 [3].
However, the limited application of GNNs on data of vastly different structures
creates a still unexplored field with a lot of uncertainty about the effectiveness of
GNNs on music analysis.

1.4 motivation and vision

Despite advancements in Music Information Retrieval (MIR) within the symbolic
domain and the diversity of algorithms and representations, there remain significant
concerns regarding the handling of symbolic music in research. My academic
background in musicology, with a particular emphasis on music analysis and
contemporary composition, has provided me with extensive exposure to various
music analysis theories and representation ambiguities. These experiences have
led me to form strong opinions on the appropriate handling of symbolic music
representations within deep learning frameworks.

My research pursuits have directed my focus towards graph-based representa-
tions. I posit that graphs may offer a more suitable representation for symbolic
music, as they can effectively capture the dual organizational structure of poly-
phonic music—namely, its hierarchical and sequential elements. Viewing music as
a graph can facilitate a more intuitive understanding and manipulation of musical
structures. Therefore, my objective is to demonstrate the viability of a graph-based
approach in addressing or enhancing computational music analysis in symbolic
classical music. Ultimately, my goal is to contribute to the standardization of graph-
based symbolic music processing.

1.5 organization

This is a cumulative dissertation: the main contributions are presented in the form
of a set of published papers, reproduced here in only slightly edited form. The
thesis is organized it two parts, the first part being introductory and the second
part containing part of my published work. In Chapter 2 and Chapter 3, I provide
background information on the content of this thesis on two important topics.
Chapters 5-11 contain my scientific contributions, each representing a peer-reviewed
publication. These papers have been slightly modified for formatting consistency
and to correct any errors found in the original versions. Each chapter begins with

6 introduction

the full title, along with the names of co-authors and the conference where the
publication appeared.

1.6 outline

This thesis is divided into two parts. The first part is introductory and discusses
introductory notions about symbolic music representations and graph-based deep
learning. The second part contains a subset of my published work with every
chapter containing a publication. The last chapter presents a reflection on the work
done, discusses some potential challenges of the field, and outlines some work for
the future to come.

1.6.1 First Part

My work is based on the premise that musical scores can be seen as graphs. The
graph emerges as a natural representation that encompasses the mixed hierarchical
and sequential nature of a musical score. Elements in the score such as notes, are
structured in time but also more than one note can occur at the same time. I propose
a new graph model for the score where vertices represent notes and edges capture
the relations between them.

Each node in the graph corresponds to one and only one note in the musical score.
The graph’s edges include multiple temporal relations between nodes in order to
capture the temporal evolution of the musical piece. Given such a score graph, I can
apply Graph Convolutional Networks to capture intra-dependencies between notes.
Graph Convolutional Neural Networks use a principle called message passing in
order to update the information of a node in the graph based on the information of
its neighbors [4].

Chapter 2: Before diving into the individual contributions of the thesis, I present
an overview of music representations, which are crucial for Music Information Re-
trieval (MIR) and music analysis. These representations, including symbolic formats
like piano rolls, tokenized sequences, and graphs, as well as audio representations,
significantly impact how musical information is encoded and processed. Visualizing
and analyzing the advantages and caveats of each representation is important for
the development of better more interpretable models for music analysis.

Chapter 3: Subsequently, I discuss the inner workings of Graph Neural Networks
(GNNs). These networks are used to train algorithms on data that can be repre-
sented as graphs. I describe some influential and fundamental work in the field
of graph deep learning. This work is the foundation of models developed during
the thesis and presented in the following chapters. Understanding the theoretical
underpinnings of GNNs is crucial for leveraging their potential in music analysis.

1.6.2 Second Part

The second part of the thesis aims to give a clear narrative of this PhD journey, in the
form of a series of chapters each of which corresponds to one specific publication.

1.6 outline 7

First, I have a more general look at the comparison of different symbolic repre-
sentations and corresponding popular model architectures; then I introduce GNN
models to tackle analysis tasks such as cadence detection, Roman numeral analysis,
and voice separation on symbolic classical music. Subsequently, I investigate how
I can visually represent graph-based explanations for music. Then I introduce a
perception-inspired graph convolutional block. Next, I present a dedicated graph
library for symbolic music processing. Finally, I discuss a wholistic graph-based
model for performing music analysis.

Chapter 4: The first chapter of the second part is dedicated to a collaborative
paper [7] that systematically evaluates various symbolic music representations,
including matrix (piano roll), sequence (tokenized), and graph, for piece-level
classification tasks such as composer classification, performer classification, and
difficulty assessment. The study explores the capabilities of these representations,
with neural architectures such as Convolutional Neural Networks (CNNs) for ma-
trix, Transformers for sequence, and Graph Neural Networks (GNNs) for graph
representations. The evaluation is conducted on datasets containing symbolic scores
and performances, revealing that graph representations, particularly when incor-
porating advanced features like hierarchical musical structures, show promising
performance and efficiency in training. The findings highlight the importance of
choosing appropriate representations based on the specific characteristics of the
musical data and the classification tasks, suggesting that graph-based approaches
are a valuable direction for future research in Music Information Retrieval (MIR).
My contribution for this work was focused on graph representations by providing
insights for designing and training graph-based representations and models.

Chapter 5: I present a graph-based model for cadence detection [8]. The identi-
fication of cadences is fundamental for understanding the structural integrity of
musical compositions. This problem presents a lot of challenges such as the sparsity
of annotations and the ambiguity of the definition of cadences. For evaluation, I
compare a graph-based model with an SVM classifier method introducing complex
cadence-related features [5]. The results demonstrated a promising direction for the
application of graph modeling for cadences achieving better results than previous
methods on the explored datasets.

Chapter 6: I present ChordGNN, a graph-based approach for automatic Roman
Numeral analysis in symbolic music [9]. ChordGNN can transform and learn from
note-wise information and produce onset-wise representation which can be particu-
larly useful when annotations are provided at the onset level. ChordGNN outper-
forms previous state-of-the-art models in Roman Numeral analysis, as demonstrated
through experiments on a large dataset of Western classical music. The study also
explores variants of the model, such as incorporating NADE and post-processing
techniques, and provides a configuration study on multitask learning strategies.
ChordGNN achieves higher accuracy in predicting Roman Numerals, offering more
coherent and meaningful harmonic analysis of musical pieces.

Chapter 7: As a next step, I attempt to solve voice separation through the ap-
plication of GNNs [10]. Voice separation is the process of identifying monophonic
streams in polyphonic music. This process is essential for dissecting complex musi-
cal textures into individual melodies that interact together. In this work, I enrich
the graph modeling of the score and approach voice separation as a link prediction

8 introduction

task. I compare our graph-based model with an HHM-based method [6]. The
graph-based approach presents a number of advantages such as better perfor-
mance, reduced computational time and space complexity, and independence on
the number of individual monophonic streams.

Chapter 8: I discuss a more recent publication, where I extend the previous work
on monophonic voice separation towards homophonic voice separation and staff
prediction for symbolic piano music using a GNN approach [11]. This method
involves creating an input graph from the score as before, and then predicting
voice and staff assignments through an encoder-decoder architecture. The system
addresses challenges such as cross-staff voices and polyphonic music, which are
difficult tasks in music score engraving. Evaluated on two datasets of different styles,
the proposed method shows consistent improvements over previous approaches,
effectively separating notes into readable musical scores. The process includes a
post-processing phase to ensure valid musical outputs and a visualization tool for
displaying the results on musical scores.

Chapter 9: In this work, I investigate how graphs can be used as an explanation
means for GNN models [12]. Ergo, I present SMUG-Explain, a framework for
generating and visualizing explanations for GNNs applied to musical scores. SMUG-
Explain uses post-hoc gradient-based methods to generate explanations, focusing
on both the importance of individual note features and subgraphs that significantly
influence the model’s predictions. The framework features an interactive web
interface that visualizes these explanations directly on the musical score, enhancing
interpretability. Applied to cadence detection, the framework demonstrates the
ability to provide musically meaningful insights into the model’s decision process.
The evaluation includes quantitative metrics, such as fidelity and characterization
scores of the explanations, and qualitative analyses of classical music excerpts,
highlighting the practical benefits of this approach in understanding complex
musical predictions.

Chapter 10: This chapter introduces MusGConv, a novel graph convolutional
block designed specifically for processing musical score data by integrating princi-
ples of human musical perception, focusing on pitch and rhythm [13]. MusGConv
addresses tasks such as monophonic voice separation, harmonic analysis, cadence
detection, and composer identification, framed as node classification, link prediction,
and graph classification problems respectively. Experiments show that MusGConv
improves performance in three of these tasks without increasing computational cost,
demonstrating the benefits of perception-informed processing in graph network
applications for music.

Chapter 11: This chapter addresses the lack of a unified framework by offering
tools to efficiently process music graphs and train GNNs [14]. Therefore, I introduce
GraphMuse, a graph processing framework and library designed for symbolic mu-
sic tasks using GNNs. Key innovations of GraphMuse include a neighbor sampling
technique tailored to the unique properties of musical scores and the integration of
hierarchical modeling elements, such as beats and measures, to enhance graph net-
work expressivity. The framework’s efficacy is demonstrated through experiments
on pitch spelling and cadence detection tasks, showing significant performance
improvements over previous methods. The GraphMuse Python library is released

1.6 references 9

as open-source in Github and it aims to standardize graph-based symbolic music
processing and catalyze further advancements in the field.

references

[1] Milton Babbit. “The Use of Computers in Musicological Research.” In:
Perspectives of New Music 3.2 (1965), pp. 74–83.

[2] The Pianola Institute. History of the Pianola – Piano Players. Accessed: 2024-
06-25. n.d. url: http://www.pianola.org.

[3] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. “A comprehensive survey on graph neural networks.”
In: IEEE transactions on neural networks and learning systems 32.1 (2020),
pp. 4–24.

[4] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. “Neural message passing for quantum chemistry.” In:
Proceedings of the International Conference on Machine Learning (ICML). PMLR.
2017, pp. 1263–1272.

[5] Louis Bigo, Laurent Feisthauer, Mathieu Giraud, and Florence Levé. “Rel-
evance of musical features for cadence detection.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2018.

[6] Andrew McLeod and Mark Steedman. “HMM-based voice separation of
MIDI performance.” In: Journal of New Music Research 45.1 (2016), pp. 17–26.

publications making up this thesis

[7] Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer,
and Carlos Eduardo Cancino-Chacón. “Symbolic Music Representations
for Classification Tasks: A Systematic Evaluation.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2023.

[8] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[9] Emmanouil Karystinaios and Gerhard Widmer. “Roman Numeral Analysis
with Graph Neural Networks: Onset-wise Predictions from Note-wise
Features.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2023.

[10] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

http://www.pianola.org

10 introduction

[11] Francesco Foscarin, Emmanouil Karystinaios, Eita Nakamura, and Gerhard
Widmer. “Cluster and Separate: a GNN Approach to Voice and Staff
Prediction for Score Engraving.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). 2024.

[12] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “SMUG-
Explain: A Framework for Symbolic Music Graph Explanations.” In: Pro-
ceedings of the Sound and Music Computing Conference (SMC). 2024.

[13] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Perception-
Inspired Graph Convolution for Music Understanding Tasks.” In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). 2024.

[14] Emmanouil Karystinaios and Gerhard Widmer. “GraphMuse: A Library
for Symbolic Music Graph Processing.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2024.

2 M U S I C R E P R E S E N TAT I O N S

Music representations are the fundamental component for Music Information
Retrieval (MIR) and particularly for musical analysis tasks. Whether the scientific
work is focused on audio or symbolic music, the choice of representation is crucial.
It determines how musical information is encoded, stored, and processed, directly
influencing the efficiency and accuracy of models and machine learning approaches.

2.1 symbolic vs. audio representations

One can consider two primary types of music representations: symbolic and au-
dio. Audio representation captures the sound of music as it is heard. It involves
encoding the waveform of audio signals into digital formats such as WAV, MP3, or
FLAC. These representations include acoustic information such as timbre, dynamics,
and pitch. While audio data is rich and detailed, it is also complex and requires
significant computational resources for processing. Features calculated from audio
signals such as spectrograms, mel-frequency cepstral coefficients (MFCCs), and
chroma features are commonly used to analyze audio data.

Symbolic representation, on the other hand, encodes music in terms of discrete
note events and their associated parameters, such as pitch, duration, and onset
time, and it is used principally to capture music as it was written. Unlike audio,
symbolic representations do not contain information about the actual sound but
rather the musical structure and notation. This makes them more compact and
easier to manipulate for certain types of musical analysis. Symbolic notation formats
include MIDI, MusicXML, MEI, ABC, **kern, and others.

Symbolic representations can be broadly categorized into three main forms:
matrix (piano roll), sequence (tokenized sequences), and graph representations.
Each form has its unique way of encoding musical information and is suitable for
different types of MIR tasks.

2.2 symbolic music storage formats

The term symbolic refers to the symbols present in any form of musical score or
notation. A musical score can contain a variety of elements other than notes. Such
elements may include time signature, key signature, articulation markings, dynamic
markings, and many others. Each notation system and music format includes
different sets of musical nuances and elements. Should one consider different music
cultures and their own notation then the set of individual music elements increases
considerably. The nature and diversity of music make the definition of a uniform
generalized notation an almost infeasible task. Therefore, in this section, I will focus

11

12 music representations

Figure 2.1: A musical score with highlighted elements of the score.

Figure 2.2: An example of MIDI messages on the left and the pianoroll on the right.

on representations stemming principally from the Western classical music notation
(example shown in Figure 2.1).

Many formats exist for storing and exchanging forms of music notation. In this
section, I present some of the most commonly used in MIR today.

2.2.1 MIDI

The Standard MIDI File (SMF), commonly known as MIDI, is one of the oldest and
most widely used formats for storing musical data [1]. It uses an 8-bit binary format
to store a sequential stream of MIDI events, such as Note-On and Note-Off, which
correspond to the pressing and releasing of a key on a keyboard. These events
also encode pitch and velocity (the intensity of the note). The MIDI format was
created as a communication protocol for digital keyboard players but since its use
has been expanded to encode information from any instrument. MIDI events are
organized into tracks, with each track representing the notes that an instrument
plays. Tracks are streams of events, each preceded by a delta-time value indicating
the time before the next event.

MIDI files contain a header that defines the time units and file structure, with
two main types: Type 0 (a single track for solo pieces) and Type 1 (multiple tracks
for ensemble performances). While MIDI files can effectively represent performance
data (e.g. performance on a MIDI capable keyboard), they are more limited in terms
of the information they can encode in respect to traditional scores. For instance,
they lack discrete note elements, ties, dots, rests, and do not distinguish between
different pitch spellings (e.g., D-sharp vs. E-flat). Additionally, all voice events are
flattened into a single track, making it less ideal for representing complex scores
with more hierarchical organization.

2.3 computational representations of symbolic music 13

**kern

*M4/4
=1
4c 4e 4g 4c
4d 4f 4a 4d
4e 4g 4b 4e
4f 4a 4c 4f
=2

*-

Figure 2.3: Example of the Kern format

2.2.2 Text-Based Formats

Text-based formats like ABC [2], MuseData [3], Humdrum **Kern** [4], LilyPond [5],
Guido [6], and MusicTeX [7] offer the advantage of being easy to read and manually
create. These formats use different methods to balance readability with the ability
to encode complex musical elements. However, as the complexity and size of a
score increase, these formats become less efficient to parse compared to binary or
XML-based formats. In Figure 2.3 we provide a short example of a kern score.

2.2.3 XML-Based Formats

Recent approaches to music notation storage have led to the development of
XML-based formats, such as MusicXML [8] and MEI [9]. These formats prioritize
a comprehensive description of the score, including graphic specifications for
visual rendering, over compactness. MusicXML is widely supported by commercial
software and provides detailed, and sometimes redundant, representations. MEI,
designed for corpus preservation and analysis, supports a wider range of notations
beyond the Western classical notation, and includes unique identifiers for each
score element, aiding in visualization and interaction.

2.3 computational representations of symbolic music

Most symbolic music notation formats attempt to accommodate Western musical
notation [10]. However, regardless of whether the format is text-based, xml-based,
or binary, it is not a form of representation that could be fed to a learning algorithm
without creating an intermediate representation first. Three forms of representations
can be identified that are used to train deep-learning models.

2.3.1 Matrix

Matrix representation, commonly known as piano roll, visualizes music as a two-
dimensional grid with time on the horizontal axis and pitch on the vertical axis
(example in Figure 2.5). Each cell in the matrix indicates whether a note is played

14 music representations

Figure 2.4: An example of a MusicXML score.

at a specific time and pitch. This representation is straightforward and intuitive,
it is historically derived from the paper rolls of a player piano. It is particularly
useful for tasks like automatic music transcription and classification of piece-level
attributes such as composer or genre. However, piano rolls often lack detailed
information about dynamics, articulation, and other musical nuances.

Figure 2.5: Example of a pianoroll segment.

2.3.2 Sequence

Sequence representation treats music as a sequence of events, similar to a string of
language tokens (example in Figure 2.6). This approach involves tokenizing mu-
sical attributes such as pitch, duration, and onset time into a sequence of discrete
symbols. Recent advancements in natural language processing have influenced the
development of sequence representations for music, using models like Transform-
ers to capture long-range dependencies and contextual information. Examples of
tokenization schemes include MIDILike [11], REMI [12], and CompoundWord [13].
Sequence representations are powerful for generative tasks, such as music com-
position and arrangement, but can struggle with capturing hierarchical structures
inherent in music.

2.4 libraries for handling music notation formats 15

Figure 2.6: Example of Midi Like tokenization of a musical score. Taken from https:
//miditok.readthedocs.io/en/latest/tokenizations.html

2.3.3 Graph

Graph representation models a musical score as a network of notes (vertices) con-
nected by relationships (edges) based on the temporal relation between the notes
(example in Figure 2.7). This approach can capture complex interactions between
notes, such as harmonic, melodic, and rhythmic relationships. Graph neural net-
works (GNNs) are used to process these representations, allowing for sophisticated
analysis of musical features. Graph representations are particularly effective for
tasks that require an understanding of musical structure and context, such as ca-
dence detection and expressive performance modeling. However, constructing and
processing musical graphs can be computationally intensive and requires careful
design to avoid over-smoothing and other issues inherent to graph learning.

Figure 2.7: Example of a graph representation overlayed on a musical score. Colors indicate
the different types of relations.

2.4 libraries for handling music notation formats

From a computational perspective, various tools and techniques have been devel-
oped to encode and decode music scores. These include software packages capable
of loading, saving, and extracting information from a wide range of digitized
musical notation formats. Using such packages information from the score can be
extracted and transformed into a form of representation (e.g. numerical data) that
can be subsequently fed to a learning algorithm to solve specific tasks.

Focusing on the libraries that can parse scores and extract information we cite
below a few important libraries in the field.

2.4.1 Music21

Music21 is a powerful toolkit for computer-aided musicology, developed at the
Massachusetts Institute of Technology (MIT) by Michael Scott Cuthbert and his team

https://miditok.readthedocs.io/en/latest/tokenizations.html
https://miditok.readthedocs.io/en/latest/tokenizations.html

16 music representations

in 2008 [14]. It is a Python-based library that allows people to study large collections
of music, generate music, teach music theory, and edit musical notation. Music21 is
widely used in academic research, music theory, and educational settings.

2.4.2 Partitura

The Partitura Python package is a toolkit designed for working with symbolic
music data, particularly focusing on the analysis, processing, and conversion of
musical scores and performances from a computer scientist’s perspective [15]. It has
a similar scope to other tools like Music21 but with specific features for handling
performance data, and it is designed for simplicity first.

2.4.3 PrettyMidi

PrettyMIDI is a Python library designed to handle and process MIDI files in a
simple and intuitive way [16]. It is widely used in music information retrieval
(MIR), algorithmic composition, and other areas of music technology. Developed
by Colin Raffel, PrettyMIDI provides a high-level interface for working with MIDI
data, making it easier to analyze, manipulate, and synthesize music.

2.4.4 MidiTok

MidiTok is a Python package for MIDI file tokenization [17]. It tokenizes symbolic
music files such as MIDI and ABC. It is designed to convert such formats into
sequences of tokens ready to be fed to models such as transformers for MIR tasks.

For symbolic music, the tokenizer can be trained to increase both model perfor-
mance and efficiency. MidiTok includes many known MIDI Tokenizations. Tokeniz-
ers can be further trained with techniques such BPE [18] to reduce the vocabulary
of the tokens.

2.5 focus on symbolic representation

The path from musical notation to training an algorithm for solving a musical task
such as harmonic analysis or composer classification, involves a series of steps.
Given a digitized version or format of music, first a digital library should be able to
read it and extract information, and then, the extracted information should follow
some data type paradigm appropriate to serve as input to learning algorithms.

Symbolic representation, with its many forms, offers distinct advantages for
different MIR tasks. Each data type form, i.e., matrix, sequence, and graph, provides
unique insights and capabilities, making them valuable tools for researchers and
practitioners in the field of symbolic MIR. By leveraging these representations, it is
possible to develop more efficient, interpretable, and sophisticated MIR systems
that can handle the complexities of musical data.

In summary, understanding the different types of symbolic music representation
and their applications is crucial for advancing MIR research. Although audio

2.5 references 17

representations provide detailed acoustic information, symbolic representations
offer compact and structured data that are easier to manipulate for specific analytical
tasks. Chapter 2 of this thesis will offer a systematic experimental evaluation of
different symbolic representations over a number of different task, in order to obtain
more insight into their relative merits.

references

[1] David Back. Standard MIDI-file format specifications. Acessed August 29, 2024.
1999. url: http://www.music.mcgill.ca/~ich/classes/mumt306.

[2] Irwin Oppenheim, Chris Walshaw, John Atchley, and Guido Gonzato. he
abc standard 2.0. Acessed August 29, 2024. 2010. url: https://abcnotation.
com/wiki/abc:standard:v2.0.

[3] Eleanor Selfridge-Field. “Musedata: multipurpose representation.” In: Be-
yond MIDI: The handbook of musical codes. Center for Computer Assisted
Research in the Humanities. The MIT Press, 1997.

[4] David Huron and Craig Sapp. The Humdrum Toolkit. Acessed August 29,
2024. 1993. url: https://www.humdrum.org/.

[5] Han-Wen Nienhuys and Jan Nieuwenhuizen. “LilyPond, a system for
automated music engraving.” In: Proceedings of the xiv colloquium on musical
informatics (xiv cim 2003). Vol. 1. Citeseer. 2003, pp. 167–171.

[6] Holger H Hoosy, Keith A Hamelz, Kai Renzy, and J urgen Kiliany. “The
GUIDO Notation Format A Novel Approach for Adequately Representing
Score-Level Music.” In: International Computer Music Conference (ICMC).
1998.

[7] Daniel Taupin, Ross Mitchell, and Andreas Egler. “MusiXTEX. Using
TEX to write polyphonic or instrumental music.” In: TUGboat 14.3 (1993),
pp. 212–220.

[8] M Good. “An internet-friendly format for sheet music.” In: Proceedings of
XML Conference. 2001.

[9] Perry Roland. “The music encoding initiative (MEI).” In: Proceedings of the
First International Conference on Musical Applications Using XML. Vol. 1060.
Citeseer. 2002, pp. 55–59.

[10] Mark Gotham, Kyle Gulling, and Chelsey Hamm. Open Music Theory-
Version 2., 2022.

[11] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Si-
monyan. “This Time with Feeling: Learning Expressive Musical Perfor-
mance.” In: Neural Computing and Applications 32 (2018), pp. 955–967. url:
https://link.springer.com/article/10.1007/s00521-018-3758-9.

[12] Yu Siang Huang and Yi Hsuan Yang. “Pop Music Transformer: Beat-based
Modeling and Generation of Expressive Pop Piano Compositions.” In:
Proceedings of the 28th ACM International Conference on Multimedia. 2020.
isbn: 9781450379885. doi: 10.1145/3394171.3413671. arXiv: 2002.00212.

http://www.music.mcgill.ca/~ich/classes/mumt306
https://abcnotation.com/wiki/abc:standard:v2.0
https://abcnotation.com/wiki/abc:standard:v2.0
https://www.humdrum.org/
https://link.springer.com/article/10.1007/s00521-018-3758-9
https://doi.org/10.1145/3394171.3413671
https://arxiv.org/abs/2002.00212

18 music representations

[13] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. “Compound
Word Transformer: Learning to Compose Full-Song Music over Dynamic
Directed Hypergraphs.” In: Proceedings of the Association for the Advancement
of Artificial Intelligence Conference (AAAI). 2021. arXiv: 2101.02402v1.

[14] Michael Scott Cuthbert and Christopher Ariza. “music21: A toolkit for
computer-aided musicology and symbolic music data.” In: (2010).

[15] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

[16] Colin Raffel and Daniel PW Ellis. “Intuitive Analysis, Creation, and Manip-
ulation of MIDI data WITH pretty_midi.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2014.

[17] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “MidiTok: A Python package for MIDI file tokeniza-
tion.” In: Extended Abstracts for the Late-Breaking Demo Session of the 22nd
International Society for Music Information Retrieval Conference. 2021. url:
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf.

[18] Nathan Fradet, Nicolas Gutowski, Fabien Chhel, and Jean-Pierre Briot.
“Byte Pair Encoding for Symbolic Music.” In: Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing. Ed. by Houda
Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Computa-
tional Linguistics, Dec. 2023, pp. 2001–2020. doi: 10.18653/v1/2023.emnlp-
main.123. url: https://aclanthology.org/2023.emnlp-main.123.

https://arxiv.org/abs/2101.02402v1
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf
https://doi.org/10.18653/v1/2023.emnlp-main.123
https://doi.org/10.18653/v1/2023.emnlp-main.123
https://aclanthology.org/2023.emnlp-main.123

3 G R A P H N E U R A L N E T W O R K S

3.1 introduction to graph neural networks

Graphs are the natural representation in many real-world applications such as
community detection, drug discovery, recommender systems, and many more. By
creating graph data structures it is possible to define elements from the perspective
of their relations while capturing structural information that is often lost in other
representations. For example, in a social network, a vertex can represent a person
and edges can represent their friends or connections within the network. This
structure is almost natural for such fields and it can pave the way towards a variety
of tasks such as community detection, link prediction, and node classification.

3.1.1 Challenges in Graph Representation

Graph structure is the natural representation for some domains, but learning from
graph-structured data is not straightforward. Unlike matrix or grid-structured data
such as images or sequences, graphs are not defined by a fixed structure, or even a
fixed size. The nodes within a graph do not respect a specific order and each node in
the graph can have a varying number of neighbors. This non-Euclidean structure [1]
requires non-traditional deep learning techniques. Although explicit connections in
a graph can help represent relationships, the complexity of these connections can
still make it difficult to capture long-range dependencies and hierarchical structures
in a meaningful way.

Standard deep learning approaches cannot effectively deal with the structural
complexities of graphs. For instance, the direct application of convolutional neu-
ral networks (CNNs) is non-trivial due to the irregular structure of graphs [2],
recurrent neural networks are not appropriate since graphs are usually not or-
dered structures [3], and finally, transformers sometimes struggle with the memory
requirements of big social network graphs [4].

3.1.2 Emergence of Graph Neural Networks

Graph Neural Networks (GNNs) have been introduced as a tool for learning on
graph-structured data [5]. The main difference between GNNs and other learning
techniques is the application of message-passing which allows to learn from the
graph structure of the data.

The foundational idea of GNNs is to leverage the graph’s structure by aggregating
and transforming information from a node’s neighbors. This approach enables
GNNs to create node embeddings that encapsulate both the features of individual
nodes and the structure of the graph. This has been shown to improve performance
in various tasks such as node classification, link prediction, and graph classification.

19

20 graph neural networks

For instance, in node classification, the goal is to predict the label of each node
by considering not only the features of the node itself but also the features of its
neighboring nodes. This task is common in social network analysis for detecting
fraudulent users or in biological networks for predicting protein functions [6].

Similarly, link prediction aims to predict the existence of edges between nodes,
which is crucial for applications such as recommending new friends in social net-
works or identifying potential interactions between proteins in biological networks
[7].

Graph classification, on the other hand, involves classifying entire graphs into
different categories. This is particularly useful in scenarios like classifying chemical
compounds based on their molecular structure or categorizing documents based
on their citation networks [5].

3.1.3 Formal Definition of Graphs

A graph is composed of two primary components: a set of vertices (or nodes) and a
set of edges that connect these vertices. Vertices represent the entities in a system,
while edges signify the relationships or interactions between these entities. Formally,
a graph G is defined as an ordered pair G = (V, E), where V is a set of vertices, and
E ⊆ V ×V is a set of edges, each representing a connection between two vertices. In
the case of undirected graphs, each edge is an unordered pair u, v, where u, v ∈ V. For
directed graphs, each edge is an ordered pair (u, v), indicating a directed relationship
from vertex u to vertex v. The degree of a vertex in an undirected graph is the
number of edges incident to it, while in a directed graph, each vertex has both an
in-degree and an out-degree, corresponding to the number of incoming and outgoing
edges, respectively.

Moreover, a matrix X ∈ R(|V|,k) with node features can be associated with the
graph, where every vertex is associated to a vector with k features, in which case we
call it an attributed graph. Graphs may also be weighted or unweighted. In a weighted
graph, each edge is assigned a scalar value, which might represent aspects like
distance or connection strength.

An adjacency matrix is a square matrix also used to represent a graph, where the
rows and columns correspond to the vertices. Each element in the matrix indicates
whether a pair of nodes is connected by an edge. In an unweighted graph, the
matrix contains binary values (0 or 1), with a 1 indicating the presence of an edge.
In a weighted graph, the matrix entries hold the weight of the edge connecting
the nodes. For directed graphs, the matrix is typically asymmetric, reflecting the
directionality of the edges. It is common to consider graphs with self-loops, in
which case the diagonal of the adjacency matrix is filled with non-zero values.

3.1.4 Graphs and Heterophily

Graphs can be homogeneous or heterogeneous. In a homogeneous graph, all nodes
and edges represent the same type of entities and relationships. An example is a
social network graph where all nodes are people and all edges represent the same
type of connection.

3.1 introduction to graph neural networks 21

Figure 3.1: An example of a heterogeneous graph. Two types of vertices user and page and
three types of edges (likes, follows and cites)

Figure 3.2: A score graph depicted on an exerpt from Eric’s Satie Gnosserie No. 1. The
different colors of the edges stand for different connection types.

In contrast, a heterogeneous graph contains nodes and edges of different types.
For example, a social network can be modeled by a heterogeneous graph, where
vertices can be either users or pages, and a user can friend another user or like a
page as shown in Figure 3.1.

A heterogeneous graph [8] can be formally defined by a quadruplet G = (V, E, T ,R)

where V and E are the set of nodes and the set of edges, respectively, T is the set of
node types, and R is the set of edge types (relations). Each node v ∈ V is associated
with a type t(v) ∈ T , and each edge e = (u, v) ∈ E is associated with a relation
r(e) ∈ R.

Heterogeneous graphs can be used to model a variety of scenarios in which the
features for each type or relation can vary in dimensionality. In such a setting, the
definition of an attributed graph from the previous section can be extended when
multiple types of vertices and edges are considered.

The music score graph from the previous chapter can also be viewed as a heteroge-
neous graph where there is a single node type for notes but many relation types for
the different edge conditions. A visual example is provided in Figure 3.2. In this
musical example, different edge types relate to different kinds of temporal relations
between notes: simulteneity (blue), following notes (red), silence (yellow), and notes
that occur after another note has started but before it ended. Modelling those four
relations, asserts a graph without disconnected components from start to finish of a
musical piece.

22 graph neural networks

3.2 the learning blocks of graph neural networks

A Graph Neural Network is a type of feed forward convolutional neural network
that takes as input an attributed graph. The output can vary depending on the
task, if can be: i) node-level, such as node classifications or embeddings; ii) edge-
level, like predicting relationships between nodes or iii) graph-level outputs, such
as a single prediction for the entire graph. GNN training works by iteratively
updating node embeddings, through message passing, where each node updates
its feature representation by aggregating information from its neighboring nodes
for each layer of the network. This involves combining the node’s own features
with those of its neighbors. As the network deepens, the node’s representation
captures more complex, and more distant relationships within the graph. During
training, the GNN optimizes a loss function (e.g., for classification or regression)
using gradient-based methods, like backpropagation.

Graph Neural Networks (GNNs) utilize various types of convolutions to process
and learn from graph-structured data. These convolutions can be broadly catego-
rized into spectral methods and spatial methods [9]. Each of these methods has
distinct characteristics and computational requirements.

Regardless of the convolution method, almost every learning process from graph
data is based on the principle of message passing to propagate information across
the graph. The message passing process is defined by the following steps:

1. Initialization: Each node is assigned a feature vector, which can include some
important properties. For example, in a musical score, this could include pitch,
duration, and onset time for each node/note.

2. Message Generation: Each node generates a message to send to its neighbors.
The message typically includes the node’s current feature vector and any edge
features that describe the relationship between the nodes. A message can be
for example a linear transformation of the neighbor’s node features.

3. Message Aggregation: Each node collects messages from its 1-hop neighbors.
We define a l-hop neighborhood of a node in a graph consists of all nodes that
are reachable from the given node within l edges or steps. The aggregation
function is usually a permutation invariant function such as sum, mean, or
max and it combines these messages into a single vector, ensuring that the
node captures information from its entire neighborhood.

4. Node Update: The aggregated message is used to update the node’s feature
vector. This update often involves applying a neural network layer (like a fully
connected layer) followed by a non-linear activation function (such as ReLU).

5. Iteration: Steps 2–4 are repeated for a specified number of iterations or layers,
allowing information to propagate through the graph. With each iteration,
nodes incorporate information from progressively larger neighborhoods.

By using this recursive process, a neural network can learn from graph-structured
data. The whole process can be summarized in the following equations:

3.2 the learning blocks of graph neural networks 23

h(0)
v = xv (3.1)

m(l)
v = agreggateu∈N (v)M

(k)(h(l−1)
v , h(l−1)

u , evu) (3.2)

h(l)
v = σ

(
U(l)

(
h(l−1)

v , m(l)
v

))
(3.3)

Where xv represents the input node features of node v, euv represents the potential
edge features of (u, v), N (v) denotes the neighbors of v, σ is a non-linear activation
function, l is the current layer, and U, M are feedforward neural networks [3].

Message passing can be also viewed from a matrix percpective, where messages
are just the dot product of features from the previous layer with the adjacency
matrix. Then a simplified version of the message passing process can be expressed
as:

H(l) = σ
(

A(H(l−1)M(l))U(l)
)

(3.4)

where A is the adjacency matrix, U, M are feedforward neural networks and σ is a
non-linear activation function.

3.2.1 Spectral Methods

Spectral methods for graph deep learning are based on the spectral decomposition
of the graph Laplacian. The key idea is to use the eigenvalues and eigenvectors of
the Laplacian to perform convolution operations in the frequency domain. Spectral
methods have been the initial blocks for the kickstart of the graph deep learning
field. Therefore, not all work is based on the message passing principle defined
earlier although as the field progressed recent spectral approaches are build upon
message passing. The graph Laplacian L, is typically defined as:

L = D − A or L = D
1
2 AD

1
2 or L = I − D− 1

2 AD− 1
2 (3.5)

where D denotes the degree matrix, i.e. a diagonal matrix with the degree
(number of edges) of each node in a graph, A denotes the adjacency matrix of the
graph, and I is an identity matrix. The laplacian relates to many useful properties
for graphs and it captures key structural information about a graph, including its
connectivity and smoothness of signals over nodes.

Some key models for spectral graph neural networks include Spectral CNNs,
ChebNet and the Graph Convolutional Network.

spectral cnns The first notable spectral-based GNN was proposed by Bruna et
al. [10]. The authors proposed convolution on graphs via a spectral decomposition
of the graph Laplacian. The spectral convolution of a signal x with a graph filter g
can be defined as:

x̂ = Ugθ(Λ)UTx (3.6)

where U is the matrix of eigenvectors of the Laplacian, Λ is the diagonal matrix
of its eigenvalues, and gθ(Λ) is a diagonal matrix of spectral filter parameters.
However, the computational complexity of this method is high due to the need for
eigenvalue decomposition.

24 graph neural networks

chebnet Defferrard et al. introduced ChebNet [11], which uses Chebyshev
polynomials to approximate the convolution operation, reducing computational
complexity and improving efficiency. The Chebyshev polynomials are used to
construct the filter:

gθ(Λ) ≈
K

∑
k=0

θkTk(Λ̃) (3.7)

where θ ∈ Rk is a vector of learnable Chebyshev coefficients, Λ̃ ∈ [−1, 1] is
rescaled from Λ, the Chebyshev polynomials Tk+1(Λ) = 2ΛTk(Λ)− Tk − 1(Λ) are
recursively defined with T0(Λ) = 1 and T1(Λ) = Λ, and k controls the size of filters,
i.e., localized in k-hop neighborhood of a vertex.

graph convolutional network (gcn) Kipf and Welling [6] proposed the GCN
model, which simplifies the convolution operation using a first-order approximation
of spectral convolutions. The convolution operation in GCN is defined as:

H(l+1) = σ(D̃−1/2ÃD̃−1/2H(l)W(l)) (3.8)

where Ã = A + I is the adjacency matrix with added self-loops, D̃ is the degree
matrix of Ã , H(l) is the feature matrix at layer l , W(l) is the weight matrix, and σ

is an activation function.
Due to the simplicity, efficacy and low memory requirements of the GCN model,

it is regarded one of the foundational blocks of graph convolutional networks
and still achieves comparable performance to state-of-the-art approaches on graph
benchmarks [12].

3.2.2 Spatial Methods

Spatial methods define convolutions directly on the graph structure, using the
"spatial" relationships between nodes These methods aggregate information from a
node’s neighborhood to update its representation. Some popular spatial methods
for graph convolution include GraphSAGE and Graph Attention Networks.

graphsage GraphSAGE (Graph Sample and AggregatE) [13] is a popular spatial
method that generates node embeddings by sampling and aggregating features
from a node’s local neighborhood . The GraphSAGE framework defines several
aggregation functions, including mean, LSTM, and pooling. The general aggregation
operation for a node v is:

h(l+1)
v = σ

(
W · concat

(
h(l)v , agreggate

(
{h(l)u , ∀u ∈ N (v)}

)))
(3.9)

where h(l)v is the embedding of node v at layer l, N (v) is the set of neighbors of v ,
W is the weight matrix, and σ is an activation function.

graph attention network (gat) Graph Attention Networks (GATs) [14] in-
troduce attention mechanisms to assign different weights to different neighbors,

3.2 the learning blocks of graph neural networks 25

allowing the model to focus on the most relevant nodes when aggregating informa-
tion. The attention mechanism is defined as:

eij = LeakyReLU
(

aT [Whi∥Whj
])

(3.10)

where eij is the attention coefficient between nodes i and j, a is the attention
vector and ∥ denotes concatenation. The attention coefficients are then normalized
using a softmax function. The entire convolutional block is then described by:

h(l+1)
i = ∑

j∈N (i)
softmax

(
ei,j
)

W(l)h(l)j (3.11)

Graph Attention Networks (GATs) are one of the most popular graph convolu-
tional blocks and they achieve high accuracy in many tasks. Many variants of GATs
have been proposed, such as GATv2 [15].

3.2.3 Convolution in Heterogeneous Graphs

Targeted achitectures for applying graph convolution on heterogeneous graphs have
been recently developed, however, any convolutional message-passing network can
be adapted for heterogeneous graphs.

To understand convolution in heterogeneous graph we first need to define relation
triplets. If TN is the set of node types in the graph and R is the set of edge types,
the set of relations triplet is composed by elements (tu, r, tv) ∈ TN ×R× TN .

generic case The process of applying a message-passing network to heteroge-
neous graphs requires two steps. First, multiply the number of convolutional blocks
(a block is one message passing iteration) per layer by the number of different
relation triplets present in the input graph, and second, define an aggregation
process before iterating the message and aggregation steps. This process is visually
depicted in Figure 3.3.

rgcn A Relational Graph Convolutional Network (RGCN) [16] is an extension
of the Graph Convolutional Network (GCN) designed to handle graphs with
multiple types of relations, making it particularly useful for heterogeneous graphs
with a single node type. In an RGCN, each node’s representation is updated by
aggregating information from its neighbors, taking into account the type of edge
(relation) connecting them. This allows the model to learn different transformations
for different types of relations.

In an RGCN, the hidden representation h(l)
v of a node v at layer l is computed as:

h(l+1)
v = σ

(
∑

r∈R
∑

u∈N r
v

1
cv,r

W(l+1)
r h(l)

u + W(l)
0 h(l)

v

)
(3.12)

where R is the set of all relation types in the graph, N r
v denotes the set of

neighboring nodes u of node v that are connected by relation type r, W(l)
r is the

learnable weight matrix associated with relation r at layer l + 1, W(l)
0 is the weight

matrix for the self-loop, which applies to the node’s own features at layer l + 1, cv,r

26 graph neural networks

Figure 3.3: Comparing the graph convolution architecture between a homogeneous and a
heterogeneous graph model.

is a normalization constant that is typically set to the degree of node v with respect
to relation r, ensuring that the contribution of each neighbor is appropriately scaled,
h(l)

u represents the hidden state of the neighboring node u from the previous layer l,
and σ is a non-linear activation function.

The use of distinct weight matrices for each relation type allows the RGCN to
capture the unique characteristics of each type of connection within the graph,
enhancing its ability to model multi-relational data effectively.

the heterogeneous graph transformer The Heterogeneous Graph Trans-
former (HGT) [17] is a graph neural network architecture designed to model
heterogeneous graphs where nodes and edges can have multiple types. HGT lever-
ages attention mechanisms to learn representations of nodes that account for the
different types of nodes and relationships in the graph. The key idea is to apply a
type-specific attention mechanism that can dynamically focus on different neighbors
depending on their types.

For a node v of type tv, the hidden representation h(l)
v at layer l is updated using

a type-specific attention mechanism. The update rule can be formalized as follows:

m(l+1),r
uv = ⊕k∈K

(
h(l)v W(l+1,r)

M

)
(3.13)

ff(l+1,r)
uv = ⊕k∈Ksoftmax

(
k(l+1,r,k)

u · q(l+1,r,k)
v ∗ µ

)
(3.14)

h(l+1)
v = W(l+1,tv)

up σ
(

aggregateu∈N tu ,r
v

m(l+1,r)
uv · ff(l+1,r)

uv

)
+ h(l)

v (3.15)

where TN is the set of node types in the graph and R is the set of edge types,
R stands for the set of relation triplets in the graph (tu, r, tv) ∈ TN × R × TN ,
N tu,r

v represents the set of neighboring nodes u of node v that have type tu and

3.3 taxonomy of graph neural network tasks 27

are connected by relation r. α
(l,r)
vu is the attention coefficient between node v and

its neighbor u that depends on keys k(l+1,r,k)
u of the source node and queries of

the destination node q(l+1,r,k)
v which are linear transformations of h(l)u and h(l)v

accordingly for head k, ⊕ concatenates information from each head k up to the
total number of heads K, finally σ is a non linear activation functions and µ a
normalization term that depends on the degree of v.

The attention mechanism in HGT is inspired by the Transformer architecture, but
it is adapted to handle the heterogeneity of the graph. The attention mechanism
focuses on the type-specific interactions between nodes and uses different query,
key, and value projections depending on the node and edge types.

After multiple layers of HGT, the final node representation h(L)
v is obtained by

stacking and applying the type-specific attention mechanism over L layers. This
allows HGT to capture both local and global information across different node and
edge types in the graph.

3.2.4 Hybrid Models for Graph Convolution

Many approaches that combine transformers or sequential models with graph
convolution have been proposed; however, the most notable work is the "General,
Powerful, Scalable Graph Transformer (GPS)" [18] which processes a graph at each
layer by simultaneously passing it through both a GNN layer and a Transformer
layer. Subsequently, it joins the resulting node embeddings with an MLP. This
design enables GPS to combine the GNN’s ability to capture structural information
from local neighborhoods and the Transformer’s ability to capture long-range
relationships between nodes. Furthermore, GPS is flexible, allowing the use of any
homogeneous GNN and Transformer layer. When the Transformer layer uses a
linear attention mechanism, the overall complexity of GPS becomes linear in relation
to the number of nodes and edges. Other derivative work has proposed variants
of GPS achieving high accuracy in benchmark tasks for graph classification [12].
However, applying hybrid models to larger graphs remains non-trivial.

3.3 taxonomy of graph neural network tasks

Graph Neural Networks (GNNs) can be applied to various supervised graph
learning tasks, including node classification, link prediction, and graph classification.
Each of these tasks has distinct objectives and applications that take advantage of
the power of GNNs to process and learn from graph-structured data.

3.3.1 Node Classification

Node classification or, more generally, node property prediction involves predicting
the labels or properties of individual nodes within a graph. This task is essential in
various applications, such as:

• Social Network Analysis: Detecting fraudulent users or predicting user
interests based on their connections and interactions.

28 graph neural networks

• Biological Networks: Predicting the function of proteins or genes by analyzing
their interactions within a biological network.

• Music Graphs: Node classification can be used for any music tasks that
require prediction at the note level, e.g. pitch spelling (predicting the note
name and accidentals of each note).

Several methods have initially been developed for node classification using GNNs,
such as GCN and GraphSAGE.

3.3.2 Link Prediction

Link prediction aims to predict the existence of edges between nodes. This task is
crucial in applications like:

• Recommender Systems: Suggesting new connections or friends in social
networks based on existing connections.

• Biological Networks: Predicting interactions between proteins or genes to
understand biological processes.

• Music Graphs: Specific kind of link prediction task could be to ask the
question whether notes u, v share the same property, e.g. do they belong to
the same voice, octave, chord?

Since the prediction of edges can be viewed as altering the existing graph or
creating a new graph, methods for link prediction usually employ graph auto-
encoders or graph generative models.

variational graph auto-encoders (vgae) VGAE is a probabilistic model for
unsupervised learning of graph-structured data, using a variational auto-encoder
framework to generate latent representations of nodes and predict the likelihood of
edges between them [19].

graph generative models Graph generative models, such as GraphRNN,
leverage generative adversarial networks to learn the underlying distribution of
graphs and generate new edges or entire graph structures. These models are
particularly useful in scenarios where the graph is incomplete or evolving [20].

3.3.3 Graph Classification

Graph classification involves classifying entire graphs into different categories. This
is particularly useful in scenarios like:

• Chemical Compound Classification: Classifying molecules based on their
structure and properties to predict their chemical activity.

• Document Classification: Categorizing documents based on their citation
networks or content relationships.

3.4 training techniques for graph neural networks 29

• Music Graphs: Graph classification can be applied to any problem that
searches for a global answer on an entire piece of music, e.g. composer
classification.

Since graph classification uses the entire graph to predict a single global label or
property and graphs may vary in size, it usually employs some kind of contraction
or aggregation of all latent representations of nodes after graph convolution. Many
models apply the contractions in many steps to incrementally select the most
representative components of the graph. Models such as DiffPool and hierarchical
graph convolutional networks are such examples.

diffpool DiffPool [21] introduces a differentiable pooling mechanism to hierar-
chically cluster nodes and create a coarsened graph representation. This method
enables the GNN to learn hierarchical structures and improves its performance on
graph classification tasks.

hierarchical graph convolutional networks Hierarchical graph convo-
lutional networks [22]use multiple layers of graph convolutions and pooling op-
erations to capture information at different levels of granularity. This approach
helps in learning both local and global graph features, enhancing the classification
accuracy.

3.4 training techniques for graph neural networks

Training Graph Neural Networks (GNNs) involves unique challenges, particularly
when dealing with large graphs. This section discusses the differences in training
techniques for small and large graphs, highlighting key methods used to handle
these challenges.

3.4.1 Training on Small Graphs

Training GNNs on small graphs is relatively straightforward. The entire graph can
typically be loaded into memory, allowing for efficient batch training. Standard
gradient descent methods can be used to optimize the network parameters.

batch training Batch training involves processing many graphs in a single
forward and backward pass. This method is feasible for small graphs where mem-
ory constraints are not a major issue. The process includes forward propagation
through the network for many graphs simultaneously, computing the loss, and then
performing backpropagation to update the weights. The batch size is defined by
the number of graphs used for each pass, but the total number of nodes and edges
within each batch contributes to the memory limitations of the method.

30 graph neural networks

3.4.2 Sampling Techniques for Large Graphs

Training GNNs on large graphs presents significant challenges due to memory
and computational constraints. When a graph is too large to fit into memory, it is
impossible to train a model without partitioning the graph. To address this issue,
various sampling techniques have been developed that approximate the convolution
operations on a smaller subset of the graph.

3.4.2.1 Node-wise Sampling

Node-wise sampling is a specific type of sampling technique which generates node
embeddings by sampling and aggregating features from a node’s local neighbor-
hood that was introduced in GraphSAGE [13]. GraphSAGE is the first to consider
inductive representation learning on large graphs. The node-wise sampling ap-
proach in GraphSAGE allows for efficient training on large graphs by sampling a
fixed number of neighbors for each node, rather than using the entire neighborhood.
This reduces the computational complexity and makes the model scalable.

Another notable approach to node sampling is VR-GCN [23], which aims to
reduce the size of the sampled nodes by analyzing the variance of sampling as a
means to avoid the neighborhood expansion problem of node-wise sampling. The
neighborhood expansion problem in GNNs occurs when, with deeper layers, a
node gathers information from too many distant nodes, leading to over-smoothing
and loss of useful local details.

3.4.2.2 Layer-wise Sampling

Layer-wise sampling techniques were initially proposed to tackle the neighborhood
expansion problem. Instead of sampling nodes and their neighbors collectively
across all layers, layer-wise sampling is the process of making sampling decisions
for each individual layer of the network.

fastgcn FastGCN uses importance sampling to approximate the convolution
operation, enabling efficient minibatch training on large graphs [24]. The key
idea is to sample a subset of nodes and their neighbors, reducing the amount of
computation and memory required. The convolution operation in FastGCN is the
same as GCN [6] but the sampled adjacency and degree matrices are used instead
of the entire degree and adjacency matrix of the graph.

ladies Layer-Dependent Importance Sampling or LADIES for short [25] is a
layer-wise sampling technique that considers previously sampled nodes for calcu-
lating layer-dependent sampling probability. Based on the sampled nodes, LADIES
chooses their neighborhood nodes and computes their importance probability.
Subsequently, it samples a fixed subset of nodes for each batch.

The LADIES sampling process computes dense computation graphs and avoids
the oversmoothing problem of deep networks caused by the extreme expansion
of the receptive field. Moreover, LADIES achieves low memory cost and reduced
time complexity compared to other sampling paradigms, and tackles neighborhood
expansion problems by controlling sampling variance.

3.4 training techniques for graph neural networks 31

3.4.2.3 Graph-wise Sampling

Graph-wise sampling focuses on partitioning the input graph into computationally
efficient and meaningful subgraphs.

cluster-gcn In Cluster-GCN [26], the graph is first partitioned into clusters,
and then each cluster is treated as a mini-batch. This method ensures that the nodes
within each cluster are densely connected, which helps in preserving the local
structure of the graph. The convolution operation for a node v in Cluster-GCN is:

h(l+1)
v = σ

(
∑

u∈N (v)∩C

1√
dvdu

W(l)h(l)u

)

where N (v) is the set of neighbors of node v, C is the cluster to which node v
belongs, dv and du are the degrees of nodes v and u, respectively, W(l) is the weight
matrix, and σ is the activation function.

graphsaint GraphSAINT [27] employs subgraph sampling and training, im-
proving the scalability and efficiency of GNNs for large-scale graphs. It achieves
this in two steps. First, eliminate the sampling bias by applying a loss normalization
and aggregation normalization, and second, it minimizes the sampling variance by
controlling the edge sampling probability during training.

The GraphSAINT framework focuses its sampling strategy on the edges rather
than nodes, therefore solving the neighborhood expansion problem while control-
ling sampling bias and variance.

3.4.3 Music Graphs and Sampling

Music graphs, i.e. graphs created from music scores, do not necessarily correspond
to either of the aforementioned categories. A music graph can be rather big with
thousands of nodes and edges but at the same time, it is never vastly big such
as a social network with billions of nodes and edges. So, what would be the best
paradigm for training models on music graphs?

The size of a music graph depends on many music attributes such as orchestration,
form, duration of the piece, etc. Therefore, the size of a music graph can vary
considerably between pieces. Since the size variation is large, batching many graphs
together without applying sampling is a challenge. However, music graphs are
small enough to fit individually in memory.

An applicable training paradigm would be to only use individual music graphs
without batching or sampling. Nevertheless, a more memory- and time-efficient
paradigm should be applicable to best take advantage of the available resources.
Graph Sampling techniques are memory- and time- efficient but are they appropri-
ate for music graphs?

From the presented sampling techniques, node-wise sampling stands out due to
its simplicity and effectiveness. Node-wise sampling, as used in GraphSAGE [13],
offers a balance between efficiency and performance. Furthermore, the nature of
music graphs does not present the risk of neighborhood expansion, namely that

32 graph neural networks

with each additional layer, a node aggregates information from progressively larger
neighborhoods. Nevertheless, any other graph sampling technique could be applied
if no musical constraints are considered.

Music, even when represented as a graph, has a time component with connects
its elements together. Therefore, a sampling method that samples arbitrary nodes
from music graphs or partitions a music piece based on graph-related conditions
might not be entirely appropriate for music. Based on these considerations, we offer
a more complete answer and approach to music graph sampling in Chapter 11.

3.5 challenges and future directions

Despite the success of Graph Neural Networks (GNNs) in various applications,
several challenges and open research directions remain. Addressing these challenges
will further enhance the capabilities and applicability of GNNs.

3.5.1 Deep Architectures

One of the main challenges in GNNs is developing deeper architectures. Current
models often use only a few layers, as deeper models tend to suffer from issues such
as over-smoothing and vanishing gradients. Over-smoothing occurs when repeated
aggregation operations cause node representations to become indistinguishable,
even for nodes from different classes. Additionally, deeper models are more prone
to overfitting, especially when the amount of labeled data is limited [28].

To address these issues, researchers have proposed several approaches, such as
residual connections and skip connections, which help maintain gradient flow and
prevent over-smoothing. For example, the Jumping Knowledge Network (JK-Net)
aggregates outputs from different layers to adaptively select the most informative
representations [29].

3.5.2 Dynamic Graphs

Most GNN models assume static graphs, but many real-world networks are dy-
namic, with nodes and edges changing over time. Social networks, transportation
networks, and communication networks are examples where the graph structure
evolves. Developing GNNs that can handle dynamic graphs is crucial for applica-
tions requiring real-time analysis and predictions [30].

Dynamic GNNs aim to capture temporal patterns and evolving structures within
graphs. Techniques such as Temporal Graph Networks (TGNs) and Dynamic Graph
Convolutional Networks (D-GCNs) incorporate time-dependent information to
model the changes in the graph over time [31].

3.5.3 Scalability

Scalability is a major concern for GNNs, especially when dealing with large-scale
graphs. Efficient sampling techniques and parallelization strategies are crucial for

3.5 challenges and future directions 33

improving the scalability of GNN models. Although methods like GraphSAGE [13]
and FastGCN [24] have made significant progress, there is still a need for more
scalable approaches that can handle extremely large graphs with billions of nodes
and edges.

Recent advancements such as GraphSAINT [27] and Cluster-GCN [26] have
introduced efficient sampling and clustering methods to reduce computational
complexity and memory requirements. However, further research is needed to
develop models that can scale seamlessly with the growing size of real-world
graphs.

3.5.4 Heterogeneous Graphs

Heterogeneous graphs contain multiple types of nodes and edges, representing
different entities and relationships within a single graph. These graphs are common
in applications such as knowledge graphs, recommender systems, and biological
networks. Traditional GNNs, designed for homogeneous graphs, may not effectively
capture rich semantic information in heterogeneous graphs [16].

Heterogeneous Graph Neural Networks (HGNNs) extend GNNs to handle het-
erogeneous graphs by incorporating type-specific transformations and aggregation
functions. For example, Relational graph convolutional networks (R-GCNs) use
different weight matrices for different types of edges, allowing the model to learn
from the various interactions in the graph [16]. Further research is needed to de-
velop more sophisticated HGNNs that can leverage the complex structures and
semantics in heterogeneous graphs.

3.5.5 Explainability and Interpretability

A major limitation of deep models and therefore also GNNs is that they are not
inherently interpretable. Understanding the decision-making process of GNNs is
essential for making transparent, fair and controllable models.

Some methods have been developed to make GNNs more interpretable, such
as graph attention networks (GATs) that assign attention weights to different
neighbors, highlighting their relative importance [14]. Many post hoc methods for
GNN explanations attempt to identify small subgraphs that are most important
for making individual predictions. These methods can be categorized in four
levels: gradient-based methods, perturbation-based methods, decomposition-based
methods, and surrogate methods [32].

Gradient-based methods such as [33, 34] compute target prediction gradients
with respect to input characteristics by backpropagation to approximate input im-
portance. Perturbation-based methods such as [35, 36] study the output variations
with respect to different input perturbations. Surrogate methods such as [37, 38]
employ an interpretable surrogate model to approximate the predictions of the
complex deep model for the neighboring nodes of the input example. Decompo-
sition methods such as [39] measure the importance of input features and edges
by decomposing the original model predictions. In Chapter 9, we will introduce a
framework for applying and visualizing such explanations on music score graphs.

34 graph neural networks

Despite the development of GNNs in terms of explainability, there are still many
paths left unexplored.

3.5.6 More Powerful Aggregation Functions

Most of the existing spatial graph convolutional network models are based on
neighborhood aggregations. These models have been proved theoretically to be
at most as powerful as one-dimensional Weisfeiler-Lehman graph isomorphism
tests, which suggests that they can effectively capture the structural properties of
graphs. To achieve higher expressive power, research is also focused on investigating
the expressiveness of aggregation functions and architectures that go beyond the
limitations of current models [40–42].

3.6 conclusion

In summary, while GNNs have achieved remarkable success in various applications,
several challenges remain. There are even more challenges when applying GNNs
on music but this observation also leaves room for innovation.

In our work, we will address some of these challenges related to music graphs
specifically or to general graph deep learning such as scalability, heterophily, ex-
plainability. For heterophily, we have developed across our work models, sampling
techniques and representations that deep with heterogeous music graphs. For scal-
ability, we have developped in Chapter 11 a library that handles efficiently and
intuitively large collections of music score graphs, withing this library we adress
specifically issues such as sampling techniques and memory management for music
graphs. In, chapter 9, we investigate GNN explainability for music graphs and we
develop interpretable visual feedback.

Furthermore, we touch upon issues that are more prominent in music graph
learning. In Chapter 4, we outline the advantages of graphs over other architectures
and representations for graph-level musical tasks. In Chapter 5, we tackle extreme
label imbalances in node classification for cadence detection. In Chapter 6 and in
Chapter 11, we experiment with hybrid architectures that combine GNNs with
sequential models. In Chapters 7 and 8, we apply algorithmic post hoc methods to
improve edge-level tasks for voice separation. Finally, in Chapter 10, we develop
dedicated graph convolution techniques that utilize inductive bias to improve
performance on graph, edge, and node-level tasks for music.

references

[1] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. “Geometric deep learning: going beyond euclidean data.”
In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[2] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. “The emerging field of signal processing on graphs:

3.6 references 35

Extending high-dimensional data analysis to networks and other irregular
domains.” In: IEEE signal processing magazine 30.3 (2013), pp. 83–98.

[3] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks:
Foundations, Frontiers, and Applications. Springer, 2022.

[4] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. “Do transformers really perform badly for
graph representation?” In: Advances in Neural Information Processing Systems
(NeurIPS 34 (2021), pp. 28877–28888.

[5] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. “A comprehensive survey on graph neural networks.”
In: IEEE transactions on neural networks and learning systems 32.1 (2020),
pp. 4–24.

[6] Thomas N Kipf and Max Welling. “Semi-supervised classification with
graph convolutional networks.” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2017.

[7] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. “Graph con-
volutional networks: a comprehensive review.” In: Computational Social
Networks 6.1 (2019), pp. 1–23.

[8] Yizhou Sun and Jiawei Han. “Mining heterogeneous information networks:
a structural analysis approach.” In: ACM SIGKDD explorations newsletter
14.2 (2013), pp. 20–28.

[9] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao,
Yifang Qin, Jianhao Shen, Fang Sun, Zhiping Xiao, et al. “A comprehensive
survey on deep graph representation learning.” In: Neural Networks (2024),
p. 106207.

[10] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral
networks and locally connected networks on graphs.” In: Proceedings of the
International Conference on Learning Representations (ICLR). 2014.

[11] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolu-
tional neural networks on graphs with fast localized spectral filtering.” In:
Advances in Neural Information Processing Systems (NeurIPS 29 (2016).

[12] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. “Open graph benchmark:
Datasets for machine learning on graphs.” In: Advances in Neural Information
Processing Systems (NeurIPS 33 (2020), pp. 22118–22133.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[14] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. “Graph Attention Networks.” In: Proceedings
of the International Conference on Learning Representations (ICLR). 2018.

[15] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph atten-
tion networks?” In: Proceedings of the International Conference on Learning
Representations (ICLR) (2022).

36 graph neural networks

[16] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den
Berg, Ivan Titov, and Max Welling. “Modeling relational data with graph
convolutional networks.” In: The semantic web: 15th international conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15. Springer.
2018, pp. 593–607.

[17] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. “Heterogeneous
graph transformer.” In: Proceedings of the web conference 2020. 2020, pp. 2704–
2710.

[18] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan
Luu, Guy Wolf, and Dominique Beaini. “Recipe for a general, powerful,
scalable graph transformer.” In: Advances in Neural Information Processing
Systems (NeurIPS 35 (2022), pp. 14501–14515.

[19] Thomas N Kipf and Max Welling. “Variational graph auto-encoders.” In:
NIPS Workshop on Bayesian Deep Learning (2016).

[20] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec.
“Graphrnn: Generating realistic graphs with deep auto-regressive models.”
In: Proceedings of the International Conference on Machine Learning (ICML).
PMLR. 2018, pp. 5708–5717.

[21] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton,
and Jure Leskovec. “Hierarchical graph representation learning with dif-
ferentiable pooling.” In: Advances in Neural Information Processing Systems
(NeurIPS. Vol. 31. 2018.

[22] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi
Yu, and Can Wang. “Hierarchical graph pooling with structure learning.”
In: Proceedings of the Association for the Advancement of Artificial Intelligence
Conference (AAAI). 2019.

[23] Jianfei Chen, Jun Zhu, and Le Song. “Stochastic training of graph convo-
lutional networks with variance reduction.” In: International Conference on
Machine Learning (PMLR). 2018.

[24] Jie Chen, Tengfei Ma, and Cao Xiao. “Fastgcn: fast learning with graph
convolutional networks via importance sampling.” In: Proceedings of the
International Conference on Learning Representations (ICLR). 2018.

[25] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan
Gu. “Layer-dependent importance sampling for training deep and large
graph convolutional networks.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2019.

[26] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui
Hsieh. “Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks.” In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining. 2019, pp. 257–
266.

3.6 references 37

[27] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. “GraphSAINT: Graph Sampling Based Inductive
Learning Method.” In: Proceedings of the International Conference on Learning
Representations (ICLR). 2020.

[28] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. “Deepergcn:
All you need to train deeper gcns.” In: arXiv preprint arXiv:2006.07739
(2020).

[29] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. “Representation learning on graphs
with jumping knowledge networks.” In: Proceedings of the International
Conference on Machine Learning (ICML). PMLR. 2018, pp. 5453–5462.

[30] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. “Representation learning for
dynamic graphs: A survey.” In: Journal of Machine Learning Research 21.70

(2020), pp. 1–73.

[31] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Fed-
erico Monti, and Michael Bronstein. “Temporal graph networks for deep
learning on dynamic graphs.” In: Proceedings of the International Conference
on Machine Learning (ICML). 2020.

[32] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. “Explainability in
graph neural networks: A taxonomic survey.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 45.5 (2022), pp. 5782–5799.

[33] Federico Baldassarre and Hossein Azizpour. “Explainability techniques for
graph convolutional networks.” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2019.

[34] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and
Heiko Hoffmann. “Explainability methods for graph convolutional neural
networks.” In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 10772–10781.

[35] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. “Gnnexplainer: Generating explanations for graph neural net-
works.” In: Advances in Neural Information Processing Systems (NeurIPS 32

(2019).

[36] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. “Interpreting
graph neural networks for NLP with differentiable edge masking.” In:
Proceedings of the International Conference on Learning Representations (ICLR).
2021.

[37] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang.
“Graphlime: Local interpretable model explanations for graph neural net-
works.” In: IEEE Transactions on Knowledge and Data Engineering 35.7 (2022),
pp. 6968–6972.

[38] Minh Vu and My T Thai. “Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks.” In: Advances in Neural Information
Processing Systems (NeurIPS 33 (2020), pp. 12225–12235.

38 graph neural networks

[39] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T
Schütt, Klaus-Robert Müller, and Grégoire Montavon. “Higher-order expla-
nations of graph neural networks via relevant walks.” In: IEEE transactions
on pattern analysis and machine intelligence 44.11 (2021), pp. 7581–7596.

[40] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How power-
ful are graph neural networks?” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2019.

[41] Lisa Schneckenreiter, Richard Freinschlag, Florian Sestak, Johannes Brand-
stetter, Günter Klambauer, and Andreas Mayr. “GNN-VPA: A Variance-
Preserving Aggregation Strategy for Graph Neural Networks.” In: Proceed-
ings of the International Conference on Machine Learning (ICML). 2024.

[42] Eran Rosenbluth, Jan Toenshoff, and Martin Grohe. “Some might say all
you need is sum.” In: Proceedings of the International Conference on Learning
Representations (ICLR). 2023.

Part II

I N D I V I D U A L C O N T R I B U T I O N S

4 S Y M B O L I C M U S I C R E P R E S E N TAT I O N S
F O R C L A S S I F I C AT I O N TA S K S

Title: Symbolic Music Representations for Classification Tasks: A Systematic
Evaluation

Published In Proceedings of the 24th International Society for Music Information
Retrieval Conference (ISMIR), Milano Italy, 2023.

Authors: Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer,
Carlos Cancino-Chacon

Contribution: In this work, I was mostly involved in the graph-related part
of the experiments and setup by providing insights for designing and training
graph-based representations and models. Furthermore, I participated in designing
some of the experiments and writing the paper.

Abstract: Music Information Retrieval (MIR) has seen a recent surge in deep
learning-based approaches, which often involve encoding symbolic music (i.e.,
music represented in terms of discrete note events) in an image-like or language-like
fashion. However, symbolic music is neither an image nor a sentence, and research
in the symbolic domain lacks a comprehensive overview of the different available
representations. In this paper, we investigate matrix (piano roll), sequence, and
graph representations and their corresponding neural architectures, in combination
with symbolic scores and performances on three piece-level classification tasks. We
also introduce a novel graph representation for symbolic performances and explore
the capability of graph representations in global classification tasks. Our systematic
evaluation shows advantages and limitations of each input representation. Our
results suggest that the graph representation, as the newest and least explored
among the three approaches, exhibits promising performance, while being more
light-weight in training.

4.1 introduction

The deep learning boom has profoundly impacted MIR, including research involv-
ing symbolic music representations (MIDI, scores, etc.). A large body of recent
literature focuses on adapting existing architectures from computer vision and
natural language processing to the field of symbolic MIR. These approaches often
treat music data as an image (piano roll), as a sequence of language tokens, or, more
recently, as a graph. However, a piece of music is neither an image nor a sentence
or graph, therefore, a critical question still remains open concerning the choice of
input representations for symbolic music.

41

42 symbolic music representations for classification tasks

A source of complexity in symbolic music arises from the different modalities
of data such as scores and performances. A score contains information about
music notation and often includes rich hierarchically structured information such
as metrical structure and voicing. Symbolic music performances, on the other
hand, such as those recorded on a MIDI-capable instrument, consist of a stream
of controller events. Extracting a hierarchical structure from such a stream is not
a trivial task [1–3]. Furthermore, such performance data omit some of the rich
information that a score provides, such as pitch spelling and articulation markings,
but instead, it can include information about expression, timing, local tempo, and
performance dynamics.

Recent research has produced relatively large datasets containing scores and
performances at the symbolic level, including efforts to align these [4–6]. Motivated
by these developments, we present an attempt to shed light on questions revolving
around the input representation of symbolic music for deep-learning-based MIR.
We formulate an empirical framework where we test multiple input representations,
models, and piece-level classification tasks.

In terms of input representations, we investigate piano rolls, tokenized sequences,
and graphs. We evaluate multiple models based on these representations on three
different tasks: composer classification, performer classification, and (playing) diffi-
culty assessment. Furthermore, having datasets containing both performances and
their corresponding scores such as ATEPP and ASAP [4, 5], allows us to apply each
combination of representation and task to either score or performance. Our goal is
to contribute an experimental overview of different symbolic music representations.
The contributions of this work are threefold:

1. We investigate the performance and complexity of matrix, sequence and
graph input representations, and their corresponding neural architectures (re-
spectively Convolutional Neural Networks, Transformers, and Graph Neural
Networks).

2. We compare the impact that the different information contained in symbolic
scores and performances has on different piece-level classification tasks.

3. We introduce a new graph representation for symbolic performances, and
explore the capability of graph representations in classification tasks.

4.2 related work

The complexity of representing music data has been discussed in the literature
[7–9]. Wiggins et al. [10] analyzed the trade-offs of music representation systems
with respect to expressive completeness and structural generality. In the age of deep
learning, such considerations are still relevant regarding the variety of machine-
readable representations such as piano rolls, MIDI-like sequences, NoteTuples, and
Musical Spaces [11, 12]. In this section, we focus on three symbolic representa-
tions (matrix, sequence, and graphs) and discuss their respective strengths and
limitations.
music as a matrix: Similar to audio spectrograms, a pitch-time representation
that is typically used as input to a CNN, the piano roll representation of music

4.2 related work 43

Figure 4.1: Excerpt of Schubert’s Impromptu Op. 90 No.4 and its input visualizations (from
left to right): generic matrix, sequence (REMI-like) and graph.

naturally emerges as the symbolic equivalent. Piano rolls have been widely applied
in tasks such as automatic music transcription [13, 14], classification of piece-level
attributes such as difficulty and composer [15–18], as well as generation of music
accompaniment or performed dynamics [19, 20].

A piano roll is a bare-bones representation of symbolic music data, and, therefore,
information such as key signatures, articulation annotations, metrical structure,
different instrument parts, and voicing structure are not encoded in the representa-
tion[11, 21].
music as a sequence: Modeling symbolic music as sequences has a longstand-
ing tradition in MIR. The multiple viewpoint system is a sequence representation
that has been widely used for music analysis, generation, and classification [22–25],
as well as the basis for cognitively plausible models of expectation [26, 27]. In this
system, musical elements are represented by viewpoints [28], which are abstract
functions mapping musical events to abstract derived features like pitch, interval,
and melodic contour.

With the advances of deep learning-based language models, sequential represen-
tation of music as language tokens has recently received a lot of attention in sequence-
to-sequence generative tasks from automatic orchestration [29] to description-based
medley generation [30]. Similar to a stream of MIDI messages, various tokenization
schemes encode music features such as pitch, onset time, duration, and velocity
sequentially. Besides generation, large-scale pre-training using music sequences has
been applied to downstream music understanding tasks [31, 32].

However, tokenized music sequence representations create difficulty for models to
learn the dependency of long contexts. Length reduction methods such as Byte Pair
Encoding (BPE) [29, 33] aim to address the length overflow problem by replacing
the occurrence of frequent subsequences with new tokens.
music as a graph: A musical score can also be seen as a graph where notes
form the vertices and relations between notes define the edges. Jeong and al. [34]
introduced a graph modeling of a musical score for generating expressive perfor-
mances. Recently, Karystinaios and Widmer [35] presented a new modeling of the
score graph based on three different note relations and a Graph Convolutional
Network for cadence detection in classical music. A score graph can be homoge-
neous or heterogeneous, i.e. having one or several types of edges and/or vertices,
respectively [36]. We will investigate both heterogeneous and homogeneous score
graphs based on the representation used in [35].

Graph Neural Networks have gained popularity in recent years, however, graph
learning inherently presents some limitations, such as over-smoothing in deep graph
networks [37] and restrictions of Message Passing, where information in graph neu-

44 symbolic music representations for classification tasks

ral networks flows only between edge relations predetermined by the representation
(in contrast to a Transformer architecture where everything is interconnected [38]).

4.3 methodology

In this section, we describe the methodology followed, the corpora used, and the ex-
periments conducted to investigate in-depth the different symbolic representations.

4.3.1 Representation Design

We briefly introduce a formal definition of each representation type, i.e. matrix,
sequence, and graph. An example of the three representations is shown in Figure 4.1.

4.3.1.1 Matrix

We define as a matrix representation of music a 2-dimensional array M ∈ NH×W

that depicts musical notes on the time axis, commonly referred to as a piano roll.
The vertical axis consists of 128 possible values attributed to the MIDI pitch of note
events, where we add three more optional fields for the una corda, sostenuto, and
sustain pedals only applied on the MIDI performances.

In this work, we experimented with multiple channels as used in Onsets and
Frames [39]. The onset channel is a binarized roll with activations at onset times-
tamps, while the frame channel encodes the duration of the note and the velocity
of the MIDI event. For scores, the velocity values are substituted by the voice index,
i.e. the integer number assigned to a note to indicate the index among the number
of independent voices.1

4.3.1.2 Sequence

A symbolic music sequence S ∈ N1×N is defined by a series of discrete tokens
that represent attributes of notes. Vocabularies such as Vpitch, VTimeShift, VVel assign
semantic meanings to tokens, and different tokenization schemes translate into
different grammars of sequence construction. In this work, we test three popular
tokenization schemes: MIDILike [40, 41], REMI [42], and CompoundWord [43] and
use the implementation of the MidiTok library [44].

As there is no existing tokenizer for processing scores, we implemented custom
MusicXML tokenizers following MidiTok’s framework, in the style of REMI as well
as CompoundWord. The major difference is the timing of bars and event positions, as
well as the addition of score-specific tokens such as VKeySig, VVoice.2

Byte Pair Encoding (BPE) is a tokenizer add-on technique that has recently
been applied to music sequence learning [33]. It consists of a data compression
technique that replaces the most common token subsequences in a corpus with
newly created tokens. BPE increases the vocabulary size and shortens the sequence
length. We follow the best results from [33] and adopt a BPE with 4 times the

1 This voice information is commonly available in formats such as MusicXML, **Kern, and MEI.
2 Full documentation is provided with our open-source tokenizer in the project repository.

4.3 methodology 45

original vocabulary size. On average, this reduced our sequence length between
55 − 65% in both datasets.

4.3.1.3 Graph

A homogeneous score graph G is defined by a tuple (V, E) of vertices and edges. V
is the set of notes in a musical score and E ⊆ V ×V. Given a score with N notes, we
extract a matrix of k-dimensional note-wise features X ∈ RN×k based on features
contained in the score or performance. A heterogenous score graph G = (V, E,R)

also includes a set of relation types R such that for every edge e ∈ E, e is of type
r ∈ R if a condition defined by r holds. In our work, we consider the following
relations between two notes u, v which define the edges e ∈ E:

• u and v have the same onset, i.e. on(v) = on(u), then r = onset;

• The offset of u is the onset of v, i.e. off (u) = on(v), then r = consecutive;

• The onset of u lies between the onset of v and the offset of v, i.e. on(v) <

on(u) ∧ on(u) < off (v), then r = overlap.

The above relations only hold in the case of score graphs. To adapt this to
performance graphs, we use a window tolerance ttol, such that if two notes (u, v) ∈ E
and:

• |on(v)− on(u)| < ttol, then r = onset;

• |off (u)− on(v)| < ttol, then r = consecutive;

• on(v) < on(u) ∧ on(u) < off (v), then r = overlap.

In our configurations, for all graphs created from performance MIDI, we set ttol =

30 ms, a perceptual threshold of expressive timing [45]. In addition to the above
relations, we consider the possibility of adding an inversely directed edge for
the overlap and the consecutive edge types, and we name the inclusion of such
edges inverse edges. For a homogeneous graph Ghom and heterogeneous graph Ghet,
e ∈ Ghom =⇒ e ∈ Ghet.

The node features X are divided into two categories, the basic and the advanced
features. The basic features are implicitly contained in any score or performance note
such as one-hot encoding of pitch class and octave of the note’s pitch, and duration
information. The advanced features contains articulation, dynamics, and notation
information from the Partitura python package [46]. The detailed computation of
these features can be found in original partitura paper [46] and the basis mixer [47].

4.3.1.4 Information Levels

Given the differences in information captured by symbolic scores and performances
(Sec. 4.1), we run experiments with separate levels of used information. For the base
comparison experiments, we input the basic level of information that is present
in both modalities: pitch, duration and onset. The advanced level of information
for performance includes dynamics (MIDI velocity) and pedals, while for score
includes the voice index (Sec. 4.3.1) as well as score markings such as articulation
and dynamics. The results and comparison of each level of information, also with
respect to different tasks, will be discussed in Section 4.4.3.

46 symbolic music representations for classification tasks

Figure 4.2: Left: front end for three representations, matrix, graph, and sequence, from top
to bottom. Right: fixed back end with attention modules.

4.3.2 Modelling Pipelines

In this work, we evaluate the input representations under the same training pipeline
of different piece-level classification tasks, as discussed in Section 4.3.3. We split
our training architecture into two parts, a front end that projects a window of
musical context into a 64-dimensional embedding, and a back end that aggregates
the embedding for final prediction. The front end is representation-specific while
the back end rests fixed. For a fair comparison, we ensure that the same amount of
musical context is given for different front ends to learn. For MIDI performances
we fix a window of 60 s, and for symbolic scores, we choose a window of 120 beats
given that 120 bpm is a common tempo for music.

For the front end, we employ a commonly used architecture for each respective
representation domain:

Matrix: Convolutional neural network based on ResNet [48] blocks with channel
numbers adapted to our input.

Sequence: Transformer-encoder [49] front end with positional encoding. Each
layer includes multi-head attention with 16 heads followed by an Add & Norm
layer. For the combined tokens CPWord we add separate embedding layers for each
token category in the front end.

Graph: Our graph convolution network (GCN) is built by stacking GraphSAGE
blocks [50] followed by a global mean pooling layer. We experiment with both

4.4 experiments and results 47

heterogeneous and homogeneous GraphSAGE. Note that a heterogeneous network
has r times more parameters, where r is the number of distinct edge relation types.

For the fixed back end, we used a multi-head attention block with linear projection
heads to the desired number of classes, as shown in Figure 4.2. To minimize the
impact of model capacity on our comparative discussion, we carried out an ablation
study to understand the size of the architecture proportional to each kind of
representation (Sec. 4.4.2).

4.3.3 Tasks and Datasets

In this work, we focus on three tasks: composer classification, performer classifica-
tion, and difficulty assessment. Each one of these tasks is a piece-level task since
a label is attributed per piece. The composer classification consists of predicting
the composer of the piece. The performer classification involves the prediction of
the performer among a list of predefined performers included in the data source.
Finally, difficulty assessment involves the prediction of a number between 1-9, with
1 being easy and 9 being hard. The difficulty labels were assembled from Henle
Music.3

To evaluate the aforementioned tasks, we use two large-scale collections of West-
ern classical piano music that contain corresponding symbolic scores (MusicXML
files) and performances (MIDI files), ASAP (1067 performances, 245 scores) and
ATEPP (11742 performances, 415 scores). Both datasets contain individual files per
movement.

For the composer classification task, we exclude the least populated composer
classes for balance in experiments, resulting in 10 classes for the ASAP dataset
and 9 classes for the ATEPP dataset. The performer classification task uses MIDI
performances of ATEPP with 20 classes. For difficulty, given that both ASAP and
ATEPP datasets focus on concert repertoire, the actual classes used range from
difficulty 4-9.4 For all experiments, we use an eight-fold cross-validation evaluation
where 85% of our data is used for training and 15% for testing in each fold.

4.3.4 Training

We performed hyperparameter optimization sweeps to determine the optimal
learning rate and model hyperparameters. Our convergence criteria include early
stopping at the 60 epoch breakpoint with the patience parameter set at 0.005 on the
validation accuracy. All our experiments are trained on a single A5000 GPU, and
the best models, training logs, and the code is available in the repository.5

4.4 experiments and results

To evaluate the different representations we performed three experiments. Our first
experiment focuses on a detailed comparison of the predictive accuracy of the three

3 Henle Music difficulty labels, https://www.henle.de/en/about-us/levels-of-difficulty-piano/
4 The full distribution of the classes for each task is shown in the supplementary material.
5 https://github.com/anusfoil/SymRep

https://www.henle.de/en/about-us/levels-of-difficulty-piano/
https://github.com/anusfoil/SymRep

48 symbolic music representations for classification tasks

A
SA

P-perform
ance

A
SA

P-score
A

T
EPP-perform

ance
A

T
EPP-score

A
C

C
F1

A
C

C
F1

A
C

C
F1

A
C

C
F1

M
atrix

R
esl

C
hnl

4
0

0
0.

5
9±

0.
0

4
0.

1
8±

0.
0

2
0.

5
9±

0.
0

3
0.

1
8±

0.
0

1
0.

2
4±

0.
0

5
0.

2
0±

0.
0

4
0.25±0.02

0.
1

6±
0.

0
3

6
0

0
0.

6
2±

0.
0

6
0.

2
1±

0.
0

3
0.61±0.07

0.19±0.02
0.

2
8±

0.
0

1
0.22±0.03

0.
2

4±
0.

0
2

0.
1

6±
0.

0
4

Sequence
Tokn

BPE

M
idiLike

0.53±0.05
0.16±0.02

N
/A

N
/A

0.
1

8±
0.

0
4

0.
1

0±
0.

0
2

N
/A

N
/A

R
EM

I
0.

5
1±

0.
0

4
0.

1
5±

0.
0

2
0.

4
3±

0.
0

4
0.14±0.01

0.23±0.04
0.

1
0±

0.
0

2
0.

2
3±

0.
0

4
0.13±0.02

G
raph

Bi-dir
×

×
×

×
0.

5
6±

0.
0

1
0.

1
7±

0.
0

2
0.

5
1±

0.
0

5
0.

1
6±

0.
0

2
0.

2
2±

0.
0

2
0.

1
0±

0.
0

3
0.

2
3±

0.
0

3
0.

2
1±

0.
0

5

0.
5

8±
0.

0
3

0.
1

9±
0.

0
1

0.54±0.05
0.17±0.02

0.27±0.03
0.

1
3±

0.
0

2
0.29±0.10

0.
1

8±
0.

0
6

0.62±0.02
0.21±0.01

0.
5

0±
0.

0
4

0.
1

7±
0.

0
1

0.
2

3±
0.

0
4

0.16±0.03
0.

2
7±

0.
0

6
0.22±0.03

Table
4.1:C

om
poser

classification
results

for
allrepresentations,on

alltarget
subsets

of
our

datasets
on

the
com

poser
classification

task
using

only
basic

levelfeatures.For
each

subset
of

data,w
e

present
the

accuracy
score

and
the

m
acro

F
1

score
w

ith
8-fold

cross-validation.
See

Section
4.

4.
1

for
explanation

of
the

param
eters.

4.4 experiments and results 49

representations/architectures applied to the composer classification task, since it
is the most well-understood task among the three. The second experiment studies
the impact of model capacity (number of trainable parameters) per representation.
Our last experiment investigates the effect of different levels of input features (see
Section 4.3.1.4) on the three tasks.

4.4.1 Representations for Composer Classification

Our first experiment is a comparative analysis of the three representations on our
two datasets, in the domains of both MIDI performance and MusicXML score with
basic level features. For each representation group we test different configurations,
i.e. for matrix we experiment with the channel (Chnl) and timestep resolution (Resl),
for sequence we change the tokenization scheme (Tokn) and apply BPE, and for
graph we investigate the effect of homogeneous or heterogeneous graphs (Multi-rel)
and the addition of inverse edges (Bi-dir) (see Sec. 4.3.1). In Table 4.1, we present
for each data subset the accuracy score and the macro F1 score and their respective
standard deviations under 8-fold cross-validation (see Sec. 4.3.3).

In terms of observations per representation, the matrix representation results
indicate no significant differences under different experimental configurations.
For sequence representations, the MIDILike and REMI tokenization schemes yield
comparable performance. However, our experiments suggest that CPWord is a
more challenging representation to learn in the same setting. Concerning the BPE
technique, no significant difference is observed between results with 4 times the
original vocabulary and the non-BPE version.

Our graph-based models exhibit similar performance regardless of the config-
uration of the graph edges. In particular, the effect of reverse edges is not sig-
nificant, and homogeneous graph convolution already achieves similar results to
heterogeneous graph convolutional models, which indicates that implicit structural
information contained in the heterogeneous approach is not strictly necessary for
piece-level classification tasks.

Overall, we observe that three representations show small performance differ-
ences in given experiments, with the matrix-CNN approach having the overall best
metric across the experiment groups and sequence have the worst.

Finally, we would like to discuss the album effect, which concerns the tendency of
classification models to learn non-intended features, such as acoustic features in
pieces of the same album [51]. In our case, this effect concerns different performances
of the same piece that may give away cues for classification. Training with the entire
corpus of performance MIDI, which involves different interpretations of the same
piece, yields an average accuracy of 90% (see supplementary material), which is
30% higher for the ASAP-perf group. To address this issue, we fix the splits to
only contain unseen pieces in the test set, which reduced the accuracy score gap
between performance and score. This issue has often been overlooked in literature
[52, 53] and a commonly-used dataset split is not piece-specific [16]. Given the
recent development of large score-performance datasets, we wish to establish a
scientifically correct evaluation split taking into consideration the piece effect.

50 symbolic music representations for classification tasks

Figure 4.3: Model capacity vs. macro F1 score for each representation approaches on the
ASAP-composer task.

4.4.2 Complexity

In our second experiment we investigate the impact of model capacity for each
representation on the composer classification task using the ASAP dataset. We
experiment with different hidden dimensions h and the number of layers N on
each architecture corresponding to each of the three representations (Sec 4.3.2), and
show our results in Figure 4.3. Overall, we observe that the GCN achieves its best
performance using 1.3M parameters, while architectures for matrix and sequence
achieve a similar accuracy at around three times the number of parameters.

Another observation concerns the use of large models for piece-level classification
tasks on symbolic data. Large convolution models such as ResNet-18/34/50 [16]
are substantially over-parametrized, as our results suggest we can achieve similar
results using a reduced version of ResNet-8, using less than half the parameters
of the smallest used ResNet architecture. Similar observations can be made for
transformers, where scaling the model beyond 4.3M parameters does not further
improve the performance. Our most efficient transformer encoder consists of 4

layers of attention modules with a hidden dimension of 256, significantly less than
transformers used in previous related work [33].

Finally, we note one aspect of our results after scaling our graph network. While
oversmoothing [37] (features of graph vertices converging to the same value) is a
well-known challenge to train deep GCN, our best performing model is a relatively
deep and narrow network consisting of 5 layers with a hidden dimension of 64. One
possible interpretation is that convergence of node features does not complicate
training in the graph-level classification context.

4.4 experiments and results 51

Composer Performer

perf score perf (ATEPP) perf score Difficulty

Matrix basic feats 0.625 0.364 0.403 0.420

advanced feats 0.618 0.342 0.411 0.415

Sequence basic feats 0.530 0.287 0.438 0.368

advanced feats 0.513 0.292 0.426 0.349

Graph basic feats 0.607 0.305 0.373 0.361

advanced feats 0.598 0.323 0.356 0.405

Table 4.2: Accuracy of three identification tasks on the ASAP dataset, with basic or higher-
level features.

4.4.3 Comparison of Feature Levels and Tasks

As discussed in Section 4.3.1.4, we are also interested in understanding the impact of
different levels of features on the three classification tasks. With this motivation, we
performed our third set of experiments, where we adopted the best configuration of
models explored in experiment 1 (see Section 4.4.1). We report the accuracy results
in Table 4.2.

Our results indicate that MIDI performances and MusicXML scores have simi-
lar capabilities for distinguishing composers and difficulty. Furthermore, matrix
and sequence approaches exhibit better results when learning with performances
compared to scores. For the difficulty classification task, in particular, all three
representations achieved approximately 40% accuracy on the 6 difficulty levels.
Performer classification is more challenging since the difference lies in the timing
nuances and dynamic changes instead of the pitch information, which are more
prominent in our input representations. In the 20-way classification, our approaches
generally achieved around 30% accuracy.

Our observations suggest that the addition of advanced features has a variable
impact on the representations. Interestingly, the addition of advanced features
does not improve the training from sequence representations in most experiments,
which can possibly be explained by the increase in vocabulary size and relative
sparsity of such information. Graph structures benefit from the addition of voice
edges, especially in the representation of scores, where the performance boosts
for both composer and difficulty classification. Notably, the graph-score with
advanced features configuration achieved the best result in score-based composer
classification, when jointly compared with Table 4.1.

4.4.4 Transformer vs. GNN: Are We Learning the Same Set of Musical Edges?

A transformer can be seen as a special case of Graph Neural Networks [38]. Assum-
ing a fully connected graph where vertices are tokens in a sequence, we can draw
parallels between a GCN and learned attention in a transformer block.

Therefore, we examine attention weights between NoteOn tokens in an effort to
understand how our graph representation of the score relates to the sequence-based
representation. For all pairs of NoteOn tokens from music sequences, we output
their attention values and compute the correlation with the aggregated adjacency
matrix (with all musical edges constructed in Sec. 4.3.1). Across the test set of

52 symbolic music representations for classification tasks

Figure 4.4: Visualization of graph edges (all edge types aggregated) and the attention
among NoteOn tokens for the first measures of Mozart Piano Sonata No.12, 1st
mvt.

ASAP composer classification on scores, there is a weak positive correlation, with
Pearson’s value of 0.212.

In Figure 4.4, we visualize two measures of music with its constructed graph
edges, and the attention across NoteOn tokens. We can observe some structural
similarities, especially the overlap pattern in both measures, but overall the learned
attention spans are much more global while graph edges connect nodes within a
local range.

4.5 discussion and future work

In this paper, we presented a series of systematic experiments to investigate the
impact of symbolic representations for three piece-level tasks. In terms of simple
classification performance, we found that for a given task, different representations
showed small performance differences, but no clear pattern of superiority emerged.
The matrix results were marginally better on average, and usually more robust to
hyper-parameter changes. More advanced features were beneficial only for certain
tasks and representations.

The graph representation, as the newest and least explored among the three ap-
proaches, exhibits promising performance, while being more light-weight (in terms
of required model complexity – cf. Fig. 4.3). We observe that homogeneous graphs
produce comparable results to heterogeneous graphs for our piece-level classifi-

4.6 acknowledgements 53

cation tasks, and deep GCNs perform better despite over-smoothing. As graphs
are arguably a more natural representation for structured artifacts such as musical
scores, we believe that they should merit more detailed studies in the future.

Our model complexity experiments demonstrated that commonly used architec-
tures in the literature are larger than necessary for our tasks, as the same results can
be achieved with smaller architectures (Section 4.4.2). Furthermore, we discussed
the album effect in score-performance datasets, where multiple interpretations of
the same composition may cause information leakage. Our results indicate the
profound impact of the album effect, and we introduce new evaluation splits to
guard against this effect.

4.6 acknowledgements

This work is supported by the UKRI Centre for Doctoral Training in Artificial
Intelligence and Music, funded by UK Research and Innovation [grant number
EP/S022694/1], also by the European Research Council (ERC) under the EU’s
Horizon 2020 research and innovation programme, grant agreement No. 101019375

(Whither Music?).

references

[1] Lele Liu, Qiuqiang Kong, GV Morfi, Emmanouil Benetos, et al. “Perfor-
mance MIDI-to-score conversion by neural beat tracking.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[2] David Temperley. “A Unified Probabilistic Model for Polyphonic Mu-
sic Analysis.” In: Journal of New Music Research 38.1 (2009), pp. 3–18.
doi: 10.1080/09298210902928495. eprint: https://doi.org/10.1080/
09298210902928495. url: https://doi.org/10.1080/09298210902928495.

[3] David Temperley. The Cognition of Basic Musical Structures. MIT Press, 2004.

[4] Huan Zhang, Jingjing Tang, Syed Rafee, Simon Dixon, and George Fazekas.
“ATEPP: A Dataset of Automatically Transcribed Expressive Piano Per-
formance.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2022.

[5] Silvan David Peter, Carlos Eduardo Cancino-Chacón, Francesco Foscarin,
Andrew Philip McLeod, Florian Henkel, Emmanouil Karystinaios, and Ger-
hard Widmer. “Automatic Note-Level Score-to-Performance Alignments
in the ASAP Dataset.” In: Transactions of the International Society for Music
Information Retrieval (TISMIR) (2023).

[6] Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos
Cancino-Chacón, Maarten Grachten, and Gerhard Widmer. “The match
file format: Encoding Alignments between Scores and Performances.” In:
Proceedings of the Music Encoding Conference (MEC). Halifax, Canada, 2022.

https://doi.org/10.1080/09298210902928495
https://doi.org/10.1080/09298210902928495
https://doi.org/10.1080/09298210902928495
https://doi.org/10.1080/09298210902928495

54 symbolic music representations for classification tasks

[7] Iannis Xenakis. Formalized Music: Thoughts and Mathematics in Composition.
1992. isbn: 0-945193-01-7.

[8] Mitch Harris, Alan Smaill, and Geraint Wiggins. “Representing Music
Symbolically.” In: IX Colloquio di Informatica Musicale (Venice). 1991. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.473.

[9] Milton Babbit. “The Use of Computers in Musicological Research.” In:
Perspectives of New Music 3.2 (1965), pp. 74–83.

[10] Geraint Wiggins, Eduardo Miranda, Alan Smaill, and Mitch Harris. “A
Framework for the Evaluation of Music Representation Systems.” In: Com-
puter Music Journal 17.3 (1993), pp. 31–42. url: https://about.jstor.org/
terms.

[11] Christian Walder. “Modelling symbolic music: Beyond the piano roll.”
In: Journal of Machine Learning Research. Vol. 63. 2016, pp. 174–189. arXiv:
1606.01368.

[12] Mathieu Prang. “Representation learning for symbolic music.” PhD thesis.
IRCAM, 2021. url: https://hal.archives-ouvertes.fr/tel-03329980.

[13] Emmanouil Benetos, Anssi Klapuri, and Simon Dixon. “Score-informed
transcription for automatic piano tutoring.” In: European Signal Processing
Conference (EUSIPCO). 2012.

[14] Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang.
“High-resolution piano transcription with pedals by regressing onset and
offset times.” In: IEEE/ACM Transactions on Audio, Speech, and Language
Processing 29 (2021), pp. 3707–3717.

[15] Youssef Ghatas, Magda Fayek, and Mayada Hadhoud. “A hybrid deep
learning approach for musical difficulty estimation of piano symbolic
music.” In: Alexandria Engineering Journal 61.12 (2022), pp. 10183–10196.
issn: 11100168. doi: 10.1016/j.aej.2022.03.060.

[16] Sunghyeon Kim, Hyeyoon Lee, Sunjong Park, Jinho Lee, and Keunwoo
Choi. “Deep Composer Classification Using Symbolic Representation.”
In: International Society for Music Information Retrieval (ISMIR) Late Breaking
Demo (LBD). 2020. arXiv: 2010.00823. url: http://arxiv.org/abs/2010.
00823.

[17] Gissel Velarde, Tillman Weyde, Carlos E. Cancino-Chacón, David Meredith,
and Maarten Grachten. “Composer recognition based on 2D-filtered piano-
rolls.” In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2016.

[18] Francesco Foscarin, Katharina Hoedt, Verena Praher, Arthur Flexer, and
Gerhard Widmer. “Concept-Based Techniques for "Musicologist-friendly"
Explanations in a Deep Music Classifier.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2022. url: https:
//api.semanticscholar.org/CorpusID:251881711.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.473
https://about.jstor.org/terms
https://about.jstor.org/terms
https://arxiv.org/abs/1606.01368
https://hal.archives-ouvertes.fr/tel-03329980
https://doi.org/10.1016/j.aej.2022.03.060
https://arxiv.org/abs/2010.00823
http://arxiv.org/abs/2010.00823
http://arxiv.org/abs/2010.00823
https://api.semanticscholar.org/CorpusID:251881711
https://api.semanticscholar.org/CorpusID:251881711

4.6 references 55

[19] Hao Wen Dong, Wen Yi Hsiao, Li Chia Yang, and Yi Hsuan Yang. “MuseGAN:
Multi-track sequential generative adversarial networks for symbolic music
generation and accompaniment.” In: Proceedings of the Association for the Ad-
vancement of Artificial Intelligence Conference (AAAI). 2018. isbn: 9781577358008.
doi: 10 . 1609 / aaai . v32i1 . 11312. arXiv: 1709 . 06298. url: https : / /

salu133445.github.io/musegan/.

[20] Sam van Herwaarden, Maarten Grachten, W de Haas, and W. Bas de
Haas. “Predicting expressive dynamics in piano performances using neural
networks.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2014.

[21] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep Learn-
ing Techniques for Music Generation – A Survey. 2017. isbn: 9783319701622.
arXiv: 1709.01620. url: http://arxiv.org/abs/1709.01620.

[22] Darrell Conklin and Ian H. Witten. “Multiple viewpoint systems for mu-
sic prediction.” In: Journal of New Music Research 24.1 (1995), pp. 51–73.
doi: 10.1080/09298219508570672. eprint: https://doi.org/10.1080/
09298219508570672. url: https://doi.org/10.1080/09298219508570672.

[23] Darrell Conklin. “Multiple Viewpoint Systems for Music Classification.” In:
Journal of New Music Research 42.1 (2013), pp. 19–26. doi: 10.1080/09298215.
2013.776611. eprint: https://doi.org/10.1080/09298215.2013.776611.
url: https://doi.org/10.1080/09298215.2013.776611.

[24] Raymond P. Whorley and Darrell Conklin. “Music Generation from Sta-
tistical Models of Harmony.” In: Journal of New Music Research 45.2 (2016),
pp. 160–183. doi: 10.1080/09298215.2016.1173708. eprint: https://doi.
org/10.1080/09298215.2016.1173708. url: https://doi.org/10.1080/
09298215.2016.1173708.

[25] Darrell Conklin. “Chord sequence generation with semiotic patterns.” In:
Journal of Mathematics and Music 10.2 (2016), pp. 92–106. doi: 10.1080/
17459737.2016.1188172. eprint: https://doi.org/10.1080/17459737.
2016.1188172. url: https://doi.org/10.1080/17459737.2016.1188172.

[26] Marcus T. Pearce. “Statistical learning and probabilistic prediction in music
cognition: Mechanisms of stylistic enculturation.” In: Annals of the New York
Academy of Sciences 1423.1 (2018), pp. 378–395.

[27] Marcus Pearce. “The Construction and Evaluation of Statistical Models of
Melodic Structure in Music Perception and Composition.” PhD thesis. UK:
City University of London, 2005.

[28] Darrell Conklin and Ian H. Witten. “Multiple Viewpoint Systems for Music
Prediction.” In: Journal of New Music Research 24.1 (1995), pp. 51–73. issn:
17445027. doi: 10.1080/09298219508570672.

[29] Jiafeng Liu, Yuanliang Dong, Zehua Cheng, Xinran Zhang, Xiaobing Li,
Feng Yu, and Maosong Sun. “Symphony Generation with Permutation
Invariant Language Model.” In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). 2022.

https://doi.org/10.1609/aaai.v32i1.11312
https://arxiv.org/abs/1709.06298
https://salu133445.github.io/musegan/
https://salu133445.github.io/musegan/
https://arxiv.org/abs/1709.01620
http://arxiv.org/abs/1709.01620
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/09298219508570672

56 symbolic music representations for classification tasks

[30] Dimitri von Rütte, Luca Biggio, Yannic Kilcher, and Thomas Hofmann.
“FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control.”
In: Proceedings of the International Conference on Learning Representations
(ICLR). 2023.

[31] Mikaela Keller, Gabriel Loiseau, and Louis Bigo. “What Musical Knowledge
Does Self-Attention Learn?” In: Proceedings of the 2nd Workshop on NLP
for Music and Spoken Audio (NLP4MusA). 2021, pp. 6–10. url: https://
aclanthology.org/2021.nlp4musa-1.2.

[32] Mingliang Zeng, Xu Tan, Rui Wang, Zeqian Ju, Tao Qin, and Tie Yan
Liu. “MusicBERT: Symbolic Music Understanding with Large-Scale Pre-
Training.” In: Findings of the Association for Computational Linguistics: ACL-
IJCNLP. 2021. isbn: 9781954085541. doi: 10.18653/v1/2021.findings-
acl.70. arXiv: 2106.05630.

[33] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “Byte Pair Encoding for Symbolic Music.” In: 2023.
arXiv: 2301.11975. url: http://arxiv.org/abs/2301.11975.

[34] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[35] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[36] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. “A survey
of heterogeneous information network analysis.” In: IEEE Transactions on
Knowledge and Data Engineering 29.1 (2016), pp. 17–37.

[37] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. “Deep-
GCNs: Can GCNs go as deep as CNNs?” In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. 2019. isbn: 9781728148038. doi:
10.1109/ICCV.2019.00936. arXiv: 1904.03751. url: https://sites.
google.com/view/deep-gcns.

[38] Petar Veličković. “Everything is Connected: Graph Neural Networks.”
In: Artificial Intelligence (AI) Methodology in Structural Biology (2023). issn:
1879033X. doi: 10.1016/j.sbi.2023.102538. arXiv: 2301.08210. url:
http://arxiv.org/abs/2301.08210.

[39] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin
Raffel, Jesse Engel, Sageev Oore, and Douglas Eck. “Onsets and frames:
Dual-objective piano transcription.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). 2018, pp. 50–57. isbn:
9782954035123. doi: 10.5281/zenodo.1492341. arXiv: 1710.11153.

[40] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Si-
monyan. “This time with feeling: learning expressive musical perfor-
mance.” In: Neural Computing and Applications 32.4 (2018), pp. 955–967.
issn: 14333058. doi: 10.1007/s00521-018-3758-9. arXiv: 1808.03715.

https://aclanthology.org/2021.nlp4musa-1.2
https://aclanthology.org/2021.nlp4musa-1.2
https://doi.org/10.18653/v1/2021.findings-acl.70
https://doi.org/10.18653/v1/2021.findings-acl.70
https://arxiv.org/abs/2106.05630
https://arxiv.org/abs/2301.11975
http://arxiv.org/abs/2301.11975
https://doi.org/10.1109/ICCV.2019.00936
https://arxiv.org/abs/1904.03751
https://sites.google.com/view/deep-gcns
https://sites.google.com/view/deep-gcns
https://doi.org/10.1016/j.sbi.2023.102538
https://arxiv.org/abs/2301.08210
http://arxiv.org/abs/2301.08210
https://doi.org/10.5281/zenodo.1492341
https://arxiv.org/abs/1710.11153
https://doi.org/10.1007/s00521-018-3758-9
https://arxiv.org/abs/1808.03715

4.6 references 57

[41] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer,
Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman,
Monica Dinculescu, and Douglas Eck. “Music Transformer.” In: Proceedings
of the International Conference on Learning Representations (ICLR). 2019. arXiv:
1809.04281. url: http://arxiv.org/abs/1809.04281.

[42] Yu Siang Huang and Yi Hsuan Yang. “Pop Music Transformer: Beat-based
Modeling and Generation of Expressive Pop Piano Compositions.” In:
Proceedings of the 28th ACM International Conference on Multimedia. 2020.
isbn: 9781450379885. doi: 10.1145/3394171.3413671. arXiv: 2002.00212.

[43] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. “Compound
Word Transformer: Learning to Compose Full-Song Music over Dynamic
Directed Hypergraphs.” In: Proceedings of the Association for the Advancement
of Artificial Intelligence Conference (AAAI). 2021. arXiv: 2101.02402v1.

[44] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “Miditok: a Python Package for Midi File Tokeniza-
tion.” In: International Society for Music Information Retrieval (ISMIR) Late
Breaking Demo (LBD). 2021. isbn: 9783319701622.

[45] Werner Goebl. “Melody lead in piano performance: Expressive device or
artifact?” In: The Journal of the Acoustical Society of America 110 (2001), p. 641.
doi: 10.1121/1.1376133. url: https://asa.scitation.org/doi/10.1121/
1.1376133.

[46] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

[47] Carlos E. Cancino-Chacón, Maarten Grachten, Werner Goebl, and Gerhard
Widmer. “Computational Models of Expressive Music Performance: A
Comprehensive and Critical Review.” In: Frontiers in Digital Humanities
5.October (2018), pp. 1–23. issn: 2297-2668. doi: 10.3389/fdigh.2018.
00025.

[48] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition.” In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR). 2016. isbn:
9781467388504. doi: 10.1109/CVPR.2016.90. arXiv: 1512.03385.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you
need.” In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. 2017. arXiv: 1706.03762.

[50] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[51] Arthur Flexer. “A closer look on artist filters for musical genre classifica-
tion.” In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2007. isbn: 9783854032182.

https://arxiv.org/abs/1809.04281
http://arxiv.org/abs/1809.04281
https://doi.org/10.1145/3394171.3413671
https://arxiv.org/abs/2002.00212
https://arxiv.org/abs/2101.02402v1
https://doi.org/10.1121/1.1376133
https://asa.scitation.org/doi/10.1121/1.1376133
https://asa.scitation.org/doi/10.1121/1.1376133
https://doi.org/10.3389/fdigh.2018.00025
https://doi.org/10.3389/fdigh.2018.00025
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1706.03762

58 symbolic music representations for classification tasks

[52] Gianluca Micchi. “A neural network for composer classification.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR) Late-Breading Demo (LBD). 2018.

[53] Qiuqiang Kong, Keunwoo Choi, and Yuxuan Wang. “Large-Scale MIDI-
Based Composer Classification.” In: arXiv. 2020. arXiv: arXiv:2010.14805v1.

https://arxiv.org/abs/arXiv:2010.14805v1

5 C A D E N C E D E T E C T I O N

Title: Cadence Detection in Symbolic Classical Music using Graph Neural Net-
works.

Published: in Proceedings of the 23rd International Society for Music Information
Retrieval Conference (ISMIR), Bengaluru India, 2022.

Authors: Emmanouil Karystinaios, Gerhard Widmer

Abstract: Cadences are complex structures that have been driving music from the
beginning of contrapuntal polyphony until today. Detecting such structures is vital
for numerous MIR tasks such as musicological analysis, key detection, or music
segmentation. However, automatic cadence detection remains challenging mainly
because it involves a combination of high-level musical elements like harmony, voice
leading, and rhythm. In this work, we present a graph representation of symbolic
scores as an intermediate means to solve the cadence detection task. We approach
cadence detection as an imbalanced node classification problem using a Graph
Convolutional Network. We obtain results that are roughly on par with the state of
the art, and we present a model capable of making predictions at multiple levels of
granularity, from individual notes to beats, thanks to the fine-grained, note-by-note
representation. Moreover, our experiments suggest that graph convolution can learn
non-local features that assist in cadence detection, freeing us from the need of
having to devise specialized features that encode non-local context. We argue that
this general approach to modeling musical scores and classification tasks has a
number of potential advantages, beyond the specific recognition task presented
here.

5.1 introduction

Graph Neural Networks (GNNs) have recently seen staggering successes in various
fields. The MIR community has also experienced the influence of GNNs, principally
in the field of recommender systems [1]. However, other sub-branches of MIR could
potentially enjoy the graph representation and the benefits of graph deep learning.

Modeling musical scores in all their complexity has been challenging, with many
approaches resorting to piano rolls [2], note arrays [3], or custom descriptors [4]. In
this paper, we present a new representation of the score as a homogeneous graph
with note-wise features to model aspects of the score. We use this representation to
address the cadence detection task using graph neural networks, treating the task
as a node classification problem. More specifically, our contribution is two-fold: a
simple graph representation of scores extended with local features, and a Graph

59

60 cadence detection

Convolutional Network (GCN) model to tackle heavily imbalanced classification
tasks such as Cadence Detection. Score modeling itself has two aspects: (1) the con-
struction of the graph, i.e., what are the nodes, and which connections do we
define between them; and (2) the choice of score features, and how these relate
to their respective graph nodes. The classification model is an adapted version of
GraphSMOTE [5], a Graph Convolutional Network designed to deal with imbal-
anced classification problems, which we modified to deal with larger graphs and
apply stochastic training. Henceforth, we call this model Stochastic GraphSMOTE.
We employ this model on top of our score modeling with the intention of solving
the Cadence Detection task.

The cadence detection setting is binary, i.e., there is a cadence (maybe of a specific
type) or not. The current state of the art [4] uses an Support Vector Machine
(SVM) classifier on a set of custom-designed cadence-specific features, based on
three defined "cadence anchor points", and performs score/feature modeling and
cadence classification at the level of beats. The model was tested on two annotated
datasets: 24 Bach fugues and 42 Haydn string quartet expositions. Our new model
proposed here will be shown to achieve comparable overall results; however, we
will argue that it makes fewer task-related and musical assumptions, resulting
in more general applicability. In particular, our empirical results suggest that by
providing local features and applying a Graph Neural Network with neighbor
convolution, we can learn nonlocal aspects that help improve prediction. This gives
a more general approach for a variety of tasks where features are provided at the
level of notes, but prediction may be note-wise, onset-wise, or beat-wise.

The rest of the paper is structured as follows. Section 5.2 discusses related work
on cadence detection and music score modeling. Section 5.3 describes the score
model and the graph construction from the score, section 5.4 introduces the corpora,
and section 5.5 presents the proposed learning algorithm. Section 5.6 presents a
series of three experiments and also takes a qualitative look at some examples.
Finally, section 5.7 summarizes and concludes.

5.2 related work

Graphs have emerged as a natural representation of music since the development
of Tonnetz by Euler. Since then, there have been various proposals to use graph
representations for addressing music analysis and MIR tasks. For instance (to name
just two), [6] introduced relational Klumpenhouwer networks for music analysis,
and [7] used Tonnetz trajectories for composer classification. One can distinguish
between heterogeneous and homogeneous graphs [8]. Heterogeneous graphs may
have multiple types of edges and nodes, while homogeneous graphs are simpler,
containing only a single edge and node type. Recently, the creators of VirtuosoNet,
a computational model for generating piano performances, used a heterogeneous
graph representation of the score and trained their system using a Graph Neural
Network [9]. However, in later publications, they reverted to a model without using
graphs which achieved better performance [10]. In the present paper, we wish to
show that a simple, homogeneous graph representation can form a natural and
general basis for modeling a non-trivial music analysis task.

5.3 modeling scores as a graph 61

Automatic cadence detection is a challenging task. Although cadences are well es-
tablished concepts, their definition or annotation in music can cause disagreements
among musicologists. Previous work on automatic cadence detection has been done
by [11] on Bach fugues and by [12] for a generalized classical music analysis system.
A feature-based approach using standard Machine Learning classifiers is presented
in [4] which represents the current state of the art. Recently, Sears and Widmer [13]
highlighted the difficulty of detecting textbook voice leading schemata that occur
near cadences in written music. However, to our knowledge, there exists no method
employing deep learning models to solve the task.

notea noteb restk noted notee

notec note f

Figure 5.1: Example graph creation from a score following the process described in the
text. Eon is denoted in blue, Econs in green, and Edur in red. Global attributes
such as time and key signatures are added as node features.

5.3 modeling scores as a graph

We model a score as a graph with individual notes and rests as nodes and simple
temporal relations as edges. In addition, each graph node is associated with a vector
of feature values that represent some basic properties of a note and its immediate
context. Formally, let G = (V, E) be a graph, where V is the set of nodes and
E ⊆ V × V the set of edges and let A be the adjacency matrix of G. Each note and
each rest in a score are represented as a node in the graph. We create three types of
undirected connections between notes/rests: edges Eon between notes that occur on
the same onset; edges Econs between consecutive notes, and edges Edur between a
note of longer duration and notes whose onsets occur during this time:

Eon = {(i, j) | on(ni) = on(nj)}
Econs = {(i, j) | on(ni) + dur(ni) = on(nj)}
Edur = {[(i, j) | on(ni) + dur(ni) > on(nj)]∧

[on(ni) < on(nj)]}
E = Eon ∪ Econs ∪ Edur

where ni is the ith note. on denotes the onset of a note, dur the duration. All edges
in E are undirected.

62 cadence detection

5.3.1 Feature Overview

We use three types of features to further describe a note:1 general-purpose note-level
features to describe a note and its immediate rhythmic/melodic context; general
graph topology features to capture aspects of local connectivity; and cadence-
specific note features inspired by [4]. The third feature category is the only one that
is designed with the specific classification target in mind; however, in contrast to
[4], we restrict these to only consider the immediate local context of a note instead
of using positional features relating to predefined past “cadence anchor points". In
this way, we wish to demonstrate the generality of our representation and learning
approach, which will hopefully learn more long-distance aspects automatically, as
needed.

The first category, general note-wise features, is the largest one. For each note in
the score, we extract onset time expressed in score-relative beats, duration in beats,
and MIDI pitch, using the partitura package [14]. Furthermore, we translate global
attributes such as time signature and assign them to each note. Also using partitura,
we extract a set of generic note-wise features as defined in [15]. Finally, we extract
features summarizing intervallic information at the time of onset of each note. These
include interval vectors[16] and binary features activated when intervallic content
is identical to the interval set corresponding to particular chord types, i.e., major,
minor, diminished, etc.

Second, we add graph-aware features using the first 20 eigenvectors from the
Laplacian of the adjacency matrix [17].

The final category contains note-wise cadence-related features similar to those in [4],
such as voice leading information and voicing. However, our features are calculated
at the note level only, considering the time of onset for each note and its immediate
neighbors, such as adjacent past onsets or simultaneous onsets. In particular, we
do not use any information about events that occur on previous beats. While these
features are more restricted compared to [4] they are also more general, since
we make no assumptions on and reference to “cadence anchor points" (e.g., the
occurrence of the preceding subdominant and dominant harmony), which in [4]
are identified with specialized heuristics. In total, we store 135 features per node.

5.4 problem setting & corpora

In this work, we are interested in cadences of the Baroque and Classical periods.
The main focus will be on detecting Perfect Authentic Cadences (PAC); where our
annotated datasets permit, we will also consider root position Imperfect Authentic
Cadences (rIAC) and Half Cadences (HC). The manual annotations in these datasets
mark a cadence as occurring on the beat where the final I (i) arrives. Our precise
task thus is to predict, for every note of the score, whether this note is contained in
a cadence’s arrival beat.

To benchmark our method, we used two datasets also used by Bigo et al. [4], and
a third one annotated by Allegraud and al. [18]. The first set contains the 24 fugues

1 Code and a complete specification of all features is available on https://github.com/manoskary/
cadet.

https://github.com/manoskary/cadet
https://github.com/manoskary/cadet

5.5 model 63

Dataset Pieces Nodes Edges PAC rIAC HC
Bach Fugues 24 24,567 229,107 237 78 15

Haydn String Quartets 45 38,661 441,491 434 24 340

Mozart String Quartets 31 68,190 762,796 1,089 - 1,930

Table 5.1: Cadence nodes constitute less than 2% of all nodes.

from Bach’s Well-tempered Clavier, Book I. The cadence annotations were presented
in [11]. The second dataset contains 45 movement expositions from Haydn string
quartets; the cadence annotations were produced by Sears and colleagues [19].
The last dataset contains 31 movements of Mozart string quartets with cadence
annotations included. All the scores were retrieved from http://kern.ccarh.org

and were parsed in python using the partitura package [14].2

Cadences occur with low frequency in music. In particular, for the corpora we
cover in this paper, cadences of all types combined account for less than 2% of the
total notes in the score. Our produced score graphs range from approximately 25k
nodes for the Bach fugues all the way to 70k nodes for the Mozart string quartets
with more than 750k edges. Table 5.1 gives detailed dataset statistics.

5.5 model

5.5.1 Graph Convolutional Network

The authors of [4] underline the importance of non-fixed positions for the cadence
anchor points. We address this by employing a graph convolutional network. Graph
Convolution Networks (GCNs) are based on the same principle as CNNs, but in the
context of graphs we encounter the message passing concept, meaning convolution
occurs only among nodes connected by edges. This theoretically allows local
features to connect with distant features of their k-hop neighbors. Therefore, graph
representation can learn, using local node information, higher lever information by
sampling information from neighbors. Figure 5.2 illustrates the neighbor sampling
concept.

For our model, we propose Stochastic GraphSMOTE, a Graph Convolutional
Network with a built-in graph Auto-Encoder and Synthetic Minority Over-sampling
for imbalanced node classification. The model consists of 4 parts, the encoder, a
SMOTE layer in the encoder’s latent space, the decoder, and the classifier. The
structure of the model follows GraphSMOTE [5] but with some major differences,
mainly to adapt for stochastic training, which is needed because of the large size of
our score graphs.

2 For reproducibility, we provide the generated graphs that were used for training on https://github.
com/manoskary/tonnetzcad

http://kern.ccarh.org
https://github.com/manoskary/tonnetzcad
https://github.com/manoskary/tonnetzcad

64 cadence detection

Figure 5.2: Multi-hop Neighborhood sampling. vj is 3-hop neighbor of vi. Color cues mark
the k-hop neighborhoods occurring within the ellipses. The arrows demonstrate
a random walk starting from vi and ending at vj.

The encoder applied to a node i is defined as a standard GraphSAGE [20] stack
given by:

h(l+1)
N (i) = mean

(
{W(l+1)

pool · hl
j, ∀j ∈ N (i)}

)
h(l+1)

i = σ
(

W(l+1)
enc · concat(hl

i , hl+1
N (i))

)
h(l+1)

i = norm(hl
i)

where h(l)i is the hidden representation of node i on layer l, σ is an activation
function, norm is a normalization function, W are learnable weights, and N (i) =
{j | (i, j) ∈ E} are the neighbors of node i. Let B ⊆ V a subset of nodes denoting a
batch sample. Then, given L the total number of hidden layers, H(enc)

B = {h(L+1)
u |

u ∈ B}.

5.5.2 Dealing with Extreme Class Imbalance: Stochastic GraphSMOTE

Since cadences are very sparse, we need to introduce a balancing technique in order
to avoid gradient convergence that will result in predicting only the majority class,
i.e., absence of cadence. To counter this effect, we introduce a SMOTE layer that is
applied in the latent space of the encoder. SMOTE generates synthetic samples with
the same label as the minority class (see [21] for details). The main novelty of our
model is that the SMOTE is performed for each batch separately.

In each batch, we count the occurrence, µi, for each of the classes i ∈ I. In the
binary setting, let µM be the number of samples with the same label as the majority
class and µm be the number of samples with the same labels as the minority class.
By generating (µM − µm) samples with the same label as the minority class, we
force a 1 : 1 binary class distribution. To generate these samples, in each batch, we
randomly select a sample instance of the minority class as an anchor point and
gather the k nearest neighbor samples of the same class within the batch. Finally,

5.5 model 65

µ samples are generated as random linear interpolations between a randomly
selected neighbor out of the k, and the selected anchor point in the euclidean
space. Performing SMOTE in the latent space assumes that a more appropriate
representation for the generation of the synthetic minority samples is learned.

If H(enc)
B is the hidden representation of the batch sampled nodes after the encoder

layer, then H(smote)
B is the SMOTE upsampling algorithm applied on H(enc)

B . Our
Decoder layer is responsible for generating edges within the original nodes of the
graph and the synthetic ones, created by SMOTE. The decoder output is described
by the following equation:

A(dec)
B = σ

(
H(smote)

B · W(dec) · transpose(H(smote)
B)

)
A(thr)

B = hardshrink
(

A(dec)
B , τ

)
where W(dec) are the decoder’s learnable weights, σ is a sigmoid activation

function, and hardshrink is the hard shrinkage function with threshold τ. A(dec)
B is

the generated adjacency from the decoder and A(thr)
B is a thresholded adjacency by

a factor τ.
We define a regularization loss that aims at constraining the generated adjacency

close to the original, defined by:

L(dec)
B = BCE

(
A(dec)

B , AB

)
where BCE is the binary cross entropy loss, A(dec)

B is the generated adjacency of
the decoder for batch sample B and AB is the adjacency matrix for batch sample
B. Since we learn an edge generator which is good at reconstructing the adjacency
matrix using the encoder’s latent representations, it should also give adequate edge
predictions for synthetic nodes.

The GNN classifier is composed of a GraphSAGE layer [20] with a linear layer
on top. By adding a graph convolution layer such as GraphSAGE in the classifier,
we can benefit from learning information from the generated adjacency and the
neighbors of nodes. The GraphSAGE layer of the classifier is slightly different from
the encoder because it performs directly on the generated thresholded adjacency of
each batch sample:

h(cl f)
N (i) = mean

(
W(pool) · A(thr)

B [i, :] · H(enc)
B

)
h(cl f)

i = norm
(

σ
(

W(cl f) · concat
(

h(enc)
i , h(cl f)

N (i)

)))
h(cl f)

i = softmax(W(proj) · h(cl f)
i)

where h(cl f)
i are the predicted class probabilities of node i, W are learnable weights,

A(thr)
B is the generated thresholded adjacency from the decoder, H(enc)

B are the batch
encodings of the encoder and h(enc)

i is the encoder’s output for node i. During

66 cadence detection

training, we use H(smote)
B and h(smote)

i respectively instead of H(enc)
B and h(enc)

i . We
define the total loss of our model for batch samples B:

L(tot)
B = L(CE)

B + γ ∗ L(dec)
B

where LCE signifies the cross entropy loss and γ is a hyper parameter.
Our model is trained stochastically, meaning that to create each batch a subset B

of nodes are sampled. From these sampled nodes, given a pre-defined depth k, we
retrieve the immediate neighbors of every v ∈ B up to their k-hop neighbors in the
graph G. We use neighbor sampling to reduce the cost of retrieving all up to k-hop
neighbors of v by defining a maximum number ϕl of neighbors per depth layer l.

5.6 experiments

We conduct three main experiments. The first compares our model to the state of the
art results in [4], using the same data and train/test setup. The second experiment
focuses on multi-class learning of the particular type of cadence using different sets
of features, in order to investigate how the model generalizes to a more complex
setting and inspect the relevance of different feature sets. The third experiment
investigates how neighbor convolution contributes to the model’s performance.3

We fix our model with a hidden dimension of 256, with L = 2 hidden layers with
ϕ1 = 10 and ϕ2 = 25 sampled neighbors for hidden layers 1 and 2 of the encoder,
respectively, and one hidden layer of the same dimension for the classifier. The
learning rate is set at 0.007, the weight-decay at 0.007, with a batch size of 1024,
k = 3 for SMOTE, the decoder regularization loss multiplier γ = 0.5, and adjacency
threshold value τ = 0.5.

5.6.1 Quantitative Results

Table 5.2 summarizes the results of the first experiment, comparing our model’s
performance to the state of the art.4 The reference model [4] can only classify at
the beat level; our representation and classification model are more flexible in this
regard, as they have access to, and describe, individual notes. In particular, our
model can provide predictions at three different levels, note-wise, onset-wise and
beat-wise predictions (the latter two simply by aggregation). In Table 5.2 we present
the results of these predictions at all levels, in terms of F1 score. Only beat-wise
scores are given for the reference model (taken from [4]). The last two columns of
table 5.2 give the recall and precision for the beat-wise prediction. All metrics are
presented for the positive, i.e. minority/cadence, class.

Our model matches or slightly surpasses the state of the art in rIAC detection in
Bach fugues and on HCs in Haydn string quartets but does not reach the reference
model’s F1 results in PAC detection. We additionally present a pre-trained version
of Stochastic GraphSMOTE, where the network was first trained on additional data

3 All results, experiments, and the trained models are available on https://wandb.ai/melkisedeath/
CadenceDetection

4 In accordance with [4], we ignore the HC in Bach and rIAC in Haydn, because of their low numbers.

https://wandb.ai/melkisedeath/Cadence Detection
https://wandb.ai/melkisedeath/Cadence Detection

5.6 experiments 67

D
at

as
et

M
od

el
F1

N
ot

e
F1

O
ns

et
F1

B
ea

t
Pr

ec
.B

ea
t

R
ec

al
l

B
ea

t

Bi
go

et
al

.m
od

el
-

-
0.
80

0.
89

0
.7

2

Ba
ch

Fu
gu

es
(P

A
C

)
SG

SM
O

TE
0

.8
5

0
.7

5
0
.7

3
0
.7

0
0
.7

7

(1
2

fu
gu

es
)

Pr
et

ra
in

ed
SG

SM
O

TE
0.
90

0.
83

0.
80

0
.7

4
0.
89

Bi
go

et
al

.m
od

el
-

-
0

.6
8

0
.7

1
0
.6

5

Ba
ch

Fu
gu

es
(r

IA
C

)
SG

SM
O

TE
0.
87

0.
75

0.
73

0.
75

0
.7

2

(1
2

fu
gu

es
)

Pr
et

ra
in

ed
SG

SM
O

TE
0

.8
7

0
.7

3
0
.7

1
0
.6

2
0.
82

Bi
go

et
al

.m
od

el
-

-
0.
69

0.
60

0.
82

H
ay

dn
St

ri
ng

Q
ua

rt
et

s
(P

A
C

)
SG

SM
O

TE
0

.7
7

0
.5

6
0
.5

9
0
.4

7
0
.7

8

(2
1

pi
ec

es
)

Pr
et

ra
in

ed
SG

SM
O

TE
0.
81

0.
63

0
.6

4
0
.5

4
0
.7

8

Bi
go

et
al

.m
od

el
-

-
0

.2
9

0
.1

9
0.
56

H
ay

dn
St

ri
ng

Q
ua

rt
et

s
(H

C
)

SG
SM

O
TE

0
.6

5
0
.3

2
0
.3

0
0
.3

3
0
.2

7

(2
1

pi
ec

es
)

Pr
et

ra
in

ed
SG

SM
O

TE
0.
69

0.
44

0.
41

0.
41

0
.4

1

Ta
bl

e
5.

2:
R

es
ul

ts
us

in
g

ha
lf

of
th

e
da

ta
se

t
fo

r
tr

ai
ni

ng
,h

al
f

fo
r

te
st

in
g.

Ba
ch

:f
ug

ue
s

no
.1

-1
2

w
er

e
us

ed
fo

r
tr

ai
ni

ng
,n

o.
1

3
-2

4
fo

r
te

st
in

g;
H

ay
dn

:r
an

do
m

2
1

:2
1

sp
lit

.T
he

p
re

tr
ai

ne
d

ne
tw

or
k

w
as

tr
ai

ne
d

on
th

e
ot

he
r

d
at

as
et

,i
.e

.P
re

tr
ai

ne
d

SG
SM

O
T

E
fo

r
B

ac
h

Fu
gu

es
w

as
p

re
-t

ra
in

ed
on

st
ri

ng
qu

ar
te

ts
,e

tc
.C

la
ss

ifi
ca

tio
n

is
bi

na
ry

,t
he

pr
es

en
te

d
F1

sc
or

es
ar

e
fo

r
th

e
po

si
tiv

e
cl

as
s,

i.e
.,

th
e

ca
de

nc
e

(P
A

C
:P

er
fe

ct
A

ut
he

nt
ic

C
ad

en
ce

;r
IA

C
:

ro
ot

po
si

ti
on

Im
pe

rf
ec

t
A

C
;H

C
:H

al
f

C
ad

en
ce

).

68 cadence detection

Figure
5.3:H

aydn’s
String

Q
uartet

2
9.O

p.
5

4
N

o.
1

M
vt.II,m

m
.

3
3-

4
5.Show

ing
the

output
of

the
Stochastic

G
raphSM

O
T

E
N

etw
ork

for
PA

C
prediction.

True
negatives

are
m

arked
w

ith
red,true

positives
w

ith
green,false

positives
w

ith
blue.A

partialanalysis
show

s
the

chords
tow

ards
the

end
of

cadences
and

highlights
a

m
odulating

sequence
w

here
every

sequence
ends

w
ith

a
cadentialpattern,w

hich
counts

as
false

positive
predictions

by
the

netw
ork.

5.6 experiments 69

Depth F1 Note F1 Onset F1 Beat

None 0.833 0.671 0.667

1-hop 0.854 0.707 0.701

2-hop 0.869 0.737 0.732
3-hop 0.836 0.706 0.659

Table 5.3: Effect of neighbor convolution depth on PAC prediction in Bach fugues. The
F1 Note/Onset/Beat scores presented are binary, i.e., for the PAC class. Depth
refers to neighbor convolution depth. None means no graph convolution.

Dataset Features F1 Note F1 Beat

Bach Fugues general 0.602 0.667

(PAC & rIAC) all 0.653 0.702

Haydn String Quart. general 0.542 0.610

(PAC & HC) all 0.648 0.663

Mozart String Quart. general 0.584 0.569

(PAC & HC) all 0.588 0.606

Table 5.4: Three-class cadence classification with two different feature sets. Results were
obtained by 5 fold cross validation (70% of pieces for training, 10% validation,
20% testing); no pre-training. Feature set all contains all features from Section
5.3.1; general excludes Category 3 cadence-specific engineered features.

and fine-tuned for the task. Specifically, the network for PAC prediction in Bach was
pre-trained on the string quartets and vice versa. Pre-training, and thus the need for
additional data, is the price we pay for the generality of the graph representation
and the consequent size (number of parameters) of the deep network. Pre-training
helps to (markedly) improve the results on HC, catch up with the reference on PAC
in Bach, and narrow the gap on PAC in Haydn.

Generally, our results agree with [4] in implying that half cadences (HC) seem
significantly harder to identify than authentic cadences, both perfect and imperfect.
Another, more specific, observation concerns different ways in which the compared
models achieve their overall F1 scores. In the PAC detection tasks, in particular, we
observe comparable or higher recall of our model compared to the reference, but
lower precision. This observation motivated us to check some of our model’s false
positive predictions; Section 5.6.2 below will show several instructive examples of
‘almost correct’ identifications.

The second experiment we conducted (Table 5.4) focuses on comparing the relevance
of feature groups. For compactness we present here a multi-class classification
scenario where we account not only for the existence of a cadence but also for the
type of cadence present; that is, we have tree-class problems: no cadence, PAC,
or rIAC (Bach) / HC (Haydn, Mozart). We compare two configurations: using
all available features (as in the first experiment, feature set all in the table), or
only feature sets 1 and 2, excluding the cadence-specific features (category 3 in
Section 5.3.1; marked general in the table). Given this 3-class setting, we chose to
report the macro averaged F1 score over all three classes. (Macro averaging was
chosen to counter the overwhelming effect of the majority class no cadence). The

70 cadence detection

Figure 5.4: Predictions of Stochastic GraphSMOTE for fugue No.19, J.S.Bach, Well-tempered
Clavier.

results (see Table 5.4) support the relevance of carefully devised cadence-related
features à la [4]. However, also the general-purpose category 1 and 2 features alone
support non-trivial cadence recognition and discrimination performance, which
implies that the relational graph representation in combination with a convolutional
approach manages to enrich highly local features with relevant non-local score
context.

To investigate this latter aspect in more detail, we run a third experiment, to look at
the effect of neighbor convolution depth on the obtainable classification score, again
at three prediction granularity levels (note, onset, beat). Convolution depth refers to
the number l of hidden layers of the encoder and the subsequent neighbor sampling
up to l-hop neighbors. Our results (see Table 5.3) suggest that neighbor convolution
clearly contributes to learning non-local features. Best results are achieved when
using a convolution depth of 2. Increasing the receptive field beyond that level,
we observed some instabilities emerging in the learning model, which could be
attributed to the common vanishing gradient problem in deep GCNs [22].

5.6.2 A Qualitative Look

Motivated by the fact that our model, while higher on recall, seems to be lower
on precision than the model in [4], we take a closer look at some of the false
positives in individual examples. Our findings suggest that many false positive
predictions resemble cadences, in terms of tonal structure or implications, and
could be considered and annotated as such, but lack some main components.

Figure 5.4 shows an example. The cadence prediction by our model on the
downbeat of bar 23 is a false positive, according to the ground truth annotation.
However, one could argue that the passage clearly has a cadence-like role, marking
the end of the 2nd fugal episode and the return to the original tonality of A major
[23].

5.7 conclusion 71

Another example is the passage discussed in Fig.4 of [4], where a pattern occurs
that has all the technical ingredients of a PAC, but was not annotated as such
for (debatable) higher-level musicological considerations. Again, our model’s PAC
prediction there counts as a false positive.

As a final example, consider mm. 33-45 of Haydn’s Op.54 No.1, 2nd mvt (Figure
5.3). We observe two false positive beat-wise predictions (8 if we count note-wise)
in bars 39 and 44, respectively, following a true PAC on the beginning of bar 34.
A harmonic analysis of these bars indicates a proper PAC preparation with text-
book voice leading on the cadence arrival point in every occasion. These two false
positive PACs form part of a modulating melodic and harmonic sequence; whether
to classify them as cadences is a matter of higher-level musicological considerations.

We cite these few qualitative examples in an attempt to show that our prediction
model can identify many more cadential patterns than the raw experimental figures
suggest, but by design cannot consider high-level musical considerations such as,
e.g., whether PAC-like patterns that occur in sequence should count as PACs or not.

5.7 conclusion

We have presented a graph approach to effectively target the cadence detection
task on symbolic classical scores. We demonstrated that our Graph Convolutional
Network, Stochastic GraphSMOTE, can learn using only local note features, without
the need for any musical assumptions about cadence anchor points. Furthermore,
our network can produce fine-grained predictions at the level of individual notes.

Future work will address the performance of the model on different tasks, using
the same graph representation. We hope to be able to show that this simple but
general and natural representation of scores in terms of graphs can support a broad
variety of symbolic music analysis and classification tasks.

5.8 acknowledgements

This work is supported by the European Research Council (ERC) under the EU’s
Horizon 2020 research & innovation programme, grant agreement No. 101019375

(“Whither Music?”), and the Federal State of Upper Austria (LIT AI Lab). The
authors would like to thank Dr. Hamid Eghbal-Zadeh for helpful discussions on
Graph Neural Networks.

references

[1] Filip Korzeniowski, Sergio Oramas, and Fabien Gouyon. “Artist Similarity
with Graph Neural Networks.” In: Proceedings of the 22nd International
Society for Music Information Retrieval Conference. 2021.

[2] Cheng-Zhi Anna Huang, Curtis Hawthorne, Adam Roberts, Monica Din-
culescu, James Wexler, Leon Hong, and Jacob Howcroft. “The Bach doodle:
Approachable music composition with machine learning at scale.” In:

72 cadence detection

Proceedings of the 18th International Society for Music Information Retrieval
Conference. 2019.

[3] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-
Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas
Eck. “Enabling factorized piano music modeling and generation with the
MAESTRO dataset.” In: Proceedings of 7th International Conference on Learning
Representations. 2019.

[4] Louis Bigo, Laurent Feisthauer, Mathieu Giraud, and Florence Levé. “Rel-
evance of musical features for cadence detection.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2018.

[5] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. “GraphSMOTE: Imbal-
anced Node Classification on Graphs with Graph Neural Networks.” In:
Proceedings of the 14th ACM International Conference on Web Search and Data
Mining. 2021.

[6] Alexandre Popoff, Moreno Andreatta, and Andrée Ehresmann. “Relational
poly-Klumpenhouwer networks for transformational and voice-leading
analysis.” In: Journal of Mathematics and Music 12.1 (2018).

[7] Emmanouil Karystinaios, Corentin Guichaoua, Moreno Andreatta, Louis
Bigo, and Isabelle Bloch. “Music Genre Descriptor for Classification Based
on Tonnetz Trajectories.” In: Proceedings of Journées Informatiques Musicales.
2021.

[8] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. “A survey
of heterogeneous information network analysis.” In: IEEE Transactions on
Knowledge and Data Engineering 29.1 (2016), pp. 17–37.

[9] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[10] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Kyogu Lee, and Juhan Nam.
“VirtuosoNet: A Hierarchical RNN-based System for Modeling Expressive
Piano Performance.” In: Proceedings of the 20th International Society of Music
Information Retrieval Conference. 2019.

[11] Mathieu Giraud, Richard Groult, Emmanuel Leguy, and Florence Levé.
“Computational fugue analysis.” In: Computer Music Journal 39.2 (2015),
pp. 77–96.

[12] Plácido R Illescas, David Rizo, and José Manuel Inesta Quereda. “Har-
monic, melodic, and functional automatic analysis.” In: Proceedings of the
International Computer Music Conference. 2007.

[13] David RW Sears and Gerhard Widmer. “Beneath (or beyond) the surface:
Discovering voice-leading patterns with skip-grams.” In: Journal of Mathe-
matics and Music 15.3 (2021).

5.8 references 73

[14] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

[15] Carlos Eduardo Cancino Chacón. “Computational Modeling of Expressive
Music Performance with Linear and Non-linear Basis Function Models.”
PhD thesis. Johannes Kepler University, Austria, 2018.

[16] Michiel Schuijer. Analyzing atonal music: Pitch-class set theory and its contexts.
University Rochester Press, 2008.

[17] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. “Benchmarking graph neural networks.” In: arXiv
preprint arXiv:2003.00982 (2020).

[18] Pierre Allegraud, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard
Groult, Emmanuel Leguy, and Florence Levé. “Learning Sonata Form
Structure on Mozart’s String Quartets.” In: Transactions of the International
Society for Music Information Retrieval (TISMIR) 2.1 (2019), pp. 82–96.

[19] David RW Sears, Marcus T Pearce, William E Caplin, and Stephen McAdams.
“Simulating melodic and harmonic expectations for tonal cadences using
probabilistic models.” In: Journal of New Music Research 47.1 (2018), pp. 29–
52.

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[21] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique.” In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[22] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. “Deep-
GCNs: Can GCNs go as deep as CNNs?” In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. 2019. isbn: 9781728148038. doi:
10.1109/ICCV.2019.00936. arXiv: 1904.03751. url: https://sites.
google.com/view/deep-gcns.

[23] Bach: Prelude and Fugue No.19 in A major, BWV 864 Analysis. 2018. url:
https://tonic- chord.com/bach- prelude- and- fugue- no- 19- in- a-

major-bwv-864-analysis/.

https://doi.org/10.1109/ICCV.2019.00936
https://arxiv.org/abs/1904.03751
https://sites.google.com/view/deep-gcns
https://sites.google.com/view/deep-gcns
https://tonic-chord.com/bach-prelude-and-fugue-no-19-in-a-major-bwv-864-analysis/
https://tonic-chord.com/bach-prelude-and-fugue-no-19-in-a-major-bwv-864-analysis/

6 R O M A N N U M E R A L A N A LY S I S

Title: Roman Numeral Analysis with Graph Neural Networks: Onset-wise Pre-
dictions from Note-wise Features.

Published In Proceedings of the 24th International Society for Music Information
Retrieval Conference (ISMIR), Milano Italy, 2023.

Authors: Emmanouil Karystinaios, Gerhard Widmer

Abstract: Roman Numeral analysis is the important task of identifying chords and
their functional context in pieces of tonal music. This paper presents a new approach
to automatic Roman Numeral analysis in symbolic music. While existing techniques
rely on an intermediate lossy representation of the score, we propose a new method
based on Graph Neural Networks (GNNs) that enable the direct description and
processing of each individual note in the score. The proposed architecture can
leverage notewise features and interdependencies between notes but yield onset-
wise representation by virtue of our novel edge contraction algorithm. Our results
demonstrate that ChordGNN outperforms existing state-of-the-art models, achieving
higher accuracy in Roman Numeral analysis on the reference datasets. In addition,
we investigate variants of our model using proposed techniques such as NADE,
and post-processing of the chord predictions. The full source code for this work is
available at https://github.com/manoskary/chordgnn

6.1 introduction

Automatic Chord Recognition is one of the core problems in Music Information
Retrieval. The task consists of identifying the harmonies or chords present in a
musical piece. Various methods have been proposed to address this task using either
an audio or symbolic representation of the music [1]. In the symbolic domain, most
approaches focus on the related and arguably more complex problem of Automatic
Roman Numeral Analysis, which is a functional harmony analysis problem that
has its roots in musicological research of Western classical music.

Roman Numeral Analysis is a notational system used in music theory to analyze
chord progressions and identify the relationship between chords in a given key. In
this system, each chord in a piece of music is assigned a Roman numeral based on
its position within the key’s scale. For example, in the key of C major, the I chord
is C major, the IV chord is F major, and the V chord is G major. Roman Numerals
are an important tool for understanding and analyzing the harmonic structure of
music, and they are a valuable resource for musicians, composers, and arrangers
alike.

75

https://github.com/manoskary/chordgnn

76 roman numeral analysis

In Music Information Retrieval, a lot of work has been done to automate Roman
Numeral analysis. However, current approaches still face significant challenges.
Some of these are related to the large chord symbol vocabulary. A common way to
address this problem is to divide a Roman Numeral into several components (e.g.,
key, degree, inversion) and transform the analysis into a multitask learning scenario.
However, multitask approaches themselves face challenges with interdependencies
among tasks. Lastly, Roman Numeral analysis faces a score representation problem
related to existing models such as CNNs whose inputs must be in fixed-sized
chunks. Recent state-of-the-art approaches follow an audio-inspired strategy, di-
viding a musical score into fixed-length time frames ("windows") which are then
processed by a Convolutional Recurrent Neural Network (CRNN). However, such
a representation is unnatural for scores and has the added practical disadvantage
of being time-limited (for example regarding notes extending beyond the current
window) and, due to the fixed-length (in terms of score time) constraint, capturing
varying amounts of musically relevant context.

In this paper, we propose a new method for automatic Roman Numeral anal-
ysis based on Graph Neural Networks that can leverage note-wise information
to address the score representation issue. Our model, ChordGNN, builds on top
of existing multitask approaches but introduces several novel aspects, including
a graph convolutional architecture with an edge contraction pooling layer that
combines convolution at the note level but yields the learned representation at the
onset level.

Our proposed method, ChordGNN, is evaluated on a large dataset of Western
classical music, and the experimental results demonstrate that it outperforms
existing state-of-the-art methods, in terms of the commonly used Chord Symbol
Recall measure. To address the interdependencies among tasks we investigate the
effect of post-processing and other proposed techniques such as NADE and gradient
normalization. Finally, we look at a qualitative musical example and compare our
model’s predictions with other state-of-the-art models.

6.2 related work

There is a big body of literature covering the topic of Automatic Chord Recognition
applied in the audio domain; however, in our work, we focus on the problem
of automatic Roman Numeral Analysis in the symbolic domain. It consists of
labeling the chords and harmonic progressions in a piece of music using Roman
Numerals, where each numeral represents a chord built on a particular scale degree.
Numerous approaches have tried to automate Roman Numeral analysis or infer
harmonic relations between chords. Notable work includes statistical models such
as Melisma [2], HMM-based models [3], and grammar-based approaches [4].

In recent years, research has shifted towards a deep learning and data-driven
approach. Due to the large vocabulary of possible Roman Numerals, the problem
has been divided into several component subtasks, thus resulting in a multitask
learning setting [5]. As a multitask problem, a Roman Numeral is characterized
by the following components: the primary and secondary degree (as illustrated in
Figure 6.1), the local key at the time point of prediction, the root of the chord, the

6.2 related work 77

Figure 6.1: A Roman Numeral analysis for two bars for four-part harmony in C major.
Capital letters stand for major quality and lowercase for minor quality. The
third chord has a dominant seven as its primary degree and the dominant of C
major as its secondary degree. The V6

5 indicates a major with a seven quality in
second inversion. The bass (lowest chord note) of that chord is F sharp, the root
is D, and the local key is C major.

inversion of the chord, and the quality (such as major, minor, 7, etc.). Although
the root can be derived from the other components, it was pointed out by [6] that
redundancy is assisting Roman Numeral analysis systems to learn. An example of
Roman Numerals and their components can be viewed in Figure 6.1. Recent state-
of-the-art approaches decompose the numeral prediction task to the simultaneous
prediction of those 6 components [5–9].

Most deep learning approaches to Roman Numeral analysis are inspired by work
in audio classification, cutting a score into fixed-size chunks (in terms of some
constant score time unit; e.g., a 32nd note) and using these as input to deep models.
Using this quantized time frame representation, [6] introduced a CRNN architecture
to predict Roman Numerals. Other work has continued to build on the latter by
introducing more tasks to improve performance such as the AugmentedNet model [7],
or introducing intra-dependent layers to inform in an orderly fashion the prediction
of one task with the previously predicted task, such as the model introduced by [8].
Other architectures, such as the CSM-T model, have demonstrated good results by
introducing modular networks which treat a score as a sequence of notes ordered
first by onset and then by pitch[9].

Should a musicologist perform music analysis on a piece of music, they would
consider the individual notes existing in the score. Thus, a time frame represen-
tation would come across as unnatural for symbolic music and in particular for
such an analysis task. In this paper, we present a method that no longer treats the
score as a series of quantized frames but rather as a partially ordered set of notes
connected by the relations between them, i.e., a graph. A visual comparison of the
two representations is shown in Figure 6.2. Recently, modeling scores as graphs
has also been demonstrated to be beneficial for problems such as expressive perfor-
mance generation [10], cadence detection [11], voice separation [12], or boundary
detection [13].

Automatic Roman Numeral analysis, as a multitask problem, is mostly tackled
with hard parameter-sharing models. These models share part of the model across
all tasks as an encoder, and then the common embeddings are branched to a
classification model per task [6–8]. However, some approaches separate tasks from
this paradigm to a more modular or soft parameter sharing approach [9].

In the field of multitask learning, a lot of research has been done on the problem
of conflicting gradients during backpropagation in hard parameter-sharing models.

78 roman numeral analysis

Figure 6.2: Different representations of the score excerpt shown in the middle. Top: quan-
tized time frame representation, bottom: graph representation.

Issues with multi-objective optimization have been early addressed by Zhang et
al. [14] and recent solutions have been proposed for the multitask setting in the
form of dynamic task prioritization [15], gradient normalization [16], rotation ma-
trices [17], or even game-theoretic approaches [18]. In our work, we experimentally
evaluate some of these techniques in the multitask setting to investigate whether
Roman Numeral analysis subtasks conflict with each other (see Section 6.5.2).

6.3 methodology

Figure 6.3: The proposed Architecture Chord-GNN

6.3.1 Roman Numeral Analysis

We already discussed, in Section 6.2, how Roman Numeral analysis can be viewed
as a multi-task problem. In this section, we describe in detail the additional tasks
introduced by [7] that we also use for training and prediction. First, let us assume

6.3 methodology 79

that the prediction can be broken down into specific time points, and each time
point is attributed to a unique onset in the score.

The Roman Numeral prediction can be viewed as a simultaneous prediction of
the local key, degree (primary and secondary), quality, inversion, and root. Each
one of these tasks is a categorical, multiclass classification problem. However, [7]
indicated that only three tasks would be sufficient for 98% of the Roman Numeral
annotations in our dataset (detailed in Section 6.4.1). These three tasks comprise
the prediction of a restricted vocabulary of common Roman Numeral symbols in
combination with the local key and the inversion. We refer to Roman Numeral
prediction involving the 5 tasks as conventional RN, and the combined prediction of
key, inversion, and restricted RN vocabulary alternative RN, as RNalt, in accordance
with [7].

Several other tasks have been introduced that have been shown to improve the
performance of related models [7]. These include the Harmonic Rhythm, which
is used to infer the duration of a Roman Numeral at a given time point; the
Tonicization task, a multiclass classification task that refers to a tonicized key
implied by the Roman Numeral label and is complementary to the local key; the
Pitch Class Sets task, which includes a vocabulary of different pitch class sets, and
the Bass task, which aims to predict the lowest note in the Roman Numeral label.

6.3.2 Graph Representation of Scores

Our approach to automatic Roman Numeral analysis no longer treats the score
as a sequence of quantized time frames but rather as a graph, which permits us
to specify note-wise information such as pitch spelling, duration, and metrical
position. We use graph convolution to model interdependencies between notes.
We model our score generally following Karystinaios and Widmer [11], but we
opt for a heterogeneous graph convolution approach, i.e., including different edge
relations/types. Furthermore, we develop an edge contraction pooling layer that
learns onset-wise representations from the note-wise embeddings and therefore
yields a sequence.

After the edge contraction, we follow [6–8] by adding to the graph convolution
a sequence model for the hard-sharing part of our model, and simple shallow
multi-layer perceptron heads for each task. In essence, we replace the CNN en-
coder that works on quantized frames of the score in previous approaches, with a
graph convolutional encoder followed by an edge contraction layer. Our proposed
architecture is shown in Figure 6.3.

The input to the GNN encoder is an attributed graph G = (V, E, X) where V
and E denote its node and edge sets and X represents the node feature matrix,
which contains the features of the notes in the score. For our model, we used pitch
spelling, note duration, and metrical position features.

Given a musical piece, the graph-building process creates a set of edges E, with
different relation types R. A labeled edge (u, r, v) of type r between two notes u, v
belongs to E if the following conditions are met:

• notes starting at the same time:
on(u) = on(v) −→ r = onset

80 roman numeral analysis

• note starting while the other is sounding: on(u) > on(v) ∧ on(u) ≤ on(v) +
dur(v) −→ r = during

• note starting when the other ends:
on(u) + dur(u) = on(v) −→ r = follow

• note starting after a time frame when no note is sounding: on(u) + dur(u) <
on(v) ∧ ∄v′ ∈ V, on(v′) < on(v) ∧ on(v′) > on(u) + dur(u) −→ r = silence

6.3.3 Model

In this section, we introduce and describe ChordGNN, a Graph Convolutional and
Recurrent Neural Network. The structure of the network is visually outlined in
Figure 6.3. ChordGNN uses heterogeneous graphSAGE [19] convolutional blocks
defined as:

h(l+1)
Nr(v)

= mean
(
{hl

u, ∀u ∈ Nr(v)}
)

h(l+1)
vr = σ

(
W · concat(hl

v, hl+1
Nr(v)

)
)

h(l+1)
v =

1
|R| ∑

r∈R
h(l+1)

vr

(6.1)

where h(0)
v = xv and xu is the input features for node u, N (u) are the neighbors

of node u, and σ is a ReLU activation function. We name the output representations
of all nodes after graphSAGE convolution H = {h(L)

u | u ∈ V} where L is the total
number of convolutional layers.

Given the hidden representation H of all nodes, and onset edges EOn = {(u, v) |
on(u) = on(v)}, the onset edge contraction pooling is described by the following
equations: first, we update the hidden representation with a learned weight, H′ =

HW(cpool). Subsequently we need to unify the representations for every node u,
such that ∀v ∈ NOn(v), h(cp)

u = h(cp)
v :

h(cp)
u = hu + ∑

v∈NOn(v)
hv (6.2)

where, hu and hv belong to H′. Subsequently, we filter the vertices:

V ′ = {v ∈ V| ∀u ∈ V, (v, u) ∈ EOn =⇒ u /∈ V ′} (6.3)

Therefore, H(cp) = {h(cp)
u | ∀u ∈ V ′} are the representations obtained. Sorting the

representations by the onset on which they are attributed we obtain a sequence
S = [h(cp)

u1 , h(cp)
u2 , . . . h(cp)

uk] such that on(u1) < on(u2) < · · · < on(uk).
The sequence S is then passed through an MLP layer and 2 GRU layers. This

concludes the hard-sharing part of our model. Thereafter, an MLP head is attached
per task, as shown in Figure 6.3.

For training, we use the dynamically weighted loss introduced by [20]. The total
loss Ltot of our network is calculated as a weighted sum of the individual losses for
every task, where the weights are learned during training:

6.4 experiments and corpora 81

Ltot = ∑
t∈T

Lt ∗
1

2γ2
t
+ log(1 + γ2

t) (6.4)

where T is the set of tasks; Lt is the cross-entropy loss relating to task t; the γt

are learned scalars that give the weight for each task t; and the log expression is a
regularization term [20].

Figure 6.4: Post-processing of Roman Numeral predictions.

6.3.3.1 Post-processing

We enhance our model with a post-processing phase after the model has been
trained. The post-processing phase combines the logits of all tasks’ predictions by
concatenating them and, then, feeds them to a single-layer bidirectional LTSM block.
Then, again the embeddings of the sequential block are distributed to 11 one-layer
MLPs, one for each task. The post-processing block is sketched in Figure 6.4.

6.4 experiments and corpora

In the experiments, we compare our model, ChordGNN, with other recent models
for automatic Roman Numeral analysis. We run experiments with our model
in the exact same way as described in the paper [7], including the specific data
splits, so that our results are directly comparable to the figures reported there.
A detailed comparison of the results will be given in Table 6.1. Furthermore, we
develop variants of our model using proposed techniques such as NADE [8], and
post-processing of the chord predictions. We report a configuration study of our
model on the use of gradient normalization techniques and NADE that should
improve results on Multi-Task learning scenarios and avoid common Multi-Task
Learning problems such as conflicting gradients. Lastly, we compare our model
with the updated version v1.9.1 of the state-of-the-art model Augmented-Net [21]
and datasets.

82 roman numeral analysis

M
odel

K
ey

D
egree

Q
uality

Inversion
R

oot
R

N
R

N
(O

nset)
R

N
alt

BPS

M
icchi(

2
0
2
0)

8
2.

9
6
8.

3
7
6.

6
7
2.

0
-

4
2.

8
-

-
C

SM
-T

(
2
0
2
1)

6
9.

4
-

-
-

7
5.

4
4
5.

9
-

-
A

ugN
et

(
2
0
2
1)

85.0
73.4

79.0
7
3.

4
84.4

4
5.

4
-

4
9.

3

C
hordG

N
N

(O
urs)

7
9.

9
7
1.

1
7
4.

8
7
5.

7
8
2.

3
4
6.

2
4
6.

6
4
8.

6

C
hordG

N
N

+Post
(O

urs)
8
2.

0
7
1.

5
7
4.

1
76.5

8
2.

5
49.1

49.4
50.4

Full

A
ugN

et
(
2
0
2
1)

82.9
6
7.

0
79.7

7
8.

8
8
3.

0
4
6.

4
-

5
1.

5

C
hordG

N
N

(O
urs)

8
0.

9
7
0.

1
7
8.

4
7
8.

8
8
4.

8
4
8.

9
4
8.

4
5
0.

4

C
hordG

N
N

+Post
(O

urs)
8
1.

3
71.4

7
8.

4
80.3

84.9
51.8

51.2
52.9

Table
6.1:M

odelcom
parison

on
tw

o
differenttestsets,the

Beethoven
Piano

Sonatas
(BPS),and

the
fulltestset.R

N
stands

for
R

om
an

N
um

eral,R
N

alt for
the

alternative
R

om
an

N
um

eralcom
putations

d
iscussed

in
Section

6.
3.

1.R
N
(O

nset)
refers

to
onset-w

ise
pred

iction
accuracy,allother

scores
use

the
C

SR
score

(see
Section

6.
5).N

ote
that

m
odelC

SM
-T

reports
M

ode
instead

of
Q

uality.

6.5 results 83

6.4.1 Datasets

For training and evaluation, we combined six data sources into a single "Full"
Dataset of Roman Numeral annotations in accordance with [7]: the Annotated
Beethoven Corpus (ABC) [22]; the annotated Beethoven Piano Sonatas (BPS) dataset [5];
the Haydn String Quartets dataset (HaydnSun) [23]; the TAVERN dataset [24]; a
part of the When-in-Rome (WiR) dataset [25, 26]; and the Well-Tempered-Clavier
(WTC) dataset [25] which is also part of the WiR dataset.

Training and test splits for the full dataset were also provided by [7]. It is
worth noting that the BPS subset splits were already predefined in [5]. In total,
approximately 300 pieces were used for training, and 56 pieces were used for testing,
proportionally taken from all the different data sources. We draw a distinction for
the BPS test set, which includes 32 Sonata first movements and for which we ran an
additional experiment. The full test set also includes the 7 Beethoven piano sonatas.

In addition to the above datasets, we include data augmentations identical to
the ones described in [7]: texturization and transposition. The texturization is
based on a dataset augmentation technique introduced by [27]. The transposition
augmentation boils down to transposing a score to all the keys that lie within a
range of key signatures that have up to 7 flats or sharps. It should be noted that the
augmentations are only applied in the training split.

For our last experiment (to be reported on in Section 6.5.3 below), we add
additional data that were recently introduced by [21]. The additional data include
the annotated Mozart Piano Sonatas (MPS) dataset [28] for which we also applied
the aforementioned augmentations.

6.4.2 Configuration

For all our experiments, we train our network with the AdamW optimizer. We
fix our architecture with a hidden size of 256, a learning rate of 0.0015, a weight
decay of 0.005, and a dropout of 0.5 which is applied to each learning block of our
architecture.

6.5 results

As an evaluation metric, we use Chord Symbol Recall (CSR) [29] where for each
piece, the proportion of time is collected during which the estimated label matches
the ground truth label. We apply the CSR at the 32nd note granularity level, in
accordance with [6, 7, 9].

6.5.1 Quantitative Results

In the first experiment, which compares our ChordGNN to existing state-of-the-art
approaches, we evaluate the full dataset, but also the annotated Beethoven Piano
Sonatas (BPS) [5] subset, which many previous approaches had also used. The
results are shown in Table 6.1. We present the CSR scores (where they are applicable)
for Local Key, Degree, Quality, Inversion, Root, conventional Roman Numeral, and

84 roman numeral analysis

Variant RN RNalt

ChordGNN (Baseline) 46.1 ± 0.003 47.8 ± 0.007
ChordGNN + WLoss 48.9 ± 0.001 50.4 ± 0.010
ChordGNN + Rotograd 45.5 ± 0.003 47.1 ± 0.005
ChordGNN + R-GradN 45.2 ± 0.006 46.7 ± 0.005
ChordGNN + NADE 48.2 ± 0.005 49.9 ± 0.005

Table 6.2: Configuration Study: Chord Symbol Recall on Roman Numeral analysis on
the full test set. RN stands for Roman Numeral, RNalt refers to the alternative
Roman Numeral computations discussed in section 6.3.1. WLoss stands for the
dynamically weighted loss described in Section 6.3, and R-GradN stands for
Rotograd with Gradient Normalization. Every experiment is repeated 5 times
with the same ChordGNN model as Table 1 without post-processing.

Alternative Roman Numeral (see Section 6.3). Furthermore, we include the onset-
wise accuracy score for our models’ conventional Roman Numeral predictions.

On the BPS subset, we compare our model ChordGNN with the Micchi (2020)
model [6], the CSM-T (2021) model [9] and the AugmentedNet 2021 model [7]. Our
results on Roman Numeral prediction surpass all previous approaches. Note that
the AugmentedNet model exhibits higher prediction scores on the individual Key,
Degree, Quality, and Root tasks, which are used jointly for the prediction of the
Roman numeral. These results indicate that our model obtains more meaningfully
interrelated predictions, with respect to the Roman numeral prediction, resulting in
a higher accuracy score.

Moreover, we compare ChordGNN to AugmentedNet on the full test dataset. Our
model surpasses AugmentedNet with and without post-processing in all fields apart
from local key prediction and quality. Our model obtains up to 11.6% improvement
in conventional Roman Numeral prediction.

In both experiments, post-processing has been shown to improve both RN and
RNalt. However, ChordGNN without post-processing already surpasses the other
models.

6.5.2 Configuration Study

For a systematic study of multitask training, we investigated the effects of exten-
sion modules, gradient normalization techniques, and learnable weight loss. In
detail, we test 5 configurations using as baseline the ChordGNN model (without
post-processing) with standard CE loss and no weighing. Furthermore, we test
our proposed architecture using the dynamically weighted loss described in Sec-
tion 6.3.3 (same as the model in Table 6.1), Rotograd [17] and GradNorm [16] for
Gradient Normalization, and NADE [8]. The models are run on the Full data set
described above and averaged over five runs with random initialization. The results,
summarized in Table 6.2, suggest that using the dynamically weighted loss yields
better results compared to other methods such as the Baseline or Gradient Normal-
ization techniques. Furthermore, the dynamically weighted loss is comparable to
NADE but also more robust on Conventional Roman Numeral prediction on our
datasets.

6.5 results 85

Fi
gu

re
6.

5:
A

co
m

pa
ri

so
n

be
tw

ee
n

th
e

hu
m

an
an

no
ta

tio
n,

A
ug

m
en

te
dN

et
,a

nd
C

ho
rd

G
N

N
on

a
pa

ss
ag

e
of

H
ay

dn
’s

st
ri

ng
qu

ar
te

t
op

.2
0

N
o.

3
m

ov
em

en
t

4
.T

he
re

d
(w

ro
ng

)
m

ar
ki

ng
s

on
H

um
an

A
na

ly
si

s
an

d
A

ug
N

et
(2

0
2

2
)

ar
e

fr
om

[2
1
]

86 roman numeral analysis

6.5.3 Latest developments

Our last experiment focuses on specific developments that have very recently been
published in Nápoles López’s Ph.D. thesis [21]. In the thesis, three additional
tasks, related to predicting the components of a canonical representation of the
current chord, as implied by the Roman Numeral, were proposed and the dataset
was extended with the Annotated Mozart Piano Sonatas (MPS) corpus [28], as
mentioned in Section 6.4.1 above.

To test the relevance of these updates, we trained an adapted version of our
model, now with 11+3=14 individual tasks and including the Mozart data. It turns
out that the updated model improves significantly in performance, achieving a
53.5 CSR score on conventional Roman Numeral (compare this to row "ChordGNN
(Ours)" in Table 6.1). Furthermore, post-processing can improve the results by up to
two additional percentage points.1

6.5.4 A Musical Example

In Figure 6.5, we look at a comparison between the human annotations, Augmented-
Net and Chord-GNN predictions (The musical excerpt is taken from Nápoles López’s
thesis [21], and the predictions relate to the new models trained as described in
the previous section.). Marked in red are false predictions, and marked in yellow
are correct predictions of the model with wrong ground-truth annotations. Both
models’ predictions are very similar to the human analysis. However, our model
correctly predicts the initial pickup measure annotation. In measure 2, the ground
truth annotation marks a tonic in first inversion; however, the viola at that point
is lower than the cello and therefore the chord is actually in root position. Both
models obtain a correct prediction at that point. Subsequently, our model predicts a
harmonic rhythm of eighth notes, which disagrees with the annotator’s half-note
marking. Analyzing the underlying harmony in that passage, we can justify our
model’s choices.

The human annotation suggests that the entire second half of the 2nd measure
represents a viio chord. However, it should not be in the first inversion, as the cello
plays an F# as the lowest note (which is the root of viio). The AugNet analysis faces
the same issue, in contrast with the predictions of ChordGNN. However, there
are two conflicting interpretations of the segment. First, the viio on the third beat
is seen as a passing chord between the surrounding tonic chords, leading to a
dominant chord in the next measure. Alternatively, the viio could already be part of
a prolonged dominant harmony (with passing chords on the offbeats) leading to
the V7. The ChordGNN solution accommodates both interpretations as it doesn’t
attempt to group chords at a higher level, treating each eighth note as an individual
chord rather than a passing event. The other two solutions prefer the second option.

1 Unfortunately, we cannot directly compare these numbers to [21], as their results are not reported in
comparable terms.

6.6 conclusion 87

6.6 conclusion

In this paper, we presented ChordGNN, a model for automatic Roman Numeral
analysis in symbolic music, based on a note-level, graph-based score representation.
We showed that ChordGNN improves on other state-of-the-art models, and that
post-processing can further improve the accuracy of the predictions. A configuration
study suggests that gradient normalization techniques or techniques for carrying
prediction information across tasks are not particularly beneficial or necessary for
such a model.

Follow-up work will focus on strengthening the robustness of our models by
pre-training with self-supervised methods on large corpora. We believe that such
pre-training can be beneficial for learning helpful intrinsic musical information.
Such a step is crucial since more data improves predictions but Roman Numeral
annotations are hard to find or produce. Moreover, we aim to enrich the number
of tasks for joint prediction by including higher-level analytical targets such as
cadence detection and phrase boundary detection. Finally, we aim to extend our
method to the audio domain.

6.7 acknowledgements

We gratefully acknowledge the musical analysis of the viio passage in Fig. 6.5
(Section 6.5.4) that was offered by an anonymous reviewer, and which we took the
liberty of adopting for our text. This work is supported by the European Research
Council (ERC) under the EU’s Horizon 2020 research & innovation programme,
grant agreement No. 101019375 (“Whither Music?”), and the Federal State of Upper
Austria (LIT AI Lab).

references

[1] Johan Pauwels, Ken O’Hanlon, Emilia Gómez, Mark Sandler, et al. “20

years of Automatic Chord Recognition from Audio.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2019.

[2] David Temperley. The cognition of basic musical structures. MIT press, 2004.

[3] Christopher Raphael and Joshua Stoddard. “Functional Harmonic Analysis
Using Probabilistic Models.” In: Computer Music Journal 28.3 (2004), pp. 45–
52.

[4] José Pedro Magalhaes and W Bas de Haas. “Functional Modelling of
Musical Harmony: an experience report.” In: ACM SIGPLAN Notices 46.9
(2011), pp. 156–162.

[5] Tsung-Ping Chen, Li Su, et al. “Functional Harmony Recognition of Sym-
bolic Music Data with Multi-task Recurrent Neural Networks.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2018.

88 roman numeral analysis

[6] Gianluca Micchi, Mark Gotham, and Mathieu Giraud. “Not all roads lead to
Rome: Pitch representation and model architecture for automatic harmonic
analysis.” In: Transactions of the International Society for Music Information
Retrieval (TISMIR) 3.1 (2020), pp. 42–54.

[7] Néstor Nápoles López, Mark Gotham, and Ichiro Fujinaga. “Augment-
edNet: A Roman Numeral Analysis Network with Synthetic Training
Examples and Additional Tonal Tasks.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2021.

[8] Gianluca Micchi, Katerina Kosta, Gabriele Medeot, and Pierre Chanquion.
“A deep learning method for enforcing coherence in Automatic Chord
Recognition.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2021.

[9] Andrew Philip McLeod and Martin Alois Rohrmeier. “A modular system
for the harmonic analysis of musical scores using a large vocabulary.”
In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2021.

[10] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[11] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[12] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

[13] Carlos Hernandez-Olivan, Sonia Rubio Llamas, and Jose R. Beltran. Sym-
bolic Music Structure Analysis with Graph Representations and Changepoint
Detection Methods. 2023. arXiv: 2303.13881.

[14] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. “Facial
Landmark Detection by Deep Multi-task Learning.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2014.

[15] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei.
“Dynamic Task Prioritization for Multitask Learning.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018.

[16] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich.
“GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep
Multitask Networks.” In: Proceedings of the International Conference on Ma-
chine Learning (ICML). 2018.

[17] Adrián Javaloy and Isabel Valera. “RotoGrad: Gradient Homogenization
in Multitask Learning.” In: Proceedings of the International Conference on
Learning Representations (ICLR). 2022.

https://arxiv.org/abs/2303.13881

6.7 references 89

[18] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi,
Gal Chechik, and Ethan Fetaya. “Multi-task Learning as a Bargaining
Game.” In: Proceedings of the International Conference on Machine Learning
(ICML) (2022).

[19] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[20] Lukas Liebel and Marco Körner. “Auxiliary tasks in multi-task learning.”
In: arXiv preprint arXiv:1805.06334 (2018).

[21] Néstor Nápoles López. “Automatic Roman Numeral Analysis in Symbolic
Music Representations.” PhD thesis. Schulich School of Music McGill
University, 2022.

[22] Markus Neuwirth, Daniel Harasim, Fabian C Moss, and Martin Rohrmeier.
“The Annotated Beethoven Corpus (ABC): A dataset of harmonic analyses
of all Beethoven string quartets.” In: Frontiers in Digital Humanities 5 (2018),
p. 16.

[23] Néstor Nápoles López. “Automatic Harmonic Analysis of Classical String
Quartets from Symbolic Score.” PhD thesis. Master’s thesis, Universitat
Pompeu Fabra, 2017.

[24] Johanna Devaney, Claire Arthur, Nathaniel Condit-Schultz, and Kirsten
Nisula. “Theme and Variation Encodings with Roman Numerals (TAV-
ERN): A new data set for symbolic music analysis.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2015.

[25] Mark Gotham, Dmitri Tymoczko, and Michael Scott Cuthbert. “The Ro-
manText Format: A Flexible and Standard Method for Representing Roman
Numeral Analyses.” In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). 2019.

[26] Mark Robert Haigh Gotham and Peter Jonas. “The Openscore Lieder
Corpus.” In: Proceedings of the Music Encoding Conference (MEC). 2021.

[27] Néstor Nápoles López and Ichiro Fujinaga. “Harmonic Reductions as
a Strategy for Creative Data Augmentation.” In: Late-Breaking Demo at
International Society for Music Information Retrieval Conference (ISMIR). 2020.

[28] Johannes Hentschel, Markus Neuwirth, and Martin Rohrmeier. “The An-
notated Mozart Sonatas: Score, Harmony, and Cadence.” In: Transactions of
the International Society for Music Information Retrieval (TISMIR) 4.ARTICLE
(2021), pp. 67–80.

[29] Christopher Harte. “Towards automatic extraction of harmony information
from music signals.” PhD thesis. Queen Mary University of London, 2010.

7 M O N O P H O N I C V O I C E S E PA R AT I O N

Title: Musical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-trajectory Tracking Problem

Published In Proceedings of the 32nd International Joint Conference on Artificial
Intelligence (IJCAI), Macao, 2023.

Authors: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer

Abstract: This paper targets the perceptual task of separating the different inter-
acting voices, i.e., monophonic melodic streams, in a polyphonic musical piece. We
target symbolic music, where notes are explicitly encoded, and model this task as a
Multi-Trajectory Tracking (MTT) problem from discrete observations, i.e., notes in a
pitch-time space. Our approach builds a graph from a musical piece, by creating
one node for every note, and separates the melodic trajectories by predicting a
link between two notes if they are consecutive in the same voice/stream. This kind
of local, greedy prediction is made possible by node embeddings created by a
heterogeneous graph neural network that can capture inter- and intra-trajectory
information. Furthermore, we propose a new regularization loss that encourages
the output to respect the MTT premise of at most one incoming and one outgoing
link for every node, favouring monophonic (voice) trajectories; this loss function
might also be useful in other general MTT scenarios. Our approach does not use
domain-specific heuristics, is scalable to longer sequences and a higher number
of voices, and can handle complex cases such as voice inversions and overlaps.
We reach new state-of-the-art results for the voice separation task in classical
music of different styles. All code, data, and pretrained models are available on
https://github.com/manoskary/vocsep_ijcai2023

7.1 introduction

The Multi-Trajectory Tracking (MTT) problem considers an unknown number of
moving objects and deals with the task of connecting a sequence of observations,
usually points or short tracks in a spatiotemporal space, into accurate long-term
trajectories. MTT is a subject of study both in cognitive science and engineering areas
and has applications in numerous fields, including guidance systems, surveillance,
and threat assessment [1].

Existing approaches are based on dynamic programming algorithms that try
to minimize the global cost (or maximize the global probability) of assigning
observations to a certain trajectory [1–4]. Approaches based on deep learning have
been developed in the related field of Multi-Object Tracking (MOT), which also

91

https://github.com/manoskary/vocsep_ijcai2023

92 monophonic voice separation

Figure 7.1: Example of multi trajectory following for musical voice separation in a pitch-
time space. Different trajectories are highlighted with different colors. Box (A)
contains an example of consecutive notes with the same pitch belonging to
different voices. Box (B) contains an example of “distant” notes belonging to the
same voice. The musical excerpt is taken from Bach’s Fugue in C-sharp major,
BWV 872, measures 2-3-4.

concerns itself with an object identification step, usually from images or similar
data where the object positions are not explicitly encoded. Together with the object
detection modules, an MOT system also contains a tracking module, that needs
to deal with the MTT problems. However, while MTT systems can rely only on
the trajectory shapes [5], MOT systems can also rely on the similarity between
the features extracted from the instantaneous state of the objects to compute the
trajectory. For example, an MOT system that tracks a red car from video data will
extract some features about the car being red that will greatly help distinguish this
car from cars of other colours across frames.1

In this paper, we will use an MTT approach to model a musical perception task,
namely, voice separation. Many kinds of music can be seen as a sum or configura-
tion of different voices [6], i.e., trajectories of (mostly) nonoverlapping notes (see
Figure 7.1) as if they were produced by different voices singing together. Such
voices are often not explicitly separated in a score (or a performance on a poly-
phonic instrument such as the piano), and the task of separating them is a useful
step for a number of applications in music information retrieval, such as melody
identification [7] and MIDI to score transcription [8].

Symbolic music denotes a set of musical formats (of different degrees of specificity
and detail, e.g., MusicXML, **kern, MIDI), which contain explicit information
about note pitches, onsets (i.e., starting time), and offsets (i.e., ending times) [9],
as opposed to audio files where all this information is mixed in a single acoustic
signal.2 Single notes can therefore be treated as trajectory observations in the pitch-
time space, and voice separation can be framed as a trajectory following the problem.

1 A plethora of different terms, including “Multi Target Tracklet Stitching”, “Multi Target Tracking”,
are used in the literature to identify different flavours of related problems, and their usage is not
always consistent across different communities. In this paper, we will use only the two terms MTT
and MOT with the meaning indicated above.

2 In particular the input to our model is a set of notes with only pitch, onset, and offset (or duration)
information. We assume them to be quantized, i.e., notes whose onset and offset are aligned to a regular
grid. It is irrelevant to our approach whether these notes are obtained from a score, a transcribed
performance, a generation algorithm, or other sources.

7.1 introduction 93

However, unlike the trajectories of objects that move in space, disentangling voice
trajectories presents a set of unique challenges. Voices are not bound to stay in the
immediate proximity of their last position and typically contain musical rests, that
create “holes” in the trajectory. Note that following the MTT and MOT differences
we highlighted above, voice separation cannot be considered an MOT task. The
static representative of a voice, i.e., a single note, does not contain any information
about the voice to which it belongs. For example, two consecutive notes with the
same pitch may belong to different voices (see Figure 7.1). The correct trajectory
assignment can be made only by considering the rest of the trajectories.

Existing voice separationalgorithms [10–15] use perceptual principles and do-
main heuristics (with a few learned parameters in some cases) to compute the
probability/cost of assigning a note to a certain voice, and then globally optimize
the probabilities/costs for the entire piece. These approaches have a set of intrinsic
weaknesses that limit their performance. The first is a problem with generalization
since the principles and heuristics employed may not remain valid for different
kinds of music. The second is that music is a complex domain full of corner cases,
and modelling it with few rules would naturally make them fail in a number of
situations. Moreover, the search space of dynamic programming approaches that
do global optimization, with an unknown number of voices, scales exponentially
with sequence length and the number of voices, making it necessary to work with
short sequences or to add extra conditions to limit the search space (very common
is to disallow voice crossings, though these can well occur in real music).

In this paper, we overcome these limitations with a technique based on Graph
Neural Networks (GNNs) that does not rely on any heuristic or domain principle. We
frame the voice following as a link prediction problem; we model every note as a
vertex in a graph and greedily predict a link between any pair of notes that should
be consecutive in the same voice. This process results in a graph in which each fully
connected group of nodes corresponds to a different voice. To take advantage of
inter- and intra-voice dependencies during the link prediction phase, we build a rich
set of edges on top of the node vertices, based on the temporal relations between
the corresponding notes in the music piece. We use edge relations to propagate
local note information using heterogeneous message passing. Since each link is
independently predicted, our output could contain invalid configurations where a
note has multiple incoming or outgoing links. Therefore, we also propose a new loss
to enforce this number to be a maximum of one. Our model consistently exceeds
the state-of-the-art for Voice Separation on a large reference dataset with classical
music of different styles. We can further increase the performance by running a
polynomial-time global optimization algorithm that ensures that every note has a
maximum of one incoming and one outgoing predicted link.

The contributions of this work are as follows.

• a heterogeneous graph neural network approach to producing meaningful
contextual features for the MTT task cast as a greedy link prediction problem;

• a new loss function to enforce the MTT constraint of a maximum of one
incoming and one outgoing link for every trajectory observation.

94 monophonic voice separation

• the application of MTT on symbolic music, resulting in a generalizable and
scalable approach to the voice separation problem that handles overlaps and
voice-switching;

• new state-of-the-art results on a reference dataset with classical music of
different styles.

7.2 related work

There are a number of approaches that address the problem of separating symbolic
music into monophonic voices that are relevant to our work. Duane and Pardo [13]
propose the evaluation measure that was used in most of the subsequent research,
including ours, and frame the voice separation problem as a set of link prediction
problems between each pair of notes. The main conceptual difference between
their approach and ours is that we enrich the note features with embeddings
computed with a graph neural network, which drastically increases the quality
of the predictions. Instead, they run a global optimization algorithm that scales
exponentially with the note sequence length. This forces them to restrict the search
space by not considering voice-crossings and to target only a few measures each
time, stitching together the results afterwards.

The current state-of-the-art results, which we compare to in this paper, were
produced by Mcleod and Steedman [15] with an HMM-based method where
the probabilities of having a note assigned to a voice are based on Huron’s [16]
perceptual principles of minimizing the time distance between consecutive notes
and the pitch distance in a voice. To restrict the exponential search space for the
global solution, they employ a modified Viterbi algorithm where at each step only
the two best options are kept.

Notable for an approach which does not require the global optimization process,
is the work of Gray and Brunescu [17]. They run a left-to-right algorithm where a
neural network greedily predicts, at each step, which existing voice a note should
be assigned to (or whether to create a new voice). However, the network is not
informed about inter-voice interactions or future voice trajectories, and the manually
engineered features they use to help the prediction process are not enough to achieve
higher experimental results than McLeod and Steedman. Also worthy of mention
is the work of Hsiao and Su [18], which model the score as a graph, and use
unsupervised node graph clustering to separate different voices. The limits of this
model lie in the fact that the clustering algorithm expects a given number of voices
as input, and the heuristic the authors devise to estimate this number assumes the
number of voices to be constant during the piece, which is a hypothesis that we are
not introducing. Moreover, despite some slightly misleading claims, this approach
does not reach new state-of-the-art results. in the case of quantized music, which
we assume to be the input of our system.

Another field of research [19–21] targets music that can contain chords (i.e.,
multiple simultaneous notes) in the same voice. This is a different task (see [22] for
a discussion of different types of voice separation problems) and is not the focus of
our work. We are also not targeting the problem of voice separation from human
performance data that is explored by McLeod and Steedman [15].

7.3 approach 95

Similarly to the above-mentioned work in voice separation, multi-trajectory
tracking (MTT) research is based on dynamic programming algorithms that perform
global optimization on possible trajectories [1–4]. The field of Multi-Object Tracking
(MOT) has received more attention in recent years, with a number of articles using
GNNs. Our approach shares some similarities with the work of Brasó and Leal-
Taixé [23], Weng et al.[24], and Wang et al.[25], in particular, the formulation of
trajectory tracking as a greedy link prediction problem and the use of GNNs to
generate relevant features for this prediction. However, our data present a different
set of challenges: the absence of useful static features and large temporal and spatial
(pitch, in our case) gaps between consecutive observations in the same trajectory.
Therefore, while the aforementioned MOT papers use only homogenous graphs
(with some minor improvements by Brasó and Leal-Taixé [23] that treat past and
future links differently), we use heterogeneous graph neural networks with seven
different link types, to create more informative node embeddings.

Finally, some works [24, 25] use the cross-entropy loss applied column-wise and
row-wise in the adjacency matrix, to force each node to have a maximum of one
incoming and one outgoing link. With the same goal, we propose an alternative
loss that gives us better experimental results.

7.3 approach

We model the input of our system, i.e., a set of quantized notes, with pitch, onset,
and offset information, with a graph structure, where every note corresponds to
a node in the graph. If we consider a set of links that connect only consecutive
notes in the same voice (see Figure 7.2, right part), then the voices correspond to
connected components in the graph. Such a set of links is the desired output of our
system, and the ground truth used for training.

Formally, consider a musical piece as a set V of notes, where the temporal position
of the onsets defines a non-strict total order (i.e., multiple notes may have the same
onset). Let Θ be a partition of V in disjointed voices θ. Since voices are monophonic,
each voice defines a trajectory of length l, Tθ = [vθ

1 . . . vθ
l | v ∈ V]: a strictly-ordered

set that contains notes consecutive in the same voice. We can also view it as a set of
pairs of consecutive notes in the same voice:

Etarget = {(vθ
i , vθ

i+1) | ∀θ ∈ Θ, vθ
i ∈ Tθ} (7.1)

Etarget, as a specification of the voices in a piece, defines our ground truth. Our
goal is to predict such a set, and we do this by applying a binary classifier to every
potential note pair (u, v) ∈ V × V. We name the predicted set Epred. This process
can be seen as predicting whether there is a link between u and v, hence it is usually
called link prediction.

We model a piece as a heterogeneous graph [26] with different types of relations
(or edge types) between notes and learn note embeddings using a GNN. Let
G = (V, Ein,R) be a graph such that V is the set of notes, Ein is the set of edge
relations (or typed edges) , and R is a set of relation types. Every edge relation is
defined by a triplet, i.e. (u, r, v) such as u, v ∈ V and r ∈ R. In addition, we associate

96 monophonic voice separation

every note with a vector of k features that describe some intrinsic note properties.
We assume all these feature vectors to be collected in a matrix X ∈ R|V|×k.

Therefore, our approach to voice separation can be summarized as follows: given
a musical piece in symbolic form, we build a heterogeneous graph G = (V, Ein,R)

and a set of node features X, and we use it to predict a set of links Epred that encode
the voice trajectory according to Equation 7.1.

7.3.1 Graph Building

Given a musical piece, the graph-building process creates a set of edges Ein, with
different relation types R. We follow the work of Karystinaios and Widmer [27] and
Jeong et al. [28] but adapt it to our voice separation problem by not using explicit
musical rests (which are not present in our input) and considering a dedicated set
of relation types that does not include any voice information. Let us consider three
functions on(v), dur(v), and pitch(v) defined on a note v ∈ V that extract the onset,
duration, and pitch, respectively.

A labeled edge (u, r, v) of type r between two notes u, v belongs to Ein if the
following conditions are met:

• notes starting at the same time on(u) = on(v) −→ r = onset

• note starting while the other is sounding on(u) > on(v) ∧ on(u) ≤ on(v) +
dur(v) −→ r = during

• note starting when the other ends on(u) + dur(u) = on(v) −→ r = follow

• note starting after a time frame when no note is sounding on(u) + dur(u) <
on(v) ∧ ∄v′ ∈ V, on(v′) < on(v) ∧ on(v′) > on(u) + dur(u) −→ r = silence

It is worth noting that, by construction, “onset” is the only undirected relation
type, i.e., if (u, onset, v), then (v, onset, u). To keep our graph informed about the
temporal evolution of the piece, we want the edges that connect notes at different
times to be directed and only point to the future. But we also want the prediction to
depend on future context. Therefore, we add in R three more types corresponding
to the inverse of “during”, “follow”, and “silence”, and we add to Ein the inverse
edges with such types.

7.3.2 Node Features

We build a feature vector for every note v ∈ V. This contains the note’s pitch-class
and octave, as one-hot vectors of size 12 and 8 respectively, and the duration. The
duration is encoded as a single float value d ∈ [0, 1] computed as

dn = 1 − tanh
dur(v)
dur(m)

, (7.2)

where dur(m) is the duration of the bar to which the note belongs. This information
is also available in the symbolic music that we have as input. Normalization with
bar duration has the objective of making d independent of the time signature of the

7.3 approach 97

Figure 7.2: The GMTT model architecture for link prediction.

piece, and the tanh function gives more resolution for lower note values while still
being able to encode high durations. Additionally, we use a positional encoding
based on the 20 first eigenvectors from the Laplacian of the adjacency matrix similar
to the work of Dwivedi et al. [29].

7.3.3 Model

Our model consists of two parts: a node encoder and a link predictor.
The goal of the node encoder is to project node features X to an embedding

space that is enriched with context information. It consists of a series of Residual
Gated Convolutions [30] with Jumping Knowledge [31]. To account for the different
edge relation types r ∈ R, we compute independent representations for each type
of relation and average them at the end of each convolutional block [32]. More
specifically, for every v ∈ V:

h(l+1)
vr = W(l)

1 h(l)
v + ∑

u∈Nr(v)
η
(l)
v,u ⊙ W(l)

2 h(l)
u (7.3)

η
(l)
v,u = σ(W(l)

3 h(l)
v + W(l)

4 h(l)
u) (7.4)

h(l+1)
v =

1
|R| ∑

r∈R
h(l+1)

vr (7.5)

where h(l)v is the embedding of node v for layer l, σ denotes the sigmoid function,
and r denotes the relation type. On top of our convolutional blocks, we add
Jumping Knowledge, i.e., a bi-directional LSTM that connects the output of every
convolutional layer l ∈ L of the encoder:

h(jk)
v =

L

∑
l=1

α
(l)
v h(l)

v (7.6)

98 monophonic voice separation

where α denotes the attentional weights obtained by the LSTM and hv is the node
embedding for node v.

The link predictor part of our model is a multilayer perceptron (MLP) that
performs the binary classification task of deciding whether two notes should be
linked (i.e., be part of Epred). Due to our problem definition, the predictor only
considers the links between (u, v) if on(u) + dur(u) ≤ on(v). We name the set of
potential links Λ. For every potential link (u, v) ∈ Λ we concatenate the embeddings
of u and v produced by the encoder and give them as input to the link predictor:

ŷu,v = MLP(concatenate(h(jk)
u , h(jk)

v)) (7.7)

where ŷu,v ∈ [0, 1] denotes the predicted probability of a link from u to v. For links
(u, v) /∈ Λ we set ŷu,v = 0. We choose to concatenate the encoder’s embeddings
instead of taking their product because our links are directed, i.e. (u, v) ∈ Epred ̸
=⇒ (v, u) ∈ Epred.

After this process, we are left with a probability for each pair (u, v) to be part of
Epred. We round the probabilities according to a threshold value τ to obtain hard
predictions.

7.3.4 Loss

In the training phase, we use positive and negative link prediction samples by
subsampling the negative samples in Λ (i.e. {a ∈ Λ | a /∈ Etarget}) to match the
number of positives. We train our model by minimizing the Binary Cross-entropy:

Lclf = − ∑
u,v∈D

(yu,v log(ŷu,v) + (1 − yu,v) log(1 − ŷu,v))) (7.8)

where yu,v = 1 if (u, v) ∈ Etarget, 0 otherwise.
Let Â ∈ [0, 1]|V|×|V| be the weighted graph adjacency matrix over V that contains

ŷu,v at the corresponding indices. Since all our voices are disjointed, a note u can be
connected to at most one note t that occurs before u and at most one note v that
occurs after u. This means that, in a perfect prediction scenario, we would have
in Â only one non-zero element for each row and each column (or all zeros if the
corresponding note ends or starts a voice, respectively). One can therefore regard
the ideal output of our system as the result of a linear assignment problem [33]
over the predicted adjacency matrix Â.

In order to drive Â to be in this format we propose a regularization loss, loosely
inspired by [34], in addition to the classification loss. It is defined as follows:

L(1)
reg = ∥ζ − ∑

i∈N
Â[i, :]∥2 + ∥ξ− ∑

j∈N
Â[:, j]∥2 (7.9)

L(2)
reg = ∥ζ −

√
∑
i∈N

Â2[i, :]∥2 + ∥ξ−
√

∑
j∈N

Â2[:, j]∥2 (7.10)

L(tot)
reg =

L(1)
reg + L(2)

reg

N
(7.11)

7.3 approach 99

where N is the number of nodes in the graph, ζ is a binary-valued vector of length
N with ones only for the nodes that are source nodes of ground truth links in Etarget,
and ξ is also a binary-valued vector, with ones only on the destination node indices
of the ground truth links.

Equation 7.9 encodes the linear assignment optimization objective, modified to
allow rows and columns with only zeros. Furthermore, we add Equation 7.10,
which uses the L2 norm of rows and columns, by squaring the positive valued Â.
L2 and L1 are known to have different strengths in minimization problems [35], and
we found their sum to yield the best experimental results. Together, 7.9 and 7.10

constitute the regularization loss which is normalized by the order of the graph, i.e.
the number of nodes |V|, since different musical pieces have a different number of
notes. The total loss of the system is then defined as:

Ltotal = Lclf + αL(tot)
reg (7.12)

where α is the regularization loss weight. The regularization loss weight α is
initialized to 0 and then it is gradually increased every epoch. Conceptually, during
the first epochs of training, the focus is on the classification loss, but as training
progresses the focus shifts towards a matrix that also satisfies linear assignment
conditions.

7.3.5 Postprocessing

Based on the premise introduced in the previous section, we can view the predicted
adjacency matrix Â as a weighted matrix on which we can apply the Hungarian
algorithm [36] to solve the linear assignment problem.

Due to our restriction on the potential links Λ, the lower triangular and the
diagonal of the adjacency Â only contain zeros and should not be the focus of the
prediction nor the assignment. Therefore, the linear assignment of our matrix only
takes part in the upper triangular part of the predicted adjacency. This formulation
simplifies the time complexity of the linear assignment.

Given the number of nodes N, our linear assignment optimization objective is
defined as:

maximize
N−1

∑
i=0

N

∑
j=i+1

Â[i, j] ∗ B[i, j]

subject to ∑
j∈[i+1..N]

B[i, j] = 1 for i ∈ [0..N − 1],

and ∑
i∈[0..j]

B[i, j] = 1 for j ∈ [1..N]

where B[i, j] ∈ BN×N is a learned binary mask over Â. The updated matrix is given
for any two indices i, j by Â′[i, j] = Â[i, j] ∗ B[i, j]. This matrix contains new link
probabilities and, equivalently to the approach without post-processing, we round
them according to a threshold value τ to obtain hard predictions.

100 monophonic voice separation

7.4 experiments

Below, we describe the datasets and the experimental settings.

7.4.1 Datasets and Preprocessing

For training and testing our system, we need sets of quantized notes, with pitch,
onset, and offset information, with a ground-truth separation into voices, provided
by musical experts. We obtain these from a curated collection of musical scores3

from different composers and styles. In particular, we use all the 474 pieces from
the Symbolic Multitrack Contrapuntal Music Archive (MCMA) (see [37] for a
detailed list of the pieces contained), and 662 pieces from the KernScore project
http://kern.humdrum.org/, in particular from the Bach Chorales, the Haydn string
quartets, and the Mozart string quartets, which (mostly) satisfy our assumption of
monophonic voices. With a total of 1136 pieces, our dataset constitutes the largest
data set publicly available for the voice separation task in symbolic music.

To evaluate our system on different degrees of piece complexity and a variety of
musical styles, we run five separate experiments. For each experiment, we fix as
a test set a subset of our total data and consider 90% of the remaining pieces for
training and 10% for validation. In particular, our five test sets consist of 15 Bach
inventions, 15 Bach sinfonias, 12 Bach fugues from WTC I, 12 Bach Fugues from
WTC II, and 210 Haydn string quartet movements. This corresponds with the data
used by McLeod and Steedman [15].

The pieces are available in different file formats and we use the Python library
Partitura [38] to extract the list of notes for each voice. We then preprocess them by
removing possible extra notes that would violate the monophonic voice assumption
(mostly final chords at the very end of the pieces). In particular, if more than one
simultaneous note exists in a single voice, we remove all except the highest. This
preprocessing operation removes 0.72% of the total notes in our dataset and was
done similarly by Mcleod and Steedman [15].

For practical reasons, during the preprocessing phase, we also produce the set
of potential links Λ that our model should predict on. For each note u ∈ V, we
restrict the potential links to notes v that are at most 2 measures after. We may thus
have Λ ⊂ Etarget, in which case some links in the ground truth will be assigned
a probability 0, independently from any other model choice. This means that if a
sufficiently long rest exists between two notes of a voice, this voice will be inevitably
split into two voices. It is worth noting that this happens very rarely in our datasets.
However, this restriction can be relaxed to a longer duration, or removed completely,
at the cost of a higher training and inference time.

The graphs produced by our preprocessing phase contain a total of 867,226 nodes
and 5M input edges. The number of potential links is 30M, with 863,277 true links.
From the latter, 2,264 links are not considered due to the modelling restrictions
aforementioned.

3 Note that a score also contains many other musical and graphical elements, such as rests, slurs, and
stem directions, that could help in the voice separation task; we discard these in our application.

7.4 experiments 101

M
cL

eo
d

G
M

T
T

G
M

M
T

+L
A

D
at

as
et

s
P

R
F1

P
R

F1
P

R
F1

In
ve

nt
io

ns
0

.9
9
2

0
.9

9
1

0
.9

9
2

0
.9

8
9

0
.9

9
7

0
.9

9
5

0
.9

9
6

0
.9

9
5

0.
99

7
Si

nf
on

ia
s

0
.9

8
2

0
.9

8
2

0
.9

8
2

0
.9

8
7

0
.9

8
9

0
.9

7
8

0
.9

8
7

0
.9

8
2

0.
98

5
W

T
C

I
0

.9
6
4

0
.9

6
4

0
.9

6
4

0
.9

4
9

0
.9

8
3

0
.9

6
7

0
.9

8
0

0
.9

7
3

0.
97

6
W

T
C

II
0

.9
6
4

0
.9

6
4

0
.9

6
4

0
.9

4
5

0
.9

7
9

0
.9

6
2

0
.9

7
6

0
.9

6
8

0.
97

2
H

ay
dn

0
.7

8
1

0
.7

8
1

0
.7

8
1

0
.7

8
7

0
.9

2
9

0
.8

5
0

0
.8

8
3

0
.8

6
0

0.
87

2

Ta
bl

e
7.

1:
M

ai
n

re
su

lt
s

co
m

p
ar

in
g

th
e

St
at

e-
of

-t
he

-a
rt

on
V

oi
ce

se
p

ar
at

io
n

w
it

h
ou

r
ap

p
ro

ac
h.

P
st

an
d

s
fo

r
P

re
ci

si
on

,R
st

an
d

s
fo

r
R

ec
al

l,
an

d
F1

fo
r

F1
-s

co
re

.A
ll

th
e

pr
es

en
te

d
m

et
ri

cs
ar

e
bi

na
ry

(o
nl

y
fo

r
th

e
po

si
ti

ve
cl

as
s,

i.e
.l

in
ks

).
(+

LA
)

st
an

ds
fo

r
lin

ea
r

as
si

gn
m

en
t

po
st

pr
oc

es
si

ng
.

102 monophonic voice separation

7.4.2 Main Experiment

For our main experiment on the five test sets mentioned above, we use the AdamW
optimizer, with learning rate 0.003 and weight decay 0.005. We fix the other param-
eters of our model to 3 convolutional layers, a convolutional embedding size of 128,
i.e. h(l)u ∈ R128 for a node u and layer l, and prediction threshold τ = 0.5. The link
predictor (MLP) part of our model has the same hidden size and number of layers.

We evaluate our model GMTT with and without post-processing (i.e., applying
the Hungarian algorithm to filter the model’s predictions) and compare it with the
current state-of-the-art voice separation method of McLeod & Steedman [15]. The
results are given in terms of recall, precision, and F1-score, calculated between the
predicted links Epred and ground truth Etarget.

The results in Table 7.1 show that GMTT without post-processing is roughly on
par with the SOTA, except for the Haydn String Quartet test set, for which we
achieve significantly better results. This is an important result since in contrast
to all the other approaches in the literature, our system is able to produce high-
quality results for the problem of voice separation by only performing local/greedy
predictions on single links. These performances are the result of embeddings
that were generated by a graph neural network, which provided rich contextual
information to the link predictor.

Linear assignment post-processing slightly reduces the recall, but considerably
increases the precision, finally producing a higher F1-score. This means that, while
our system comes very close to respecting the constraints of having only one
incoming edge and one outgoing link for every note, especially thanks to our
proposed regularization loss (see Section 7.4.3 for a discussion on this), it still
predicts some invalid configurations.

Overall, our improvement over the previous state-of-the-art approach is par-
ticularly significant for the Haydn String Quartets collection, which is also the
most complex collection to separate. In Section 7.5 below, we conduct a qualitative
analysis of an individual example and discuss the musical elements that make this
collection so challenging.

7.4.3 Ablation Studies

We perform several ablation studies to understand how our design choices impact
the model performance. For each experiment, we change one element of our
architecture; if the element is useful, we expect a reduction in F1-score. We fix
the hyperparameters of our model to the ones in Section 7.4.2. A summary of the
ablation studies can be seen in Table 7.2 and the single experiments are discussed
below.

effect of heterophily We tested our model using heterogeneous and homo-
geneous graph convolutional blocks. Leveraging the heterogeneous relations of the
score graph has consistently improved results on voice separation, as can be seen
by comparing row 1 (Homogeneous) in Table 7.2 to row 5 (GMTT).

7.5 discussion 103

Models Haydn WTC II

Homogeneous 0.809 ± 0.012 0.943 ± 0.007
SageConv Block 0.828 ± 0.005 0.944 ± 0.002
No regularization 0.720 ± 0.021 0.856 ± 0.049
Fixed regularization 0.652 ± 0.18 0.942 ± 0.015
GMMT 0.850 ± 0.001 0.962 ± 0.001

Table 7.2: Ablation experiments, all the scores presented are binary F1-scores without
postprocessing (i.e., LA). Homogeneous denotes homogeneous graph message
passing, SageConv denotes the GraphSage convolutional block, No regularization
means a regularization weight α = 0, Fixed Regularization has α = 1, and GMMT
is the model from Table 1, for comparison.

effect of convolutional block We experimented with two types of Convo-
lutional Blocks, standard Graph Sage and Residual Gated Convolution. Residual
Gated Convolution consistently outperforms Graph Sage convolution in our datasets
(row 2 vs. row 5).

effect of regularization loss The regularization loss with gradual weight-
ing tends to stabilize training, resulting in more consistent results. Instead, using
α = 1 we may obtain results close to the final GMMT model using epoch weighting,
but the results vary across repetitions of the run (row 4 in Table 7.2). Using no
regularization results in a high number of false positive predictions, which even-
tually drops the overall F1-score (row 3). This clearly testifies to the ability of the
regularisation loss to enforce row-column voice link sparsity. Our preferred model
(row 5) has the lowest standard deviation and the best average performance across
runs.

7.5 discussion

In this section, we investigate what makes voice separation on string quartets so
challenging and the reasons for our model’s better performance. Compared to
our other musical corpora, string quartets have a much different orchestration,
which may include a bigger instrument range, more frequent and longer rests,
accompaniment split to multiple voices (for example between the cello and the
viola), octave doubling, and big jumps in pitch within one voice/instrument line.
Some of these differences can be attributed to the fact that the individual voices
in a string quartet are played by different instruments, which makes it easier for
listeners to keep track of voices and gives the composer more freedom in composing
a texture that is still comprehensible.

In Figure 7.3, we provide an example – bars 25-26 of Haydn’s String Quartet Op17

No2, 1st movement – that demonstrates some of these properties together with
our model’s prediction and the ground truth. In this two-bar excerpt, we notice
several challenging properties, such as octave jumps within the same voice, rests in
between notes of the same voice, and voice crossings – i.e., the 1st violin (top voice
or yellow colour in the pianoroll) starts lower than the viola and the 2nd violin

104 monophonic voice separation

Figure 7.3: Ground truth and prediction for Haydn String Quartet Op17 No2, 1st mvt.,
bars 25-26. False negative errors are highlighted with dashed arrows and false
positive with solid arrows.

but ends more than one octave higher than any other voice by measure 26. This
passage is a real challenge for the voice separation algorithm, and it is solved in a
very reasonable way by our context-aware network.

A closer look at our model’s errors reveals three faulty sections. The first occurs
between the viola and the 2nd violin on the third quarter beat of bar 25, where
we observe a rhythmically identical voice crossing (red and green streams). This is
indeed hard to discern without additional knowledge; human listeners would likely
parse this correctly based on the specific sound (timbre) of the instruments, per-
forming something more akin to Multi-Object Tracking (MOT), in our terminology.
Another voice crossing mistake occurs between the same two voices on beat 3 of bar
26, where we incorrectly predict the start of a new voice (which is then continued in
black). Finally, we notice a rest discontinuity mistake on the cello (bottom; blue and
orange lines) on the 3rd beat of bar 26. These examples test the limits of our network
and also raise a perceptual question, whether a human analyst would be able to

7.6 conclusion and future work 105

correctly assess these voice assignments from this bare representation, without
additional perceptual clues. We leave this as an open question and a starting point
for discussions on possibly more “natural" definitions of the voice separation task.

7.6 conclusion and future work

In this paper, we present a novel method for the perceptual problem of voice
separation from symbolic music that achieves new state-of-the-art performance.
We propose a formulation as a multi-trajectory tracking problem, and an end-to-
end approach, based on heterogeneous neural networks, that does not rely on
any heuristic or musical assumption that may be correct only for limited kinds
of music. That allows us to handle traditionally complex corner cases such as
voice inversions and overlaps. Furthermore, our approach can find a global voice
separation solution on the entire piece, without pruning any potentially relevant
option, with a complexity that is independent of the number of voices and scales
polynomially with the number of notes in a piece. We also study the problem
of reducing the dependence on any postprocessing algorithm and consider only
the local, greedy predictions made by the neural network. We propose a new
regularization loss that drastically improves our results in this setting, and may be
useful for other general MTT scenarios.

Our work can be extended in a number of directions. We plan to address voice sep-
aration for unquantized MIDI, i.e., musical pieces obtained by a human recording;
this would let us explore how much the expressive timing and intensity deviations
introduced by the performer correlate with voice information. Also, we want to re-
lax the monophonic voice assumption to target pieces where multiple simultaneous
notes (i.e., chords) can be present in the same voice. Finally, we aim at developing
a voice separation method from raw audio, which could also contain relevant
information for the voice separation task that is not available in the symbolic format.
In the case of multiple instruments performing multiple voices, this would blend
into the field of instrument/source separation.

acknowledgements

This work was supported by the European Research Council (ERC) under the EU’s
Horizon 2020 research & innovation programme, grant agreement No. 101019375

(Whither Music?), and the Federal State of Upper Austria (LIT AI Lab).

contribution statement

Equal contribution among the two first authors.

106 monophonic voice separation

references

[1] Lodewyk Van der Merwe and Pieter De Villiers. “Comparative investigation
into Viterbi based and multiple hypothesis based track stitching.” In: IET
Radar, Sonar & Navigation 10.9 (2016), pp. 1575–1582.

[2] Mei Han, Wei Xu, Hai Tao, and Yihong Gong. “An algorithm for multiple
object trajectory tracking.” In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Vol. 1. IEEE. 2004.

[3] Chee-Yee Chong, Greg Castanon, Nathan Cooprider, Shozo Mori, Ravi
Ravichandran, and Robert Macior. “Efficient multiple hypothesis tracking
by track segment graph.” In: Proceedings of the International Conference on
Information Fusion. IEEE. 2009.

[4] Gregory Castnnón and Lucas Finn. “Multi-target tracklet stitching through
network flows.” In: Proceedings of the Aerospace Conference. IEEE. 2011.

[5] Christopher Shooner, Srimant P Tripathy, Harold E Bedell, and Haluk Öğ-
men. “High-capacity, transient retention of direction-of-motion information
for multiple moving objects.” In: Journal of Vision 10.6 (2010), pp. 1–20.

[6] Edward Aldwell, Carl Schachter, and Allen Cadwallader. Harmony and
voice leading. Cengage Learning, 2018.

[7] Xichu Ma, Xiao Liu, Bowen Zhang, and Ye Wang. “Robust Melody Track
Identification in Symbolic Music.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). 2022.

[8] Francesco Foscarin. “The Musical Score: a challenging goal for automatic
music transcription.” PhD thesis. Paris, CNAM, 2020.

[9] Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos
Cancino-Chacón, Maarten Grachten, and Gerhard Widmer. “The match
file format: Encoding Alignments between Scores and Performances.” In:
Proceedings of the Music Encoding Conference (MEC). Halifax, Canada, 2022.

[10] Elaine Chew and Xiaodan Wu. “Separating voices in polyphonic music: A
contig mapping approach.” In: Proceedings of the International Symposium on
Computer Music Modeling and Retrieval. Springer. 2004.

[11] Søren Tjagvad Madsen and Gerhard Widmer. “Separating voices in MIDI.”
In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Citeseer. 2006.

[12] David Temperley. “A probabilistic model of melody perception.” In: Cogni-
tive Science 32.2 (2008), pp. 418–444.

[13] Ben Duane and Bryan Pardo. “Streaming from MIDI using constraint
satisfaction optimization and sequence alignment.” In: Proceedings of the
International Computer Music Conference (ICMC). 2009.

[14] Anna Jordanous. “Voice separation in polyphonic music: A data-driven
approach.” In: Proceedings of the International Computer Music Conference
(ICMC). 2008.

[15] Andrew McLeod and Mark Steedman. “HMM-based voice separation of
MIDI performance.” In: Journal of New Music Research 45.1 (2016), pp. 17–26.

7.6 references 107

[16] David Huron. “Tone and voice: A derivation of the rules of voice-leading
from perceptual principles.” In: Music Perception 19.1 (2001), pp. 1–64.

[17] Patrick Gray and Razvan C Bunescu. “A Neural Greedy Model for Voice
Separation in Symbolic Music.” In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). 2016.

[18] Yo-Wei Hsiao and Li Su. “Learning note-to-note affinity for voice segrega-
tion and melody line identification of symbolic music data.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2021, pp. 285–292.

[19] Emilios Cambouropoulos. “Voice separation: theoretical, perceptual and
computational perspectives.” In: Proceedings of the International Conference
on Music Perception and Cognition (ICMPC). Citeseer. 2006.

[20] Jürgen Kilian and Holger H Hoos. “Voice Separation-A Local Optimization
Approach.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Citeseer. 2002.

[21] Dimitris Rafailidis, Emilios Cambouropoulos, and Yannis Manolopoulos.
“Musical voice integration/segregation: VISA revisited.” In: Proceedings of
the Sound and Music Computing Conference (SMC). 2009.

[22] Emilios Cambouropoulos. “Voice and stream: Perceptual and computa-
tional modeling of voice separation.” In: Music Perception 26.1 (2008), pp. 75–
94.

[23] Guillem Brasó and Laura Leal-Taixé. “Learning a neural solver for multiple
object tracking.” In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020.

[24] Xinshuo Weng, Ye Yuan, and Kris Kitani. “Ptp: Parallelized tracking and
prediction with graph neural networks and diversity sampling.” In: IEEE
Robotics and Automation Letters 6.3 (2021), pp. 4640–4647.

[25] Yongxin Wang, Kris Kitani, and Xinshuo Weng. “Joint object detection and
multi-object tracking with graph neural networks.” In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021.

[26] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learn-
ing on Graphs: Methods and Applications.” In: IEEE Data Engineering
Bulletin 40.3 (2017), pp. 52–74.

[27] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[28] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[29] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. “Benchmarking graph neural networks.” In: arXiv
preprint arXiv:2003.00982 (2020).

108 monophonic voice separation

[30] Xavier Bresson and Thomas Laurent. “An Experimental Study of Neural
Networks for Variable Graphs.” In: Proceedings of the International Conference
on Learning Representations. 2018.

[31] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. “Representation learning on graphs
with jumping knowledge networks.” In: Proceedings of the International
Conference on Machine Learning (ICML). 2018.

[32] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den
Berg, Ivan Titov, and Max Welling. “Modeling relational data with graph
convolutional networks.” In: The semantic web: 15th international conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15. Springer.
2018, pp. 593–607.

[33] Rainer E Burkard and Eranda Cela. “Linear assignment problems and
extensions.” In: Handbook of combinatorial optimization. Springer, 1999, pp. 75–
149.

[34] He Liu, Tao Wang, Congyan Lang, Songhe Feng, Yi Jin, and Yidong Li.
“GLAN: A Graph-based Linear Assignment Network.” In: arXiv preprint
arXiv:2201.02057 (2022).

[35] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer, 2009.

[36] David F Crouse. “On implementing 2D rectangular assignment algo-
rithms.” In: IEEE Transactions on Aerospace and Electronic Systems 52.4 (2016),
pp. 1679–1696.

[37] Anna Aljanaki, Stefano Kalonaris, Gianluca Micchi, and Eric Nichols.
“MCMA: A Symbolic Multitrack Contrapuntal Music Archive.” In: Empirical
Musicology Review 16.1 (2021), pp. 99–105.

[38] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

8 P O LY P H O N I C V O I C E S E PA R AT I O N

Title: Cluster and Separate: a GNN Approach to Voice and Staff Prediction for
Score Engraving.

Published In Proceedings of the 24th International Society for Music Information
Retrieval Conference (ISMIR), San Francisco USA, 2024.

Authors: Francesco Foscarin⋆1, Emmanouil Karystinaios⋆, Eita Nakamura, Ger-
hard Widmer

Abstract: This paper approaches the problem of separating the notes from a
quantized symbolic music piece (e.g., a MIDI file) into multiple voices and staves.
This is a fundamental part of the larger task of music score engraving (or score
typesetting), which aims to produce readable musical scores for human performers.
We focus on piano music and support homophonic voices, i.e., voices that can
contain chords, and cross-staff voices, which are notably difficult tasks that have
often been overlooked in previous research. We propose an end-to-end system
based on graph neural networks that clusters notes that belong to the same chord
and connects them with edges if they are part of a voice. Our results show clear
and consistent improvements over a previous approach on two datasets of different
styles. To aid the qualitative analysis of our results, we support the export in
symbolic music formats and provide a direct visualization of our outputs graph
over the musical score. All code and pre-trained models are available at https:
//github.com/CPJKU/piano_svsep

8.1 introduction

The musical score is an important tool for musicians due to its ability to convey
musical information in a compact graphical form. Compared to other music rep-
resentations that may be easier to define and process for machines, for example,
MIDI files, the musical score is characterized by how efficiently trained musicians
can read it.

An important factor that affects the readability of a musical score for instruments
that can produce more than one note simultaneously, is the separation of notes into
different voices (see Figure 8.1). This division may follow what a listener perceives
as independent auditory streams [1], which can also be reflected in a clearer visual
rendition of a musical score [2]. A similar point can be made for the division into
multiple staves (generally 2) for instruments with a large pitch range, such as piano,
organ, harp, or marimba. We will consider in this paper piano music.

109

https://github.com/CPJKU/piano_svsep
https://github.com/CPJKU/piano_svsep

110 polyphonic voice separation

Figure 8.1: Comparing different voice/staff assignments for two bars from C. Debussy’s
Estampes - Pagodes. (top) original; voices can be inferred from the beam
grouping and (horizontal lines connecting notes), rests, and stem sharing, and
are colored for clarity. (bottom) hard-to-read rendition with voice and staff
assigned according to heuristics we propose as a baseline.

The term voice is frequently used to describe a sequence of musical notes that
do not overlap, which we call a monophonic voice. However, this definition may be
insufficient when considering polyphonic instruments. The voices could contain
chords, which are groups of synchronous notes (i.e., notes with the same onset and
offset) and are perceived as a single entity [3]. We name a voice that can contain
chords a homophonic voice. Note that notes partially overlapping notes cannot be
part of a homophonic voice.

Music encoded in MIDI (or similar) formats, even when containing quantized
notes, time signature, or bar information, often does not contain voice and staff
information. The same can be said for the output of music generation [4], tran-
scription [5], or arranging [6] systems. Therefore, such music cannot be effectively
converted into a musical score, to be efficiently read and played by human mu-
sicians.2 The tasks of producing voice and staff information from unstructured
symbolic music input are called voice separation (or voice segregation in some
papers [3]) and staff separation, respectively.

Most of the existing approaches to voice separation have focused only on music
with monophonic voices [7–12], which is not sufficient for our goal of engraving3

piano music. The task of homophonic voice separation is much harder to solve: the
presence of chords within voices makes the space of solutions grow much bigger;

2 Voice and staff separation are only two of the multiple elements, such as pitch spelling, rhythmic
grouping, and tuplet creations, which need to be targeted by a score engraving system, but we will
only focus on the former two in this paper.

3 “score engraving” and “score typesetting” are used interchangingly.

8.2 related work 111

and the choice of the “true voice separation” can be ambiguous, with multiple valid
alternatives among which experts may disagree.

The existing approaches to homophonic voice separation can be divided into two
groups: the first [1, 3, 5, 13] use dynamic programming algorithms based on a set of
heuristics, which makes for systems that are controllable and interpretable, but also
hard to develop and tune. Such systems are often prone to fail on exceptions and
corner cases that are present in musical pieces. The second group of approaches [14–
17] applies deep learning models to predict a voice label for each note. Such an
approach creates two fundamental issues: i) the necessity of setting a maximum
number of voice labels, and ii) a (highly) unbalanced ratio of occurrence of some
voice labels. Moreover, all these approaches assume that a voice cannot move
between the two staves, which is not true for complex piano pieces.

In this work, we propose a novel system for homophonic voice separation that
can efficiently and effectively assign notes to voices and staves for polyphonic
music engraving. Efficiency is ensured by a graph neural network (GNN) encoder,
which can create input embeddings with a relatively small number of parameters.
Effectiveness is targeted by approaching voice prediction not as a note labeling, but
as an edge prediction problem [12], which solves the maximum voice number and
the label imbalance problems presented above. Our system predicts staff and voice
separately and does not make any assumption on the number of voices; therefore it
can deal with cross-staff voices and complex corner cases. We avoid the problem of
ground truth ambiguity since we focus specifically on voice separation for musical
score engraving, therefore we can extract the (unique) ground truth directly from
digitized musical scores.

We evaluate our system on two piano datasets of different difficulty levels, one
containing popular, the other classical music. A comparison with a baseline and
the approach of Shibata et al. [5] shows a consistent improvement in performance
on both datasets. Finally, we develop a visualization tool to display the input and
output of our system directly on the musical score, and discuss some predictions
and comments on homophonic voice separation.

8.2 related work

The most influential work for this paper is the monophonic voice separation system
by Karystinaios et al. [12]. Similarly, we consider voice separation a edge predic-
tion task and use a similar score-to-graph routine and the same GNN encoder.
Differently from that work, we consider homophonic voices and staves and, there-
fore, we extend the model formulation, the deep learning architecture, and the
postprocessing routine to deal with this information.

Shibata et al. [5] developed a voice and staff separation technique applied after
music transcription to quantized MIDI files. It works in two stages: first, an HMM
separates the notes of the two hands (which will then be used as staff), and then a
dynamic programming algorithm that maximizes the adherence to a set of heuristics
is applied to separate voices in the two hands independently. We compare against
this method since it is the most recent approach focusing specifically on homophonic
voice separation.

112 polyphonic voice separation

There are some approaches based on neural networks [14–17], but they never
perform this task in isolation, but rather in combination with other tasks such as
symbolic music transcription, full scorification, and automatic arrangement. This
means that they can only train on a much smaller dataset and a comparison would
not be fair.

All the approaches mentioned before, except [12], perform voice separation as a
label prediction task, which is problematic, as discussed in the introduction, due to
the label imbalance and choice of the maximum number of voices. The former is
particularly problematic for the neural network approaches.

8.3 methodology

Our system inputs data in the form of a set of quantized notes (e.g., coming from a
quantized MIDI or a digitized musical score), each characterized by pitch, onset,
and offset. This information is modeled as a graph, which we call input graph,
and then passed through a GNN model to predict an output graph containing
information about voices, staves, and chord groupings. We remind the reader that
in our ‘homophonic voice’ scenario, chords are groups of synchronous notes that
belong to the same voice.

8.3.1 Input Graph

From the set of quantized notes representing a musical piece we create a directed
heterogeneous graph [18] Gin = (V, Ein,Rin) where each node v ∈ V corresponds
to one and only one note, and the edges e ∈ Ein of type r ∈ Rin model temporal
relations between notes [12]. Rin includes 4 types of relations: onset, during, follow,
and silence, corresponding, respectively, to two notes starting at the same time, a
note starting while the other is sounding, a note starting when the other ends, and
a note starting after a time when no note is sounding. We also create the inverse
edges for during, follows, and silence relations. Each node corresponds to a vector
of features: one of the 12 note pitch classes4 (C, C#, D, etc.), the octave in [1, . . . , 7],
the note duration, encoded as a float value d ∈ [0, 1] computed as the ratio of the
note and bar durations, passed through a tanh function to limit its value and boost
resolution for shorter notes, as proposed in [12]. We don’t consider grace notes in
our system, and we remove them from the input notes.

8.3.2 Output Graph

The output graph Gout = (V, Eout,Rout) has the same set V of nodes as the input
graph, but a staff number in {0, 1} is assigned to every node. There are two edge
types in Eout: chord and voice, i.e. Rout = {"chord", "voice"}.

Voice edges [8, 12] are an alternative in the literature to the more straightforward
approach of predicting a voice number for every note; the usage of voice edges

4 We don’t consider tonal pitch classes [19] since they are not specified in MIDI files which we assume
to be our input.

8.3 methodology 113

has the advantage of enabling a system to work with a non-specified number of
voices, and avoiding the label imbalance problem for high voice numbers. Voice
edges are directed edges that connect consecutive notes (without considering rests)
in the same voice. Formally, let u1, u2 ∈ V be two notes in the same voice then
(u1, "voice", u2) ∈ Eout if and only if offset(u1) ≤ onset(u2) and ∄ u3 ∈ V within the
same voice such that offset(u1) ≤ onset(u3) < onset(u2).

The previous definition also holds in our setting with homophonic voices. Let us
extend the definition of chord (a set of synchronous notes) to include the limit case
of a single note. Two chords are consecutive if any two notes, respectively, from the
first and second chords are consecutive. In the case of two consecutive chords with
m and n notes in the same voice, there will be m ∗ n voice edges.

Chord edges are undirected and connect all notes that belong to the same chord
without self-loops, so for a n-note chord, there are n(n − 1) edges. They serve to
unambiguously identify which notes together form a single chord.

The same output graph can be created from an already properly engraved score.
To obtain the graph we only need to draw the true voice edges between consecutive
notes in the same voice within a bar and for chord edges we draw the chord ground
truth between synchronous notes with the same voice number assignment. This
graph can subsequently serve as the ground truth during training.

8.3.3 Problem Simplification

In this section, we apply some obvious musical constraints to reduce computation
and memory usage in our pipeline, without impacting the results. Let us first
focus on chord edge prediction. Given the simple constraint that all notes of a
chord must start and end simultaneously, we can restrict the chord edge prediction
process to only consider pairs of sychronous notes (same onset and offset values)
as candidates. We do this by creating a set of chord edge candidates Λc which are
calculated automatically and associated with our input graph. Only notes connected
by such candidate edges will be considered in the chord prediction part of the
model (see next section).

The same reasoning can be applied to the voice edges, by creating a set of
voice edge candidates Λv such that ∀u1, u2 ∈ V, (u1, "voice", u2) ∈ Λv only when
offset(u1) > onset(u2). Another step can be taken towards reducing the number of
candidates in the set Λv by incorporating some musical engraving considerations.

The separation of notes in multiple voices does not have to be consistent in the
whole score, but only within each bar, to produce the intended visual representation.
There are no graphical elements that show if two notes in different bars are or
are not in the same voice5. Music engraving software does not force users to use
consistent voices across bars. This can be often observed in digitized musical scores
where music motives that belong to the same voice, are assigned different voices
in different bars. Such observations have motivated projects such as the Symbolic
Multitrack Contrapuntal Music Archive [20] that explicitly encode a “global” voice
number.

5 This may change for cross-bar beamings, but they are very rarely used in standard music notation
(there are no occurrences in our datasets) and therefore we do not consider them in this work.

114 polyphonic voice separation

Figure 8.2: Our Architecture. For simplification, we display the output graph as having
“hard” voice predictions, while these are probabilities over voice candidates.

Since cross-bar consistency is not necessary for our goal of engraving (and is often
wrongly annotated in our data) we limit the voice edge candidates Λv to contain only
pairs of notes that occur within the same bar. This design choice is also reflected
in our evaluation, i.e. we do not evaluate how the voices propagate across bars,
but only within each bar. Note that this process is different from processing each
bar independently since our network (detailed in the next section) considers music
content across bars.

8.3.4 Model

We design an end-to-end model (see Figure 8.2) that receives an input graph as
described in Section 8.3.1 and produces an output graph as in Section 8.3.2. The
model is organized as an encoder–decoder architecture.

The encoder receives an input graph created from a quantized MIDI score and
passes it through three stacked Graph Convolutional Network (GCN) blocks to
produce a node embedding for each note. We use the heterogeneous version of the
Sage convolutional block [18] with a hidden size of 256; the update function for
each node u is described by:

h(l+1)
N (u) = ∑

(
{hl

v, ∀v ∈ N (u)}
)

h(l+1)
u = σ

(
W · concat(hl

u, hl+1
N (u))

) (8.1)

where N (u) are the neighbors of node u, σ is a non-linear activation function, W is
a learnable weight matrix.

The decoder consists of three parts that all use the same node embedding as
input: i) a staff predictor; ii) a voice edge predictor; and iii) a chord clustering (i.e.,
a chord edge predictor). The staff predictor is a 2-layer Multi-Layer Perceptron (MLP)
classifier that produces probabilities for each graph node (i.e., each note) to belong
to the first or second staff. The voice edge predictor receives the embeddings of pairs
of notes connected by edge candidates and produces a probability for each pair
to be in the same voice. It works by concatenating the pairs of note embeddings
and applying a 2-layer MLP. The final decoder part, chord clustering, receives the
embeddings of pairs of notes connected by chord edge candidates (i.e., pairs of

8.3 methodology 115

synchronous notes) and produces the probability for a pair to be merged into a
chord. This is achieved by computing the cosine similarity between the elements
of the pair. This process forces the node embeddings created by the decoder to be
similar to each other for notes of the same chord, which helps the voice predictor
produce consistent voice edge probabilities for notes of the same chord. We apply a
threshold to pass from probabilities to decisions on which notes to cluster.

The complete model contains ∼ 3M parameters and we train it end-to-end with
the (unweighted) sum of three Binary Cross Entropy loss functions, one for each task.

8.3.5 Postprocessing

A straightforward approach to deciding whether to connect two notes with a voice
edge would be to threshold the predicted voice edge probabilities. However, even
when using edge and chord candidates, we could still produce three kinds of
invalid output: (1) multiple voices merging into one voice, (2) one voice splitting
into multiple voices, and (3) notes in the same chord that are not in the same voice.
To eliminate these issues, we add a postprocessing phase that accompanies our
model and guarantees a valid output according to music engraving rules.

The first step, which we call chord pooling, merges all nodes that belong to the
same chord to a single new "virtual node". This is done by looking for the connected
components considering only chord edges in the output graph, then pooling in a
single node all original nodes in each connected component, creating a new node
which has as incoming and outgoing voice edges all edges entering and exiting the
original nodes, respectively. If multiple edges collapse in one edge (e.g. in the case
of two consecutive chords in the same voice), the new edge has a probability that is
the average of the corresponding edge probabilities.

After the first step, we are left with monophonic streams, which could still
exhibit problems (1) and (2). We can solve this with the technique proposed in [12]
for monophonic voices, i.e. by framing the voice assignment problem as a linear
assignment problem [21] over the adjacency matrix obtained by the updated edge
candidates Λ′

v. We follow the linear assignment step by unpooling or unmerging
the nodes that were previously pooled, in this way, obtaining the original nodes
again. During unpooling, the incoming edges and outgoing edges of the "virtual
nodes" are reassigned to each original node, thus resolving problem (3).

The complete postprocessing method is depicted in Figure 8.3. It is worth noting
that the staff labels are not considered during the postprocessing phase, and we
copy them unchanged to the postprocessed output graph.

8.3.6 Evaluation

We evaluate the predicted voice assignments with the metric proposed by Hiramatsu
et al. [15], which formalizes the metric of McLeod and Steedman [22]. This is a
version of the F1-score for voice separation [8] which is adapted to work on
homophonic voices, by reducing the importance of notes if they are part of a chord.
This is important since chords create many voice edges (e.g., two 4-note chords in
the same voice are connected by 16 edges), which could potentially overshadow the
importance of edges in monophonic voices (or voices with fewer/smaller chords).

116 polyphonic voice separation

Figure 8.3: Output graph postprocessing. We do not display the predicted staff labels.

Formally, the homophonic voice F1-score F1 is calculated as:

P =
∑i<j aij âij/ŵi

∑i<j âij/ŵi
, R =

∑i<j aij âij/wi

∑i<j aij/wi

F1 =
2PR

P + R

(8.2)

where i < j, in the sum, considers all pair of notes i, j such that offset(i) <

onset(j); aij, âij are equal to 1 or 0 if a voice edge exists or not in the ground
truth and predictions, respectively; and wi and ŵi are the number of notes that are
chorded together with the note i in the ground truth and predictions, respectively.
Unlike [15], we consider only notes j in the same bar of i, for the reasons presented
in Section 8.3.3. We evaluate the staff prediction part of our model with binary
accuracy, and we assess chord prediction with the F1 score computed on the chord
edges.

8.3.7 From Network Prediction to Readable Output

The computation of voice and staff numbers is sufficient for the system evaluation,
but not for producing a usable tool, which we are interested in in this paper. The
missing step, to be described in this section, is the integration of the network
predictions into a readable musical score. To achieve this integration we need to
undertake two essential steps: beam together notes within the same voice, and infill
rests to "fill holes" within each voice.

For the first step, we proceed according to the rules of engraving [2]. We beam
two consecutive notes (or chords) in the same voices if their duration is less than a
quarter note (excluding ties) unless they belong to different beats. Following the
music notation convention we consider the compound time signatures, i.e., 6

x , 9
x , 12

x to
have, respectively, 2,3, and 4 beats. When confronted with tied notes, the algorithm
prioritizes producing notations with the fewest number of notes, an heuristic with
promotes easier-to-read notation [23].

The second step consists of introducing rests so that each voice fills the entire
bar and can be correctly displayed. Some rests could be set as invisible to improve
the graphical output when their presence and duration are easy to assume from
other score elements, but we display all of them for simplicity. As for the notes, we

8.3 methodology 117

D
at

as
et

J-
po

p
D

at
as

et
D

C
M

L
R

om
an

ti
c

C
or

pu
s

St
af

f
A

cc
C

ho
rd

F1
Vo

ic
e

F1
St

af
f

A
cc

C
ho

rd
F1

Vo
ic

e
F1

Ba
se

lin
e

89
.9

86
.9

85
.4

80
.7

65
.2

78
.2

Sh
ib

at
a

et
al

.[
5

]
92

.8
-

92
.2

88
.5

-
84

.9

G
N

N
w

o
C

ho
rd

w
o

Po
st

96
.5
±

0.
1

-
95

.2
±

1.
9

91
.5
±

0.
1

-
87

.2
±

3.
3

G
N

N
w

o
Po

st
96

.3
±

0.
1

94
.9
±

0.
1

95
.7
±

0.
4

91
.0
±

0.
1

79
.5
±

0.
4

88
.9
±

0.
4

G
N

N
96

.3
±

0.
1

94
.9
±

0.
1

96
.6
±

0.
1

91
.0
±

0.
1

79
.5
±

0.
4

89
.9
±

0.
2

Ta
bl

e
8.

1:
M

et
ri

cs
fo

r
ou

r
th

e
J-

P
op

an
d

D
C

M
L

te
st

se
ts

.“
G

N
N

”
d

en
ot

es
ou

r
m

et
ho

d
,w

it
ho

u
t

p
os

tp
ro

ce
ss

in
g

(“
G

N
N

w
o

P
os

t”
),

an
d

w
it

ho
u

t
bo

th
po

st
pr

oc
es

si
ng

an
d

ch
or

d
pr

ed
ic

ti
on

pa
rt

s
(“

G
N

N
w

o
C

ho
rd

w
o

Po
st

”)
.A

ll
G

N
N

m
od

el
ru

ns
ar

e
re

pe
at

ed
5

ti
m

es
:±

re
fe

rs
to

th
e

st
an

d
ar

d
de

vi
at

io
n

of
re

su
lt

s
ac

ro
ss

ru
ns

.

118 polyphonic voice separation

choose the rest types (with eventual dots) to minimize the number of rests in the
score.

The two steps described above cover common cases and produce a complete score
in MEI format [24]. However, the score export is still a prototype, since developing
one that is robust against all corner cases is an extremely complex task, and is
outside the scope of this paper. Since score output problems may obscure the output
of our system, we also develop a graph visualization tool. Both the input and output
graphs (including the candidate edges) can be displayed on top of the musical score
in an interactive web-based interface based on Verovio [25]. Some examples of the
output graph visualization are in Figure 8.4.

8.4 experiments

We train our model with the ADAM optimizer with a learning rate of 0.001 and a
weight decay of 5 ∗ 10−4 for 100 epochs. For a quantitative evaluation, we compare
our results with those of a baseline algorithm and the method proposed by Shibata
et al. [5], on two rather diverse datasets.

Our baseline algorithm assigns all notes under C4 (middle C) to the second staff
and the rest to the first. Then it groups all synchronous notes (per staff) as chords.
Finally, it uses the time and pitch distances between the candidate pairs of notes as
weights to be minimized during the linear assignment process (the same as we use
in our postprocessing) which creates the voice edges.

8.4.1 Datasets

We use two piano datasets of different styles and difficulties to evaluate our system
under diverse conditions. The ability to handle complex corner cases should not
reduce the performance on easier (and more common) pieces.

The J-Pop dataset contains pop piano scores introduced by [5]. Most of the scores
consist of accompaniment chords on the lower staff and some simple melodic lines
on the upper staff. The dataset contains 811 scores; we randomly sampled 159

(roughly 20%) of these for testing and used the rest for training and validation.
The DCML Romantic Corpus is more challenging. It was created by [26] and

contains piano pieces from the 17th to 20th centuries with some virtuosic quality.
It includes characteristics such as cross-staff beaming, a high number of voices,
challenging voicing, etc. Similarly to the pop dataset we randomly sample 77 out of
the 393 scores (approx. 20%) and use the rest for training and validation.

The J-Pop dataset is available in MusicXML format, while the DCML Romantic
Corpus is in Musescore file format. We use Musescore to convert DCML files to
MusicXML and load them with the Python library Partitura [27] to extract the note
list.

8.4 experiments 119

8.4.2 Results

Our model aims to be generic across a variety of music, therefore we train a single
model on the joined training set of pop and classical scores, not two individual ones.
The rules that govern the handling of voices may be fundamentally different in
the two datasets, but we assign to the model the task of handling these differences.
This approach ensures better future scalability on bigger and more diverse datasets.
We compute the metrics separately on the test part of our two datasets.

Table 8.1 reports results for three versions of our graph-based model: the complete
model from Section 8.3, a variant without postprocessing, and a variant without
chord prediction and postprocessing (our postprocessing technique cannot be run
without the chord prediction task, since it pools nodes that belong to the same
predicted chord). The method of Shibata requires the specification of the number
of voices per staff. For compactness, we report only the results with one voice per
staff (2 voices total); the results degrade by increasing the number of voices.

Our results show that even our system without pooling and without postprocess-
ing obtains consistently better results than both Shibata et al. [5] and our baseline.
Interestingly, the chord prediction task improves the Voice F1 results even when
the post-processing is not used; this confirms the benefits of multi-task training,
and of enforcing notes of the same chord to have similar representations in the
hidden space, with cosine similarity, to predict coherent voice edges. However, we
observe a reduction in staff accuracy, probably for the same reason, since the same
hidden representation is also used to predict chords, making it harder (though
not impossible) to split notes of the same chord in different staves. When the full
system is used, there are further improvements in Voice F1.

We are also evaluate our system on the bar-level and study performances for
music excerpts of varying difficulties. We compute the voice F1 score for each bar
and average them based on the number of voices in the ground truth. We compare
with Shibata et al. [5] with 1 & 2 voices per staff (vps). Table 8.2 shows the results
for the DCML Romantic Corpus. Both our model and [5] perform best with 2 voices,
the most common number in our dataset. Interestingly, Shibata et al. approach
with 2 vps never outperforms vps 1, not even when the target number of voices
is 3 or 4, a situation that vps 1 cannot handle. This can be explained by the fact
that Shibata et al. parameters were tuned on a simpler dataset, and accepting more
voices creates more errors than benefits. Setting vps > 2 consistently degraded the
performances, probably also for similar reasons.

8.4.3 Qualitative Analysis

Let us take a closer look into the predictions of our deep-learning approach (GNN)
on the excerpt of Figure 8.4 produced by our visualization tool. Our approach
captures correctly the cross-staff voice in the first two bars, while such a situation
causes performance degradation for all other voice separation approaches that don’t
support it. We observe some disagreements with the original score in Measure 3:
our model predicts a single chord (instead of splitting across the staff) containing
all the synchronous syncopated quarter notes, and also mispredicts the staff for the
first D#4 note. A more in-depth study of why this happens is not trivial, as neural

120 polyphonic voice separation

#Voices #Bars GNN [5] 1vps [5] 2vps

1 322 96.6 88.3 87.9
2 4576 94.1 89.3 88.1
3 2464 89.0 84.2 81.5
4 719 81.6 80.5 75.1
5 99 81.6 76.7 73.7
6 17 78.4 68.9 61.6

Table 8.2: Voice F1 score aggregated by bars with the same number of voices in the ground
truth, on the DCML Romantic Corpus. Shibata et al. [5] is used with 1 and 2

voices per staff (vps).

Figure 8.4: Comparison of voice and staff assignment between the original score and our
method on the first bars of C. Debussy’s Estampes-Pagodes. Voice edges (red)
and chord edges (blue) are drawn for the original score (Ground Truth) and
our proposed approach (GNN).

8.5 conclusion and future work 121

networks are not interpretable. This is a drawback compared to heuristic-based
separation techniques.

Synchronous notes with the same pitch are problematic. Our system can predict
different voices for these notes, while Shibata et al. always predict them as a chord
in the same voice, and this reduces the performances for pieces that contain a lot
of them, like Schumann Kinderszenen Op.15. For fairness, we should note that we
should expect the output of a music transcription system to only contain one of
these notes, instead of multiple like in our current input. An enhancement of our
system would then be able to receive a single note as input, assign multiple voices
to it (with multiple incoming and outgoing edges) and then split it into multiple
notes. Another current limitation of our system is the missing support for grace
notes, which in the actual version are ignored and removed from the input.

8.5 conclusion and future work

This paper presented a novel graph-based method for homophonic voice separation
and staff prediction in symbolic piano music. Our experiments highlight our
system’s effectiveness compared to previous approaches. Notably, we obtained
consistent improvements over two datasets of different styles with a single model.

Future work will focus on integrating grace notes and the possibility of multiple
voices converging on a single note. We aim to create a framework that produces
complete engravings from quantized MIDI, including the prediction of clef changes,
beams, pitch spelling, and key signatures.

8.6 acknowledgements

This work is supported by the European Research Council (ERC) under the EU’s
Horizon 2020 research & innovation programme, grant agreement No. 101019375

(Whither Music?), and the Federal State of Upper Austria (LIT AI Lab).

references

[1] Emilios Cambouropoulos. “Voice and stream: Perceptual and computa-
tional modeling of voice separation.” In: Music Perception 26.1 (2008), pp. 75–
94.

[2] Elaine Gould. Behind bars: the definitive guide to music notation. Faber Music
Ltd, 2016.

[3] Dimos Makris, Ioannis Karydis, and Emilios Cambouropoulos. “VISA3:
Refining the voice integration/segregation algorithm.” In: Proceedings of the
Sound and Music Computing Conference. 2016.

[4] Yu Siang Huang and Yi Hsuan Yang. “Pop Music Transformer: Beat-based
Modeling and Generation of Expressive Pop Piano Compositions.” In:

122 polyphonic voice separation

Proceedings of the 28th ACM International Conference on Multimedia. 2020.
isbn: 9781450379885. doi: 10.1145/3394171.3413671. arXiv: 2002.00212.

[5] Kentaro Shibata, Eita Nakamura, and Kazuyoshi Yoshii. “Non-local musical
statistics as guides for audio-to-score piano transcription.” In: Information
Sciences 566 (2021), pp. 262–280.

[6] Moyu Terao, Eita Nakamura, and Kazuyoshi Yoshii. “Neural Band-to-Piano
Score Arrangement with Stepless Difficulty Control.” In: ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2023, pp. 1–5.

[7] Elaine Chew and Xiaodan Wu. “Separating voices in polyphonic music: A
contig mapping approach.” In: Proceedings of the International Symposium on
Computer Music Modeling and Retrieval. Springer. 2004.

[8] Ben Duane and Bryan Pardo. “Streaming from MIDI using constraint
satisfaction optimization and sequence alignment.” In: Proceedings of the
International Computer Music Conference (ICMC). 2009.

[9] Patrick Gray and Razvan C Bunescu. “A Neural Greedy Model for Voice
Separation in Symbolic Music.” In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). 2016.

[10] Andrew McLeod and Mark Steedman. “HMM-based voice separation of
MIDI performance.” In: Journal of New Music Research 45.1 (2016), pp. 17–26.

[11] Yo-Wei Hsiao and Li Su. “Learning note-to-note affinity for voice segrega-
tion and melody line identification of symbolic music data.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2021, pp. 285–292.

[12] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

[13] Jürgen Kilian and Holger H Hoos. “Voice Separation-A Local Optimization
Approach.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Citeseer. 2002.

[14] Masahiro Suzuki. “Score Transformer: Generating Musical Score from
Note-level Representation.” In: Proceedings of the 3rd ACM International
Conference on Multimedia in Asia. 2021, pp. 1–7.

[15] Yuki Hiramatsu, Eita Nakamura, and Kazuyoshi Yoshii. “Joint Estimation
of Note Values and Voices for Audio-to-Score Piano Transcription.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2021, pp. 278–284.

[16] Lele Liu, Qiuqiang Kong, GV Morfi, Emmanouil Benetos, et al. “Perfor-
mance MIDI-to-score conversion by neural beat tracking.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

https://doi.org/10.1145/3394171.3413671
https://arxiv.org/abs/2002.00212

8.6 references 123

[17] Jingwei Zhao, Gus Xia, and Ye Wang. “Q&A: Query-Based Representation
Learning for Multi-Track Symbolic Music re-Arrangement.” In: International
Joint Conference on Artificial Intelligence (IJCAI). 2023.

[18] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learn-
ing on Graphs: Methods and Applications.” In: IEEE Data Engineering
Bulletin 40.3 (2017), pp. 52–74.

[19] Francesco Foscarin, Nicolas Audebert, and Raphaël Fournier-S’Niehotta.
“PKSpell: Data-driven pitch spelling and key signature estimation.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2021.

[20] Anna Aljanaki, Stefano Kalonaris, Gianluca Micchi, and Eric Nichols.
“MCMA: A Symbolic Multitrack Contrapuntal Music Archive.” In: Empirical
Musicology Review 16.1 (2021), pp. 99–105.

[21] Rainer E Burkard and Eranda Cela. “Linear assignment problems and
extensions.” In: Handbook of combinatorial optimization. Springer, 1999, pp. 75–
149.

[22] Andrew McLeod and Mark Steedman. “Evaluating automatic polyphonic
music transcription.” In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). 2018, pp. 42–49.

[23] Francesco Foscarin, Florent Jacquemard, and Philippe Rigaux. “Modeling
and learning rhythm structure.” In: Sound and Music Computing Conference
(SMC). 2019.

[24] Perry Roland. “The music encoding initiative (MEI).” In: Proceedings of the
First International Conference on Musical Applications Using XML. Vol. 1060.
Citeseer. 2002, pp. 55–59.

[25] Laurent Pugin, Rodolfo Zitellini, and Perry Roland. “Verovio: A library for
Engraving MEI Music Notation into SVG.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2014.

[26] Johannes Hentschel, Yannis Rammos, Fabian C Moss, Markus Neuwirth,
and Martin Rohrmeier. “An annotated corpus of tonal piano music from
the long 19th century.” In: Empirical Musicology Review 18.1 (2023), pp. 84–
95.

[27] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

9 S Y M B O L I C M U S I C G R A P H
E X P L A N AT I O N S

Title: SMUG-Explain: A Framework for Symbolic Music Graph Explanations

Published In Proceedings of the Sound and Music Conference (SMC), Porto
Portugal, 2024.

Authors: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer

Abstract: In this work, we present Score MUsic Graph (SMUG)-Explain, a frame-
work for generating and visualizing explanations of graph neural networks applied
to arbitrary prediction tasks on musical scores. Our system allows the user to
visualize the contribution of input notes (and note features) to the network output,
directly in the context of the musical score. We provide an interactive interface
based on the music notation engraving library Verovio. We showcase the usage
of SMUG-Explain on the task of cadence detection in classical music. All code is
available on https://github.com/manoskary/SMUG-Explain.

9.1 introduction

In recent years, Graph Neural Networks (GNNs) have emerged as a method for
processing musical scores in Music Information Research (MIR) applications, such
as cadence detection[1], expressive performance rendering[2], optical music recogni-
tion [3], music generation [4], voice separation[5], and Roman numeral analysis [6].
Like the majority of deep learning-based approaches, GNNs are not intrinsically
interpretable, thus making it impossible to inspect the system to reveal potential
issues of the system itself and the data it uses or to gain knowledge about the
specific task [7]. One could modify the system to make it more interpretable, but
this often leads to a reduction in performance. A popular alternative is the so-called
post-hoc method which aims to explain already trained deep models.

In the field of MIR, multiple explanation techniques have been proposed in recent
years [8–12], but they all target systems which use matrix-like inputs, such as
spectrograms or pianorolls. In this paper, instead, we focus on the explainability of
MIR systems that use graphs as input and process musical scores. We argue that
graph explanations for scores are more musically interpretable since they point to
individual note elements and their neighborhood in the score. We experiment with
various post-hoc gradient-based explanation methods for GNNs from the litera-
ture [13–19]. The generated explanations are quantitatively evaluated by verifying
that our explanations satisfy the sufficiency and necessity conditions from a GNN
point of view [18]. We name our framework Score MUsic Graph (SMUG)-Explain.

125

https://github.com/manoskary/SMUG-Explain

126 symbolic music graph explanations

Once the explanations are produced, there remains the question of how to present
them to the user in an effective way. We display them directly on the musical score,
to promote a clear and intuitive relation between the system input, the output and
the explanations. Moreover, our use case is more complex than the (more common)
explanation of global classifiers (i.e., systems that predict one label for each input
excerpt). We want to be able to target systems that predict labels for multiple
elements in the input, e.g., for every note or for every time step. This calls for an
interactive interface that enables users to focus on specific subsets of predictions.
We start with a web-based graphical rendition of a digitized musical score, based
on the engraving library Verovio [20]. The user can interact with individual notes
to trigger the visualization of explanations of the target GNN model. Specifically,
each note is associated with the subgraph that most contributes to the underlying
model’s prediction. Furthermore, for each selected note, the user can visualize
its feature importance, i.e. the relative importance of input features of the notes
involved in the explanation.

We showcase SMUG-Explain on the cadence detection model of Karystinaios
et al. [1], by comparing different explanation techniques, and by a qualitative
analysis of three music excerpts. GNNs excel at capturing intricate relationships
and patterns within graph-structured data. In music, that could be related to voice-
leading, harmonic relations, melodic patterns, and other elements that are implicitly
modeled by the score graph. From a musicological point of view, some parallelism
can be found between our explainer and an analyst who highlights the voice leading
and most important notes that contribute to the analysis assessment. In particular,
some analysis methodologies, such as Schenkerian analysis or GTTM [21], also
create graph structures between notes. In the second part of the paper, we attempt
to shed some insight into more musical interpretations of graph explanations. To
achieve this, we apply our framework to several music excerpts and comment
on the generated explanations. We believe that explanations of deep analytical
models might contain some musical pointers that can correlate with expert musical
analyses.

9.2 preliminary concepts

In this section, we present a common task-independent approach (as emerging
from recent papers on the topic) to modelling musical scores with GNNs, then we
give some information on explainability techniques for GNNs and their evaluation.

9.2.1 GNN-based Approaches on Musical Scores

The fundamental idea of GNN-based approaches to musical scores is to model a
musical score as a graph where notes are the vertices and edges model the temporal
relation between the notes.1 The most common approach [1, 2, 5, 6] to create a graph
from a musical score considers four types of edges (see Figure 9.1 for visualization
on the score):

1 More elements could be used as vertices, such as rests, bar lines, and dynamics symbols, but these
are not commonly used and we do not consider them in this paper.

9.2 preliminary concepts 127

Figure 9.1: An example of a score graph depicting the different graph edge types in
different colours.

• onset edges: connect notes that share the same onset;

• consecutive edges (or next edges): connect a note x to a note y if the offset of x
corresponds to the onset of y;

• during edges: connect a note x to a note y if the onset of y falls within the onset
and offset of x;

• rest edges (or silence edges): connect the last notes before a rest to the first ones
after it.

The GNN can treat these four edge types with a single representation [1], thus
considering a homogeneous input graph, or can treat them as different representations
per edge type, i.e. as a heterogeneous graph.

Adopting the latter approach, a score graph is represented as an attributed
heterogeneous graph G = (V, E,R, X), where V is the set of nodes representing
the notes in a score. E is the set of typed edges with elements of the form (v, τ, u)
where, v, u ∈ V and r ∈ R is a relation type. Finally, X ∈ RV×k is a feature matrix
such that every node u has its corresponding feature vector xu ∈ X. Furthermore,
we additionally can construct an adjacency matrix A ∈ V × V.

In our work, we apply the GraphSAGE convolutional block [22]. For a node v the
features message passing process per layer l is described as follows:

h(l+1)
N (v) = aggregate

(
{hl

j, ∀j ∈ N (v)}
)

h(l+1)
v = σ

(
W · concat(hl

v, hl+1
N (v))

)
h(l+1)

v = norm(h(l+1)
v)

(9.1)

Where W is a learnable weight, N (v) is the set of neighbors of v, aggregate is a
permutation invariant aggregation function such as mean, sum, or max, and σ is an
activation function such as ReLU.

128 symbolic music graph explanations

9.2.2 Explainability and Graphs

As explained in the introduction, we are interested in post-hoc methods, i.e., explain-
ability techniques that work on pre-trained models. Within the post-hoc realm, the
dichotomy of model-aware and model-agnostic explanations emerges. Model-aware
methods dissect model parameters for insights, while model-agnostic approaches
treat the model as a black box, perturbing inputs to unveil the significance of ele-
ments in the output. In this work, we try both categories but find the model-aware
techniques to work better for our case.

In terms of explanation evaluation, post-hoc GNN explanations can be measured
using the fidelity metric [19]. The fidelity metric measures the impact of the generated
explanatory subgraph on the initial prediction, achieved either by exclusively
presenting the subgraph to the model (fidelity-) or by excluding it from the entire
graph (fidelity+). These fidelity scores capture the ability of an interpretable model
to replicate the intrinsic logic of the natural phenomenon or the GNN model.

When it comes to describing post-hoc explanations, we can identify two types
of explanations based on their fidelity scores: necessary and sufficient. A sufficient
explanation can be used on its own to reproduce the model’s prediction, and it
gets a near-zero negative fidelity score. However, a sufficient explanation is not
necessarily unique. On the flip side, a necessary explanation is crucial – removing
it from the initial graph changes the model’s prediction, like a counterfactual
explanation. This type of explanation earns a positive fidelity score close to 1.
The ideal situation is found when an explanation is both necessary and sufficient.
Amara et al. [18] propose to balance the sufficiency and necessity requirements
with the characterization score which is the weighted harmonic mean of the positive
and negative fidelities. Therefore a characterization score close to 1 suggests clear,
comprehensive, and informative insights into the model’s decisions.

In this work, we use the characterization score as a means to evaluate differ-
ent explanation techniques and select the most fitting. It has to be noted that the
evaluation of explainability techniques is a particularly complex field, and many
approaches have been proposed and then put into question by subsequent re-
search [23–25]. Be that as it may, in this work, it is assumed that the characterization
score is a suitable metric to measure the quality of graph explanations.

9.3 our approach

In this section, we detail the cadence detection model that was trained and used to
showcase the explanations, then we describe our framework, and finally, we focus
on the choice of explanation techniques.

9.3.1 Cadence Detection Model

To showcase our framework, we chose to use a slightly modified version of the
cadence detection model introduced by Karystinaios and Widmer [1]. We extended
the model to use as input a heterogeneous score graph as described in Section 9.2.1.
Furthermore, we extended the prediction capabilities of the model from binary

9.3 our approach 129

Figure 9.2: A demonstration of the SMUG-Explain Web interface. In this example, we view
the first bars of Mozart’s Piano Sonata K280 2

nd mvt. It includes a Roman
numeral analysis and the cadence label predicted by our model at the top. The
purple dashed lines are the produced explanation for the note highlighted in
red. Note the vertical connection line in the very first bar, which is also a part
of this explanation. At the bottom, we can view the feature importance for the
explained note.

(i.e. no-cad or PAC) to multiclass cadence prediction, covering PAC, IAC, and
HC. Moreover, we modified the architecture by adding an onset regularization
module that sums the latent representations (after the GNN encoder) of all the
notes that occur on a distinct onset of the score to every note that shares this onset.
In summary, our cadence detection model consists of a graph convolutional encoder,
an onset regularization module, an embedded SMOTE layer for training, and a
shallow MLP classifier.

During training, the graph input is passed first through the graph encoder.
The obtained node embeddings are then grouped by onset based on the score
information, and their representations are averaged together. Following this step,
embedded SMOTE is applied to balance the number of cadence classes compared to
the notes not having cadence labels in the score. However, when doing inference, the
latter synthetic oversampling step is skipped. Finally, the oversampled embeddings
are given as input to a shallow 2-layer MLP classifier that predicts the cadence type.

We trained our model with a joined corpus of cadence annotations from the
DCML corpora 2, the Bach fugues from the well-tempered clavier No. 1 [26], the
annotated Mozart string quartets [27], and the annotated Haydn string quartets [28].
Our joined corpus makes for 590, 149 individual notes and 17, 188 cadence an-
notations. We train our model on 90% of the data and evaluate on 10% using a
random split. Our model reaches a mean F-score of 59% on the test set. Note that
these results cannot be directly compared with [1], since we use a different (bigger)
dataset and perform multiclass prediction.

9.3.2 The SMUG-Explain Framework

Our framework has two main functionalities: generating explanations and making
them visually interpretable.

2 https://github.com/DCMLab/dcml_corpora

https://github.com/DCMLab/dcml_corpora

130 symbolic music graph explanations

The first step involves importing musical scores, creating the graph structure,
and running the explanation techniques. The score import uses the Python library
Partitura [29] which supports a variety of score formats, such as MEI, MusicXML,
Kern, or (quantized) MIDI. The graph creation is based on previous work [5, 6]
and outputs a graph in the widely used Pytorch Geometric format [30] to favour
reusability and extensibility of our frameworks.

For the explanation part, we follow a standardized GNN model explanation
pipeline: the explainer receives a pre-trained GNN model that performs node-level
classification and produces an explanation of the cadence label prediction for a
specific note, at two levels: (a) by quantifying the relative importance of the various
features of the note; and (b) by identifying an explanation subgraph consisting
of the notes and their relations that seem most important for the prediction. For
producing an explanation subgraph, the explainer computes importance masks over
all edges. These importance masks reflect an importance score for each one of the
edges in the input graph that is used to filter which (most important) edges belong
to the explanation subgraph. The importance masks can be soft (i.e. continuous
numbers between 0 and 1) or hard (i.e. binary). Furthermore, a maximum number
of edges can be imposed per edge type to limit the explanation to stay within a
certain graph size. It has been shown that hard masks tend to increase the necessity
and sufficiency of explanations [18]. Therefore, in our application, we use a hard
top-k method for each one of our edge types, where k is set to 10. Likewise, for
producing the feature importance, the explainer produces masks over all nodes and
their features and it keeps the k most important by summing the masks along the
feature dimension.

The interface of the SMUG-Explain framework is a web-based interface imple-
mented in HTML and Javascript. The core of the interface is the score engraving
library Verovio [20] which outputs an SVG representation from a musical score
file. We then extend this score representation with the target deep learning model
output (i.e., predicted cadences in our case) and with the information produced by
the explainers. From the latter, we display in particular the edges between different
notes that contribute to the explanation and the feature importance for each note
that corresponds to a cadence prediction (see the next section for details). To make
this part possible we need a one-to-one mapping between elements in Python and
elements in the SVG generated image. Verovio preserves the mapping between
note-ids in the musical score file and the SVG image (if they exist), but only the MEI
format contains note-ids. Therefore we extended Partitura with an MEI export
function, and we support Roman numeral analysis and cadence name exports.

The final step for an effective interface consists of making it interactive. The user
can click on single notes, and this will trigger the visualization of the corresponding
explanation edges and feature importance. Moreover, the user can switch back and
forth between the visualization of the input edges (from the graph presented in
Section 9.2.1) and the explanations, and listen to an audio rendition of the musical
score. The interface is shown in Figure 9.2.

9.3 our approach 131

9.3.3 Choice of Explainability Techniques

To investigate and evaluate the explanations produced by our framework we test
several explanation algorithms such as Saliency, Integrated Gradients, Deconvolu-
tion, and Guided Backpropagation. Saliency gauges node and edge importance by
weighing each node after calculating the gradient of the output concerning input
features [16]. Integrated Gradient tackles the saturation issue of gradient-based
methods like Saliency by accumulating gradients along the path from a baseline
input (zero-vector) to the current input [31]. Deconvolution computes the gradi-
ent of the target output but overrides ReLU function gradients, only propagating
non-negative gradients [14]. Guided Backpropagation follows a similar approach,
backpropagating only non-negative gradients [13].

Each of those methods was evaluated on model-level explanations, i.e. the ex-
planation algorithm computes its losses with respect to the model output. We use
the characterization score as defined in [18] (see Section 9.2.2). We fix the positive
and negative fidelity weights to 0.5 and apply k-top hard masks for edges and
nodes. The results are shown in Table 9.1. Our findings suggest that for this task the
Integrated Gradients method better captures explanations, in some cases achieving
a perfect characterization score of 1.

We note that most methods tested on our application are gradient-based. Some
perturbation-based methods for generation GNN explanations such as the GNNEx-
plainer [32], Occlusion [17], or the GraphMaskExplainer [33], might be suitable for
our application, however, they are not yet adapted to work with heterogeneous
graphs.

As a general remark, we would like to underline that typically graph-dedicated
explainers are more biased toward generating compact explanation subgraphs.
However, this bias might be less suitable for music where some analysis methods
suggest that important elements of a piece might not be directly interconnected.

Pieces/Model SAL GBP DC IG

WTC-I Fuga 1 0.0588 0.4706 0.2941 1.0
WTC-I Fuga 2 0.0 0.0435 0.0435 0.9130
WTC-I Fuga 5 0.0 0.0667 0.0 0.8667
Mozart K280-2 0.0 0.3125 0.3438 0.9375
Chopin Op.48 0.0 0.1875 0.1250 0.8125
Mozart K331 0.0 0.0 0.0625 1.0

Table 9.1: Characterization score for the model explanations of cadences per piece. The
four methods are mentioned in Section 9.3.3. SAL stands for Saliency, GBP for
Guided Backpropagation, DC for Deconvolution and IG for Integrated Gradients.
Highlighted values indicate the highest (best) explanations in terms of character-
ization score.

132 symbolic music graph explanations

9.4 qualitative analysis

In this section, we perform a qualitative analysis of a diverse set of scores and
comment on the graph explanations produced by our system on the task of cadence
classification. Apart from the explanation metrics described in Section 9.3.3 we
believe that explanation should be also motivated in musical terms. Therefore, we
go into depth about some individual explanations of cadence predictions, targeting
both true positive and false positive predictions.3

We showcase explanations in four classical music excerpts ranging from the
Baroque to the Romantic era. Furthermore, we consult expert analyses in terms
of harmony, voice leading, and Schenkerian analysis and attempt to interpret the
produced explanations. Naturally, we assert that the explanations discussed should
be necessary and sufficient. We remind the reader that the generated explanations
do not explain the working mechanics of cadences but rather present insights into
the model’s decision process. In other words, we are not answering the question
“why is there a cadence here?”, but “why does the model think there is a cadence
here?”.

All of the below explanations are included in our publicly available code, includ-
ing the entire pieces. We invite the reader to explore our interface and test our
framework.

9.4.1 Mozart Piano Sonata K280 Mov. 2

Our first example (see Figure 9.2) focuses on an excerpt from Mozart’s Piano Sonata
K280 in F major, from the second movement. The harmonic analysis of this segment
was provided by Hentschel et al. [34]. We focus on the perfect authentic cadence
arriving on the second beat of measure eight and signaling the end of the first
phrase. The harmonic analysis indicates a textbook preparation of the cadence with
the German augmented sixth chord on the second beat of measure 6, then the
dominant with a tonic in second inversion resolving to a dominant seventh. Finally,
the tonic bass arrives on the first beat of measure 8 but with sustained soprano, alto,
and tenor voices which themselves resolve on the second beat of the same measure.

We take a closer look at the explanation subgraph of the bass of the tonic (F4)
which arrives earlier than the cadential arrival point of the soprano. However, the
explanation highlights the descending Urlinie melody containing the 3̂, 2̂, 1̂ in the
top voice, capturing the first appearance of the 3̂ on the relative strong beat of
the sixth measure (sub-dominant space), whilst considering the overarching bass
arpeggiation of the i − V − i. Interestingly, the explanation subgraph also contains
the first chord of the piece (see faint vertical line in bar 1), indicating that the
model considers some information regarding the key of the piece. It’s important
to highlight that the cadential ground truth obtained from [34] designates notes
with the cadence label at the cadential arrival point of the soprano. However, we
argue that including the first appearance of the bass note on the strong beat of
the same measure is a crucial addition to the cadence annotation ground truth

3 One could also focus on no-cadence predictions (and false negatives), but we are not considering
these in this section, since the “absence of a specific evidence for a cadence” may result in less
musicologically interesting graph patterns.

9.4 qualitative analysis 133

from a musicological standpoint. This addition is accurately captured by our model.
Upon analyzing the predictions, we observe that the model correctly identifies the
individual notes involved in the PAC in measure 8, namely the F4 on the first beat
and the soprano, tenor, and alto resolutions on the second beat (remember that our
model predicts cadence labels for individual notes, not score onsets).

Furthermore, we deduce from the explanation subgraph that the next notes after
the cadence are also crucial for the model’s prediction, as they point towards an
ending of a phrase and a new rhythmical and harmonic idea further on.

9.4.2 Bach WTC Fugue

For this example, we explore the predictions and explanations of cadences in the
fifth Fuga in D major from J.S. Bach’s Well-tempered Clavier. We believe that
the contrapuntal nature of this piece could provide insightful hints about voice
leading. Our analysis is complemented by a Schenkerian analysis conducted by
Marlowe [35], and we enhance clarity by performing a Roman numeral analysis on
the explanatory excerpt (refer to Fig. 9.3).

Our specific focus centers on the explanation of a false positive IAC (Imper-
fect Authentic Cadence) prediction on the downbeat of the fifth measure. The
ground-truth cadence annotations were provided by [26]. The cadence annotations,
following the ground truth, were originally provided by Giraud (2015). IAC labels
were annotated on the downbeats of measures 3 and 6, both corresponding to the
dominant of the D major (i.e. the tonic). Our model accurately predicts these labels
but also anticipates an additional IAC label on the downbeat of measure 5, which
is not present in the ground truth annotations. Consequently, we investigate what
led to this prediction.

We observe that the explanation subgraph for the highlighted red note at the
top of Figure 9.3 contains, as expected, the edges between the dominant and the
subdominant. However, the interesting part of the subgraph takes place in bars
2-3 of the score. The high voice contains the descending melodic line towards the
leading tone which then re-appears right before measure 5, and the highlighted red
note subsequently resolves it. The lower voice on measure 2 focuses around the E
note which would be a fifth from the dominant A. Therefore, the subgraph outlines
a movement ii-V-I for the bass.

The middle-ground Schenkerian analysis displayed in the bottom part of Fig-
ure 9.3 provides some similar observations. We observe an oscillating bass from
the tonic to the dominant and over again. This oscillating bass is captured in the
cadence annotations by the two cadences on the dominant. It could be argued that
the falsely predicted cadence on the tonic strengthens the analysis assumption of
the oscillating bass.

In terms of feature importance, we see that characteristics of imperfect cadence
are activated such as the existence of a perfect major triad, the highest note being a
transposed third interval for the bass, the existence of a leading tone resolving, and
the presence of a dominant seventh chord before. Naturally, such characteristics
are not exclusively present in the event of cadences but in this case, they seem to
influence the model’s prediction.

134 symbolic music graph explanations

Figure
9.3:The

firstbars
of

the
Fuga

N
o.

5
of

the
W

ell-Tem
pered

C
lavier

book
N

o.
1.O

n
the

top
the

score
and

the
explanation

of
the

w
rong

prediction
of

the
highlighted

note
in

red.In
the

m
iddle,the

feature
im

portance
is

visualized
for

the
highlighted

note.O
n

the
bottom

,a
Schenkerian

analysis
of

the
segm

ent
by

[
3

5]

9.4 qualitative analysis 135

Figure 9.4: Excerpt of Nocturne Op. 48, no. 1 in C minor by F. Chopin. Top: excerpts of the
explanation for Cadence on measure 24. Bar numbers are notated to the top left
of each score segment. Middle: Feature importance for the highlighted C4 note
in red. Bottom: Middleground voice leading analysis (from [36]).

136 symbolic music graph explanations

9.4.3 Chopin Nocturne in C minor op. 48

For our last example, we chose a passage with more ambiguous cadential and
harmonic elements: bars 22-24 from Chopin’s Nocturne op. 48 no 1, in C minor. For
this piece, we consult a Schenkerian analysis by Swinkin [36]. In particular, we look
closely at the perfect authentic cadence that arrives in measure 24. Unlike previous
examples, this cadence does not have the textbook voice leading and harmonic
elements that distinctly define PACs but, nevertheless, carries a cadential character.

Our model correctly identifies the PAC that arrives on the downbeat of measure 24.
To provide support for our analysis and commentary, we perform a Roman numeral
analysis on the segment depicted in Figure 9.4. From the model’s explanation
subgraph, we see that once again the explanation contains the first chord of the piece,
further strengthening our assumption that the model is gathering information about
the key to inform its predictions. However, the rest of the generated explanation
subgraph is mostly compact and local, focusing only on the last notes before the
cadence and the ones after it. The chordal content of the segment contains the
supported harmony for a perfect authentic cadence (PAC) preparation. But, since
the cadence does not follow the typical voice-leading patterns usually involved, it
seems that the model does not need to go towards far neighborhoods in the graph
to infer the necessary context for its prediction.

Interestingly, the model includes in the explanation subgraph a part of measure
18. The connected notes in measure 18 correspond to a part of the descending
Urline that is present in the voice-leading analysis excerpt in the Figure, however,
they are not in order. This could be a connection with what one could view as a
"sustained" high G in the melody line which slowly descends towards G an octave
lower before the cadence. That being said, it is rather ambiguous how the part in
measure 18 affects the model’s prediction.

9.5 conclusion and future work

This paper presented the SMUG-Explain framework for generating and visual-
izing graph explanations on musical scores. We showcased the framework on a
cadence detection model, compared different explanation techniques, and gave
some qualitative insights into the explanations.

Future work will focus on developing new explanation techniques dedicated to
musical score graph data, and on testing our results with user-based evaluations.
The final objective would be to produce a musicologically trustworthy and user-
friendly framework that can support expert analysts to produce more effective
musical analyses. Furthermore, we aim to invest efforts into making the system
more accessible by releasing an online server-based version of our interface, which
can be used to produce predictions for some reference models and tasks and explain
them, without the need to run any code locally.

9.6 acknowledgements 137

9.6 acknowledgements

This work is supported by the European Research Council (ERC) under the EU’s
Horizon 2020 research & innovation programme, grant agreement No. 101019375

(Whither Music?), and the Federal State of Upper Austria (LIT AI Lab).

references

[1] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[2] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[3] Arnau Baró, Pau Riba, and Alicia Fornés. “Musigraph: Optical Music
Recognition Through Object Detection and Graph Neural Network.” In:
International Conference on Frontiers in Handwriting Recognition. Springer.
2022, pp. 171–184.

[4] Emanuele Cosenza, Andrea Valenti, and Davide Bacciu. “Graph-based
Polyphonic Multitrack Music Generation.” In: International Joint Conference
on Artificial Intelligence (IJCAI). 2023.

[5] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

[6] Emmanouil Karystinaios and Gerhard Widmer. “Roman Numeral Analysis
with Graph Neural Networks: Onset-wise Predictions from Note-wise
Features.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2023.

[7] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black
Box Models Explainable. 2nd ed. 2022. url: https://christophm.github.
io/interpretable-ml-book.

[8] Saumitra Mishra, Bob L. Sturm, and Simon Dixon. “Local Interpretable
Model-agnostic Explanations for Music Content Analysis.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2017, pp. 537–543.

[9] Saumitra Mishra, Emmanouil Benetos, Bob L. Sturm, and Simon Dixon.
“Reliable Local Explanations for Machine Listening.” In: Proceedings of the
2020 International Joint Conference on Neural Networks, IJCNN. IEEE, 2020,
pp. 1–8. doi: 10.1109/IJCNN48605.2020.9207444.

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1109/IJCNN48605.2020.9207444

138 symbolic music graph explanations

[10] Verena Haunschmid, Ethan Manilow, and Gerhard Widmer. “audioLIME:
Listenable Explanations Using Source Separation.” In: Proceedings of the
International Workshop on Machine Learning and Music, MML. 2020, pp. 20–24.

[11] Alessandro B. Melchiorre, Verena Haunschmid, Markus Schedl, and Ger-
hard Widmer. “LEMONS: Listenable Explanations for Music recOmmeNder
Systems.” In: Advances in Information Retrieval: Proceedings of the European
Conference on IR Research, ECIR. Vol. 12657. Springer, 2021, pp. 531–536.

[12] Francesco Foscarin, Katharina Hoedt, Verena Praher, Arthur Flexer, and
Gerhard Widmer. “Concept-Based Techniques for "Musicologist-friendly"
Explanations in a Deep Music Classifier.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2022. url: https:
//api.semanticscholar.org/CorpusID:251881711.

[13] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. “Striving for simplicity: The all convolutional net.” In: Workshop
at International Conference on Learning Representations (ICLR). 2015.

[14] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convo-
lutional networks.” In: Computer Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer.
2014, pp. 818–833.

[15] Erik Strumbelj and Igor Kononenko. “An efficient explanation of individual
classifications using game theory.” In: The Journal of Machine Learning
Research 11 (2010), pp. 1–18.

[16] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep in-
side convolutional networks: Visualising image classification models and
saliency maps.” In: Workshop at International Conference on Learning Repre-
sentations (ICLR). 2013.

[17] Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. “When com-
paring to ground truth is wrong: On evaluating GNN explanation meth-
ods.” In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2021, pp. 332–341.

[18] Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Bran-
des, Sebastian Schemm, and Ce Zhang. “Graphframex: Towards systematic
evaluation of explainability methods for graph neural networks.” In: In
Learning on Graphs Conference (Proceedings of Machine Learning Research) 198

(2022).

[19] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. “Explainability in
graph neural networks: A taxonomic survey.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 45.5 (2022), pp. 5782–5799.

[20] Laurent Pugin, Rodolfo Zitellini, and Perry Roland. “Verovio: A library for
Engraving MEI Music Notation into SVG.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2014.

[21] Fred Lerdahl and Ray S Jackendoff. A Generative Theory of Tonal Music,
reissue, with a new preface. MIT press, 1996.

https://api.semanticscholar.org/CorpusID:251881711
https://api.semanticscholar.org/CorpusID:251881711

9.6 references 139

[22] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[23] Katharina Hoedt, Verena Praher, Arthur Flexer, and Gerhard Widmer.
“Constructing adversarial examples to investigate the plausibility of ex-
planations in deep audio and image classifiers.” In: Neural Computing and
Applications 35.14 (2023), pp. 10011–10029.

[24] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz
Hardt, and Been Kim. “Sanity Checks for Saliency Maps.” In: Neural
Information Processing Systems. 2018.

[25] G. Yona and Daniel Greenfeld. “Revisiting Sanity Checks for Saliency
Maps.” In: Workshop on eXplainable AI approaches for debugging and diagnosis
(XAI4). 2021.

[26] Mathieu Giraud, Richard Groult, Emmanuel Leguy, and Florence Levé.
“Computational fugue analysis.” In: Computer Music Journal 39.2 (2015),
pp. 77–96.

[27] Pierre Allegraud, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard
Groult, Emmanuel Leguy, and Florence Levé. “Learning Sonata Form
Structure on Mozart’s String Quartets.” In: Transactions of the International
Society for Music Information Retrieval (TISMIR) 2.1 (2019), pp. 82–96.

[28] David RW Sears, Marcus T Pearce, William E Caplin, and Stephen McAdams.
“Simulating melodic and harmonic expectations for tonal cadences using
probabilistic models.” In: Journal of New Music Research 47.1 (2018), pp. 29–
52.

[29] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

[30] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning
with PyTorch Geometric.” In: Workshop on Representation Learning on Graphs
and Manifolds at International Conference on Learning Representations (ICLR).
2019.

[31] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution
for deep networks.” In: International Conference on Machine Learning. PMLR.
2017, pp. 3319–3328.

[32] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. “Gnnexplainer: Generating explanations for graph neural net-
works.” In: Advances in Neural Information Processing Systems (NeurIPS 32

(2019).

[33] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. “Interpreting
graph neural networks for NLP with differentiable edge masking.” In:
Proceedings of the International Conference on Learning Representations (ICLR).
2021.

140 symbolic music graph explanations

[34] Johannes Hentschel, Markus Neuwirth, and Martin Rohrmeier. “The An-
notated Mozart Sonatas: Score, Harmony, and Cadence.” In: Transactions of
the International Society for Music Information Retrieval (TISMIR) 4.ARTICLE
(2021), pp. 67–80.

[35] Sarah Marlowe. “Schenkerian Analysis of Fugue: A Practical Demonstra-
tion.” In: Journal of Music Theory Pedagogy 33.1 (2019), p. 6.

[36] Jeffrey Swinkin. “Schenkerian analysis, metaphor, and performance.” In:
College Music Symposium. Vol. 47. JSTOR. 2007, pp. 76–99.

10 G R A P H C O N V O L U T I O N F O R M U S I C

Title: Perception-Inspired Graph Convolution for Music Understanding Tasks.

Published In Proceedings of the the 33rd International Joint Conference on
Artificial Intelligence (IJCAI), Jeju Island South Korea, 2024.

Authors: Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer

Abstract: We propose a new graph convolutional block, called MusGConv, specif-
ically designed for the efficient processing of musical score data and motivated by
general perceptual principles. It focuses on two fundamental dimensions of music,
pitch and rhythm, and considers both relative and absolute representations of these
components. We evaluate our approach on four different musical understanding
problems: monophonic voice separation, harmonic analysis, cadence detection,
and composer identification which, in abstract terms, translate to different graph
learning problems, namely, node classification, link prediction, and graph classifi-
cation. Our experiments demonstrate that MusGConv improves the performance
on three of the aforementioned tasks while being conceptually very simple and
efficient. We interpret this as evidence that it is beneficial to include perception-
informed processing of fundamental musical concepts when developing graph
network applications on musical score data. All code and models are released on
https://github.com/manoskary/musgconv.

10.1 introduction

Music data can be represented in computer applications in multiple formats, two
popular ones being audio and symbolic representations. The first encodes a measure
of the pressure/intensity of the sound wave over time, while the second explicitly
encodes discrete musical events such as notes and rests (see [1] for an overview of
different symbolic music formats). Due to this higher-level information, symbolic
representations are generally considered better inputs/outputs for music analysis
and generation tasks in the Music Information Research (MIR) field. Moreover, any
musical task that starts from a musical score (sheet music) or from MIDI files is
naturally in the symbolic domain.

In the MIR literature, symbolically encoded music is typically handled with
techniques heavily inspired by computer vision (CV) or natural language processing
(NLP) research. In the first case, music is represented in a so-called "piano roll"
format (first developed in MIDI sequencers) and treated as a raster image, with the
X axis being time, and the Y axis pitch. The pitch values are typically encoded as
MIDI pitch, i.e., with integers in [0 − 127], which covers all notes that can be played

141

https://github.com/manoskary/musgconv

142 graph convolution for music

by common well-tempered instruments (a range that is larger than the range of
the piano, with 88 notes), and the time resolution is a parameter that is usually
set to the expected shortest note duration. In its simpler version, each element of
the 2D matrix is set to 1 if a note is sounding at the corresponding pitch and time,
or 0 otherwise. The downside of this approach is that it creates a very large and
very sparse input matrix since only a few notes will play at any time. The other
common approach is treating music with sequential models from NLP research.
Although different tokenization techniques have been proposed [2], it is easy to
argue that music does not fit well into strictly sequential models, since more than
one note can sound simultaneously, notes can partially overlap, and generally, the
pitch-temporal relations between notes hold important musical information.

A few recent works [3–7] started to explore the use of graphs, and Graph Neural
Networks (GNNs), to represent and process symbolic music. Significant advances
have been reported on various musical tasks [6, 8]. However, the components that
these papers use are “borrowed” from GNN research with other types of data.

We argue that this can lead to suboptimal results. As a solution, we design
MusGConv, a new graph convolutional block specifically dedicated to music data,
that is founded on fundamental music perception principles. We test our approach
on four musical tasks: voice separation, composer classification, Roman numeral
analysis, and cadence detection. This selection of tasks allows us to cover three major
graph neural network classes of problems: graph classification, link prediction, and
node classification. We compare our results with the state-of-the-art graph models
for these tasks and show that the use of MusGConv leads to better results overall.
Moreover, its simple design enables this performance boost without adding any
additional computational cost.

10.2 perceptual and modeling considerations

We base our research on the perceptual principles of two fundamental musical
dimensions: pitch and rhythm. Cognitive studies show that people are not very
sensitive to the absolute pitch of individual notes and perceive mainly the distance
between pitches [9]. Thus, we perceive the same musical pattern if it is shifted
higher or lower in frequency. This is called relative pitch perception and has been
formalized in music theory through measures of pitch distance called intervals,
which are the basis of all musical concepts that involve combinations of pitches,
such as chords and harmony. The position (and duration) of notes in time is also
not important in itself but only relative to the position (and duration) of the other
notes. This temporal organization is called rhythm and is typically composed of
patterns that tend to be periodic and organized at different hierarchical levels.

While these principles are simple, producing relative features to use as input for
deep learning systems is not an easy task. For the pitch representation, considering
intervals between consecutive notes instead of absolute pitches, as proposed for ex-
ample in the IDyOM framework [10, 11], poses the problem of defining a note order.
This is trivial for monophonic melodies but becomes problematic for polyphonic
music, where multiple notes can fully or partially overlap in time. Figure 10.1 (c)
exemplifies a possible ordering rule, but such rules may not be generally valid for

10.2 perceptual and modeling considerations 143

Figure 10.1: Three alternative representations of note pitches in a musical excerpt: (a)
absolute representation in terms of MIDI pitch; (b) relative pitch distance
(ignoring the octave) in semitones relative to the fundamental pitch specified
by the key signature (here: C); (c) relative pitch distance in semitones from the
closest preceding note; in case of chords the order is defined from bottom to
top.

different pieces and contexts or in general yield very different interval sequences
for very similar patterns (e.g., if we remove the F), thus not helping with learning
a general representation. Inserting interval information after the music has been
tokenised in a sequential representation [12], creates similar ordering problems.

Another strategy is to rely on music theory and consider pitch distances relative
to the fundamental note defined by the key of the piece (see Fig. 10.1 (b). This
has a musicological limitation, as the key signature of a piece may not change
when there are temporary modulations to other keys, and a practical one, as keys
are not always notated in musical datasets and MIDI files. Not to mention all the
music that falls outside the classic tonal framework, for which the definition of a
key is not even meaningful. The most common alternative, e.g., [13, 14], has been
the use of data augmentation via transposition, assuming that if the network sees
transpositions of the same piece, it will learn patterns that are general across all
transpositions. However, this is far from ideal since the network will need to store
similar patterns redundantly, thus making inefficient use of network capacity and
drastically increasing training time.

For this reason, we believe that designing relative features to input to our system
is not a viable option for general music modelling. We explore a different path,
which is to customize the working mechanism of our network to take into account
the relative perceptual properties of music through a dedicated message-passing
mechanism that computes pairwise pitch and time representations. This is weakly
related to recent work on audio representations of music that aims at learning
transposition-invariant features [15–17] and tempo-invariant rhythmic patterns [18].
Other related work targets graphs whose edges encode geometric information
[19–21], intending to build representations that are invariant to operations such as
translation. The ideas from these last approaches (with minor modifications) are
also beneficial for musical tasks, but we show that our music-specific approach
outperforms them.

144 graph convolution for music

Figure 10.2: General architecture of our pipeline. The first part that produces the hidden
node representation is common among all tasks; the last module is task-
specific.

Up to this point, we have highlighted the importance of relative pitch and time
representations. However, their absolute values could also be important depending
on the task at hand. For example, instruments would peculiarly change their timbre
as they approach very low or very high notes in their range, which is recognisable
by a listener. In tonal music, the absolute pitch of notes defines a key signature
which could be relevant in the composer classification task (specific keys can have
very specific meanings to composers, and within a musical tradition). The same goes
for absolute time positions, for example, with patterns happening at the beginning
or end of a piece. Finally, the output of our network may need to be an absolute
pitch (for example, in the Roman numeral analysis task we describe later), and
therefore we need to retain this information in the network.

This need for considering both absolute and relative pitch and time positions
motivates the design of our new convolutional block, to be described in detail in
Section 10.4 below.

10.3 graph approaches to musical tasks

In this section, we describe existing graph modelling approaches to the four musical
tasks we use to evaluate our proposal. They all have a common pipeline which
involves building a graph from a given musical score (see Figure 10.2) and using
a series of convolutional blocks to produce context-aware hidden representations
for each node. We start by describing the graph-building procedure and a generic
graph convolutional block; we then proceed by detailing the tasks and the specific
network components used to target them.

10.3.1 Graph from Musical Scores

A graph is defined as a set of nodes V and a set of edges E, where each edge
(u, v) ∈ E connects the nodes v, u ∈ V. We extend this definition by considering
labelled edges which we model as a triple (u, r, v), where u, v ∈ V and r ∈ R is a
relation type. A graph with edges of multiple types (we don’t use different types
of nodes in this work) is called heterogeneous. Moreover, we consider an attributed
graph, i.e., a graph where each node is described by a set of features, which we
group in the columns of the matrix X. Our attributed heterogeneous graph is
defined as G = (V, E, X).

10.3 graph approaches to musical tasks 145

We create such a directed graph from a musical score following the work of
Karystinaios et al. [6]. Each node v ∈ V corresponds to one and only one note in
the musical score. R includes 4 types of relations: onset, during, follow, and silence,
corresponding, respectively, to two notes starting at the same time, a note starting
while the other is sounding, a note starting when the other ends, and a note starting
after a time when no note is sounding. The inverse edges for during, follows, and
silence relations are also created.

The feature matrix X is composed of the following features extracted from each
note of the score: the pitch class, i.e., one of the 12 note names (C, C#, D, D#,
etc.), the octave in [1, . . . , 7], the note duration, encoded as a single float value
d ∈ [0, 1] computed as the ratio of the note and bar durations, passed through
a tanh function to limit its value and give more resolution to shorter notes, as
proposed by Karystinaios et al. [6]. For the task of Roman Numeral Analysis and
Cadence Detection, we add additional specialized features to be consistent with the
approach in the literature we consider in our evaluation [5, 8].

10.3.2 Graph Convolution Operation

We now present a generic graph convolutional block, to simplify the description of
our music-dedicated approach in the next section. Given an attributed homogeneous
graph G, a graph convolution block that updates the representation of node u for
layer l + 1 can be described as:

h
(l+1)
u = ψ

(
h
(l)
u , aggregate

v∈N (u)
({η(l)

vu })
)

, (10.1)

η
(l)
vu = ϕ

(
h
(l)
v ,h(l)

u

)
(10.2)

h
(l+1)
u = σ

(
h
(l+1)
u

)
(10.3)

where aggregate(·) denotes a differentiable, permutation invariant aggregation
function, e.g., sum, mean, etc.; ϕ and ψ are called edge operation and node operation,
respectively, and denote differentiable learnable functions such as concatenation,
sum, or multiplication, followed by a linear transformation; σ denotes a non-linear
function, N (u) denotes the neighbours of u; h(l)

u is the hidden representation of
node u at layer l.

Furthermore, if we want to leverage edge features, Equation 10.2 becomes:

η
(l)
vu = ϕ

(
h
(l)
v ,h(l)

u , evu

)
(10.4)

where, euv are features of the directed edge connecting node v with node u.
When G is heterogeneous, the function N (u) in Equation 10.1 is modified as

proposed in [22] to return only the neighbours nodes which are connected with
an edge of type r. Equations 10.1 and 10.3 are then computed |R| times and the
results hr

(l)
u aggregated in an unique node latent representation h

(l)
u as:

h
(l)
u = aggregate

r∈R

(
{hr

(l)
u }
)

(10.5)

146 graph convolution for music

where aggregate(·) denotes a differentiable, permutation invariant aggregation
function such as sum or mean.

We now turn to describe the tasks that we will use for evaluation and the task-
specific part of our graph model.

10.3.3 Monophonic Voice Separation

Voice separation is the task of segmenting a symbolic music piece into an unknown
number of individual monophonic note streams according to musical and percep-
tual criteria. Duoane and Pardo [23] framed the problem as a link prediction task in
which two notes are linked if they are consecutive in the same voice. Karystinaios
et al. [6] proposed a GNN-based model that reached new state-of-the-art results.

Following their approach, we perform this task by adding a link predictor module,
consisting of an MLP which takes as input the hidden representations of nodes and
for each pair of nodes performs a binary classification between the “linked” and
“not-linked” classes.

The evaluation metric is the binary F1 score, i.e. the F1 score for the positive class
which represents the true links in the ground truth. Karystinaios et al. also consider
the F1 score after a postprocessing phase, but we don’t use it to keep the number of
metrics of reasonable size, and because, as they report, postprocessing increases
the metric in a way which does not always correlate perfectly with the network
performance.

10.3.4 Composer Classification

Composer classification from a symbolic musical score is the task of identifying the
composer of the score from a list of composers. In the graph problem taxonomy,
this falls in the category of global graph classification tasks. Following the work
of Zhang et al. [7], we perform this task by adding a global mean pooling layer
to our architecture, which averages the latent representations built by our GNN
blocks, followed by an MLP which predicts probabilities over composer classes. The
composer classification predictions are evaluated in terms of classification accuracy.

10.3.5 Roman Numeral Analysis

Roman numeral analysis is a branch of analytical musicology whose goal is to
infer the underlying harmony and chord progressions from a musical score. The
result is a set of complex composite labels (the Roman numerals) which annotate
music at the onset level, i.e., for every score position that corresponds to one
or more note onsets. Related work [24–27] frames RN analysis as a multi-task
classification problem where every label is broken down into 5 components (degree,
inversion, root, key, and quality) which are predicted by different classifiers in hard-
parameter-sharing setting. Of these components, degree, inversion, and quality are
transposition invariant and the rest depend on the absolute pitches in the input. A
recent approach [8] considers a graph input and obtains new state-of-the-art results.

10.4 our approach: musgconv 147

Following this work, we perform this task by adding to our general architecture
an onset edge pooling layer that contracts the latent representations from the
note-wise level to the onset-wise, i.e., it creates a single vector per unique onset.
All vectors are then ordered by time position and fed into a GRU layer whose
output is finally used by the aforementioned MLP classifiers. In the taxonomy of
graph problems, RN analysis falls in between node classification and subgraph
classification because of the effect of the edge pooling layer.

The evaluation score is the so-called Chord Symbol Recall (CSR), i.e., the ratio of
the total duration of segments where prediction equals annotation vs. the total
duration of annotated segments [28].

10.3.6 Cadence Detection

Cadence detection is a music analysis task that consists of detecting cadences, i.e.
phrase endings with a strong and specific melodic-harmonic closure effect, in a
musical score. Cadences are important both musicologically and perceptually and
it is known that they relate to particular voicings and chord progressions; however,
their automatic predictions remain particularly challenging due to the high number
of exceptions and corner cases. A recent graph approach [5] framed the problem as
a multiclass node classification scenario, by predicting the presence of a cadence
and its type for each note.

Following that work, we use a graph autoencoder architecture and the latent
synthetic oversampling technique SMOTE [29] to balance the heavily unbalanced
class labels. For the same reason, the reported evaluation metric is the macro F1
score.

10.4 our approach: musgconv

Similarly to previous works, we use stacked graph convolutions to create a hidden
representation of notes that is then used as input for specific music tasks (see
Figure 10.2). In our proposed approach, we replace the graph convolutional blocks
in the stack with our novel convolutional block (see Figure 10.3).

In terms of the notation introduced in the general description of the graph
convolution in Section 10.3.2, our convolutional block is characterised by two core
contributions: a way to build the edge features e, and the choice of the edge
operation ϕ in Equation 10.4.

148 graph convolution for music

Figure 10.3: Visualization of update for node u in our MusGConv block (considering only
one edge type), corresponding to Eqns. 10.11 and 10.8.

10.4.1 Edge Features Computation

For each edge between nodes u, v, we consider three edge features: eonset
vu , edur

vu , epitch
vu

each of them encoded as a single scalar corresponding to the distance between
onset, duration, and pitch, respectively.

eonset
vu = |on(u)− on(v)|
edur

vu = |dur(u)− dur(v)| (10.6)

epitch
vu = |pitch(u)− pitch(v)|

This roughly corresponds to the computation of distance in papers that deal
with geometrical data [21] except that in their case it is a multidimensional space
distance, while we compute a set of one-dimensional distances since it makes no
sense to mix duration, pitch and onset information. To keep these values in a
convenient numerical range, we normalise each feature with ℓ2 normalisation over
all edges in a batch.

Additionally, we inform the network about the pitch-class interval (PCInt), i.e., the
distance between notes without considering the octave, or the interval direction.
This can be seen as a relative version of the chroma feature, which is commonly used
in MIR tasks related to the harmonic content of the music. This integer in [0, . . . , 11]
is passed through an embedding layer, i.e., a learnable look-up table which maps
these integers to points ePCInt

vu in a continuous multidimensional space.

10.4 our approach: musgconv 149

Figure 10.4: Relative Pitch features epitch
vu for the highlighted note u.

For each edge, all the aforementioned edge features are concatenated in a single
vector:

e
(0)
uv = cat

(
eonset

vu , edur
vu , epitch

vu , ePCInt
vu

)
(10.7)

10.4.2 Edge Operation

Our second contribution, needed to properly leverage the edge feature information,
is a new formulation of the message passing paradigm (see Figure 10.3 for a
graphical representation). The new edge operation defines the edge operation ϕ in
Equation 10.4 as follows:

η
(l)
vu = cat

(
W

(l)
2 h

(l)
v , g(l)Θ

(
e
(l)
vu

))
(10.8)

where gΘ denotes a simple two-layer MLP with a Relu activation and layer-wise
normalization.

Note how we concatenate the edge features here, while other approaches that
deal with edge features tend to apply a permutation-invariant operation such
as multiplication or addition [21, 30]. In this way, the transposition- and time-
invariant information carried by the edge features is treated in the same way as
the node feature when computing the pairwise representation ηuv. This is inspired
by musicological considerations: we don’t want to weight/modify the absolute
representation according to the relative representation, but rather to just use it as
input, as is done by cognitively plausible musical models [10, 11]. This is similar to
what we discuss in Section 10.1 but, by using MusGConv, we no longer have the
problem of setting a (debatable) order of the input notes, since for each node, we
will consider the relative features according to every other node connected to it (see
Figure 10.4).

We consider two variants of our system which differ in the edge features which
are passed to layers after the first. The first variant, named MusGConv uses the
absolute difference of the node hidden embeddings, i.e. ∀l > 0,

e
(l)
vu = |h(l)

v − h
(l)
u | (10.9)

150 graph convolution for music

The second variant, named MusGConv(+EF), uses the edge hidden representation
from the previous layer as the edge features of the next layer:

e(l+1)
vu = g(l)Θ

(
e(l)vu

)
(10.10)

10.4.3 Node Operation

To complete the explanation of our convolutional block, we specify the specific
computation for the generic node operation ψ introduced in Equation 10.1:

h
(l+1)
u = W

(l)
1 cat

(
h
(l)
u , ∑

v∈N (u)
η
(l)
vu

)
(10.11)

The aggregation function is a sum, and we choose to concatenate the hidden
representation of u with the messages ηvu from the other nodes. For heterogeneous
convolutions (i.e. Equation 10.5), we use mean(·) as the aggregation function. Such
choices are not motivated by musical reasoning, and experimenting with other
operations could be an interesting direction, but are out of the scope of this paper.

10.5 data

Musical score graph datasets are different from common datasets in the graph-
related literature regarding the number and size of graphs. Node classification and
link prediction datasets often only consist of a single huge graph, coupled with
a sampling strategy to obtain subgraphs to train and evaluate the Graph Neural
Network [31, 32]. On the other hand, graph classification datasets often consist of a
large number of small graphs, with less than 50 nodes [33]. Musical score graphs
are neither small nor extremely large and may vary significantly in size; a Bach
Chorale may have ∼ 100 notes whereas a Beethoven Sonata might have more than
5000 (with every note corresponding to a node in the graph).

Moreover, popular sampling strategies, such as node-wise sampling, subgraph
sampling, random-walk sampling, and spectral sampling, may yield musically
problematic note configurations, for example, by segregating notes that are played
at the same time while grouping in the same subgraph notes that are very far apart.
This is problematic, especially for musically-local tasks such as voice separation
or Roman numeral analysis, where the system cannot be expected to produce a
meaningful result, and could even learn to perform the task in the wrong way if
some notes (and onsets for the roman numeral analysis) are missing.

In the previous works on graph scores that we are considering, the problem is
avoided by training on mini-batches which consist of single pieces. However, this is
not an efficient solution since it always leaves a big part of memory unused, thus
unnecessarily prolonging the training time and decreasing the variability in the
batch. We describe the new sampling mechanism we use in the following section,
and then move on to detailing the datasets used in our experiments.

10.5 data 151

10.5.1 Data Sampling

While our nodes can be ordered by multiple features, the organizational aspect
that is most prominent from a perceptual point of view is time. Indeed, people
would still recognize a music piece if it is segmented over the time axis, while, for
example, considering only pitches in a certain interval could lead to meaningless
results. There is also perceptual evidence that the offset time of a note is much less
salient than the onset time, especially for percussive instruments (including the
piano) whose sound naturally decays over time [34]. Therefore, when we create our
graphs from a musical score, we set the node order first by the absolute time of
onset and then by pitch.

Once this ordering is set (and having defined an index function ind(·) that given
a node returns its index in this ordering) we randomly sample a subgraph of size
K > 1 from a piece with N notes, with the following procedure. If N > K we select
the nodes u with ind(v) ≤ ind(u) ≤ ind(v) + N, where v is a random node which
satisfies the inequality ind(v) < K − N. If N ≤ K we select all nodes in the piece.
Note that we can still have the problem of segregating notes from the same chord,
but this can now only happen at the temporal boundaries of our subgraph, limiting
its impact on the network.

We can then create a batch consisting of B subgraphs of at most size N. Our
batching mechanism uses the approach of Hamilton et al. [31], i.e., all graphs are
joined together in a single batched graph that will contain B disjoint subgraphs.

10.5.2 Datasets

We use four distinct datasets for our four tasks.

10.5.2.1 Voice Separation

The Graph Voice Separation dataset was introduced by Karystinaios et al. [6]. This
dataset contains graph data created from five collections: 370 Bach Chorales, 48

Preludes and 48 Fugues from the Bach Well-Tempered Clavier (Books I and II),
15 Bach Inventions, 15 Bach Sinfonias, and 210 movements from Haydn String
Quartets. It contains in total 726, 246 nodes and 3, 408, 679 edges from 1, 054 unique
score graphs. Karystinaios et al. only test on single collections to understand the
differences in performance for different composing styles. To have a single general
performance indicator, we introduce a new data split that uses 70% of the data for
training, 10% for validation, and 20% for testing. This split preserves the percentage
of pieces in each collection and is independent of the size of each score graph.

10.5.2.2 Composer Clasification

For composer classification, we use the scores from the DCML corpora dataset1. The
dataset includes 10 composers, for a total of 419 scores, from where we build score
graphs with collectively 710, 240 nodes and 3, 924, 655 edges. We create a random
data split with 70% of the data for training, 10% for validation, and 20% for testing,
which preserves the percentage of composers in each set.

1 https://github.com/DCMLab/dcml_corpora

https://github.com/DCMLab/dcml_corpora

152 graph convolution for music

10.5.2.3 Roman Numeral Analysis

The Roman numeral analysis dataset with data augmentation was introduced
by Lopez et al. [27]. We use their dataset (with augmentations on the train set).
The created graphs collectively contain 8, 968, 413 nodes, 38, 390, 729 edges, and
5, 096, 853 unique onset positions from 7, 988 scores (after data augmentation).

10.5.2.4 Cadence Detection

For the Cadence Detection task, we use four distinct annotated datasets, the Mozart
Piano Sonatas [35], Haydn String Quartets [36], Mozart String Quartets [37], and
Bach WTC Fugues [38]. The created graph collectively contains 300, 602 nodes and
1, 392, 753 edges from 153 scores. We create a random data split with 70% of the
data for training, 10% for validation, and 20% for testing.

10.6 experiments

Our model for each of the four tasks is built on the respective current state-of-
the-art model presented in Section 10.3. From here on forward, we refer to the
previous state-of-the-art architecture as baseline model, and to the same architecture
with the convolutional blocks replaced with our new ones, as MusGConv model.
These original models serve as the baselines in the following experiment. We follow
the implementations of the publicly available code with no major modifications,
except for the sampling technique that we highlighted before. For each task, we
consider the main evaluation metric proposed in the original paper (presented in
Section 10.3).

All experiments for a certain task are run with the best hyperparameter setting
specified in the respective papers; this includes 2 GNN layers, and the convolu-
tional blocks being SageConv [31] for all tasks except the voice separation where
ResGatedGraphConv [39] is used. We use a fixed training, validation, and test split
for each task, and every experiment is run 10 times with different NN initialisations
on a single GPU. We used one GTX 1080 Ti GPU with 11 GB of VRAM.

10.6.1 Main Results

The goal of our main experiment is to quantitatively verify whether the use of
MusGConv can improve the results on the four tasks compared to the respective
baseline, i.e., the architectures used in the corresponding state-of-the-art approaches.
Each experiment is run 10 times with the fixed task-specific data split (as described
in the previous section) and different random seeds. We report ASO significance [40]
with a confidence level α = 0.05 and ϵmin < 0.1.

The results, summarised in Table 10.1, show that MusGConv(+EF) produces
statistically significant better results for the Voice Separation and Cadence Detection
task. In the Composer Classification task, the best-performing model is MusGConv,
while MusGConv(+EF) yields worse results than the baseline. We suspect that being
this a global graph classification task, the edge features propagation is harder to

10.6 experiments 153

Vo
ic

e
Se

pa
ra

ti
on

C
om

po
se

r
cl

f
R

N
A

C
ad

en
ce

D
et

ec
ti

on
(L

in
k

Pr
ed

ic
ti

on
)

(G
ra

ph
C

la
ss

ifi
ca

ti
on

)
(N

od
e

C
la

ss
ifi

ca
ti

on
)

(N
od

e
C

la
ss

ifi
ca

ti
on

)

Pr
ev

io
us

SO
TA

A
rc

h
0.

81
11

±
0.

05
8

0.
42

88
±

0.
03

1
0.

32
21

±
0.

01
0

0.
40

65
±

0.
01

1

M
us

G
C

on
v

0.
81

42
±

0.
03

5
0.

52
33

±
0.

03
2

0.
31

26
±

0.
01

5
0.

41
26

±
0.

01
6

M
us

G
C

on
v(

+E
F)

0.
84

36
±

0.
03

2
0.

39
39

±
0.

01
8

0.
31

77
±

0.
01

0
0.

42
95

±
0.

00
9

Ta
bl

e
10

.1
:E

xp
er

im
en

ta
lc

om
pa

ri
so

n
w

ith
pr

ev
io

us
SO

TA
m

od
el

s.
Th

e
ev

al
ua

tio
n

m
et

ri
c

va
ri

es
fo

r
th

e
di

ff
er

en
t

ta
sk

s
(s

ee
th

e
co

rr
es

po
nd

in
g

su
bs

ec
tio

ns
in

Se
ct

io
n

1
0
.3

).
M

ar
ke

d
in

bo
ld

ar
e

th
e

be
st

re
su

lt
s

w
he

n
th

ey
ar

e
st

at
is

ti
ca

lly
si

gn
ifi

ca
nt

.

154 graph convolution for music

Figure 10.5: Ablation studies.

train, and the simpler mechanism employed in MusGConv is a better choice. There
is no statistically significant difference in the performance on the Roman Numeral
Analysis task. We found two potential explanations for this behaviour: first, the
RNA model is very complex, with multiple components which could hide the effect
of a modification on the graph encoder. Moreover, the RNA dataset is augmented
with transpositions in all keys, and therefore having transposition-invariant features
may only yield minimal (if any) advantage. An experiment without augmentation
is not possible, since the output of the RNA model depends on the absolute pitches
at the input, and the not-augmented dataset is very small.

Regarding execution time, for each task, we compute the ratio between the
average time of the 10 runs for baseline and the 10 runs with MusGConv and
MusGConv(+EF). Aggregated across all tasks, this ratio has an average of 1 ± 0.05.
Thus, the usage of MusGConv has a minimal impact on the final execution time.

10.7 conclusion and future work 155

10.6.2 Ablation Studies

We conduct four ablation studies to explore different model variations in terms of
architecture and selection of edge features. The results are reported in Figure 10.5,
where we also include the results for MusGConv and MusGConv(+EF) from our
main experiment (see previous section) for comparison. For some variations we
consider, there is not a clear winner, meaning that, while the usage of relative
features as edges is beneficial overall, different versions of our system can perform
better on different musical tasks.

no concatenation. We change the feature aggregation function ϕ (Eq. 10.2)
from a concatenation (Eq. 10.8) to a multiplication, to mimic the operation used in
convolutional blocks that deal with edge features, e.g., [19–21]). The results show
that this degrades the performance for the composer classification and cadence
detection tasks while improving RN analysis and Voice Separation.

no edge input. In this study, we ignore our manually built edge features from
Section 10.4.1 and use node feature difference (see Eq. 10.9) as edge features for
all blocks (including the first). This is similar to the edge features employed in
EdgeConv [20] (though it has to be noted that our message passing is different
from EdgeConv). This degrades the model performance on all tasks but RN.

no pcint. We quantify the effect of the PCInt edge feature as a much more
music-specific edge feature, compared to the “more standard” feature distances.
We observe that the usage of this feature improves all tasks.

signed features. We evaluate the use of features obtained by removing the
absolute value operation in Eq. 10.6. Indeed this is a more informative input;
for example, with the absolute value we encode the difference between two note
durations, but we lose the information about which is longer. On the other hand, it
increases the input numerical range, and one could argue that the network already
has access to absolute features, and PCInt and edge type encode similar information.
The results show that using signed features is not beneficial.

10.7 conclusion and future work

This paper has presented a graph convolution block dedicated to music under-
standing tasks. Its working mechanism is inspired by perceptual considerations and
permits the propagation of transposition-invariant and relative timing information
in the message-passing process. More generally, our work enables an elegant and
efficient way to use pairwise note features, which have been long studied and
employed in monophonic music, for polyphonic music processing. Specifically,
our approach can be summarized in two core contributions: pitch and time pair-
wise functions as edge features, and a new way of aggregating this information
inside the convolutional block. The design of this block is kept simple to give us a
performance advantage without increasing computation time. We experimentally

156 graph convolution for music

verify the validity of our proposition on four rather diverse musical tasks covering
three graph-related problems: graph classification, node classification, and link
prediction.

As future work, it would be interesting to evaluate MusGConv on other kind of
music and to investigate the impact of other pairwise note functions, like the one
proposed in the cognitively plausible music model IDyOM [10, 11].

acknowledgements

This work was supported by the European Research Council (ERC) under the EU’s
Horizon 2020 research & innovation programme, grant agreement No. 101019375

(Whither Music?), and the Federal State of Upper Austria (LIT AI Lab).

references

[1] Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos
Cancino-Chacón, Maarten Grachten, and Gerhard Widmer. “The match
file format: Encoding Alignments between Scores and Performances.” In:
Proceedings of the Music Encoding Conference (MEC). Halifax, Canada, 2022.

[2] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “MidiTok: A Python package for MIDI file tokeniza-
tion.” In: Extended Abstracts for the Late-Breaking Demo Session of the 22nd
International Society for Music Information Retrieval Conference. 2021. url:
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf.

[3] Yo-Wei Hsiao and Li Su. “Learning note-to-note affinity for voice segrega-
tion and melody line identification of symbolic music data.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2021, pp. 285–292.

[4] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[5] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[6] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

https://archives.ismir.net/ismir2021/latebreaking/000005.pdf

10.7 references 157

[7] Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer,
and Carlos Eduardo Cancino-Chacón. “Symbolic Music Representations
for Classification Tasks: A Systematic Evaluation.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2023.

[8] Emmanouil Karystinaios and Gerhard Widmer. “Roman Numeral Analysis
with Graph Neural Networks: Onset-wise Predictions from Note-wise
Features.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2023.

[9] Diana Deutsch. Psychology of music. Elsevier, 2013.

[10] Marcus T. Pearce. “Statistical learning and probabilistic prediction in music
cognition: Mechanisms of stylistic enculturation.” In: Annals of the New York
Academy of Sciences 1423.1 (2018), pp. 378–395.

[11] Marcus Pearce. “The Construction and Evaluation of Statistical Models of
Melodic Structure in Music Perception and Composition.” PhD thesis. UK:
City University of London, 2005.

[12] Mathieu Kermarec, Louis Bigo, and Mikaela Keller. “Improving Tokeniza-
tion Expressiveness With Pitch Intervals.” In: Late-Breaking Demo Session
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[13] Eita Nakamura, Masatoshi Hamanaka, Keiji Hirata, and Kazuyoshi Yoshii.
“Tree-structured probabilistic model of monophonic written music based
on the generative theory of tonal music.” In: Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2016,
pp. 276–280.

[14] Francesco Foscarin, Nicolas Audebert, and Raphaël Fournier-S’Niehotta.
“PKSpell: Data-driven pitch spelling and key signature estimation.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2021.

[15] Stefan Lattner, Maarten Grachten, and Gerhard Widmer. “Learning Transposition-
Invariant Interval Features from Symbolic Music and Audio.” In: Proceed-
ings of the International Society for Music Information Retrieval Conference
(ISMIR). 2018.

[16] Anders Elowsson and Anders Friberg. “Modeling Music Modality with a
Key-Class Invariant Pitch Chroma CNN.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2019.

[17] Stefan Lattner, Monika Dörfler, and Andreas Arzt. “Learning Complex
Basis Functions for Invariant Representations of Audio.” In: Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR).
2019.

[18] Bruno Di Giorgi, Matthias Mauch, and Mark Levy. “Downbeat Tracking
with Tempo-Invariant Convolutional Neural Networks.” In: Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR).
2021.

158 graph convolution for music

[19] Matan Atzmon, Haggai Maron, and Yaron Lipman. “Point Convolutional
Neural Networks by Extension Operators.” In: ACM Transactions on Graphics
37.4 (2018).

[20] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. “Dynamic Graph CNN for Learning on Point
Clouds.” In: ACM Transactions on Graphics 38.5 (2019), 146:1–146:12.

[21] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivari-
ant Graph Neural Networks.” In: Proceedings of the International Conference
on Machine Learning (ICML). 2021.

[22] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. “Modeling Relational Data with Graph
Convolutional Networks.” In: Proceedings of the Semantic Web International
Conference, ESWC. Vol. 10843. Lecture Notes in Computer Science. Springer,
2018, pp. 593–607.

[23] Ben Duane and Bryan Pardo. “Streaming from MIDI using constraint
satisfaction optimization and sequence alignment.” In: Proceedings of the
International Computer Music Conference (ICMC). 2009.

[24] Tsung-Ping Chen, Li Su, et al. “Functional Harmony Recognition of Sym-
bolic Music Data with Multi-task Recurrent Neural Networks.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2018.

[25] Gianluca Micchi, Mark Gotham, and Mathieu Giraud. “Not all roads lead to
Rome: Pitch representation and model architecture for automatic harmonic
analysis.” In: Transactions of the International Society for Music Information
Retrieval (TISMIR) 3.1 (2020), pp. 42–54.

[26] Andrew Philip McLeod and Martin Alois Rohrmeier. “A modular system
for the harmonic analysis of musical scores using a large vocabulary.”
In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2021.

[27] Néstor Nápoles López, Mark Gotham, and Ichiro Fujinaga. “Augment-
edNet: A Roman Numeral Analysis Network with Synthetic Training
Examples and Additional Tonal Tasks.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2021.

[28] Christopher Harte. “Towards automatic extraction of harmony information
from music signals.” PhD thesis. Queen Mary University of London, 2010.

[29] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique.” In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[30] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vi-
jay Pande, and Jure Leskovec. “Strategies for pre-training graph neural
networks.” In: Proceedings of the International Conference on Learning Repre-
sentations (ICLR). 2019.

10.7 references 159

[31] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[32] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan
Gu. “Layer-dependent importance sampling for training deep and large
graph convolutional networks.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2019.

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. “A comprehensive survey on graph neural networks.”
In: IEEE transactions on neural networks and learning systems 32.1 (2020),
pp. 4–24.

[34] Anssi Klapuri and Manuel Davy. Signal Processing Methods for Music Tran-
scription. Springer, 2006, p. 456.

[35] Johannes Hentschel, Markus Neuwirth, and Martin Rohrmeier. “The An-
notated Mozart Sonatas: Score, Harmony, and Cadence.” In: Transactions of
the International Society for Music Information Retrieval (TISMIR) 4.ARTICLE
(2021), pp. 67–80.

[36] David RW Sears, Andreas Arzt, Harald Frostel, Reinhard Sonnleitner, and
Gerhard Widmer. “Modeling harmony with skip-grams.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2017.

[37] Pierre Allegraud, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard
Groult, Emmanuel Leguy, and Florence Levé. “Learning Sonata Form
Structure on Mozart’s String Quartets.” In: Transactions of the International
Society for Music Information Retrieval (TISMIR) 2.1 (2019), pp. 82–96.

[38] Mathieu Giraud, Richard Groult, Emmanuel Leguy, and Florence Levé.
“Computational Fugue Analysis.” In: Computer Music Journal 39.2 (2015),
pp. 77–96. doi: 10.1162/COMJ_a_00300. url: https://hal.science/hal-
01113520.

[39] Xavier Bresson and Thomas Laurent. “Residual Gated Graph ConvNets.”
In: Proceedings of the International Conference on Learning Representations. 2017.

[40] Eustasio Del Barrio, Juan A Cuesta-Albertos, and Carlos Matrán. “An
optimal transportation approach for assessing almost stochastic order.” In:
The Mathematics of the Uncertain. Springer, 2018, pp. 33–44.

https://doi.org/10.1162/COMJ_a_00300
https://hal.science/hal-01113520
https://hal.science/hal-01113520

11 A L I B R A R Y F O R S Y M B O L I C M U S I C
G R A P H P R O C E S S I N G

Title: GraphMuse: A Library for Symbolic Music Graph Processing.

Published In Proceedings of the 25th International Society for Music Information
Retrieval Conference (ISMIR), San Francisco USA, 2024.

Authors: Emmanouil Karystinaios, Gerhard Widmer

Abstract: Graph Neural Networks (GNNs) have recently gained traction in
symbolic music tasks, yet a lack of a unified framework impedes progress. Ad-
dressing this gap, we present GraphMuse, a graph processing framework and
library that facilitates efficient music graph processing and GNN training for
symbolic music tasks. Central to our contribution is a new neighbor sampling
technique specifically targeted toward meaningful behavior in musical scores. Ad-
ditionally, GraphMuse integrates hierarchical modeling elements that augment the
expressivity and capabilities of graph networks for musical tasks. Experiments
with two specific musical prediction tasks – pitch spelling and cadence detection
– demonstrate significant performance improvement over previous methods. Our
hope is that GraphMuse will lead to a boost in, and standardization of, sym-
bolic music processing based on graph representations. The library is available at
https://github.com/manoskary/graphmuse

11.1 introduction

Symbolic music processing entails the manipulation of digital music scores, encom-
passing various formats such as MusicXML, MEI, Humdrum, **kern, and MIDI.
Unlike audio-based representations, symbolic formats offer granular information
on note elements, including onset, pitch, duration, and other musical attributes like
bars and time signatures.

While prior research in symbolic music processing often adopted techniques
from the image processing [1–3] or natural language processing [4–6] domains,
recent attention has shifted towards graph-based models, which could presumably
better capture the dual sequential and hierarchical nature of music. Graph Neu-
ral Networks (GNNs) have been showcased as potent tools for diverse symbolic
music tasks, including cadence detection[7], optical music recognition [8], music
generation [9], Roman numeral analysis [10], composer classification [11], voice
separation[12], and expressive performance rendering[13]. However, a standard-
ized framework for constructing and processing music graphs has not yet been
introduced to the field. To address this challenge, we developed GraphMuse, a
Python-based framework to efficiently and effectively process information from

161

https://github.com/manoskary/graphmuse

162 a library for symbolic music graph processing

musical scores, construct musically meaningful graphs, and facilitate the training
of graph-based models for symbolic music tasks.

A key innovation of our work lies in the introduction of a new sampling technique
tailored to specific properties of music while maintaining efficient and robust
training of GNNs. Additionally, GraphMuse integrates within the graphs and
models hierarchical elements that augment the capabilities of graph networks for
musical tasks.

We evaluate our framework on pitch spelling and cadence detection tasks, compar-
ing it against existing state-of-the-art methods. Through the synergistic utilization
of our framework’s components, we achieve a significant performance increase
compared to the previous methods. Our overarching objective is to establish a
standardized framework for graph processing in symbolic music analysis, thus
catalyzing further progress in the field.

Altogether, our contributions are three-fold: i) We provide a structured, generic,
and flexible framework for graph-based music processing; ii) we release an open
source Python library that comes with it; iii) we achieve performance improvements
in a principled way by focusing on the design of the individual parts of the
framework.

11.2 processing music scores with gnns

In this section, we describe existing graph modeling approaches for musical scores.
They all have a common pipeline which involves building a graph from a given
musical score (see Figure 11.1) and using a series of convolutional blocks to produce
context-aware hidden representations for each node. We start by describing the
graph-building procedure and a generic graph convolutional block; we then take
a detailed look at the problem of graph sampling, which will motivate a new
sampling procedure that will be presented in the next section.

11.2.1 Preprocessing: Constructing Graphs from Scores

A score graph can be represented as a heterogenous attributed graph. A heteroge-
neous graph has a type associated with each node and edge in the graph [14]. An
attributed graph has an associated feature vector for each node in the graph [15].
Therefore, a heterogenous attributed graph is defined by a quintuple G = (V, E, X,A,R),
together with the mappings ϕ : V → A and ψ : E → R, where V is the set of nodes,
E is the set of edges, X ∈ V × Rk the feature matrix A is the node types and R
is the edge types. ϕ maps each node to its type and ψ maps its each edge to its
corresponding type.

We create such a graph from a musical score by following previous work [10–13].
Each node v ∈ V corresponds to one and only one note in the musical score. R
includes 4 types of relations: onset, during, follow, and silence, corresponding,
respectively, to two notes starting at the same time, a note starting while the other is
sounding, a note starting when the other ends, and a note starting after a time when
no note is sounding. The inverse edges for during, follows, and silence relations are
also created.

11.2 processing music scores with gnns 163

Fi
gu

re
11

.1
:T

he
ge

ne
ra

l
gr

ap
h

p
ro

ce
ss

in
g/

tr
ai

ni
ng

p
ip

el
in

e
fo

r
sy

m
bo

lic
m

u
si

c
sc

or
es

in
vo

lv
es

se
ve

ra
l

st
ep

s:
i)

P
re

p
ro

ce
ss

th
e

d
at

ab
as

e
of

sc
or

es
to

ge
ne

ra
te

in
pu

tg
ra

ph
s;

ii)
Sa

m
pl

e
th

e
in

pu
tg

ra
ph

s
to

cr
ea

te
m

em
or

y-
ef

fic
ie

nt
ba

tc
he

s;
iii

)F
or

m
a

ba
tc

h
as

a
ne

w
gr

ap
h

w
ith

no
de

s
an

d
ed

ge
s

fr
om

va
ri

ou
s

in
pu

tg
ra

ph
s;

iv
)S

am
pl

e
a

su
bs

et
of

no
de

s
(t

ar
ge

tn
od

es
)a

nd
th

ei
r

ne
ig

hb
or

s
fr

om
th

e
in

pu
tg

ra
ph

s;
v)

U
pd

at
e

th
e

ta
rg

et
no

de
s’

re
pr

es
en

ta
ti

on
s

th
ro

ug
h

gr
ap

h
co

nv
ol

ut
io

n
to

cr
ea

te
no

d
e

em
be

d
d

in
gs

;v
i)

U
se

th
es

e
em

be
d

d
in

gs
fo

r
ta

sk
-s

pe
ci

fic
ap

pl
ic

at
io

ns
.N

ot
e

th
at

ta
rg

et
no

de
s

m
ay

in
cl

ud
e

al
lo

r
a

su
bs

et
of

ba
tc

h
no

de
s

de
pe

nd
in

g
on

th
e

sa
m

pl
in

g
st

ra
te

gy
.

164 a library for symbolic music graph processing

Formally, let us consider three functions on(v), dur(v), and pitch(v) defined on a
note v ∈ V that extract the onset time, duration, and pitch, respectively. A typed
edge (u, r, v) of type r ∈ R between two notes u, v ∈ V belongs to E if the following
conditions are met:

• on(u) = on(v) → r = onset

• on(u) > on(v) ∧ on(u) ≤ on(v) + dur(v) → r = during

• on(u) + dur(u) = on(v) → r = follow

• on(u) + dur(u) < on(v) ∧ ∄v′ ∈ V, on(v′) < on(v) ∧ on(v′) > on(u) +
dur(u) → r = silence

A in the literature usually only includes a single type, i.e. the note type ν. However,
we extend this definition in Section 11.3.1.

11.2.2 Encoding: Graph Convolution

Graph convolution and message passing are core operations in graph neural net-
works (GNNs) for learning node representations. In graph convolution, in its
simplest form, each node aggregates messages from its immediate neighbors by
computing a weighted sum of their features:

h(l+1)
v = σ

((
∑

u∈N (v)
W(l)h(l)

u

)
+ h(l)

v

)
(11.1)

where h(l)
v is the representation of node v at layer l, N (v) denotes the neighbors

of node v, W(l) is a learnable weight, and σ is a non-linear activation function.
Through successive iterations of message passing and aggregation, each node
refines its representation by incorporating information from increasingly distant
nodes in the graph, ultimately enabling the network to capture complex relational
patterns and dependencies within the graph data.

In the context of music, graph convolution can be understood as a method for
defining a note not only by its own characteristics and properties but by also
considering the characteristics of its neighboring notes within the musical graph. In
this work, as well as previous graph-based work on music [7, 10, 11] the preferred
graph convolutional block is SageConv taken from one of the first and fundamental
works in graph deep learning [16].

11.2.3 Sampling: Handling Graph Data for Training

In an ideal world without computing resource considerations, we can imagine a
training pipeline that receives an entire graph as input to a graph convolutional
model. Assuming that we have the resources and time to perform such a task the
process is easy to grasp. All nodes of the graph are updated in a single step based
on their neighbors as described in the previous section.

However, the graph world presents us with several complexity issues. Graph
datasets in the wild typically come in two forms: i) a (possibly large) collection of

11.2 processing music scores with gnns 165

Figure 11.2: Full graph vs neighbor sampling. The pink-colored nodes are selected for
convolution by message passing. With neighbor sampling, the pink node is the
one whose representation is ultimately updated after convolution (however,
for the blue nodes also take part in the convolution process as its context).

small graphs, each containing maybe fewer than 50 nodes[15]; ii) a single large-scale
graph such as a social network [17], a recommender system [18], or a knowledge
graph [19]. The previous naive scenario presents a time-efficiency and computation
waste bottleneck for the former and a memory insufficiency issue for the latter. To
mitigate these issues, in the former case one can batch many small graphs together
to maximize the available resources and reduce the computation time, then the full
graphs can be updated during convolution within each batch.

Training Graph Convolutional Networks (GCNs) for large-scale graphs is a bit
more complicated. Such graphs can be exceptionally large – for example, the 2019

Facebook social network boasted 3.51 billion users1. To train models with such
graphs we need to devise a sampling algorithm to derive subgraphs in steps [16,
20–22]. Such an algorithm may, for example, choose a subset of nodes across the
graph and perform random walks to fetch a subset of the k-hop neighbors for the
sampled nodes [16]. This process, called neighbor sampling or node-wise sampling, is
shown in Figure 11.2 and compared to the full-graph process.

Musical score graphs fall in between the two scenarios, varying notably in size. For
instance, a Bach Chorale might contain 100 notes, while a Beethoven Sonata could
exceed 5000 notes, with each note corresponding to a graph node. Furthermore, a
musical dataset may contain many such graphs. Therefore the question arises how
to efficiently train models on music graph datasets.

Since music graphs are not uniform enough to be batched together like small
graph datasets, we investigate the suitability of neighbor sampling methods for
music graph processing, taking into account special properties relevant in music.
Standard neighborhood sampling would sample notes across different scores and
fetch neighbors for those notes, creating a subgraph that can maximize the use of
the available resources during training.

However, music has a specific coherence, in both the horizontal (time) and vertical
(chords, harmonies) dimensions, which makes sampling approaches from the litera-
ture[22] not appropriate for music. Specifically, sampling and updating/encoding

1 https://zephoria.com/top-15-valuable-facebook-statistics

166 a library for symbolic music graph processing

single notes without simultaneously doing so also to notes in their local context
makes it difficult to learn properties that persist in time (such as local key or a
harmonic function). In this work, we address this issue by presenting a simple
and musically intuitive sampling process for graphs that efficiently creates batches
containing musically related notes which, as experiments will show, can notably
improve the learning results.

11.2.4 Task-specific Modeling

Finally, the node embeddings created by the graph convolutional encoder serve as
input to task-specific models that solve some specific prediction or recognition task.
In a graph context, we distinguish, at an abstract level, between node classification,
link prediction, and entire graph classification tasks. Examples of node classification
tasks can be found in [7] which takes the embeddings from the GCN encoder and
employs an edge decoder coupled with a graph convolution classifier for cadence
prediction labels; and in [10], which forwards the embeddings to sequential layer
and then MLP classifiers to perform Roman Numeral Analysis. In [12], musical
voice separation is framed as a link prediction task; the node embeddings are input
to a pairwise edge similarity encoder to predict link probabilities between notes in
the same voice. An example of a graph classification task can be found in [11] where
the embeddings are aggregated and passed through a shallow MLP for composer
classification.

Naturally, task-specific models will not be part of the generic graph processing
pipeline and library which we publish with this paper.

11.3 methodology

In this section, we discuss our approach to addressing the different components
of the pipeline shown in Figure 11.1. In particular, we explain the preprocessing
procedure for creating score graphs, we detail our strategy for musically intuitive
graph sampling, and finally, we discuss model variants that are made possible by
the previous steps of the pipeline.

11.3.1 Preprocessing

The central activity in the preprocessing step is the creation of graphs from mu-
sical scores. In our library, we extend the conventional graph creation process by
introducing hierarchical musical dimensions (beats and measures), in order to
enhance the score graphs’ representational capacity. More specifically, we enrich
the node type set A (defined in Section 11.2.1) with two additional types β and
µ for beats and measures respectively. The process involves detecting beats and
measures within the musical score, generating edges (of type connect to every beat
from each note falling within its temporal boundaries, and repeating this process
for measures. Additional edges of type next are drawn between consecutive beats
and measures to enrich the connectivity and contextual understanding within the

11.3 methodology 167

Figure 11.3: Sampling process per score. Top: sampled notes and their neighbors; middle:
score graph and sampling process; bottom: sampling process for beats and
measures. A randomly selected note (in yellow) is first sampled. The bound-
aries of the target notes are then computed with a budget of 15 notes in this
example (pink and yellow notes). Then the k-hop neighbors are fetched for the
targets (light blue for 1-hop and darker blue for 2-hop). The k-hop neighbors
are computed with respect to the input graph (depicted with colored edges
connecting noteheads in the figure). We can also extend the sampling process
for the beat and measure elements (introduced in Section 11.3.1). Note that
the k-hop neighbors need not be strictly related to a time window.

168 a library for symbolic music graph processing

graph. Furthermore, we aggregate features from constituent notes through the
connect edges via message passing to equip each beat and measure with informative
attributes by computing the mean vector of their note features.

The inclusion of beat and measure node elements, as well as the creation of inverse
edges, are made optional, ensuring compatibility with diverse research needs
and avoiding imposing rigid structures onto the graph-based music processing
framework.

We prioritize the efficiency and speed of the graph creation process by transi-
tioning the graph creation implementation to C code, leveraging its performance
benefits, and establishing a Python binding for seamless integration into our work-
flow. Recognizing the temporal nature of musical elements, such as notes, beats,
and measures, we refine our neighbor searching windows accordingly, optimizing
computational efficiency.

11.3.2 Sampling

We discussed general neighbor sampling for large-scale graphs in Section 11.2.3 and
some problems related to graph-structured music data. In this section, we elaborate
on our musically informed sampling process for music graphs, which enables the
training of the models outlined in the subsequent sections. In this process, we aim
to sample sections of scores and employ neighbor sampling to fetch the neighbors
of notes within those sections.

Indeed while our nodes could be ordered in various ways, the most perceptually
significant aspect is time organization. Recognizably, individuals can still identify
a musical piece when segmented along the time axis, whereas focusing solely on
pitch intervals may be challenging. Moreover, perceptual research indicates that the
commencement time of a note holds greater salience than its offset time, particularly
for percussive instruments like the piano, where the sound naturally fades over
time [1]. Hence, when constructing graphs from musical scores, we prioritize node
arrangement based on absolute onset time followed by pitch.

Our initial limitations are mostly related to memory usage. To limit our memory
we need to predefine three initial arguments: i) the size of each target subgraph S
from every score, ii) the number B of scores in each batch, and iii) the number of
hops and neighbors for each hop (similar to node-wise sampling techniques). In
each batch, we update the representation of our target nodes which is essentially
the size of S × B.

Once the ordering is set and the three arguments are defined we can initiate
the process of sampling a subgraph, as shown in Figure 11.3. First, we sample
a random note from the graph of each score. Next, we correct the position of
the note by searching for any vertical neighbors (same onset value notes and
potentially different pitch). Then we extend to S notes to the right where S indicates
a predefined maximum subgraph size. We also correct the rightmost boundaries
to include or exclude vertical neighbors for the last onset always respecting the
aforementioned size S. Once this process is completed we obtain the target nodes
per score within the batch. These are the nodes whose representation we want to
update at the end of the graph convolutional process.

11.3 methodology 169

However, since graph convolution is performed recursively we need to fetch the
k-hop neighbors for each one of the target nodes where k indicates the depth of
the GCN. For this step, we can consult the literature [16] and perform neighbor
sampling to fetch the k-hop neighbors. This process is repeated for B different
scores. Finally, the B score subgraphs of size at most S each are first joined together
and then fed to the model.

During this process, we can keep information about the target nodes and the
size of each score subgraph, which could allow us to design more creative models
that can exploit this information. Such models are presented in the next section.
Moreover, we adopt a potential approach for hierarchical graphs by also extending
the sampling for beat and measure nodes as shown in Figure 11.3.

11.3.3 Model Designs

In this section, we explore various model designs for the graph-based encoder in our
processing pipeline (Figure 11.1). Designing such an encoder involves addressing
two fundamental questions: the selection of graph convolutional blocks and the
selective exploitation of information from the input graph.

The first question, regarding graph convolutional blocks, remains open-ended,
offering numerous possibilities for exploration and customization. In its current
version, GraphMuse offers the options of convolutional blocks on a per-node or
per-edge type basis. We suggest that graph-attention networks may offer promising
avenues, particularly for hierarchical elements such as beats or measures.

In response to the second question, we devise a series of models by selectively
incorporating or excluding elements from the input graph. Our foundational model,
termed NoteGNN, exclusively utilizes note elements and their corresponding edges.
This model serves as the basis for further extension. For instance, we expand upon
NoteGNN to construct BeatGNN, which incorporates beat elements (see Section 11.3.1
above) alongside notes. Similarly, we develop MeasureGNN by integrating measures
into the encoding process. When all note, measure, and beat elements are included,
the resultant model is denoted as MetricalGNN.

Furthermore, we explore the possibility of hybridizing model types, such as
combining GNNs with sequential models. This hybridization is facilitated by the
sampling process that organizes notes in onset order, allowing for the batch to
be unfolded by score. Consequently, the same batch can be processed through
both GNN and sequential models simultaneously. Specifically, we employ a graph
encoder and a sequential encoder in parallel – in our case we use a stack of
2 bidirectional GRU layers. The GRU stack receives the unfolded batch of size
(B, S, K) where B is the number of scores within the batch, S is the number of
sampled target nodes for each score order by onset and then by pitch, and K is
the number of node features. The embeddings of both encoders are concatenated
together and an additional linear layer is applied to project them to the required
dimension.

This architecture, which we call HybridGNN in our experiments, combines the
strengths of both GNNs and sequential models, resulting in better performance as
shown in our experiments.

170 a library for symbolic music graph processing

11.3.4 The Library

The components discussed in the preceding section have been implemented and
made available in an open-source Python library called GraphMuse. This library
follows a similar philosophy as PyTorch and PyTorch Geometric, comprising models
and graph convolutional blocks, loader pipelines, data pipelines, and related utilities.
GraphMuse is built upon and thus requires PyTorch and PyTorch Geometric. The
loaders and models provided by GraphMuse are fully compatible with those of
PyTorch Geometric. For musical input and output, GraphMuse is compatible with
Partitura [23], a Python library for symbolic music processing. GraphMuse can be
obtained from anonymous.com

11.4 evaluation

To evaluate our framework, we perform experiments on two tasks, cadence detection
and pitch spelling. We put to the test both the models discussed as well as the
sampling process. For pitch spelling, we compare our models to the previous
sequential state-of-the-art model, PKSpell [24] and the GraphSAGE variant of our
note-level model. For cadence detection, we compare our models to the previous
state-of-the-art model by Karystinaios and Widmer [7] which is also graph-based
and follows a GraphSAGE sampling strategy. For both tasks, we perform ablations
by removing the hierarchical elements such as beat and measure nodes and edges,
or incorporating hybrid models.

11.4.1 Pitch Spelling

Previous work on Pitch Spelling set the state-of-the-art by using a sequential
model [24]. The task of pitch spelling tackles in parallel key signature estimation
and pitch spelling estimation per note, however, the key signature is a global
attribute usually set for the whole piece although it can sometimes change midway.
The previous architecture uses a GRU encoder for pitch spelling and then infuses
the logits together with the latent representation to another GRU layer for the key
signature prediction.

For our approach, we use a GNN encoder as described in Section 11.3.3 followed
by two classification heads for key and pitch spelling respectively. We train and
evaluate all models on the ASAP dataset [25] using a random split with 15% of the
data for testing and the 85% for train and validation as described in [24].

11.4.2 Cadence Detection

For the cadence detection model, we chose to use a modified version of the cadence
detection model originally proposed in [7]. Our considerations were based on a
more efficient training process, and the integration of our pipeline possibilities. The
model was expanded to accept a heterogeneous score graph as input, as described
in Section 11.2.1. Additionally, we enhanced the model’s predictive capabilities from
binary (no-cad or PAC) to multiclass cadence prediction, encompassing PAC, IAC,

anonymous.com

11.4 evaluation 171

and HC labels. Furthermore, we refined the architecture by incorporating an onset
regularization module, which aggregates the latent representations (post-GNN
encoder) of all notes occurring at a distinct onset within the score and assigns them
to every note sharing that onset.

In the training phase, the input graph first undergoes processing through the
graph encoder. The resulting node embeddings are then grouped based on onset
information extracted from the score, and their representations are averaged. Subse-
quently, embedded SMOTE [26] is applied to balance the distribution of cadence
classes compared to the notes lacking cadence labels in the score. However, during
inference, this synthetic oversampling step is omitted. Finally, the oversampled
embeddings are fed into a shallow 2-layer MLP classifier to predict the cadence
type.

We trained our model with a joined corpus of cadence annotations from the
DCML corpora2, the Bach fugues from the well-tempered clavier Book No.1 [27],
the annotated Mozart string quartets [28], and the annotated Haydn string quar-
tets [29]. Our joined corpus makes for 590, 149 individual notes and 17, 188 cadence
annotations. We use 80% of the data for training and validation and test on 20%
using a random split. Note that these results cannot be directly compared with [7]
since we use a different (bigger) dataset and perform multiclass prediction.

11.4.3 Experiments

11.4.3.1 Configuration

The configuration used for training all pitch spelling graph models trained with our
sampling technique has a batch size B fixed at 300, i.e. sampling from 300 scores at
each training step, and the size of the target nodes of the sampled subgraph S is
also set to 300. For the respective cadence graph models, B = 200 and S = 500. For
all graph models (including GraphSAGE), we use three heterogeneous SageConv
layers [16] in the encoder with a hidden size of 256 and a dropout of 0.5. The
neighbor sampling corresponding to each one of the layers fetches at most 3
neighbors per sampled node per relation. We train all models with the Adam
optimizer with a learning rate of 10−3 and a weight decay of 5 ∗ 10−4. All models
have been trained on a GTX 1080 Ti. Every experiment is repeated four times with
different random seeds.

11.4.3.2 Results

Table 11.1 presents the results of experiments experiments conducted on the two
tasks. The metrics used for evaluation are Accuracy (A) for pitch spelling and key
recognition, and the macro F1 score (F1) for cadence detection. Note that the model
employed on the GraphSAGE methods and the model NoteGNN are virtually the
same apart from the sampling strategy with which they were trained.

For the pitch spelling task, we can observe that the actual pitch spelling accuracy
(A-Pitch) of all proposed models surpasses both the PKSpell and GraphSAGE
methods. Across all models, the MetricalGNN achieves the highest accuracy of

2 https://github.com/DCMLab/dcml_corpora

https://github.com/DCMLab/dcml_corpora

172 a library for symbolic music graph processing

Task
Pitch Spelling Cadence

A-Pitch A-Key F1-Cad

PKSpell 94.8 ± 0.5 69.9 ± 1.6 -
GraphSAGE 93.6 ± 0.1 43.3 ± 0.1 53.5 ± 0.8

NoteGNN 94.9 ± 0.1 69.3 ± 7.0 55.3 ± 0.9
BeatGNN 95.1 ± 0.2 68.7 ± 1.1 57.4 ± 1.2
MeasureGNN 95.4 ± 0.3 69.5 ± 7.2 57.0 ± 1.0
MetricalGNN 95.6± 0.1 64.4 ± 5.3 55.8 ± 0.6
HybridGNN 95.4 ± 0.2 72.6 ± 2.8 58.6 ± 0.7

Table 11.1: Results on the two tasks, in terms of accuracy (A) and F1 score, respectively.
Values in bold are the best score per metric; underlined values are the second
best. All runs are repeated 4 times. ± indicates standard deviation.

95.6%, closely followed by BeatGNN and MeasureGNN with accuracies of 95.1%
and 95.4%, respectively. These results indicate the benefits of incorporating hierar-
chical musical elements such as beats and measures. However, it is worth noting
that while MetricalGNN achieves the highest accuracy, it is closely followed by the
hybrid model, HybridGNN, which achieves an accuracy of 95.4%, suggesting that
competitive performance can also be achieved by mixing model types.

Focussing on the key estimation subtask (A-Key) of pitch spelling we notice that
the PKSpell model achieves a very good key accuracy of 69.9%, closely followed by
the MeasureGNN model and only surpassed by the Hybrid model. We attribute
the effectiveness of key detection of a sequential model such as PKSpell to the
persistence of the key label across elements of the sequence. Therefore, a hybrid
model in this case seems to be able to adapt to the diversity of labels for pitch
spelling and uniformity of labels for key estimation.

In the cadence detection task, we evaluate the results using the macro F1 score to
account for the overwhelming presence of non-cadence nodes, as instructed by [7].
We observe that GraphSAGE, the previously used technique for training, obtains
the lowest F1 score and it is surpassed by all the proposed GNN-based models
trained with the new sampling method.

Among our GNN models, BeatGNN and HybridGNN achieve the highest scores
of 57.4% and 58.6%, respectively, closely followed by MeasureGNN. In this case, the
MetricalGNN model surprisingly does not achieve such a good score even though
it includes both measure and beat elements. However, it still performs better than
the NoteGNN and the GraphSAGE method.

Overall, the results demonstrate the efficacy of GNN-based models trained
using our new sampling method. Incorporating hierarchical elements such as
beats and measures improves both pitch spelling and cadence detection tasks.
Additionally, the hybrid approach of combining GNNs with sequential models
produces promising results.

11.5 conclusion 173

11.5 conclusion

In this paper, we introduced GraphMuse, a framework and Python library for
symbolic graph music processing. We designed a specialized sampling process for
musical graphs and demonstrated our pipeline’s effectiveness through experiments
on pitch spelling and cadence detection. Our results show that carefully designed
GNN architectures, especially those incorporating hierarchical elements like beats
and measures, can lead to better performance. Finally, hybrid models that integrate
GNNs with sequential models yield further performance improvements.

Future research will focus on refining GNN-based models in music processing,
adding more tasks, and exploring novel architectures. This includes investigating
advanced graph convolutional blocks, other sampling techniques, and attention
mechanisms to enhance model performance.

11.6 acknowledgements

The authors would like to thank Nimrod Varga for his contribution to accelerating
graph creation by adapting it to C code. This work is supported by the European
Research Council (ERC) under the EU’s Horizon 2020 research & innovation pro-
gramme, grant agreement No. 101019375 (Whither Music?), and the Federal State of
Upper Austria (LIT AI Lab).

references

[1] Emmanouil Benetos, Anssi Klapuri, and Simon Dixon. “Score-informed
transcription for automatic piano tutoring.” In: European Signal Processing
Conference (EUSIPCO). 2012.

[2] Gissel Velarde, Tillman Weyde, Carlos E. Cancino-Chacón, David Meredith,
and Maarten Grachten. “Composer recognition based on 2D-filtered piano-
rolls.” In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2016.

[3] Néstor Nápoles López, Mark Gotham, and Ichiro Fujinaga. “Augment-
edNet: A Roman Numeral Analysis Network with Synthetic Training
Examples and Additional Tonal Tasks.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2021.

[4] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “MidiTok: A Python package for MIDI file tokeniza-
tion.” In: Extended Abstracts for the Late-Breaking Demo Session of the 22nd
International Society for Music Information Retrieval Conference. 2021. url:
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf.

[5] Dimitri von Rütte, Luca Biggio, Yannic Kilcher, and Thomas Hofmann.
“FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control.”
In: Proceedings of the International Conference on Learning Representations
(ICLR). 2023.

https://archives.ismir.net/ismir2021/latebreaking/000005.pdf

174 a library for symbolic music graph processing

[6] Jiafeng Liu, Yuanliang Dong, Zehua Cheng, Xinran Zhang, Xiaobing Li,
Feng Yu, and Maosong Sun. “Symphony Generation with Permutation
Invariant Language Model.” In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). 2022.

[7] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[8] Arnau Baró, Pau Riba, and Alicia Fornés. “Musigraph: Optical Music
Recognition Through Object Detection and Graph Neural Network.” In:
International Conference on Frontiers in Handwriting Recognition. Springer.
2022, pp. 171–184.

[9] Emanuele Cosenza, Andrea Valenti, and Davide Bacciu. “Graph-based
Polyphonic Multitrack Music Generation.” In: International Joint Conference
on Artificial Intelligence (IJCAI). 2023.

[10] Emmanouil Karystinaios and Gerhard Widmer. “Roman Numeral Analysis
with Graph Neural Networks: Onset-wise Predictions from Note-wise
Features.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2023.

[11] Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer,
and Carlos Eduardo Cancino-Chacón. “Symbolic Music Representations
for Classification Tasks: A Systematic Evaluation.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2023.

[12] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

[13] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[14] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and
Philip S Yu. “Heterogeneous graph attention network.” In: The world wide
web conference. 2019, pp. 2022–2032.

[15] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. “A comprehensive survey on graph neural networks.”
In: IEEE transactions on neural networks and learning systems 32.1 (2020),
pp. 4–24.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[17] Thomas N Kipf and Max Welling. “Semi-supervised classification with
graph convolutional networks.” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2017.

11.6 references 175

[18] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamil-
ton, and Jure Leskovec. “Graph convolutional neural networks for web-
scale recommender systems.” In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 2018, pp. 974–
983.

[19] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den
Berg, Ivan Titov, and Max Welling. “Modeling relational data with graph
convolutional networks.” In: The semantic web: 15th international conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15. Springer.
2018, pp. 593–607.

[20] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan
Gu. “Layer-dependent importance sampling for training deep and large
graph convolutional networks.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2019.

[21] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. “GraphSAINT: Graph Sampling Based Inductive
Learning Method.” In: Proceedings of the International Conference on Learning
Representations (ICLR). 2020.

[22] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan.
“Sampling methods for efficient training of graph convolutional networks:
A survey.” In: IEEE/CAA Journal of Automatica Sinica 9.2 (2021), pp. 205–234.

[23] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

[24] Francesco Foscarin, Nicolas Audebert, and Raphaël Fournier-S’Niehotta.
“PKSpell: Data-driven pitch spelling and key signature estimation.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2021.

[25] Silvan David Peter, Carlos Eduardo Cancino-Chacón, Francesco Foscarin,
Andrew Philip McLeod, Florian Henkel, Emmanouil Karystinaios, and Ger-
hard Widmer. “Automatic Note-Level Score-to-Performance Alignments
in the ASAP Dataset.” In: Transactions of the International Society for Music
Information Retrieval (TISMIR) (2023).

[26] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique.” In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[27] Mathieu Giraud, Richard Groult, Emmanuel Leguy, and Florence Levé.
“Computational fugue analysis.” In: Computer Music Journal 39.2 (2015),
pp. 77–96.

[28] Pierre Allegraud, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard
Groult, Emmanuel Leguy, and Florence Levé. “Learning Sonata Form
Structure on Mozart’s String Quartets.” In: Transactions of the International
Society for Music Information Retrieval (TISMIR) 2.1 (2019), pp. 82–96.

176 a library for symbolic music graph processing

[29] David RW Sears, Marcus T Pearce, William E Caplin, and Stephen McAdams.
“Simulating melodic and harmonic expectations for tonal cadences using
probabilistic models.” In: Journal of New Music Research 47.1 (2018), pp. 29–
52.

12 C O N C L U S I O N & F U T U R E W O R K

12.1 overview

This thesis has explored the application of graph-based music representations to-
gether with Graph Neural Networks (GNNs) for the automatic music analysis of
classical music scores, addressing a range of tasks such as cadence detection, voice
separation, and Roman numeral analysis. My research suggests that viewing musi-
cal scores as graphs offers significant advantages in capturing the dual hierarchical
and sequential structures inherent in polyphonic music.

By introducing new graph models and customized GNN blocks tailored for
musical data, I have shown that it is possible to surpass previous methods in
accuracy, efficiency, and scalability in automatic music analysis. The development
of ChordGNN, MusGConv, MetricalGNN, and other graph-based models high-
lights the power of graph representations in tasks such as cadence detection, voice
separation, Roman numeral analysis, and more. These models not only improved
performance but also offered a more intuitive understanding of musical structures,
facilitating better interpretability and manipulation of musical data.

Furthermore, I introduced frameworks for explainability on music graphs such
as the SMUG-Explain framework which offers an easy visualization of graphs
and their explanations making more accessible to music analysts who want to
understand and explore how graph-based music analysis models learn. With the
introduction of the GraphMuse library for symbolic music graph processing, I have
provided the research community with practical resources to continue innovation
and exploration in the field.

My work has moved towards the standardization of graph-based symbolic music
processing, demonstrating its potential to address complex musical tasks effectively.
The successful integration of GNNs in music analysis sets a promising direction for
future research, where more sophisticated models and techniques can be developed
to further improve our understanding and processing of music.

In conclusion, this thesis establishes a solid foundation for the use of graph-
based representations in symbolic music analysis, offering a new perspective that
aligns more closely with the intrinsic properties of musical data. The findings
and tools developed during my Ph.D. have offered advances to the state-of-the-art
in individual music analysis tasks but also contributed to the field of MIR by
introducing many open-source resources.

Overall, my work has aimed to contribute to symbolic-based MIR by presenting
graph-based methods as a viable option for certain music analysis tasks. While the
results are encouraging, they are by no means definitive and much remains to be
done to unfold the full potential of these graph-based approaches.

177

178 conclusion & future work

12.2 future directions

Future research in the field of graph-based symbolic music processing must ad-
dress several challenges to unlock its full potential. Scalability and computational
efficiency remain significant hurdles. As musical compositions grow more complex
and datasets expand, the computational resources required for training and infer-
ence increase substantially. Optimizing these models to reduce computational costs
without sacrificing accuracy is essential for their broader application.

Another challenge lies in the integration of graph-based approaches with other
modalities such as audio signals and visual elements like sheet music. Music is
inherently multi-modal, and developing frameworks that can effectively combine
these diverse data types will be crucial for comprehensive music analysis. Addition-
ally, musical interpretation often involves a degree of ambiguity and subjectivity, as
different musicians and analysts may interpret the same piece differently. Creating
models that can accommodate such variability and provide multiple plausible
interpretations is a complex but necessary task.

Ensuring that graph-based models can generalize across various musical genres
and styles is also critical. While current research has primarily focused on Western
classical music, there is a vast array of musical traditions worldwide. Adapting these
models to different musical contexts will require further exploration. Moreover, the
success of deep learning models heavily relies on the availability and quality of
annotated data. In symbolic music, creating high-quality annotations for complex
tasks is labor-intensive and requires expert knowledge. Addressing data scarcity
and improving annotation quality will be vital for the advancement of this field.

Future directions for research include exploring more sophisticated graph repre-
sentations that capture additional musical attributes such as dynamics, articulation,
and phrasing. These enhancements could lead to more nuanced and accurate mod-
els that better reflect the complexity of musical scores. Combining graph-based
approaches with other machine learning techniques, such as sequence models and
convolutional networks, could yield more powerful and flexible models, leveraging
the strengths of different architectures for improved performance across various
musical tasks.

Developing interactive and real-time applications that utilize graph-based music
analysis could potentially impact music education, composition, and performance.
Such tools could provide immediate feedback and insights to musicologists and
computer scientists working with music, deepening their understanding. Enhanc-
ing the explainability and interpretability of graph-based models could also be
important for their adoption in musicology and education. Future research should
focus on methods that provide clear and musically meaningful explanations for the
model’s decisions.

Cross-disciplinary collaborations with experts in musicology, cognitive science,
and computer science can lead to innovative approaches and a deeper understand-
ing of music analysis. Such collaborations can address complex questions about
musical perception, cognition, and creativity, resulting in more holistic and robust
models. Continuing the development and dissemination of open-source tools and
frameworks will be vital for the growth of this research. Providing accessible and

12.2 future directions 179

well-documented resources can encourage wider adoption and experimentation,
fostering a collaborative research environment.

In summary, while significant progress has been made, numerous challenges and
exciting opportunities lie ahead. Addressing these challenges through innovative
research and collaboration will be essential for advancing the field and unlocking
the full potential of computational music analysis.

C O L L E C T I V E B I B L I O G R A P H Y

[B1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz
Hardt, and Been Kim. “Sanity Checks for Saliency Maps.” In: Neural
Information Processing Systems. 2018.

[B2] Edward Aldwell, Carl Schachter, and Allen Cadwallader. Harmony and
voice leading. Cengage Learning, 2018.

[B3] Anna Aljanaki, Stefano Kalonaris, Gianluca Micchi, and Eric Nichols.
“MCMA: A Symbolic Multitrack Contrapuntal Music Archive.” In: Empirical
Musicology Review 16.1 (2021), pp. 99–105.

[B4] Pierre Allegraud, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard
Groult, Emmanuel Leguy, and Florence Levé. “Learning Sonata Form
Structure on Mozart’s String Quartets.” In: Transactions of the International
Society for Music Information Retrieval (TISMIR) 2.1 (2019), pp. 82–96.

[B5] Pierre Allegraud, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard
Groult, Emmanuel Leguy, and Florence Levé. “Learning Sonata Form
Structure on Mozart’s String Quartets.” In: Transactions of the International
Society for Music Information Retrieval (TISMIR) 2.1 (2019), pp. 82–96.

[B6] Kenza Amara, Rex Ying, Zitao Zhang, Zhihao Han, Yinan Shan, Ulrik Bran-
des, Sebastian Schemm, and Ce Zhang. “Graphframex: Towards systematic
evaluation of explainability methods for graph neural networks.” In: In
Learning on Graphs Conference (Proceedings of Machine Learning Research) 198

(2022).

[B7] Matan Atzmon, Haggai Maron, and Yaron Lipman. “Point Convolutional
Neural Networks by Extension Operators.” In: ACM Transactions on Graphics
37.4 (2018).

[B8] Milton Babbit. “The Use of Computers in Musicological Research.” In:
Perspectives of New Music 3.2 (1965), pp. 74–83.

[B9] Bach: Prelude and Fugue No.19 in A major, BWV 864 Analysis. 2018. url:
https://tonic- chord.com/bach- prelude- and- fugue- no- 19- in- a-

major-bwv-864-analysis/.

[B10] David Back. Standard MIDI-file format specifications. Acessed August 29, 2024.
1999. url: http://www.music.mcgill.ca/~ich/classes/mumt306.

[B11] Federico Baldassarre and Hossein Azizpour. “Explainability techniques for
graph convolutional networks.” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2019.

[B12] Arnau Baró, Pau Riba, and Alicia Fornés. “Musigraph: Optical Music
Recognition Through Object Detection and Graph Neural Network.” In:
International Conference on Frontiers in Handwriting Recognition. Springer.
2022, pp. 171–184.

181

https://tonic-chord.com/bach-prelude-and-fugue-no-19-in-a-major-bwv-864-analysis/
https://tonic-chord.com/bach-prelude-and-fugue-no-19-in-a-major-bwv-864-analysis/
http://www.music.mcgill.ca/~ich/classes/mumt306

182 collective bibliography

[B13] Emmanouil Benetos, Anssi Klapuri, and Simon Dixon. “Score-informed
transcription for automatic piano tutoring.” In: European Signal Processing
Conference (EUSIPCO). 2012.

[B14] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.
“Simple online and realtime tracking.” In: Proceedings of the IEEE interna-
tional conference on image processing (ICIP). IEEE. 2016.

[B15] Louis Bigo, Laurent Feisthauer, Mathieu Giraud, and Florence Levé. “Rel-
evance of musical features for cadence detection.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2018.

[B16] Augustin Bouquillard and Florent Jacquemard. “Engraving Oriented Joint
Estimation of Pitch Spelling and Local and Global Keys.” In: International
Conference on Technologies for Music Notation and Representation (TENOR).
2024.

[B17] Guillem Brasó and Laura Leal-Taixé. “Learning a neural solver for multiple
object tracking.” In: Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition. 2020.

[B18] Xavier Bresson and Thomas Laurent. “Residual Gated Graph ConvNets.”
In: Proceedings of the International Conference on Learning Representations. 2017.

[B19] Xavier Bresson and Thomas Laurent. “An Experimental Study of Neural
Networks for Variable Graphs.” In: Proceedings of the International Conference
on Learning Representations. 2018.

[B20] Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep Learn-
ing Techniques for Music Generation – A Survey. 2017. isbn: 9783319701622.
arXiv: 1709.01620. url: http://arxiv.org/abs/1709.01620.

[B21] Shaked Brody, Uri Alon, and Eran Yahav. “How attentive are graph atten-
tion networks?” In: Proceedings of the International Conference on Learning
Representations (ICLR) (2022).

[B22] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. “Geometric deep learning: going beyond euclidean data.”
In: IEEE Signal Processing Magazine 34.4 (2017), pp. 18–42.

[B23] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. “Spectral
networks and locally connected networks on graphs.” In: Proceedings of the
International Conference on Learning Representations (ICLR). 2014.

[B24] Rainer E Burkard and Eranda Cela. “Linear assignment problems and
extensions.” In: Handbook of combinatorial optimization. Springer, 1999, pp. 75–
149.

[B25] Emilios Cambouropoulos. “Voice separation: theoretical, perceptual and
computational perspectives.” In: Proceedings of the International Conference
on Music Perception and Cognition (ICMPC). Citeseer. 2006.

[B26] Emilios Cambouropoulos. “Voice and stream: Perceptual and computa-
tional modeling of voice separation.” In: Music Perception 26.1 (2008), pp. 75–
94.

https://arxiv.org/abs/1709.01620
http://arxiv.org/abs/1709.01620

collective bibliography 183

[B27] Carlos Cancino-Chacón, Silvan Peter, Patricia Hu, Emmanouil Karystinaios,
Florian Henkel, Francesco Foscarin, Nimrod Varga, and Gerhard Wid-
mer. “The ACCompanion: Combining Reactivity, Robustness, and Musical
Expressivity in an Automatic Piano Accompanist.” In: International Joint
Conference on Artificial Intelligence (IJCAI). 2023.

[B28] Carlos Cancino-Chacón, Silvan Peter, Emmanouil Karystinaios, and Ger-
hard Widmer. “Towards Quantifying Differences in Expressive Piano Per-
formances: Are Euclidean-like Distance Measures Enough?” In: the 18th
Rhythm Production and Perception Workshop (RPPW 2021). 2021.

[B29] Carlos Cancino-Chacón, Silvan David Peter, Emmanouil Karystinaios,
Francesco Foscarin, Maarten Grachten, and Gerhard Widmer. “Partitura:
A Python Package for Symbolic Music Processing.” In: Proceedings of the
Music Encoding Conference (MEC). 2022.

[B30] Carlos E. Cancino-Chacón, Maarten Grachten, Werner Goebl, and Gerhard
Widmer. “Computational Models of Expressive Music Performance: A
Comprehensive and Critical Review.” In: Frontiers in Digital Humanities
5.October (2018), pp. 1–23. issn: 2297-2668. doi: 10.3389/fdigh.2018.
00025.

[B31] Gregory Castnnón and Lucas Finn. “Multi-target tracklet stitching through
network flows.” In: Proceedings of the Aerospace Conference. IEEE. 2011.

[B32] Carlos Eduardo Cancino Chacón. “Computational Modeling of Expressive
Music Performance with Linear and Non-linear Basis Function Models.”
PhD thesis. Johannes Kepler University, Austria, 2018.

[B33] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. “SMOTE: synthetic minority over-sampling technique.” In:
Journal of artificial intelligence research 16 (2002), pp. 321–357.

[B34] Jianfei Chen, Jun Zhu, and Le Song. “Stochastic training of graph convo-
lutional networks with variance reduction.” In: International Conference on
Machine Learning (PMLR). 2018.

[B35] Jie Chen, Tengfei Ma, and Cao Xiao. “Fastgcn: fast learning with graph
convolutional networks via importance sampling.” In: Proceedings of the
International Conference on Learning Representations (ICLR). 2018.

[B36] Tsung-Ping Chen, Li Su, et al. “Functional Harmony Recognition of Sym-
bolic Music Data with Multi-task Recurrent Neural Networks.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2018.

[B37] Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich.
“GradNorm: Gradient Normalization for Adaptive Loss Balancing in Deep
Multitask Networks.” In: Proceedings of the International Conference on Ma-
chine Learning (ICML). 2018.

[B38] Elaine Chew and Xiaodan Wu. “Separating voices in polyphonic music: A
contig mapping approach.” In: Proceedings of the International Symposium on
Computer Music Modeling and Retrieval. Springer. 2004.

https://doi.org/10.3389/fdigh.2018.00025
https://doi.org/10.3389/fdigh.2018.00025

184 collective bibliography

[B39] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui
Hsieh. “Cluster-gcn: An efficient algorithm for training deep and large
graph convolutional networks.” In: Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining. 2019, pp. 257–
266.

[B40] Chee-Yee Chong, Greg Castanon, Nathan Cooprider, Shozo Mori, Ravi
Ravichandran, and Robert Macior. “Efficient multiple hypothesis tracking
by track segment graph.” In: Proceedings of the International Conference on
Information Fusion. IEEE. 2009.

[B41] Darrell Conklin. “Multiple Viewpoint Systems for Music Classification.” In:
Journal of New Music Research 42.1 (2013), pp. 19–26. doi: 10.1080/09298215.
2013.776611. eprint: https://doi.org/10.1080/09298215.2013.776611.
url: https://doi.org/10.1080/09298215.2013.776611.

[B42] Darrell Conklin. “Chord sequence generation with semiotic patterns.” In:
Journal of Mathematics and Music 10.2 (2016), pp. 92–106. doi: 10.1080/
17459737.2016.1188172. eprint: https://doi.org/10.1080/17459737.
2016.1188172. url: https://doi.org/10.1080/17459737.2016.1188172.

[B43] Darrell Conklin and Ian H. Witten. “Multiple Viewpoint Systems for Music
Prediction.” In: Journal of New Music Research 24.1 (1995), pp. 51–73. issn:
17445027. doi: 10.1080/09298219508570672.

[B44] Darrell Conklin and Ian H. Witten. “Multiple viewpoint systems for mu-
sic prediction.” In: Journal of New Music Research 24.1 (1995), pp. 51–73.
doi: 10.1080/09298219508570672. eprint: https://doi.org/10.1080/
09298219508570672. url: https://doi.org/10.1080/09298219508570672.

[B45] Emanuele Cosenza, Andrea Valenti, and Davide Bacciu. “Graph-based
Polyphonic Multitrack Music Generation.” In: International Joint Conference
on Artificial Intelligence (IJCAI). 2023.

[B46] David F Crouse. “On implementing 2D rectangular assignment algo-
rithms.” In: IEEE Transactions on Aerospace and Electronic Systems 52.4 (2016),
pp. 1679–1696.

[B47] Michael Scott Cuthbert and Christopher Ariza. “music21: A toolkit for
computer-aided musicology and symbolic music data.” In: (2010).

[B48] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convolu-
tional neural networks on graphs with fast localized spectral filtering.” In:
Advances in Neural Information Processing Systems (NeurIPS 29 (2016).

[B49] Eustasio Del Barrio, Juan A Cuesta-Albertos, and Carlos Matrán. “An
optimal transportation approach for assessing almost stochastic order.” In:
The Mathematics of the Uncertain. Springer, 2018, pp. 33–44.

[B50] Diana Deutsch. Psychology of music. Elsevier, 2013.

[B51] Johanna Devaney, Claire Arthur, Nathaniel Condit-Schultz, and Kirsten
Nisula. “Theme and Variation Encodings with Roman Numerals (TAV-
ERN): A new data set for symbolic music analysis.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2015.

https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/09298215.2013.776611
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/17459737.2016.1188172
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672
https://doi.org/10.1080/09298219508570672

collective bibliography 185

[B52] Bruno Di Giorgi, Matthias Mauch, and Mark Levy. “Downbeat Tracking
with Tempo-Invariant Convolutional Neural Networks.” In: Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR).
2021.

[B53] Frederik Diehl, Thomas Brunner, Michael Truong Le, and Alois Knoll.
“Towards Graph Pooling by Edge Contraction.” In: Proceedings of the Inter-
national Conference on Machine Learning (ICML). 2019.

[B54] Hao Wen Dong, Wen Yi Hsiao, Li Chia Yang, and Yi Hsuan Yang. “MuseGAN:
Multi-track sequential generative adversarial networks for symbolic music
generation and accompaniment.” In: Proceedings of the Association for the Ad-
vancement of Artificial Intelligence Conference (AAAI). 2018. isbn: 9781577358008.
doi: 10 . 1609 / aaai . v32i1 . 11312. arXiv: 1709 . 06298. url: https : / /

salu133445.github.io/musegan/.

[B55] Ben Duane and Bryan Pardo. “Streaming from MIDI using constraint
satisfaction optimization and sequence alignment.” In: Proceedings of the
International Computer Music Conference (ICMC). 2009.

[B56] Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. “Benchmarking graph neural networks.” In: arXiv
preprint arXiv:2003.00982 (2020).

[B57] Anders Elowsson and Anders Friberg. “Modeling Music Modality with a
Key-Class Invariant Pitch Chroma CNN.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2019.

[B58] Lukas Faber, Amin K. Moghaddam, and Roger Wattenhofer. “When com-
paring to ground truth is wrong: On evaluating GNN explanation meth-
ods.” In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining. 2021, pp. 332–341.

[B59] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning
with PyTorch Geometric.” In: Workshop on Representation Learning on Graphs
and Manifolds at International Conference on Learning Representations (ICLR).
2019.

[B60] Christoph Finkensiep and Martin Alois Rohrmeier. “Modeling and in-
ferring proto-voice structure in free polyphony.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2021,
pp. 189–196.

[B61] Arthur Flexer. “A closer look on artist filters for musical genre classifica-
tion.” In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2007. isbn: 9783854032182.

[B62] Francesco Foscarin. “The Musical Score: a challenging goal for automatic
music transcription.” PhD thesis. Paris, CNAM, 2020.

[B63] Francesco Foscarin, Nicolas Audebert, and Raphaël Fournier-S’Niehotta.
“PKSpell: Data-driven pitch spelling and key signature estimation.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2021.

https://doi.org/10.1609/aaai.v32i1.11312
https://arxiv.org/abs/1709.06298
https://salu133445.github.io/musegan/
https://salu133445.github.io/musegan/

186 collective bibliography

[B64] Francesco Foscarin, Katharina Hoedt, Verena Praher, Arthur Flexer, and
Gerhard Widmer. “Concept-Based Techniques for "Musicologist-friendly"
Explanations in a Deep Music Classifier.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2022. url: https:
//api.semanticscholar.org/CorpusID:251881711.

[B65] Francesco Foscarin, Florent Jacquemard, and Philippe Rigaux. “Modeling
and learning rhythm structure.” In: Sound and Music Computing Conference
(SMC). 2019.

[B66] Francesco Foscarin, Emmanouil Karystinaios, Eita Nakamura, and Gerhard
Widmer. “Cluster and Separate: a GNN Approach to Voice and Staff
Prediction for Score Engraving.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). 2024.

[B67] Francesco Foscarin, Emmanouil Karystinaios, Silvan David Peter, Carlos
Cancino-Chacón, Maarten Grachten, and Gerhard Widmer. “The match
file format: Encoding Alignments between Scores and Performances.” In:
Proceedings of the Music Encoding Conference (MEC). Halifax, Canada, 2022.

[B68] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “MidiTok: A Python package for MIDI file tokeniza-
tion.” In: Extended Abstracts for the Late-Breaking Demo Session of the 22nd
International Society for Music Information Retrieval Conference. 2021. url:
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf.

[B69] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “Miditok: a Python Package for Midi File Tokeniza-
tion.” In: International Society for Music Information Retrieval (ISMIR) Late
Breaking Demo (LBD). 2021. isbn: 9783319701622.

[B70] Nathan Fradet, Jean-Pierre Briot, Fabien Chhel, Amal El Fallah Seghrouchni,
and Nicolas Gutowski. “Byte Pair Encoding for Symbolic Music.” In: 2023.
arXiv: 2301.11975. url: http://arxiv.org/abs/2301.11975.

[B71] Nathan Fradet, Nicolas Gutowski, Fabien Chhel, and Jean-Pierre Briot.
“Byte Pair Encoding for Symbolic Music.” In: Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language Processing. Ed. by Houda
Bouamor, Juan Pino, and Kalika Bali. Singapore: Association for Computa-
tional Linguistics, Dec. 2023, pp. 2001–2020. doi: 10.18653/v1/2023.emnlp-
main.123. url: https://aclanthology.org/2023.emnlp-main.123.

[B72] Youssef Ghatas, Magda Fayek, and Mayada Hadhoud. “A hybrid deep
learning approach for musical difficulty estimation of piano symbolic
music.” In: Alexandria Engineering Journal 61.12 (2022), pp. 10183–10196.
issn: 11100168. doi: 10.1016/j.aej.2022.03.060.

[B73] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and
George E Dahl. “Neural message passing for quantum chemistry.” In:
Proceedings of the International Conference on Machine Learning (ICML). PMLR.
2017, pp. 1263–1272.

https://api.semanticscholar.org/CorpusID:251881711
https://api.semanticscholar.org/CorpusID:251881711
https://archives.ismir.net/ismir2021/latebreaking/000005.pdf
https://arxiv.org/abs/2301.11975
http://arxiv.org/abs/2301.11975
https://doi.org/10.18653/v1/2023.emnlp-main.123
https://doi.org/10.18653/v1/2023.emnlp-main.123
https://aclanthology.org/2023.emnlp-main.123
https://doi.org/10.1016/j.aej.2022.03.060

collective bibliography 187

[B74] Mathieu Giraud, Richard Groult, Emmanuel Leguy, and Florence Levé.
“Computational Fugue Analysis.” In: Computer Music Journal 39.2 (2015),
pp. 77–96. doi: 10.1162/COMJ_a_00300. url: https://hal.science/hal-
01113520.

[B75] Mathieu Giraud, Richard Groult, Emmanuel Leguy, and Florence Levé.
“Computational fugue analysis.” In: Computer Music Journal 39.2 (2015),
pp. 77–96.

[B76] Werner Goebl. “Melody lead in piano performance: Expressive device or
artifact?” In: The Journal of the Acoustical Society of America 110 (2001), p. 641.
doi: 10.1121/1.1376133. url: https://asa.scitation.org/doi/10.1121/
1.1376133.

[B77] M Good. “An internet-friendly format for sheet music.” In: Proceedings of
XML Conference. 2001.

[B78] Mark Gotham, Kyle Gulling, and Chelsey Hamm. Open Music Theory-
Version 2., 2022.

[B79] Mark Gotham, Dmitri Tymoczko, and Michael Scott Cuthbert. “The Ro-
manText Format: A Flexible and Standard Method for Representing Roman
Numeral Analyses.” In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). 2019.

[B80] Mark Robert Haigh Gotham and Peter Jonas. “The Openscore Lieder
Corpus.” In: Proceedings of the Music Encoding Conference (MEC). 2021.

[B81] Elaine Gould. Behind bars: the definitive guide to music notation. Faber Music
Ltd, 2016.

[B82] Patrick Gray and Razvan C Bunescu. “A Neural Greedy Model for Voice
Separation in Symbolic Music.” In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). 2016.

[B83] Michelle Guo, Albert Haque, De-An Huang, Serena Yeung, and Li Fei-Fei.
“Dynamic Task Prioritization for Multitask Learning.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018.

[B84] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation
learning on large graphs.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2017.

[B85] William L. Hamilton, Rex Ying, and Jure Leskovec. “Representation Learn-
ing on Graphs: Methods and Applications.” In: IEEE Data Engineering
Bulletin 40.3 (2017), pp. 52–74.

[B86] Mei Han, Wei Xu, Hai Tao, and Yihong Gong. “An algorithm for multiple
object trajectory tracking.” In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. Vol. 1. IEEE. 2004.

[B87] Mitch Harris, Alan Smaill, and Geraint Wiggins. “Representing Music
Symbolically.” In: IX Colloquio di Informatica Musicale (Venice). 1991. url:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.473.

[B88] Christopher Harte. “Towards automatic extraction of harmony information
from music signals.” PhD thesis. Queen Mary University of London, 2010.

https://doi.org/10.1162/COMJ_a_00300
https://hal.science/hal-01113520
https://hal.science/hal-01113520
https://doi.org/10.1121/1.1376133
https://asa.scitation.org/doi/10.1121/1.1376133
https://asa.scitation.org/doi/10.1121/1.1376133
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.473

188 collective bibliography

[B89] Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Fried-
man. The elements of statistical learning: data mining, inference, and prediction.
Vol. 2. Springer, 2009.

[B90] Verena Haunschmid, Ethan Manilow, and Gerhard Widmer. “audioLIME:
Listenable Explanations Using Source Separation.” In: Proceedings of the
International Workshop on Machine Learning and Music, MML. 2020, pp. 20–24.

[B91] Curtis Hawthorne, Erich Elsen, Jialin Song, Adam Roberts, Ian Simon, Colin
Raffel, Jesse Engel, Sageev Oore, and Douglas Eck. “Onsets and frames:
Dual-objective piano transcription.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). 2018, pp. 50–57. isbn:
9782954035123. doi: 10.5281/zenodo.1492341. arXiv: 1710.11153.

[B92] Curtis Hawthorne, Andriy Stasyuk, Adam Roberts, Ian Simon, Cheng-
Zhi Anna Huang, Sander Dieleman, Erich Elsen, Jesse Engel, and Douglas
Eck. “Enabling factorized piano music modeling and generation with the
MAESTRO dataset.” In: Proceedings of 7th International Conference on Learning
Representations. 2019.

[B93] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition.” In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR). 2016. isbn:
9781467388504. doi: 10.1109/CVPR.2016.90. arXiv: 1512.03385.

[B94] Johannes Hentschel, Markus Neuwirth, and Martin Rohrmeier. “The An-
notated Mozart Sonatas: Score, Harmony, and Cadence.” In: Transactions of
the International Society for Music Information Retrieval (TISMIR) 4.ARTICLE
(2021), pp. 67–80.

[B95] Johannes Hentschel, Yannis Rammos, Fabian C Moss, Markus Neuwirth,
and Martin Rohrmeier. “An annotated corpus of tonal piano music from
the long 19th century.” In: Empirical Musicology Review 18.1 (2023), pp. 84–
95.

[B96] Carlos Hernandez-Olivan, Sonia Rubio Llamas, and Jose R. Beltran. Sym-
bolic Music Structure Analysis with Graph Representations and Changepoint
Detection Methods. 2023. arXiv: 2303.13881.

[B97] Sam van Herwaarden, Maarten Grachten, W de Haas, and W. Bas de
Haas. “Predicting expressive dynamics in piano performances using neural
networks.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2014.

[B98] Yuki Hiramatsu, Eita Nakamura, and Kazuyoshi Yoshii. “Joint Estimation
of Note Values and Voices for Audio-to-Score Piano Transcription.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR). 2021, pp. 278–284.

[B99] Katharina Hoedt, Verena Praher, Arthur Flexer, and Gerhard Widmer.
“Constructing adversarial examples to investigate the plausibility of ex-
planations in deep audio and image classifiers.” In: Neural Computing and
Applications 35.14 (2023), pp. 10011–10029.

https://doi.org/10.5281/zenodo.1492341
https://arxiv.org/abs/1710.11153
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2303.13881

collective bibliography 189

[B100] Holger H Hoosy, Keith A Hamelz, Kai Renzy, and J urgen Kiliany. “The
GUIDO Notation Format A Novel Approach for Adequately Representing
Score-Level Music.” In: International Computer Music Conference (ICMC).
1998.

[B101] Yo-Wei Hsiao and Li Su. “Learning note-to-note affinity for voice segrega-
tion and melody line identification of symbolic music data.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2021, pp. 285–292.

[B102] Wen-Yi Hsiao, Jen-Yu Liu, Yin-Cheng Yeh, and Yi-Hsuan Yang. “Compound
Word Transformer: Learning to Compose Full-Song Music over Dynamic
Directed Hypergraphs.” In: Proceedings of the Association for the Advancement
of Artificial Intelligence Conference (AAAI). 2021. arXiv: 2101.02402v1.

[B103] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren,
Bowen Liu, Michele Catasta, and Jure Leskovec. “Open graph benchmark:
Datasets for machine learning on graphs.” In: Advances in Neural Information
Processing Systems (NeurIPS 33 (2020), pp. 22118–22133.

[B104] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vi-
jay Pande, and Jure Leskovec. “Strategies for pre-training graph neural
networks.” In: Proceedings of the International Conference on Learning Repre-
sentations (ICLR). 2019.

[B105] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. “Heterogeneous
graph transformer.” In: Proceedings of the web conference 2020. 2020, pp. 2704–
2710.

[B106] Cheng-Zhi Anna Huang, Curtis Hawthorne, Adam Roberts, Monica Din-
culescu, James Wexler, Leon Hong, and Jacob Howcroft. “The Bach doodle:
Approachable music composition with machine learning at scale.” In:
Proceedings of the 18th International Society for Music Information Retrieval
Conference. 2019.

[B107] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer,
Ian Simon, Curtis Hawthorne, Andrew M. Dai, Matthew D. Hoffman,
Monica Dinculescu, and Douglas Eck. “Music Transformer.” In: Proceedings
of the International Conference on Learning Representations (ICLR). 2019. arXiv:
1809.04281. url: http://arxiv.org/abs/1809.04281.

[B108] Qiang Huang, Makoto Yamada, Yuan Tian, Dinesh Singh, and Yi Chang.
“Graphlime: Local interpretable model explanations for graph neural net-
works.” In: IEEE Transactions on Knowledge and Data Engineering 35.7 (2022),
pp. 6968–6972.

[B109] Yu-Siang Huang and Yi-Hsuan Yang. “Pop Music Transformer: Beat-Based
Modeling and Generation of Expressive Pop Piano Compositions.” In:
Proceedings of the 28th ACM International Conference on Multimedia. MM ’20.
Seattle, WA, USA: Association for Computing Machinery, 2020, pp. 1180–
1188. isbn: 9781450379885. doi: 10.1145/3394171.3413671. url: https:
//doi.org/10.1145/3394171.3413671.

https://arxiv.org/abs/2101.02402v1
https://arxiv.org/abs/1809.04281
http://arxiv.org/abs/1809.04281
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671
https://doi.org/10.1145/3394171.3413671

190 collective bibliography

[B110] Yu Siang Huang and Yi Hsuan Yang. “Pop Music Transformer: Beat-based
Modeling and Generation of Expressive Pop Piano Compositions.” In:
Proceedings of the 28th ACM International Conference on Multimedia. 2020.
isbn: 9781450379885. doi: 10.1145/3394171.3413671. arXiv: 2002.00212.

[B111] David Huron. “Tone and voice: A derivation of the rules of voice-leading
from perceptual principles.” In: Music Perception 19.1 (2001), pp. 1–64.

[B112] David Huron and Craig Sapp. The Humdrum Toolkit. Acessed August 29,
2024. 1993. url: https://www.humdrum.org/.

[B113] Plácido R Illescas, David Rizo, and José Manuel Inesta Quereda. “Har-
monic, melodic, and functional automatic analysis.” In: Proceedings of the
International Computer Music Conference. 2007.

[B114] Tobias Isenberg, André Miede, and Sheelagh Carpendale. “A Buffer Frame-
work for Supporting Responsive Interaction in Information Visualization
Interfaces.” In: Proceedings of the Fourth International Conference on Creat-
ing, Connecting, and Collaborating through Computing (C 5 2006). IEEE, 2006,
pp. 262–269. isbn: 978-0-7695-2563-1.

[B115] Adrián Javaloy and Isabel Valera. “RotoGrad: Gradient Homogenization
in Multitask Learning.” In: Proceedings of the International Conference on
Learning Representations (ICLR). 2022.

[B116] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, Kyogu Lee, and Juhan Nam.
“VirtuosoNet: A Hierarchical RNN-based System for Modeling Expressive
Piano Performance.” In: Proceedings of the 20th International Society of Music
Information Retrieval Conference. 2019.

[B117] Dasaem Jeong, Taegyun Kwon, Yoojin Kim, and Juhan Nam. “Graph
Neural Network for Music Score Data and Modeling Expressive Piano
Performance.” In: Proceedings of the International Conference on Machine
Learning (ICML). 2019.

[B118] Anna Jordanous. “Voice separation in polyphonic music: A data-driven
approach.” In: Proceedings of the International Computer Music Conference
(ICMC). 2008.

[B119] Wei Ju, Zheng Fang, Yiyang Gu, Zequn Liu, Qingqing Long, Ziyue Qiao,
Yifang Qin, Jianhao Shen, Fang Sun, Zhiping Xiao, et al. “A comprehensive
survey on deep graph representation learning.” In: Neural Networks (2024),
p. 106207.

[B120] Kamil Kamiński, Jan Ludwiczak, Maciej Jasiński, Adriana Bukala, Rafal
Madaj, Krzysztof Szczepaniak, and Stanisław Dunin-Horkawicz. “Rossmann-
toolbox: a deep learning-based protocol for the prediction and design of
cofactor specificity in Rossmann fold proteins.” In: Briefings in Bioinformatics
23.1 (2022).

[B121] Emmanouil Karystinaios, Francesco Foscarin, Florent Jacquemard, Masahiko
Sakai, Satoshi Tojo, and Gerhard Widmer. “8+ 8= 4: Formalizing Time Units
to Handle Symbolic Music Durations.” In: proceedings of the 16th Interna-
tional Symposium on Computer Music Multidisciplinary Research. 2023.

https://doi.org/10.1145/3394171.3413671
https://arxiv.org/abs/2002.00212
https://www.humdrum.org/

collective bibliography 191

[B122] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Mu-
sical Voice Separation as Link Prediction: Modeling a Musical Perception
Task as a Multi-Trajectory Tracking Problem.” In: International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2023.

[B123] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “Perception-
Inspired Graph Convolution for Music Understanding Tasks.” In: Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). 2024.

[B124] Emmanouil Karystinaios, Francesco Foscarin, and Gerhard Widmer. “SMUG-
Explain: A Framework for Symbolic Music Graph Explanations.” In: Pro-
ceedings of the Sound and Music Computing Conference (SMC). 2024.

[B125] Emmanouil Karystinaios, Corentin Guichaoua, Moreno Andreatta, Louis
Bigo, and Isabelle Bloch. “Music Genre Descriptor for Classification Based
on Tonnetz Trajectories.” In: Proceedings of Journées Informatiques Musicales.
2021.

[B126] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[B127] Emmanouil Karystinaios and Gerhard Widmer. “Cadence Detection in
Symbolic Classical Music using Graph Neural Networks.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[B128] Emmanouil Karystinaios and Gerhard Widmer. “Roman Numeral Analysis
with Graph Neural Networks: Onset-wise Predictions from Note-wise
Features.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2023.

[B129] Emmanouil Karystinaios and Gerhard Widmer. “GraphMuse: A Library
for Symbolic Music Graph Processing.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2024.

[B130] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay
Sethi, Peter Forsyth, and Pascal Poupart. “Representation learning for
dynamic graphs: A survey.” In: Journal of Machine Learning Research 21.70

(2020), pp. 1–73.

[B131] Mikaela Keller, Gabriel Loiseau, and Louis Bigo. “What Musical Knowledge
Does Self-Attention Learn?” In: Proceedings of the 2nd Workshop on NLP
for Music and Spoken Audio (NLP4MusA). 2021, pp. 6–10. url: https://
aclanthology.org/2021.nlp4musa-1.2.

[B132] Mathieu Kermarec, Louis Bigo, and Mikaela Keller. “Improving Tokeniza-
tion Expressiveness With Pitch Intervals.” In: Late-Breaking Demo Session
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[B133] Jürgen Kilian and Holger H Hoos. “Voice Separation-A Local Optimization
Approach.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). Citeseer. 2002.

https://aclanthology.org/2021.nlp4musa-1.2
https://aclanthology.org/2021.nlp4musa-1.2

192 collective bibliography

[B134] Sunghyeon Kim, Hyeyoon Lee, Sunjong Park, Jinho Lee, and Keunwoo
Choi. “Deep Composer Classification Using Symbolic Representation.”
In: International Society for Music Information Retrieval (ISMIR) Late Breaking
Demo (LBD). 2020. arXiv: 2010.00823. url: http://arxiv.org/abs/2010.
00823.

[B135] Thomas N Kipf and Max Welling. “Variational graph auto-encoders.” In:
NIPS Workshop on Bayesian Deep Learning (2016).

[B136] Thomas N Kipf and Max Welling. “Semi-supervised classification with
graph convolutional networks.” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2017.

[B137] Phillip B Kirlin and Paul E Utgoff. “VOISE: Learning to Segregate Voices in
Explicit and Implicit Polyphony.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). Citeseer. 2005.

[B138] Anssi Klapuri and Manuel Davy. Signal Processing Methods for Music Tran-
scription. Springer, 2006, p. 456.

[B139] Qiuqiang Kong, Keunwoo Choi, and Yuxuan Wang. “Large-Scale MIDI-
Based Composer Classification.” In: arXiv. 2020. arXiv: arXiv:2010.14805v1.

[B140] Qiuqiang Kong, Bochen Li, Xuchen Song, Yuan Wan, and Yuxuan Wang.
“High-resolution piano transcription with pedals by regressing onset and
offset times.” In: IEEE/ACM Transactions on Audio, Speech, and Language
Processing 29 (2021), pp. 3707–3717.

[B141] Filip Korzeniowski, Sergio Oramas, and Fabien Gouyon. “Artist Similarity
with Graph Neural Networks.” In: Proceedings of the 22nd International
Society for Music Information Retrieval Conference. 2021.

[B142] Peter van Kranenburg and Folgert Karsdorp. “Cadence Detection in West-
ern Traditional Stanzaic Songs using Melodic and Textual Features.” In:
Proceedings of the 15th International Society of Music Information Retrieval
Conference. 2014.

[B143] Ulrich Lampe, Markus Kieselmann, André Miede, Sebastian Zöller, and
Ralf Steinmetz. “A Tale of Millis and Nanos: On the Accuracy of Time
Measurements in Virtual Machines.” In: Proceedings of the Second European
Conference on Service-Oriented and Cloud Computing (ESOCC 2013). Springer,
2013, pp. 172–179. isbn: 978-3-642-40650-8.

[B144] Ulrich Lampe, Qiong Wu, Ronny Hans, André Miede, and Ralf Steinmetz.
“To Frag Or To Be Fragged – An Empirical Assessment of Latency in
Cloud Gaming.” In: Proceedings of the Third International Conference on Cloud
Computing and Services Science (CLOSER 2013). 2013, pp. 5–12. isbn: 978-
898-8565-52-5.

[B145] Stefan Lattner, Monika Dörfler, and Andreas Arzt. “Learning Complex
Basis Functions for Invariant Representations of Audio.” In: Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR).
2019.

https://arxiv.org/abs/2010.00823
http://arxiv.org/abs/2010.00823
http://arxiv.org/abs/2010.00823
https://arxiv.org/abs/arXiv:2010.14805v1

collective bibliography 193

[B146] Stefan Lattner, Maarten Grachten, and Gerhard Widmer. “Learning Transposition-
Invariant Interval Features from Symbolic Music and Audio.” In: Proceed-
ings of the International Society for Music Information Retrieval Conference
(ISMIR). 2018.

[B147] Fred Lerdahl and Ray S Jackendoff. A Generative Theory of Tonal Music,
reissue, with a new preface. MIT press, 1996.

[B148] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. “Deep-
GCNs: Can GCNs go as deep as CNNs?” In: Proceedings of the IEEE In-
ternational Conference on Computer Vision. 2019. isbn: 9781728148038. doi:
10.1109/ICCV.2019.00936. arXiv: 1904.03751. url: https://sites.
google.com/view/deep-gcns.

[B149] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. “Deepergcn:
All you need to train deeper gcns.” In: arXiv preprint arXiv:2006.07739
(2020).

[B150] Lukas Liebel and Marco Körner. “Auxiliary tasks in multi-task learning.”
In: arXiv preprint arXiv:1805.06334 (2018).

[B151] He Liu, Tao Wang, Congyan Lang, Songhe Feng, Yi Jin, and Yidong Li.
“GLAN: A Graph-based Linear Assignment Network.” In: arXiv preprint
arXiv:2201.02057 (2022).

[B152] Jiafeng Liu, Yuanliang Dong, Zehua Cheng, Xinran Zhang, Xiaobing Li,
Feng Yu, and Maosong Sun. “Symphony Generation with Permutation
Invariant Language Model.” In: Proceedings of the International Society for
Music Information Retrieval Conference (ISMIR). 2022.

[B153] Lele Liu, Qiuqiang Kong, GV Morfi, Emmanouil Benetos, et al. “Perfor-
mance MIDI-to-score conversion by neural beat tracking.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2022.

[B154] Xin Liu, Mingyu Yan, Lei Deng, Guoqi Li, Xiaochun Ye, and Dongrui Fan.
“Sampling methods for efficient training of graph convolutional networks:
A survey.” In: IEEE/CAA Journal of Automatica Sinica 9.2 (2021), pp. 205–234.

[B155] Xichu Ma, Xiao Liu, Bowen Zhang, and Ye Wang. “Robust Melody Track
Identification in Symbolic Music.” In: Proceedings of the International Society
for Music Information Retrieval Conference (ISMIR). 2022.

[B156] Zheng Ma, Junyu Xuan, Yu Guang Wang, Ming Li, and Pietro Liò. “Path
Integral Based Convolution and Pooling for Graph Neural Networks.”
In: Advances in Neural Information Processing Systems (NeurIPS 33 (2020),
pp. 16421–16433.

[B157] Søren Tjagvad Madsen and Gerhard Widmer. “Separating voices in MIDI.”
In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). Citeseer. 2006.

[B158] José Pedro Magalhaes and W Bas de Haas. “Functional Modelling of
Musical Harmony: an experience report.” In: ACM SIGPLAN Notices 46.9
(2011), pp. 156–162.

https://doi.org/10.1109/ICCV.2019.00936
https://arxiv.org/abs/1904.03751
https://sites.google.com/view/deep-gcns
https://sites.google.com/view/deep-gcns

194 collective bibliography

[B159] Dimos Makris, Ioannis Karydis, and Emilios Cambouropoulos. “VISA3:
Refining the voice integration/segregation algorithm.” In: Proceedings of the
Sound and Music Computing Conference. 2016.

[B160] Sarah Marlowe. “Schenkerian Analysis of Fugue: A Practical Demonstra-
tion.” In: Journal of Music Theory Pedagogy 33.1 (2019), p. 6.

[B161] Andrew McLeod and Mark Steedman. “HMM-based voice separation of
MIDI performance.” In: Journal of New Music Research 45.1 (2016), pp. 17–26.

[B162] Andrew McLeod and Mark Steedman. “Evaluating automatic polyphonic
music transcription.” In: Proceedings of the International Society for Music
Information Retrieval Conference (ISMIR). 2018, pp. 42–49.

[B163] Andrew Philip McLeod and Martin Alois Rohrmeier. “A modular system
for the harmonic analysis of musical scores using a large vocabulary.”
In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2021.

[B164] Alessandro B. Melchiorre, Verena Haunschmid, Markus Schedl, and Ger-
hard Widmer. “LEMONS: Listenable Explanations for Music recOmmeNder
Systems.” In: Advances in Information Retrieval: Proceedings of the European
Conference on IR Research, ECIR. Vol. 12657. Springer, 2021, pp. 531–536.

[B165] Gianluca Micchi. “A neural network for composer classification.” In: Pro-
ceedings of the International Society for Music Information Retrieval Conference
(ISMIR) Late-Breading Demo (LBD). 2018.

[B166] Gianluca Micchi, Mark Gotham, and Mathieu Giraud. “Not all roads lead to
Rome: Pitch representation and model architecture for automatic harmonic
analysis.” In: Transactions of the International Society for Music Information
Retrieval (TISMIR) 3.1 (2020), pp. 42–54.

[B167] Gianluca Micchi, Katerina Kosta, Gabriele Medeot, and Pierre Chanquion.
“A deep learning method for enforcing coherence in Automatic Chord
Recognition.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2021.

[B168] André Miede. “Theses and other Beautiful Documents with classicthe-

sis.” In: TUGboat – The Communications of the TEX Users Group 31.1 (2010),
pp. 18–20. issn: 0896-3207.

[B169] André Miede, Gökhan Şimşek, Stefan Schulte, Daniel F. Abawi, Julian
Eckert, and Ralf Steinmetz. “Revealing Business Relationships – Eaves-
dropping Cross-organizational Collaboration in the Internet of Services.”
In: Proceedings of the Tenth International Conference Wirtschaftsinformatik (WI
2011). Vol. 2. 2011, pp. 1083–1092. isbn: 978-1-4467-9236-0.

[B170] Saumitra Mishra, Emmanouil Benetos, Bob L. Sturm, and Simon Dixon.
“Reliable Local Explanations for Machine Listening.” In: Proceedings of the
2020 International Joint Conference on Neural Networks, IJCNN. IEEE, 2020,
pp. 1–8. doi: 10.1109/IJCNN48605.2020.9207444.

https://doi.org/10.1109/IJCNN48605.2020.9207444

collective bibliography 195

[B171] Saumitra Mishra, Bob L. Sturm, and Simon Dixon. “Local Interpretable
Model-agnostic Explanations for Music Content Analysis.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2017, pp. 537–543.

[B172] Christoph Molnar. Interpretable Machine Learning. A Guide for Making Black
Box Models Explainable. 2nd ed. 2022. url: https://christophm.github.
io/interpretable-ml-book.

[B173] Nicola J Müller, Pablo Sánchez, Jörg Hoffmann, Verena Wolf, and Timo P
Gros. “Comparing State-of-the-art Graph Neural Networks and Transform-
ers for General Policy Learning.” In: (2024).

[B174] Eita Nakamura, Masatoshi Hamanaka, Keiji Hirata, and Kazuyoshi Yoshii.
“Tree-structured probabilistic model of monophonic written music based
on the generative theory of tonal music.” In: Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2016,
pp. 276–280.

[B175] Néstor Nápoles López. “Automatic Harmonic Analysis of Classical String
Quartets from Symbolic Score.” PhD thesis. Master’s thesis, Universitat
Pompeu Fabra, 2017.

[B176] Néstor Nápoles López. “Automatic Roman Numeral Analysis in Symbolic
Music Representations.” PhD thesis. Schulich School of Music McGill
University, 2022.

[B177] Néstor Nápoles López and Ichiro Fujinaga. “Harmonic Reductions as
a Strategy for Creative Data Augmentation.” In: Late-Breaking Demo at
International Society for Music Information Retrieval Conference (ISMIR). 2020.

[B178] Néstor Nápoles López, Mark Gotham, and Ichiro Fujinaga. “Augment-
edNet: A Roman Numeral Analysis Network with Synthetic Training
Examples and Additional Tonal Tasks.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2021.

[B179] Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi,
Gal Chechik, and Ethan Fetaya. “Multi-task Learning as a Bargaining
Game.” In: Proceedings of the International Conference on Machine Learning
(ICML) (2022).

[B180] Markus Neuwirth, Daniel Harasim, Fabian C Moss, and Martin Rohrmeier.
“The Annotated Beethoven Corpus (ABC): A dataset of harmonic analyses
of all Beethoven string quartets.” In: Frontiers in Digital Humanities 5 (2018),
p. 16.

[B181] Han-Wen Nienhuys and Jan Nieuwenhuizen. “LilyPond, a system for
automated music engraving.” In: Proceedings of the xiv colloquium on musical
informatics (xiv cim 2003). Vol. 1. Citeseer. 2003, pp. 167–171.

[B182] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Si-
monyan. “This Time with Feeling: Learning Expressive Musical Perfor-
mance.” In: Neural Computing and Applications 32 (2018), pp. 955–967. url:
https://link.springer.com/article/10.1007/s00521-018-3758-9.

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://link.springer.com/article/10.1007/s00521-018-3758-9

196 collective bibliography

[B183] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Si-
monyan. “This time with feeling: learning expressive musical perfor-
mance.” In: Neural Computing and Applications 32.4 (2018), pp. 955–967.
issn: 14333058. doi: 10.1007/s00521-018-3758-9. arXiv: 1808.03715.

[B184] Irwin Oppenheim, Chris Walshaw, John Atchley, and Guido Gonzato. he
abc standard 2.0. Acessed August 29, 2024. 2010. url: https://abcnotation.
com/wiki/abc:standard:v2.0.

[B185] Johan Pauwels, Ken O’Hanlon, Emilia Gómez, Mark Sandler, et al. “20

years of Automatic Chord Recognition from Audio.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2019.

[B186] Marcus Pearce. “The Construction and Evaluation of Statistical Models of
Melodic Structure in Music Perception and Composition.” PhD thesis. UK:
City University of London, 2005.

[B187] Marcus T. Pearce. “Statistical learning and probabilistic prediction in music
cognition: Mechanisms of stylistic enculturation.” In: Annals of the New York
Academy of Sciences 1423.1 (2018), pp. 378–395.

[B188] Marcus Thomas Pearce. “The construction and evaluation of statistical
models of melodic structure in music perception and composition.” PhD
thesis. City University London, 2005.

[B189] Silvan David Peter, Carlos Eduardo Cancino-Chacón, Francesco Foscarin,
Andrew Philip McLeod, Florian Henkel, Emmanouil Karystinaios, and Ger-
hard Widmer. “Automatic Note-Level Score-to-Performance Alignments
in the ASAP Dataset.” In: Transactions of the International Society for Music
Information Retrieval (TISMIR) (2023).

[B190] Silvan David Peter, Carlos Eduardo Cancino-Chacón, Emmanouil Karysti-
naios, and Gerhard Widmer. “Sounding Out Reconstruction Error-Based
Evaluation of Generative Models of Expressive Performance.” In: Proceed-
ings of the 10th International Conference on Digital Libraries for Musicology.
2023, pp. 58–66.

[B191] Phillip E Pope, Soheil Kolouri, Mohammad Rostami, Charles E Martin, and
Heiko Hoffmann. “Explainability methods for graph convolutional neural
networks.” In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2019, pp. 10772–10781.

[B192] Alexandre Popoff, Moreno Andreatta, and Andrée Ehresmann. “Relational
poly-Klumpenhouwer networks for transformational and voice-leading
analysis.” In: Journal of Mathematics and Music 12.1 (2018).

[B193] Mathieu Prang. “Representation learning for symbolic music.” PhD thesis.
IRCAM, 2021. url: https://hal.archives-ouvertes.fr/tel-03329980.

[B194] Laurent Pugin, Rodolfo Zitellini, and Perry Roland. “Verovio: A library for
Engraving MEI Music Notation into SVG.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2014.

[B195] Dimitris Rafailidis, Emilios Cambouropoulos, and Yannis Manolopoulos.
“Musical voice integration/segregation: VISA revisited.” In: Proceedings of
the Sound and Music Computing Conference (SMC). 2009.

https://doi.org/10.1007/s00521-018-3758-9
https://arxiv.org/abs/1808.03715
https://abcnotation.com/wiki/abc:standard:v2.0
https://abcnotation.com/wiki/abc:standard:v2.0
https://hal.archives-ouvertes.fr/tel-03329980

collective bibliography 197

[B196] Colin Raffel and Daniel PW Ellis. “Intuitive Analysis, Creation, and Manip-
ulation of MIDI data WITH pretty_midi.” In: Proceedings of the International
Society for Music Information Retrieval Conference (ISMIR). 2014.

[B197] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan
Luu, Guy Wolf, and Dominique Beaini. “Recipe for a general, powerful,
scalable graph transformer.” In: Advances in Neural Information Processing
Systems (NeurIPS 35 (2022), pp. 14501–14515.

[B198] Ekagra Ranjan, Soumya Sanyal, and Partha Talukdar. “Asap: Adaptive
Structure Aware Pooling for Learning Hierarchical Graph Representations.”
In: Proceedings of the Association for the Advancement of Artificial Intelligence
Conference (AAAI). 2020.

[B199] Christopher Raphael and Joshua Stoddard. “Functional Harmonic Analysis
Using Probabilistic Models.” In: Computer Music Journal 28.3 (2004), pp. 45–
52.

[B200] Martin Rohrmeier and Fabian C Moss. “A formal model of extended
tonal harmony.” In: Proceedings of the 22nd International Society for Music
Information Retrieval Conference. 2021.

[B201] Perry Roland. “The music encoding initiative (MEI).” In: Proceedings of the
First International Conference on Musical Applications Using XML. Vol. 1060.
Citeseer. 2002, pp. 55–59.

[B202] Eran Rosenbluth, Jan Toenshoff, and Martin Grohe. “Some might say all
you need is sum.” In: Proceedings of the International Conference on Learning
Representations (ICLR). 2023.

[B203] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Fed-
erico Monti, and Michael Bronstein. “Temporal graph networks for deep
learning on dynamic graphs.” In: Proceedings of the International Conference
on Machine Learning (ICML). 2020.

[B204] Dimitri von Rütte, Luca Biggio, Yannic Kilcher, and Thomas Hofmann.
“FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control.”
In: Proceedings of the International Conference on Learning Representations
(ICLR). 2023.

[B205] Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. “E(n) Equivari-
ant Graph Neural Networks.” In: Proceedings of the International Conference
on Machine Learning (ICML). 2021.

[B206] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den
Berg, Ivan Titov, and Max Welling. “Modeling relational data with graph
convolutional networks.” In: The semantic web: 15th international conference,
ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, proceedings 15. Springer.
2018, pp. 593–607.

[B207] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. “Interpreting
graph neural networks for NLP with differentiable edge masking.” In:
Proceedings of the International Conference on Learning Representations (ICLR).
2021.

198 collective bibliography

[B208] Michael Sejr Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne van den
Berg, Ivan Titov, and Max Welling. “Modeling Relational Data with Graph
Convolutional Networks.” In: Proceedings of the Semantic Web International
Conference, ESWC. Vol. 10843. Lecture Notes in Computer Science. Springer,
2018, pp. 593–607.

[B209] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T
Schütt, Klaus-Robert Müller, and Grégoire Montavon. “Higher-order expla-
nations of graph neural networks via relevant walks.” In: IEEE transactions
on pattern analysis and machine intelligence 44.11 (2021), pp. 7581–7596.

[B210] Lisa Schneckenreiter, Richard Freinschlag, Florian Sestak, Johannes Brand-
stetter, Günter Klambauer, and Andreas Mayr. “GNN-VPA: A Variance-
Preserving Aggregation Strategy for Graph Neural Networks.” In: Proceed-
ings of the International Conference on Machine Learning (ICML). 2024.

[B211] Michiel Schuijer. Analyzing atonal music: Pitch-class set theory and its contexts.
University Rochester Press, 2008.

[B212] David RW Sears, Andreas Arzt, Harald Frostel, Reinhard Sonnleitner, and
Gerhard Widmer. “Modeling harmony with skip-grams.” In: Proceedings
of the International Society for Music Information Retrieval Conference (ISMIR).
2017.

[B213] David RW Sears, Marcus T Pearce, William E Caplin, and Stephen McAdams.
“Simulating melodic and harmonic expectations for tonal cadences using
probabilistic models.” In: Journal of New Music Research 47.1 (2018), pp. 29–
52.

[B214] David RW Sears and Gerhard Widmer. “Beneath (or beyond) the surface:
Discovering voice-leading patterns with skip-grams.” In: Journal of Mathe-
matics and Music 15.3 (2021).

[B215] Eleanor Selfridge-Field. “Musedata: multipurpose representation.” In: Be-
yond MIDI: The handbook of musical codes. Center for Computer Assisted
Research in the Humanities. The MIT Press, 1997.

[B216] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. “A survey
of heterogeneous information network analysis.” In: IEEE Transactions on
Knowledge and Data Engineering 29.1 (2016), pp. 17–37.

[B217] Kentaro Shibata, Eita Nakamura, and Kazuyoshi Yoshii. “Non-local musical
statistics as guides for audio-to-score piano transcription.” In: Information
Sciences 566 (2021), pp. 262–280.

[B218] Christopher Shooner, Srimant P Tripathy, Harold E Bedell, and Haluk Öğ-
men. “High-capacity, transient retention of direction-of-motion information
for multiple moving objects.” In: Journal of Vision 10.6 (2010), pp. 1–20.

[B219] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and
Pierre Vandergheynst. “The emerging field of signal processing on graphs:
Extending high-dimensional data analysis to networks and other irregular
domains.” In: IEEE signal processing magazine 30.3 (2013), pp. 83–98.

collective bibliography 199

[B220] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep in-
side convolutional networks: Visualising image classification models and
saliency maps.” In: Workshop at International Conference on Learning Repre-
sentations (ICLR). 2013.

[B221] D. Sleator. Introduction to the Melisma System. url: https://www.link.cs.
cmu.edu/melisma/intro.html.

[B222] Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin
Riedmiller. “Striving for simplicity: The all convolutional net.” In: Workshop
at International Conference on Learning Representations (ICLR). 2015.

[B223] Erik Strumbelj and Igor Kononenko. “An efficient explanation of individual
classifications using game theory.” In: The Journal of Machine Learning
Research 11 (2010), pp. 1–18.

[B224] Yizhou Sun and Jiawei Han. “Mining heterogeneous information networks:
a structural analysis approach.” In: ACM SIGKDD explorations newsletter
14.2 (2013), pp. 20–28.

[B225] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic attribution
for deep networks.” In: International Conference on Machine Learning. PMLR.
2017, pp. 3319–3328.

[B226] Masahiro Suzuki. “Score Transformer: Generating Musical Score from
Note-level Representation.” In: Proceedings of the 3rd ACM International
Conference on Multimedia in Asia. 2021, pp. 1–7.

[B227] Jeffrey Swinkin. “Schenkerian analysis, metaphor, and performance.” In:
College Music Symposium. Vol. 47. JSTOR. 2007, pp. 76–99.

[B228] Daniel Taupin, Ross Mitchell, and Andreas Egler. “MusiXTEX. Using
TEX to write polyphonic or instrumental music.” In: TUGboat 14.3 (1993),
pp. 212–220.

[B229] David Temperley. The cognition of basic musical structures. MIT press, 2004.

[B230] David Temperley. “A probabilistic model of melody perception.” In: Cogni-
tive Science 32.2 (2008), pp. 418–444.

[B231] David Temperley. “A Unified Probabilistic Model for Polyphonic Mu-
sic Analysis.” In: Journal of New Music Research 38.1 (2009), pp. 3–18.
doi: 10.1080/09298210902928495. eprint: https://doi.org/10.1080/
09298210902928495. url: https://doi.org/10.1080/09298210902928495.

[B232] David Temperley. The Cognition of Basic Musical Structures. MIT Press, 2004.

[B233] Moyu Terao, Eita Nakamura, and Kazuyoshi Yoshii. “Neural Band-to-Piano
Score Arrangement with Stepless Difficulty Control.” In: ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE. 2023, pp. 1–5.

[B234] The Pianola Institute. History of the Pianola – Piano Players. Accessed: 2024-
06-25. n.d. url: http://www.pianola.org.

[B235] Srimant Tripathy and Christina J Howard. “Multiple trajectory tracking.”
In: Scholarpedia 7.4 (2012).

https://www.link.cs.cmu.edu/melisma/intro.html
https://www.link.cs.cmu.edu/melisma/intro.html
https://doi.org/10.1080/09298210902928495
https://doi.org/10.1080/09298210902928495
https://doi.org/10.1080/09298210902928495
https://doi.org/10.1080/09298210902928495
http://www.pianola.org

200 collective bibliography

[B236] Hsin-Yi Tsai, Melanie Siebenhaar, André Miede, Yu-Lun Huang, and Ralf
Steinmetz. “Threat as a Service? Virtualization’s Impact on Cloud Security.”
In: IEEE IT Professional 14.1 (2012), pp. 32–37. issn: 1520-9202.

[B237] Reinier de Valk, Tillman Weyde, Emmanouil Benetos, et al. “A machine
learning approach to voice separation in lute tablature.” In: Proceedings of
the International Society for Music Information Retrieval Conference (ISMIR).
2013.

[B238] Lodewyk Van der Merwe and Pieter De Villiers. “Comparative investigation
into Viterbi based and multiple hypothesis based track stitching.” In: IET
Radar, Sonar & Navigation 10.9 (2016), pp. 1575–1582.

[B239] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is all you
need.” In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. 2017. arXiv: 1706.03762.

[B240] Gissel Velarde, Tillman Weyde, Carlos E. Cancino-Chacón, David Meredith,
and Maarten Grachten. “Composer recognition based on 2D-filtered piano-
rolls.” In: Proceedings of the International Society for Music Information Retrieval
Conference (ISMIR). 2016.

[B241] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Liò, and Yoshua Bengio. “Graph Attention Networks.” In: Proceedings
of the International Conference on Learning Representations (ICLR). 2018.

[B242] Petar Veličković. “Everything is Connected: Graph Neural Networks.”
In: Artificial Intelligence (AI) Methodology in Structural Biology (2023). issn:
1879033X. doi: 10.1016/j.sbi.2023.102538. arXiv: 2301.08210. url:
http://arxiv.org/abs/2301.08210.

[B243] Minh Vu and My T Thai. “Pgm-explainer: Probabilistic graphical model
explanations for graph neural networks.” In: Advances in Neural Information
Processing Systems (NeurIPS 33 (2020), pp. 12225–12235.

[B244] Christian Walder. “Modelling symbolic music: Beyond the piano roll.”
In: Journal of Machine Learning Research. Vol. 63. 2016, pp. 174–189. arXiv:
1606.01368.

[B245] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and
Philip S Yu. “Heterogeneous graph attention network.” In: The world wide
web conference. 2019, pp. 2022–2032.

[B246] Yongxin Wang, Kris Kitani, and Xinshuo Weng. “Joint object detection and
multi-object tracking with graph neural networks.” In: Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2021.

[B247] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein,
and Justin M. Solomon. “Dynamic Graph CNN for Learning on Point
Clouds.” In: ACM Transactions on Graphics 38.5 (2019), 146:1–146:12.

[B248] Xinshuo Weng, Yongxin Wang, Yunze Man, and Kris M Kitani. “Gnn3dmot:
Graph neural network for 3d multi-object tracking with 2d-3d multi-feature
learning.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020.

https://arxiv.org/abs/1706.03762
https://doi.org/10.1016/j.sbi.2023.102538
https://arxiv.org/abs/2301.08210
http://arxiv.org/abs/2301.08210
https://arxiv.org/abs/1606.01368

collective bibliography 201

[B249] Xinshuo Weng, Ye Yuan, and Kris Kitani. “Ptp: Parallelized tracking and
prediction with graph neural networks and diversity sampling.” In: IEEE
Robotics and Automation Letters 6.3 (2021), pp. 4640–4647.

[B250] Raymond P. Whorley and Darrell Conklin. “Music Generation from Sta-
tistical Models of Harmony.” In: Journal of New Music Research 45.2 (2016),
pp. 160–183. doi: 10.1080/09298215.2016.1173708. eprint: https://doi.
org/10.1080/09298215.2016.1173708. url: https://doi.org/10.1080/
09298215.2016.1173708.

[B251] Geraint Wiggins, Eduardo Miranda, Alan Smaill, and Mitch Harris. “A
Framework for the Evaluation of Music Representation Systems.” In: Com-
puter Music Journal 17.3 (1993), pp. 31–42. url: https://about.jstor.org/
terms.

[B252] Lingfei Wu, Peng Cui, Jian Pei, and Liang Zhao. Graph Neural Networks:
Foundations, Frontiers, and Applications. Springer, 2022.

[B253] Lirong Wu, Haitao Lin, Zhangyang Gao, Cheng Tan, Stan Li, et al. “Graph-
Mixup: Improving Class-Imbalanced Node Classification on Graphs by
Self-supervised Context Prediction.” In: arXiv preprint arXiv:2106.11133
(2021).

[B254] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. “A comprehensive survey on graph neural networks.”
In: IEEE transactions on neural networks and learning systems 32.1 (2020),
pp. 4–24.

[B255] Iannis Xenakis. Formalized Music: Thoughts and Mathematics in Composition.
1992. isbn: 0-945193-01-7.

[B256] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. “How power-
ful are graph neural networks?” In: Proceedings of the International Conference
on Learning Representations (ICLR). 2019.

[B257] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. “Representation learning on graphs
with jumping knowledge networks.” In: Proceedings of the International
Conference on Machine Learning (ICML). 2018.

[B258] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi
Kawarabayashi, and Stefanie Jegelka. “Representation learning on graphs
with jumping knowledge networks.” In: Proceedings of the International
Conference on Machine Learning (ICML). PMLR. 2018, pp. 5453–5462.

[B259] Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He,
Yanming Shen, and Tie-Yan Liu. “Do transformers really perform badly for
graph representation?” In: Advances in Neural Information Processing Systems
(NeurIPS 34 (2021), pp. 28877–28888.

[B260] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamil-
ton, and Jure Leskovec. “Graph convolutional neural networks for web-
scale recommender systems.” In: Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery & data mining. 2018, pp. 974–
983.

https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://doi.org/10.1080/09298215.2016.1173708
https://about.jstor.org/terms
https://about.jstor.org/terms

202 collective bibliography

[B261] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure
Leskovec. “Gnnexplainer: Generating explanations for graph neural net-
works.” In: Advances in Neural Information Processing Systems (NeurIPS 32

(2019).

[B262] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren, Will Hamilton,
and Jure Leskovec. “Hierarchical graph representation learning with dif-
ferentiable pooling.” In: Advances in Neural Information Processing Systems
(NeurIPS. Vol. 31. 2018.

[B263] G. Yona and Daniel Greenfeld. “Revisiting Sanity Checks for Saliency
Maps.” In: Workshop on eXplainable AI approaches for debugging and diagnosis
(XAI4). 2021.

[B264] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec.
“Graphrnn: Generating realistic graphs with deep auto-regressive models.”
In: Proceedings of the International Conference on Machine Learning (ICML).
PMLR. 2018, pp. 5708–5717.

[B265] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. “Explainability in
graph neural networks: A taxonomic survey.” In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 45.5 (2022), pp. 5782–5799.

[B266] Matthew D Zeiler and Rob Fergus. “Visualizing and understanding convo-
lutional networks.” In: Computer Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I 13. Springer.
2014, pp. 818–833.

[B267] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan,
and Viktor Prasanna. “GraphSAINT: Graph Sampling Based Inductive
Learning Method.” In: Proceedings of the International Conference on Learning
Representations (ICLR). 2020.

[B268] Mingliang Zeng, Xu Tan, Rui Wang, Zeqian Ju, Tao Qin, and Tie Yan
Liu. “MusicBERT: Symbolic Music Understanding with Large-Scale Pre-
Training.” In: Findings of the Association for Computational Linguistics: ACL-
IJCNLP. 2021. isbn: 9781954085541. doi: 10.18653/v1/2021.findings-
acl.70. arXiv: 2106.05630.

[B269] Huan Zhang, Emmanouil Karystinaios, Simon Dixon, Gerhard Widmer,
and Carlos Eduardo Cancino-Chacón. “Symbolic Music Representations
for Classification Tasks: A Systematic Evaluation.” In: Proceedings of the
International Society for Music Information Retrieval Conference (ISMIR). 2023.

[B270] Huan Zhang, Jingjing Tang, Syed Rafee, Simon Dixon, and George Fazekas.
“ATEPP: A Dataset of Automatically Transcribed Expressive Piano Per-
formance.” In: Proceedings of the International Society for Music Information
Retrieval Conference (ISMIR). 2022.

[B271] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. “Graph con-
volutional networks: a comprehensive review.” In: Computational Social
Networks 6.1 (2019), pp. 1–23.

https://doi.org/10.18653/v1/2021.findings-acl.70
https://doi.org/10.18653/v1/2021.findings-acl.70
https://arxiv.org/abs/2106.05630

collective bibliography 203

[B272] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou Tang. “Facial
Landmark Detection by Deep Multi-task Learning.” In: Proceedings of the
European Conference on Computer Vision (ECCV). 2014.

[B273] Zhen Zhang, Jiajun Bu, Martin Ester, Jianfeng Zhang, Chengwei Yao, Zhi
Yu, and Can Wang. “Hierarchical graph pooling with structure learning.”
In: Proceedings of the Association for the Advancement of Artificial Intelligence
Conference (AAAI). 2019.

[B274] Jingwei Zhao, Gus Xia, and Ye Wang. “Q&A: Query-Based Representation
Learning for Multi-Track Symbolic Music re-Arrangement.” In: International
Joint Conference on Artificial Intelligence (IJCAI). 2023.

[B275] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. “GraphSMOTE: Imbal-
anced Node Classification on Graphs with Graph Neural Networks.” In:
Proceedings of the 14th ACM International Conference on Web Search and Data
Mining. 2021.

[B276] Difan Zou, Ziniu Hu, Yewen Wang, Song Jiang, Yizhou Sun, and Quanquan
Gu. “Layer-dependent importance sampling for training deep and large
graph convolutional networks.” In: Advances in Neural Information Processing
Systems (NeurIPS. 2019.

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	 Introduction and Background
	1 Introduction
	1.1 The importance of Music Analysis
	1.2 Deep Learning for Music Analysis
	1.3 The Inherent Issues of Music Representation
	1.4 Motivation and Vision
	1.5 Organization
	1.6 Outline
	1.6.1 First Part
	1.6.2 Second Part

	References
	Publications Making up this Thesis

	2 Music Representations
	2.1 Symbolic vs. Audio Representations
	2.2 Symbolic Music Storage Formats
	2.2.1 MIDI
	2.2.2 Text-Based Formats
	2.2.3 XML-Based Formats

	2.3 Computational Representations of Symbolic Music
	2.3.1 Matrix
	2.3.2 Sequence
	2.3.3 Graph

	2.4 Libraries for Handling Music Notation Formats
	2.4.1 Music21
	2.4.2 Partitura
	2.4.3 PrettyMidi
	2.4.4 MidiTok

	2.5 Focus on Symbolic Representation
	References

	3 Graph Neural Networks
	3.1 Introduction to Graph Neural Networks
	3.1.1 Challenges in Graph Representation
	3.1.2 Emergence of Graph Neural Networks
	3.1.3 Formal Definition of Graphs
	3.1.4 Graphs and Heterophily

	3.2 The Learning Blocks of Graph Neural Networks
	3.2.1 Spectral Methods
	3.2.2 Spatial Methods
	3.2.3 Convolution in Heterogeneous Graphs
	3.2.4 Hybrid Models for Graph Convolution

	3.3 Taxonomy of Graph Neural Network Tasks
	3.3.1 Node Classification
	3.3.2 Link Prediction
	3.3.3 Graph Classification

	3.4 Training Techniques for Graph Neural Networks
	3.4.1 Training on Small Graphs
	3.4.2 Sampling Techniques for Large Graphs
	3.4.3 Music Graphs and Sampling

	3.5 Challenges and Future Directions
	3.5.1 Deep Architectures
	3.5.2 Dynamic Graphs
	3.5.3 Scalability
	3.5.4 Heterogeneous Graphs
	3.5.5 Explainability and Interpretability
	3.5.6 More Powerful Aggregation Functions

	3.6 Conclusion
	References

	 Individual Contributions
	4 Symbolic Music Representations for Classification Tasks
	4.1 Introduction
	4.2 Related Work
	4.3 Methodology
	4.3.1 Representation Design
	4.3.2 Modelling Pipelines
	4.3.3 Tasks and Datasets
	4.3.4 Training

	4.4 Experiments and Results
	4.4.1 Representations for Composer Classification
	4.4.2 Complexity
	4.4.3 Comparison of Feature Levels and Tasks
	4.4.4 Transformer vs. GNN: Are We Learning the Same Set of Musical Edges?

	4.5 Discussion and future work
	4.6 Acknowledgements
	References

	5 Cadence Detection
	5.1 Introduction
	5.2 Related Work
	5.3 Modeling scores as a graph
	5.3.1 Feature Overview

	5.4 Problem Setting & Corpora
	5.5 Model
	5.5.1 Graph Convolutional Network
	5.5.2 Dealing with Extreme Class Imbalance: Stochastic GraphSMOTE

	5.6 Experiments
	5.6.1 Quantitative Results
	5.6.2 A Qualitative Look

	5.7 Conclusion
	5.8 Acknowledgements
	References

	6 Roman Numeral Analysis
	6.1 Introduction
	6.2 Related Work
	6.3 Methodology
	6.3.1 Roman Numeral Analysis
	6.3.2 Graph Representation of Scores
	6.3.3 Model

	6.4 Experiments and Corpora
	6.4.1 Datasets
	6.4.2 Configuration

	6.5 Results
	6.5.1 Quantitative Results
	6.5.2 Configuration Study
	6.5.3 Latest developments
	6.5.4 A Musical Example

	6.6 Conclusion
	6.7 Acknowledgements
	References

	7 Monophonic Voice Separation
	7.1 Introduction
	7.2 Related Work
	7.3 Approach
	7.3.1 Graph Building
	7.3.2 Node Features
	7.3.3 Model
	7.3.4 Loss
	7.3.5 Postprocessing

	7.4 Experiments
	7.4.1 Datasets and Preprocessing
	7.4.2 Main Experiment
	7.4.3 Ablation Studies

	7.5 Discussion
	7.6 Conclusion and Future Work
	References

	8 Polyphonic Voice Separation
	8.1 Introduction
	8.2 Related Work
	8.3 Methodology
	8.3.1 Input Graph
	8.3.2 Output Graph
	8.3.3 Problem Simplification
	8.3.4 Model
	8.3.5 Postprocessing
	8.3.6 Evaluation
	8.3.7 From Network Prediction to Readable Output

	8.4 Experiments
	8.4.1 Datasets
	8.4.2 Results
	8.4.3 Qualitative Analysis

	8.5 Conclusion and Future Work
	8.6 Acknowledgements
	References

	9 Symbolic Music Graph Explanations
	9.1 Introduction
	9.2 Preliminary Concepts
	9.2.1 GNN-based Approaches on Musical Scores
	9.2.2 Explainability and Graphs

	9.3 Our Approach
	9.3.1 Cadence Detection Model
	9.3.2 The SMUG-Explain Framework
	9.3.3 Choice of Explainability Techniques

	9.4 Qualitative Analysis
	9.4.1 Mozart Piano Sonata K280 Mov. 2
	9.4.2 Bach WTC Fugue
	9.4.3 Chopin Nocturne in C minor op. 48

	9.5 Conclusion and Future Work
	9.6 Acknowledgements
	References

	10 Graph Convolution for Music
	10.1 Introduction
	10.2 Perceptual and Modeling Considerations
	10.3 Graph Approaches to Musical Tasks
	10.3.1 Graph from Musical Scores
	10.3.2 Graph Convolution Operation
	10.3.3 Monophonic Voice Separation
	10.3.4 Composer Classification
	10.3.5 Roman Numeral Analysis
	10.3.6 Cadence Detection

	10.4 Our Approach: MusGConv
	10.4.1 Edge Features Computation
	10.4.2 Edge Operation
	10.4.3 Node Operation

	10.5 Data
	10.5.1 Data Sampling
	10.5.2 Datasets

	10.6 Experiments
	10.6.1 Main Results
	10.6.2 Ablation Studies

	10.7 Conclusion and Future Work
	References

	11 A Library for Symbolic Music Graph Processing
	11.1 Introduction
	11.2 Processing Music Scores with GNNs
	11.2.1 Preprocessing: Constructing Graphs from Scores
	11.2.2 Encoding: Graph Convolution
	11.2.3 Sampling: Handling Graph Data for Training
	11.2.4 Task-specific Modeling

	11.3 Methodology
	11.3.1 Preprocessing
	11.3.2 Sampling
	11.3.3 Model Designs
	11.3.4 The Library

	11.4 Evaluation
	11.4.1 Pitch Spelling
	11.4.2 Cadence Detection
	11.4.3 Experiments

	11.5 Conclusion
	11.6 Acknowledgements
	References

	12 Conclusion & Future Work
	12.1 Overview
	12.2 Future Directions

	 Collective Bibliography

