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Customizing Text-to-Image Generation with Inverted Interaction
Anonymous Authors

ABSTRACT
Subject-driven image generation, aimed at customizing user-specified
subjects, has experienced rapid progress. However, most of them
focus on transferring the customized appearance of subjects. In
this work, we consider a novel concept customization task, that
is, capturing the interaction between subjects in exemplar images
and transferring the learned concept of interaction to achieve cus-
tomized text-to-image generation. Intrinsically, the interaction be-
tween subjects is diverse and is difficult to describe in only a few
words. In addition, typical exemplar images are about the inter-
action between humans, which further intensifies the challenge
of interaction-driven image generation with various categories of
subjects. To address this task, we adopt a divide-and-conquer strat-
egy and propose a two-stage interaction inversion framework. The
framework begins by learning a pseudo-word for a single pose
of each subject in the interaction. This is then employed to pro-
mote the learning of the concept for the interaction. In addition,
language prior and cross-attention loss are incorporated into the
optimization process to encourage the modeling of interaction. Ex-
tensive experiments demonstrate that the proposed methods are
able to effectively invert the interactive pose from exemplar im-
ages and apply it to the customized generation with user-specified
interaction.

CCS CONCEPTS
• Computing methodologies → Computer vision; Natural
language processing; Machine learning approaches.

KEYWORDS
Textural Inversion, Customized Text-to-image Generation, Diffu-
sion Model.

1 INTRODUCTION
Diffusion-based text-to-image generation models like Stable Dif-
fusion (SD) [31] and DALL-E 2 [30] have shown great success in
high-quality and diverse visual content generation. In order to meet
user’s customized requirements, there have been a series of excel-
lent works [10, 21, 32, 36] proposed that investigate subject-driven
generation based on pre-trained text-to-image diffusion models.
They could facilitate many valuable applications, such as personal-
ized portrait photos, virtual try-on, and art design.

Most subject-driven image generation methods either optimize
a token embedding for a specific subject [1, 10, 36] or fine-tune the
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Stable 

Diffusion

A frog/wolf is kicking a frog/wolf.
An/A orangutan/seal is holding on an/a 

orangutan/sloth in its arms.

ReVersion

Ours

Exemplar 

Images

Ours

(Anime Style)

Figure 1: Comparison between our method and existing T2I meth-
ods on generation with customized interactive pose. Compared to
SD [31] and ReVersion [18], ourmethod is able to produce reasonable
customized generation results in both natural and animation styles.

whole model or an image encoder on a set of images [8, 24, 32, 37].
With these optimized token embeddings or model weights, the
specified subject can then be used as a new ‘word’ in text-to-image
generation with either the pre-trained or the fine-tuned diffusion
models. In addition, existing subject-driven image generation works
are not limited to user-specified objects, but also work with other
customized concepts, such as style [2, 36, 48], layout [1, 47] and
action [15, 17]. Several works further extend subject customization
from a single subject to multiple user-specified subjects [16, 18, 21,
23, 38]. However, most of these works focus on the modeling of
each individual subject, while ignoring the relation or interaction
between subjects. Interaction between subjects is very common in
daily life and customized interaction between subjects has great
potential in movie and animation making and artistic creation.
However, it is very challenging to model the interaction between
subjects with existing subject-driven generation methods.

How can we customize the interaction between subjects in the text-
to-image generation? To address this task, Huang et al. makes an
attempt in ReVersion [18] by designing a relation-steering con-
trastive learning strategy to the relation between subjects into a
token embedding. However, that method, mainly relying on the
preposition knowledge for the learned token embedding, specializes
in learning spatial relations but could fail to give reasonable results
in modeling interaction between subjects, as shown in Fig. 1. In
addition, there is a category generalization issue when transferring

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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a specific kind of interaction for a certain category of object to other
categories. To model the complex interaction between subjects, we
could decompose it into several components and take a divide-and-
conquer strategy. In addition, additional prior information could
be leveraged to encourage the model to only learn to invert the
interaction without binding to the specific appearance of these
subjects.

Towards text-to-image generation with customized interactive
pose, we propose a two-stage framework for customized interaction
inversion from exemplar images. It adopts a divide-and-conquer
strategy, which first computes a dedicated pseudo-word token to
model a single pose for each individual subject in the interaction
and then leverages them to further learn the concept for the interac-
tive pose. Then, the interaction can be modeled as the combination
of pseudo-word tokens for single poses and interactive pose. Specif-
ically, to model the single pose in the first stage, we first extract the
skeleton map [40] for each subject in the interaction and generate
several images using ControlNet [46] with each one containing a
single subject. Each image is described in the form of "𝑂 [𝑃]", where
[𝑃] is a pseudo-word for the pose of the subject 𝑂 . To learn the
concept of pose for each subject, we incorporate language prior
in the inversion of that pose by collecting a list of verbs related to
interactions and computing the mean and variance of their word
embeddings. Then, the embedding for the pseudo-word [𝑃] is opti-
mized to represent the single pose with the reconstruction objective.
With the help of language prior, the learned embeddings of pseudo-
words [𝑃] get close to the embedding space of verb. In the second
stage, the embeddings of inverted single poses [𝑃∗] are employed
to promote the learning of the interactive pose. The original ex-
emplar images are described in the form of "𝑂1 [𝑃∗1 ] [𝑅]𝑂2 [𝑃∗2 ]".
The pseudo-word [𝑅] for the interactive pose between 𝑂1 and 𝑂2
is optimized with specialized initialization from single poses. In
addition to the reconstruction objective, a cross-attention loss is
designed to highlight the interaction region. Once the learned token
embeddings [𝑃∗1 ], [𝑅

∗] and [𝑃∗2 ] are obtained, they can be inserted
into any description as normal words for customized text-to-image
generation.

The main contributions of this paper are summarized as follows.

• A divide-and-conquer strategy is proposed to achieve text-
to-image generation with customized interaction.

• Language prior and a cross-attention loss are incorporated
into the optimization process to promote the modeling of
interaction.

• Extensive experiments demonstrate the effectiveness of the
proposedmethod in customized generationwith user-specified
interaction.

2 RELATEDWORK
Text-to-Image Generation. Generating images from natural lan-
guage has provided great convenience to users. Some previous
works based on GAN methods [27, 39, 45, 49] leverage text condi-
tions to steer image generation, which synthetic images with high
fidelity on domain-specific datasets. The auto-regressive genera-
tive model [26, 44] is another direction in the generative model,
but these methods typically leads to inefficient image generation.
Recently, a plethora of excellent work has emerged based on the

diffusion model. Text-to-image (T2I) diffusion models [30, 31, 33]
inject text into a unet-based diffusion model via pre-trained text
encoders and cross-attention modules. Training on large-scale text-
image pairs, diffusion models can yield high image-text alignment
and image fidelity. Nevertheless, generating under complex text
conditions remains challenging.
Conditional Generation. Some works [7, 28] observe diffusion
model, such as Stable Diffusion, being constrained by the language
understanding capacity of the text encoder, which result in the
diffusion model struggle with complex prompts. To address this
problem, Lian et al. [22] proposes LMD framework that enhances
prompt understanding in text-to-image diffusion models through
a novel two-stage generation process. Phung et al. [28] proposes
attention-refocusing losses to regularize both attention layers dur-
ing the sampling to improve the controllability given the layout and
text prompt. Some works [4, 5, 12, 15, 25] address this problem with
image editing. They encode the layout information in the cross-
attention maps to control the layout of the generated image. In this
paper, we focus on customizing specific interactive poses between
subjects in the reference images, which otherwise would require
plenty of words to describe that interaction in text-to-image gen-
eration. Different from the aforementioned methods, which either
rely on the extra condition of the exemplar image or constrain the
cross-attention maps, our method with texture inversion is more
diverse and accessible.
Customized Inversion. In text-to-image tasks, some concepts
may exhibit description ambiguities or be challenging to express
in natural language. Formally, some user-specified concepts can-
not be adequately captured using common tokens. Therefore, the
task of capturing target concepts from user-provided images has
raised widespread interest. DreamBooth [32] binds rare new words
with specific subjects through fine-tuning the whole T2I gener-
ator. Kumari1 et al. [21] train a model to quickly acquire a new
concept via closed-form constrained optimization. Recently, some
works [3, 10, 21, 31] attempt to learn a token embedding for the sub-
ject’s concept inversion. Then, generate a new customized image
by using a new prompt in the form of "[∗] dog in the snow", where
‘[∗]’ is the optimized token embedding. Hamazaspyan et al. [11]
presents DEPM that generates images based on the styles extracted
from exemplar images. Zhang et al. [48] introduces InST to learning
the high-level textual descriptions of a single painting image and
then guiding the text-to-image generative model in creating im-
ages of specific artistic appearance. P+ [36] is proposed for further
control of learned token in text-to-image generation by extend-
ing the textual-conditioning space with per-layer tokens. ADI [17]
makes progress in learning specific action token from exemplar
images with a single subject. Although it shows promising perfor-
mance in capturing the action of a single subject, the training of
each image with DreamBooth [32] would be time consuming. More
recently, Huang et al. [18] proposes relation-steering contrastive
loss to model the relation between subjects. It works well across
various kinds of relations, such as spatial relationship, material and
affiliation. However, the design of the method, which specializes in
learning spatial relations, makes it challenging to model multiple
concepts for an interaction in which the pose of each subject and
the interaction between these poses are both important.
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(a) Single Object Pose Inversion Pipeline
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U-net

(b) Interactive Pose Inversion Pipeline
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Figure 2: Framework for interaction-driven text-to-image generation. Given exemplar images and their coarse descriptions, the
proposed method takes a divide-and-conquer strategy to learn interaction concepts in two stages, that is, single subject pose
inversion (a) and interactive pose inversion (b).

3 PRELIMINARY
3.1 Latent Diffusion Model
Diffusion Model (DM) [13] is a type of generative model that learns
the distribution of data by gradually denoising the noise sampled
from the Gaussian distribution. Instead of operating on pixel space,
the Latent Diffusion Model (LDM) [31] enhances performance by
conducting denoising on latent space. It includes an autoencoder
pre-trained on a large dataset and a conditional diffusion model.
The Encoder E maps an image 𝑥 to a spatial latent code 𝑧0 = E(𝑥)
where conditional diffusion model is applied, while the decoder

𝐷 works the other way around. For text-to-image generation, a
pre-trained text encoder encodes the text description ‘𝑦’ as 𝑐𝜃 (𝑦),
which is then injected into cross-attention layers of a U-Net model
in the denoising process for conditional generation. The LLDM
training objective is formulated as:

LLDM := E𝑧∼E(𝑥 ),𝑦,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , c𝜃 (𝑦), 𝑡)∥22

]
, (1)

where 𝑧𝑡 is the latent variable noised to time 𝑡 , starting from 𝑧0, and
𝜖𝜃 is the denoising network. During inference, a sampled Gauss-
ian noise 𝑧𝑇 is iteratively denoised to compute a new image la-
tent variable 𝑧0, which is transformed to image space by decoder
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Figure 3: Visualization of cross-attention maps in the interactive
pose inversion.

𝑥 = 𝐷 (𝑧0). Recently, Stable Diffusion (SD) [31] employs a cross-
attention mechanism to inject textual conditions into the diffusion
generation process, aligning with the provided textual input.

3.2 Textual Inversion
One category of methods for the subject-driven image generation
task is to assign a special token to the specific subject and optimize
the personalized token embedding. The optimization objective is
defined as below:

𝑣∗ = argmin
𝑣
E𝑧,𝑦,𝜖,𝑡

[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑐𝜃 (𝑦, 𝑣), 𝑡)∥22

]
, (2)

which keeping both c𝜃 (𝑦) and 𝜖𝜃 fixed. The reconstruction objective
motivates the learned embedding to capture visual concepts.

4 METHOD
4.1 Overall
In this task, there is a small set of exemplar imagesI = {𝐼1, 𝐼2, ..., 𝐼𝑛}
with a common user-specified interaction between subjects. In ad-
dition, each exemplar image is accompanied by a coarse description
in the form of ”𝑂𝑖

1 [𝑅]𝑂
𝑖
2”, where 𝑂

𝑖
1 and 𝑂𝑖

2 denote the first and
second subject tokens in the 𝑖 − 𝑡ℎ exemplar image respectively,
[𝑅] represents a pseudo-word corresponding to the user-specified
interaction. The aim of this task is to learn the concept of such
specific interaction and transfer it into the process of text-to-image
generation.

To address the task of text-to-image generation with customized
interactive pose, we adopt a divide-and-conquer strategy and design
a two-stage inversion framework, as shown in Fig. 2. The interaction
between subjects [𝑅] is expanded into three pseudo-words [𝑃1], [𝑅]
and [𝑃2] (here we mainly consider the case of interaction with two
subjects). The introduction of [𝑃1] and [𝑃2] enhances the concept
extraction for the single pose individual subjects. In this case, each
image would be described in the form of ”𝑂1 [𝑃1] [𝑅]𝑂2 [𝑃2]”. The
first stage of inversion focuses on learning the token embedding
𝑃∗1 and 𝑃∗2 for single poses pseudo-word [𝑃1] and [𝑃2], as shown in
Fig. 2 (a). In the second stage, the token embeddings of single poses
are employed to promote learning the inversion of interactive pose
[𝑅], as shown in Fig. 2 (b). We will detail these two stages in the
following subsections.

Verbs

Adjectives

Prepositions

Figure 4: Visualization of token embeddings learned with
and without using the language prior by t-SNE [35].

4.2 Single Subject Pose Inversion
To invert the single pose for each individual in the interaction, we
aim to obtain images with each containing only one subject while
maintaining the original pose of each subject as the exemplar image.
Specifically, we adopt ViTPose+[41] to estimate the skeleton map of
each subject in the interaction. Then, the ControlNet[46] refers to
the estimated skeleton map to generate several images, with each
one containing a single subject. The generated image with a new
appearance of the subject and background is further used to learn
the token embeddings 𝑃∗1 and 𝑃∗2 for single poses pseudo-word [𝑃1]
and [𝑃2].

Inspired by the observation in [18] that the words of the same
Part-of-Speech are closely clustered together, we incorporate the
prior of the verb embedding space into the single pose inversion.
Specifically, a list of verbs corresponding to common interactive
action is either borrowed from predicates in [42, 43] or collected
by ourselves. For example, this includes action verbs such as stand,
kneel and jump. Text embeddings of these words together construct
an embedding subspace for action tokens denoted as 𝑆𝑣 . Then, we
calculate the mean and variance of the subspace 𝑆𝑣 that is 𝜇 (𝑆𝑣)
and 𝜎 (𝑆𝑣), repetitively. The calculated mean and variance can be
incorporated as a prior of verb embedding space into the original
token embedding 𝑃1 and 𝑃2 to encourage token embedding learning.
Specifically, we employ AdaIN [9] to incorporate the obtained verb
prior into the token embedding 𝑃1 and 𝑃1:

𝑃 ′𝑖 = 𝜎 (𝑆𝑣)
(
𝑃𝑖 − 𝜇 (𝑃𝑖 )
𝜎 (𝑃𝑖 )

)
+ 𝜇 (𝑆𝑣), 𝑓 𝑜𝑟 𝑖 = 1, 2 (3)

where 𝑃 ′
𝑖
represents the embedding of token [𝑃𝑖 ] with the prior of

verb embedding space. 𝜇 (𝑃𝑖 ) and 𝜎 (𝑃𝑖 ) are scalars. 𝜇 (𝑆𝑣) ∈ R𝑑 and
𝜎 (𝑆𝑣) ∈ R𝑑 . The optimization goal in single subject pose inversion
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Figure 5: Results of text-to-image generation with various inverted concepts in both stages.

stage can be defined as:

𝑃∗𝑖 = argmin
𝑃 ′
𝑖

E𝑧,𝑦,𝜖,𝑡

[𝜖 − 𝜖𝜃
(
𝑧𝑡 , 𝑐𝜃 (𝑦, 𝑃 ′𝑖 ), 𝑡

)2
2

]
, 𝑓 𝑜𝑟 𝑖 = 1, 2 (4)

where 𝑃∗
𝑖
is the optimized embedding of trained token [𝑃∗

𝑖
]. More

details of the verbs used in this paper can be found in the appendix.

4.3 Interactive Pose Inversion
In order to model the interaction between subjects, we further
introduce another pseudo-word [𝑅] between subjects 𝑂1 and 𝑂2
with learned pose token [𝑃∗1 ] and [𝑃∗2 ] in the second stage. We
inverse token [𝑅] based on original complete exemplar images and
fix trained tokens [𝑃∗1 ] and [𝑃∗2 ] of the first stage in the Sec. 4.2.
Similar to the first stage, a list of prepositions is collected, which in-
cludes the commonly used words placed after verbs such as toward,
with, to, over and through. We define the text embedding space of
prepositions as 𝑆𝑝 . Then, the preposition prior is calculated by:

𝑅′ = 𝜎 (𝑆𝑝 )
(
𝑅 − 𝜇 (𝑅)
𝜎 (𝑅)

)
+ 𝜇 (𝑆𝑝 ), (5)

where 𝑅′ represents the embedding of token [𝑅] with the prior of
preposition embedding space. 𝜇 (𝑅) and 𝜎 (𝑅) are scalars. 𝜇

(
𝑆𝑝

)
∈

R𝑑 and 𝜎
(
𝑆𝑝

)
∈ R𝑑 .

Different from the single subject pose inversion stage, we also
aim to enhance our attention to the areas where interactions occur
in the image. As mentioned in several works [12], cross-attention
(CA) maps have a great influence on the spatial layout of objects in
generated images. Therefore, we introduce guidance information
from the cross-attention map between image patches and the pose
concepts [𝑃∗1 ] and [𝑃∗2 ] of modeling interactive poses. Since the
single subject pose in the first stage represents a part of the inter-
action, and focused regions are related to motion and pose in the
cross-attention maps of a learned token [𝑃∗1 ] and [𝑃∗2 ]. As shown in
Eq. 6 and Fig. 3, we simply merge the two cross-attention maps by
summing them together and filtering irrelevant background region:

𝐺𝑧𝑡 = Norm(
(
𝐶𝐴(𝑃∗1 , 𝑧𝑡 ) +𝐶𝐴(𝑃

∗
2 , 𝑧𝑡 )

)
×𝑀𝑎𝑠𝑘, (6)

where 𝐶𝐴 calculate normalized cross-attention maps between the
inverted single pose token [𝑃∗1 ] and [𝑃∗2 ] and noise latent 𝑧𝑡 at time
step 𝑡 . To avoid the influence of background, subjects’ segmentation
results [20] of the generated image corresponding to 𝑧𝑡 of the Stage
I is computed compose the 𝑀𝑎𝑠𝑘 and are applied to the merged

attentionmap. The𝐺𝑧𝑡 is employed to regularize the cross-attention
map for the token [𝑅′] and the cross-attention loss is computed as
below:

LCA = E𝑧𝑡

[𝐶𝐴 (
𝑅′, 𝑧𝑡

)
−𝐺𝑧𝑡

2
2

]
, (7)

where pixel-wise mean squared error is used as the objective. Over-
all, the total loss for optimizing the token embedding of the inter-
active pose [𝑅] consists of the reconstruction objective as Sec. 3.2
and the additional cross-attention loss L𝐶𝐴:

𝑅∗ = argmin
𝑅′

(
E𝑧,𝑦,𝜖,𝑡

[𝜖 − 𝜖𝜃
(
𝑧𝑡 , 𝑐𝜃 (𝑦, 𝑅′), 𝑡

)2
2

]
+ 𝜆L𝐶𝐴

)
. (8)

where 𝑅∗ is the optimized embedding of trained token [𝑅]. As for
the loss weight 𝜆, we found that 𝜆 with a large value, such as 0.1
and 1, would cause a degradation in the appearance of subjects in
the generated image. Therefore, we empirically set loss weight 𝜆1
to 0.01 in order to balance guidance from pixel and cross-attention
map. In generation, the learned token [𝑃∗1 ], [𝑅

∗], and [𝑃∗2 ] can be
inserted into any description for text-to-image generation with
customized interaction.
Analysis. Inspired by [12], we visualize the cross attention map
between the exemplar image and the token embedding of the corre-
sponding pseudo-word [𝑃∗1 ], [𝑃

∗
2 ] and [𝑅∗] in Fig. 3. It shows that

the learned token can indeed attend to the region corresponding to
the key parts of the concept of interactive pose. A similar phenom-
enon is observed in [34], which shows the map attends to key parts
of human body for the action verb embedding. For example, the
hands and arms are highlighted for the corresponding interactive
pose.

In order to better understand the motivation for incorporating
language prior to the inversion of interaction, we provide a further
analysis. Fig. 4 visualizes the embedding space. The learned embed-
dings [𝑃∗1 ] and [𝑃∗2 ] are closer to the verb embedding cluster, while
the [𝑅∗] are closer to the preposition embedding cluster. Compared
to that, the token embeddings without using the language prior to
the optimization process are randomly distributed, which tend to
be clustered in the inaccurate embedding space, such as ‘Adjectives’
and ‘Conjunction’. We also present a qualitative comparison to
further validate the effectiveness of incorporating language prior
to the optimization process, as shown in Fig. 8.
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Figure 6: Qualitative comparison with existing methods. For SD, ControlNet, InteractDiffusion and InstructPix2Pix, we carefully
design the input prompts according to the interaction in the exemplar images. For example, the prompts are "A ... is kicking a
...", "A ... is holding a ... above its head." and "A . . . is kneeling down in front of a . . . , holding its hand and kissing it.".

5 EXPERIMENT
5.1 Dataset
We collect 15 popular interactive actions from humans that hap-
pened in daily life, including kneel down, kiss hands, hold in arms,
ride on the back and so on. For each of these interactions, we collect
10 diverse exemplar images by searching with a set of keywords
on the internet. Each exemplar image contains two persons which
is associated with a coarse description in a template form of "[𝑂1]
[𝑃1] [𝑅] [𝑂2] [𝑃2]". With such image and description pairs, our
aim is to learn the interaction concept, that is, optimizing token
embeddings for pseudo-word [𝑃1], [𝑅] and [𝑃2]. Further introduc-
tion to the 15 interactive poses is presented in the appendix. The
collected data and code will be publicly available upon acceptance.
Evaluation Benchmark.We construct a dataset for evaluation,
which consists of 2,000 images generated by 200 descriptions, where
each description generates 10 images. A total of 30 species cate-
gories are involved in these description.

5.2 Evaluation metrics
Different from subject-driven generation, it does not make much
sense for us to generate images using the prompt "A photo of [∗]" for
interactive pose and compute the similarity between generated and

exemplar images because it is difficult to describe a specific interac-
tive pose with those fewwords andwithoutmentioning the subjects.
Therefore, we turn to large-scale pre-trained multimodal model
CLIP [29] for help to evaluate open-domain interaction relation.
Besides, we adopt the metrics Pose-S and Pose-KP for evaluating
the generation accuracy of the subject pose, due to direct image
similarity between generated images and exemplar images being
interfered by subjects.
CLIP-T.We compute the similarity between the generated image
and the description text (T) by computing a cross-modal matching
score using CLIP. Here, we further extend the description text by
replacing the pseudo-word with rich text, such as “A cat is kneeling
down in front of a dog, holding its hand and kissing it”.
CLIP-S. Similar to [10], we compute the subject similarity between
the generated image and the description of "A photo of [𝑂1] and
[𝑂2]". Its purpose is to examine how the evaluated methods influ-
ence the generation quality of the subjects (S) in the description.
Pose-S. Similar to [18], we compute a classification accuracy for
the generated pose of the subject (S) with a trained SVM classifier.
To train an SVM classifier for the interactive pose, we first use the
image encoder of the ViTPose+[41] to extract a 2048-dimensional
feature vector of the exemplar image as the pose-related feature.
Then, we adopt the extracted features to train an SVM classifier
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Table 1: Quantitative comparison with existing inversion-
based text-to-image generation models. The scores(%) of the
CLIP-T, CLIP-S, Pose-S and Pose-KP are reported. Green text
indicates the best and blue text indicates the second best
performance.

Method CLIP-T↑ CLIP-S↑ Pose-S↑ Pose-KP↑
SD [31] 23.51 21.87 7.05 6.36

Texture Inversion [10] 22.47 21.79 11.59 8.18
P+ [36] 20.55 22.19 12.42 9.23

Reversion [18] 24.68 22.81 18.47 15.53
Ours 25.74 22.93 40.81 38.64

with 15 classes. The trained SVM achieve 91% accuracy in the test
set constructed by several example images different in the training
process.
Pose-KP. This metric calculates the accuracy of the generated pose
of subject based on key points (KP) of the estimated skeleton map.
Specifically, we first train a two-layer GCN [19] with several exem-
plar images by using the key points of the skeleton map generated
by the detector of ViTPose+[41]. The trained GCN achieves 85%
multi-classification accuracy.

5.3 Comparison with Existing Methods
Since text-to-image generation with customized interactive pose is
a novel task, there is a lack of research directly addressing it. In this
section, we compare our methods with seven state-of-the-art meth-
ods,including, Stable Diffusion (SD) [31], ControlNet [46], Instruct-
Pix2Pix [4], InteractDiffusion[14], Textural Inversion [10], P+[36]
and ReVersion [18]. SD is a pure T2I method without using any
additional conditions except for text. So, we take it as our baseline
and use an extended description as its input for generation. Control-
Net, InstructPix2Pix and InteractDiffusion are conditional-based
generation methods. ControlNet refers to the provided skeleton
map to generate the action. Note that, due to potential errors in
OpenPose[6] caused by the occlusion of multiple individuals, we
correct the results to avoid diminishing the performance. Since
InstructPix2Pix is able to edit an image following user instruc-
tion, we adopt the exemplar image as its input. InteractDiffusion
refers to the provided bounding boxes, which represent the loca-
tion of the subject in the image as the condition. The last three are
the inversion-based methods. Textual inversion introduces pseudo-
word tokens and fine-tune embedding of them with reconstruction
objective. P+ extends text condition, where different embeddings
are injected into different layers of the U-net. ReVersion could re-
vert relation to a token embedding for text-to-image generation.
We train these inversion-based methods on our dataset and use the
inverted concept for generation. Both qualitative and quantitative
results are analyzed in this section.
Qualitative Comparison. The qualitative results are shown in
Fig. 6. Although SD can generate correct subjects as the description
mentioned, it fails to generate interactive poses as the exemplar
images even though we provided a detailed description for it. The
reason attributed to the user intent and machine understanding are
not aligned. ControlNet just maintains a consistent pose with the
exemplar image. It struggles to find a balance between the gener-
ated pose and the subject’s appearance, resulting in incomplete or

Table 2: User-based quantitative results with competing
methods. Interactive pose, subject and overall accuracy (%)
are reported. Green text indicates the best and blue text indi-
cates the second best performance.

Method Pose↑ Subject↑ Overall↑
SD[31] 16.4 78.3 11.7

ControlNet [46] 61.3 35.7 20.1
InstructPix2Pix [4] 90.8 29.3 23.4

InteractDiffusion [14] 34.5 62.8 21.3
Inversion-based text-to-image generation models

Texture Inversion [10] 12.7 68.4 7.8
P+ [36] 15.2 74.5 9.3

Reversion [18] 29.1 84.9 24.2
Ours 58.6 85.6 48.9

distorted body structures. InstructPix2Pix also shows consistent
pose with the target image, but it focuses too much on changing ap-
pearance of subjects rather than adapting the pose to the specified
subject category. Therefore it would tend to generate subjects with
blended appearances of different species. Based on additional layout
conditions, InteractDiffusion controls the subject generated at the
specified location but fails to generate interactive poses between
subjects. This could be attributed to InteractDiffusion being trained
on human-object interaction datasets, making it difficult to general-
ize to interactions between subjects. Additionally, the pure textual
description may not be sufficient to specify complex interaction pat-
terns. Inversion-based methods such as Textural Inversion and P+
have shown promising performance in subject-driven generation.
However, these methods fail to decouple interaction concepts from
subjects in exemplar images and generate inconsistent interactive
poses. Reversion, which aims to model general relationships, strug-
gles with complex interactive pose and tends to generate common
simplified interactions such as hugging or shaking hands.

Our method with the proposed divide-and-conquer two-stage
inversion strategy is more effective in extracting the concept of
interactive pose between subjects and is able to flexibly adapt it
to customized text-to-image generation tasks. Furthermore, we
demonstrate that the proposed method also inherits the capability
of Stable Diffusion in producing images in various styles. As shown
in Fig. 7, our method can produce images in both natural style
and animation style. More customized generation results for all
involved interactive poses are shown in the appendix.
Quantitative Comparison. In the Tab. 1, we report quantita-
tive results using proposed metrics mentioned in Sec. 5.2. Existing
Inversion-based methods are not sufficient for extracting complex
interactive poses and generate inconsistent interactive poses with
worse pose accuracy(less than 20%). The proposed method achieves
better balancewith best performance on description consistency(CLIP-
T), subject consistency(CLIP-S) and high pose accuracy(Pose-S,
Pose-KP).

In addition, we also examine these methods through user study.
Specifically, 20 human evaluators are asked to determine whether
the generated interactive pose is consistent with those in the exem-
plar images as Pose accuracy and whether the generated subjects
correspond with the description without obvious deformations or
abnormalities as Subject accuracy. Furthermore, a comprehensive
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Figure 8: Qualitative Comparisons with Ablation Variants.

accuracy considering pose and subjects in the generated image. As
shown in Tab. 2, pose-conditioned ControlNet and image-editing-
based InstructPix2Pix struggle in generating subjects consistent
with the description, thus achieve less then 40% Subject accuracy. In-
teractDiffusion and inversion-based baselines obtain less than 35%
Pose accuracy, indicating difficulties in the generation of complex
customized actions. The proposed method achieves 58.6% accuracy
of interactive pose generation while maintaining high subject accu-
racy and improves overall accuracy by 24.7% compared to baseline
methods similar to results reported in Tab. 1.

5.4 Ablation Study
To analyze the effectiveness of the proposed method, we also con-
duct an ablation study on the proposed components mentioned in

Sec. 4, and the results are shown in Fig. 8. For the baseline "w/o
Prior", we optimize token [𝑃1], [𝑃2] and [𝑅] without incorporating
language prior in Eq. 3 and Eq. 5. As in col2 of Fig. 8, there is a
lack of relevant interaction between subjects in generated images,
because of the failure to decouple the pose concept in the inversion
stage. For the baseline "w/o Stage I ", we skip the single subject pose
inversion stage (Sec. 4.2) and directly modeling interactive pose as
Sec. 4.3. Furthermore, we expand [𝑅] to three pseudo-words for
fair comparison. Due to the lack of modeling for the single pose,
the baseline can generate images with simplified and incorrect in-
teractive poses, such as ‘hug’ and ‘pounce’, in col3 of Fig. 8. For the
baseline "w/o LCA", we do not use cross-attention loss LCA in the
interactive pose inversion stage (Sec. 4.3). In col4 of Fig. 8, some
details are missing in the key region where interaction or contact
happens without cross-attention loss guidance. This issue could be
mitigated by the proposed mask attention loss, which encourages
the inversion to focus further on capturing the detailed interaction
appearance.

6 CONCLUSION
In this work, we focus on customized generation with specific inter-
active poses between subjects from user-provided images. Interac-
tion between subjects is very common in daily life and customized
interaction between subjects has great potential in many applica-
tion scenarios. A two-stage framework is proposed for customized
interaction-driven generation. It adopts a divide-and-conquer strat-
egy, which first extracts a dedicated text token for a single pose of
each individual subject in the interaction and then leverages them
to further infer the concept for the interactive pose. In addition,
language prior and cross-attention loss are incorporated into the
optimization process to promote the modeling of interaction. Ex-
tensive experiments demonstrate the effectiveness of the proposed
method in customized generation with user-specified interaction.
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