

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 3D SCENE PROMPTING FOR SCENE-CONSISTENT CAMERA-CONTROLLABLE VIDEO GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We present **3DScenePrompt**, a framework that generates the next video chunk from arbitrary-length input video chunk while supporting *highly complex and precise camera control* and preserving scene consistency. Unlike previous methods conditioned on a single image or a short clip, our approach employs *dual spatio-temporal conditioning* that reformulates context-view referencing across the entire input video. Specifically, we condition on both *temporally* adjacent frames to ensure motion continuity and *spatially* adjacent content to preserve scene consistency, enabled by a *3D scene memory* that exclusively represents the static geometry extracted from the full input sequence. To construct this memory, we leverage *dynamic SLAM* with a newly introduced *dynamic masking strategy* that explicitly separates static scene geometry from moving elements. The resulting static representation can then be projected to arbitrary target viewpoints, providing geometrically consistent warped views that act as strong *3D spatial prompts*, while allowing dynamic regions to evolve naturally from temporal context. This design allows our model to maintain long-range spatial coherence and precise camera control without compromising computational efficiency or motion realism. Extensive experiments demonstrate that our framework significantly outperforms existing methods in scene consistency, camera controllability, and generation quality.

1 INTRODUCTION

Camera-controllable video generation (He et al., 2024; Wang et al., 2024b; Jin et al., 2025) aims to synthesize videos following user-specified camera trajectories while maintaining visual coherence and temporal consistency. Recent advances have progressed from generating entirely new videos

054 with controllable viewpoints (Bahmani et al., 2025a) to enabling users to extend a single image or
 055 short video clips along desired camera paths (He et al., 2024; Agarwal et al., 2025). Yet these meth-
 056 ods share a fundamental limitation: they can only process extremely short conditioning sequences,
 057 typically just a few frames, which constrains their ability to understand longer videos and hence
 058 fails to preserve the rich scene context present in those longer videos. *What if we could provide a*
 059 *model with arbitrary-length video sequences and generate continuations that not only follow pre-*
 060 *cise camera controls but also maintain scene consistency with the entire input?* Such technology,
 061 which we refer to as *scene-consistent camera-controllable video generation*, has immediate appli-
 062 cations in film production (Zhang et al., 2025), virtual reality (He et al., 2025b), and synthetic data
 063 generation (Knapp & Bohacek, 2025).

064 Scene-consistent camera-controllable video generation poses three intertwined challenges that must
 065 be solved jointly. First, static and dynamic elements must be handled differently: while static scene
 066 elements should remain consistent throughout generation, dynamic elements such as moving ob-
 067 jects and people should evolve naturally from their most recent states rather than rigidly preserving
 068 motions from the distant past. Second, camera control demands understanding the underlying 3D
 069 geometry of the scene: the generated content must respect physical constraints, properly handle
 070 occlusions, and seamlessly compose dynamic elements onto static geometry, while extrapolating
 071 plausible content for previously unobserved regions. Third, these capabilities must be achieved
 072 within practical computational constraints, as naive approaches that process all input frames quickly
 073 become intractable when the input video sequence is long.

074 *How can we tackle this challenging task by leveraging existing video generative models?* Our key
 075 insight comes from fundamentally rethinking how video models should reference prior content. Cur-
 076 rent image-to-video (Yang et al., 2024) and video-to-future-video models ¹ (Agarwal et al., 2025)
 077 achieve realistic generation by conditioning on *temporally adjacent* frames to maintain short-term
 078 consistency and motion continuity. However, adjacency in video is not purely temporal—it can also
 079 be *spatial*. When generating scene-consistent videos, the frames we synthesize may be spatially
 080 adjacent to frames from much earlier in the input sequence, particularly when the camera revis-
 081 its similar viewpoints or explores nearby regions. This dual nature of adjacency suggests a new
 082 conditioning paradigm that leverages both temporal and spatial relationships.

083 Based on these motivations, we propose **3DScenePrompt**, a novel video generation framework de-
 084 signed for scene-consistent camera-controllable video synthesis. It takes an arbitrary-length video
 085 as context and generates the future video that is consistent with the scene geometry of the context
 086 video. The key innovation lies in our dual spatio-temporal conditioning strategy: the model con-
 087 ditions on both *temporally adjacent* frames (for motion continuity) and *spatially adjacent* frames
 088 (for scene consistency). However, an important consideration for spatial conditioning for our task
 089 is that it must provide only the persistent *static* scene structure while excluding *dynamic* content, as
 090 directly conditioning on spatially adjacent frames from the past would incorrectly preserve dynamic
 091 elements. To enable this without temporal contradictions, we construct a **3D scene memory** that
 092 represents exclusively the *static* geometry extracted from the entire input video.

093 To construct this 3D scene memory from *dynamic* videos, we leverage recent advances in dynamic
 094 SLAM frameworks (Zhang et al., 2022; 2024; Li et al., 2024) to estimate camera poses and 3D
 095 structure from the input video. To extract only the *static* regions from the estimated 3D structure, we
 096 introduce a dynamic masking strategy that explicitly separates static elements and moving objects.
 097 The static-only 3D representation can then be projected to target viewpoints, yielding geometrically-
 098 consistent warped views that serve as *spatial prompts* while allowing dynamic elements to evolve
 099 naturally from temporal context alone. Surprisingly, the integration of 3D scene memory provides
 100 an additional benefit: the geometrically-consistent warped views provide rich visual references that
 101 significantly reduce uncertainty in viewpoint manipulation, enabling precise camera control without
 102 any other explicit camera conditioning.

103 In summary, **3DScenePrompt** enables both accurate camera control and long-range spatial consis-
 104 tency by treating the static scene representation as a persistent spatial prompt that guides generation
 105 across arbitrary timescales. Extensive experiments demonstrate that our framework significantly

106
 107 ¹Throughout our paper, video-to-future-video models refer to models that are capable of generating the
 108 subsequent frames of the given input video (e.g., `cosmos-predict2` (Agarwal et al., 2025)).

outperforms existing methods in maintaining scene consistency, achieving precise camera control, and generating high-quality videos from arbitrary-length inputs.

2 RELATED WORK

Single-frame conditioned camera-controllable video generation. Building upon the recent success of video diffusion models (Blattmann et al., 2023; Guo et al., 2023; Yang et al., 2024; Runway; Brooks et al., 2024), recent works (He et al., 2024; Wang et al., 2024b; Bahmani et al., 2024) have achieved camera-controllable video generation by introducing additional adapters into U-Net-based video diffusion models that accept camera trajectories. For instance, CameraCtrl and VD3D (Bahmani et al., 2024; He et al., 2024) incorporate spatiotemporal camera embeddings, such as Plücker coordinates, via ControlNet-like mechanisms (Zhang et al., 2023). While these methods enable precise trajectory following, they only condition on single starting images, lacking mechanisms to maintain consistency with extended video context. In contrast, our approach enables leveraging entire video sequences as spatial prompts through 3D memory construction, enabling scene-consistent generation that preserves the rich scene context within arbitrary-length inputs.

Multi-frame conditioned camera-controllable video generation. Recently, CameraCtrl2 (He et al., 2025a) and Seaweed-APT2 (Lin et al., 2025b) have proposed to take multiple frames as a condition for camera-controllable video generation. This allows the generated videos to maintain temporal smoothness with the provided frames, enhancing the motion fidelity of the generated videos. However, these methods only consider temporal adjacency, which restricts the model from maintaining scene-consistencies with long videos due to memory constraints. In contrast, we introduce SLAM to process the conditioning video to consider dual spatio-temporal adjacency, enabling the model to maintain scene-consistency with long videos under efficient computation.

Geometry-grounded video generation. Recent works (Ren et al., 2025; Yu et al., 2025; Seo et al., 2025) have integrated off-the-shelf geometry estimators into video generation pipelines to improve geometric accuracy. Gen3C (Ren et al., 2025), for instance, similarly adopts dynamic SLAM to lift videos to 3D representations. However, these methods exclusively address dynamic novel view synthesis—generating new viewpoints within the same temporal window as the input. This constrained setting allows them to simply warp entire scenes without distinguishing static and dynamic elements. Our work fundamentally differs by generating content beyond temporal boundaries, requiring selective masking of dynamic regions during 3D construction—a critical challenge that emerges only when static geometry must persist while dynamics evolve naturally into the future.

162
163
164
165
166
167
168
169
170
171
172

Figure 3: **Overview of 3DScenePrompt framework.** To generate the next chunk video that remains spatially consistent with the input video, we design a dual spatio-temporal conditioning pipeline to extract the most relevant information from the input video. The last few frames are utilized to provide **temporal** conditioning, ensuring motion continuity between conditioning inputs and the generated frames. In parallel, for the **spatial** conditioning, we first select the most representative frames from the input sequence, lift their static regions into a 3D point cloud using the dynamic mask, and render it along a user-specified camera trajectory to preserve scene geometry.

180
181

Long-horizon scene-consistent generation. Various approaches attempt scene-consistent long video generation through different strategies. ReCamMaster (Bai et al., 2025) and TrajectoryCrafter (Yu et al., 2025) interpolate frames or construct 3D representations but remain confined to the input’s spatiotemporal coverage, essentially performing dynamic novel view synthesis. StarGen (Zhai et al., 2025) scales to long trajectories but assumes static worlds, eliminating temporal dynamics entirely. DFoT (Song et al., 2025) most closely relates to our work, proposing guidance methods that condition on previous frames for scene consistency. However, DFoT also faces fundamental memory constraints when processing extended sequences, limiting its ability to maintain long-range spatial coherence. Our dual spatio-temporal strategy with SLAM-based spatial memory overcomes these limitations by selectively retrieving only the most relevant frames, both temporally and spatially, enabling computationally efficient processing of arbitrary-length videos while maintaining both motion continuity and scene consistency.

193

3 METHODOLOGY

194
195
196
197

3.1 PROBLEM FORMULATION AND MOTIVATION

198
199
200
201

We address the task of *scene-consistent camera-controllable video generation*: given a dynamic video $\mathbf{V}_{\text{in}} \in \mathbb{R}^{L \times H \times W \times 3}$ of arbitrary length L as context with height H and width W , our goal is to generate T subsequent frames $\mathbf{V}_{\text{out}} \in \mathbb{R}^{T \times H \times W \times 3}$ that follow a desired camera trajectory $\mathbf{C} = \{C_t\}_{t=1}^T$ while maintaining consistency with the scene captured in the context input:

$$\mathbf{V}_{\text{out}} = \mathcal{F}(\mathbf{V}_{\text{in}}, \mathcal{T}, \mathbf{C}), \quad (1)$$

202
203
204
205

where $C_t \in \mathbb{SE}(3)$ represents camera extrinsic matrices and \mathcal{T} is a text prompt when a video generator $\mathcal{F}(\cdot)$ is based on pretrained text-to-video priors (Yang et al., 2024; Bahmani et al., 2025a).

206
207
208
209

Comparison to existing solutions. This task fundamentally differs from existing video generation paradigms. Existing camera-controllable generation methods (He et al., 2024; Wang et al., 2024b; Bahmani et al., 2024) synthesize videos following user-specified trajectories but only condition on a single image \mathbf{I}_{ref} or plain text \mathcal{T} (Fig. 2-(a)):

$$\mathbf{V}_{\text{out}} = \mathcal{F}(\mathbf{I}_{\text{ref}}, \mathcal{T}, \mathbf{C}), \text{ or } \mathbf{V}_{\text{out}} = \mathcal{F}(\mathcal{T}, \mathbf{C}), \quad (2)$$

210
211
212
213
214
215

which is insufficient for our task, where the entire underlying 3D scene of the context video should be considered. In contrast, video-to-future-video generation methods such as Cosmos-predict-2 (Agarwal et al., 2025) $\mathcal{G}(\cdot)$ employ temporal sliding windows to generate future frames (Fig. 2-(b)):

$$\mathbf{V}_{\text{out}} = \mathcal{G}(\mathbf{V}_{\text{in}}[L-w:L], \mathcal{T}) \quad (3)$$

216 where $\mathbf{V}_{\text{in}}[L-w : L]$ for $w \ll L$ represents a small overlap window, typically consisting of the
 217 last few frames of \mathbf{V}_{in} . Although this design encourages temporal smoothness by providing the last
 218 few frames when generating the future video, it often fails to preserve long-term spatial consistency
 219 when the camera revisits regions not covered by the small window w .
 220

221 3.2 TOWARDS SCENE-CONSISTENT CAMERA-CONTROLLABLE VIDEO GENERATION

223 The key challenge of scene-consistent camera-controllable video generation lies in reconciling two
 224 competing requirements: maintaining consistency with potentially distant frames that share spatial
 225 proximity (when the camera returns to similar viewpoints), while evolving dynamic content naturally
 226 from the recent temporal context. Ideally, conditioning on *all* frames \mathbf{V}_{in} would ensure optimal
 227 global spatial consistency. However, this quickly becomes impractical as the sequence grows, since
 228 standard self-attention incurs quadratic time/memory in the sequence length.
 229

230 **Dual spatio-temporal sliding window strategy.** Instead of increasing the temporal window size
 231 w of the existing video-to-future-video generation methods, we introduce a dual sliding window
 232 strategy that conditions on frames selected along both *temporal* and *spatial* axes (Fig. 2-(c)). Beyond
 233 the standard temporal window that captures recent motion dynamics, we add a spatial window that
 234 retrieves frames sharing similar 3D viewpoints, regardless of their temporal distance:
 235

$$\mathbf{V}_{\text{out}} = \mathcal{F}(\tilde{\mathbf{V}}_{\text{in}}, \mathcal{T}, \mathbf{C}), \text{ where } \tilde{\mathbf{V}}_{\text{in}} = \{\text{Temporal}(w)\} \cup \{\text{Spatial}(T)\}, \quad (4)$$

236 where the model \mathcal{F} generates a future sequence \mathbf{V}_{out} conditioned on $\text{Temporal}(w)$, last w frames of
 237 the input video $\mathbf{V}_{\text{in}}[L-w : L]$, and $\text{Spatial}(T)$, the T retrieved frames from the entire input sequence
 238 based on viewpoint similarity to the target viewpoint \mathbf{C} . This dual conditioning enables the model
 239 to reference distant frames that observe the same spatial regions, maintaining scene consistency
 240 without processing all L input frames.
 241

242 While this dual conditioning is conceptually appealing, naively retrieving and providing spatially
 243 adjacent frames directly would be problematic for our task. Since we aim to generate future content
 244 beyond the input’s temporal boundary, directly conditioning on frames from earlier timestamps
 245 would incorrectly preserve dynamic elements (e.g., a walking person from frame 50 should not necessarily
 246 reappear at that same location when generating frame 200). The spatial conditioning must therefore provide only the persistent scene structure while excluding dynamic content. Rather than
 247 retrieving individual frames, we introduce a **3D scene memory** \mathcal{M} that represents exclusively the
 248 *static* geometry extracted from all spatially relevant frames.
 249

250 3.3 3D SCENE MEMORY CONSTRUCTION

251 Our 3D scene memory must efficiently encode spatial relationships across all L frames while extracting only persistent static geometry. To construct the 3D scene memory, we leverage dynamic
 252 SLAM frameworks (Li et al., 2024; Zhang et al., 2024) to estimate camera poses and reconstruct 3D
 253 structure:
 254

$$(\hat{\mathbf{C}}, \mathbf{P}) = \mathcal{D}_{\text{SLAM}}(\mathbf{V}_{\text{in}}), \quad (5)$$

255 where $\hat{\mathbf{C}} = \{\hat{\mathbf{C}}_i\}_{i=1}^L$ are the estimated camera poses, \mathbf{P} represents the aggregated 3D point cloud
 256 from the L input frames, and $\mathcal{D}_{\text{SLAM}}(\cdot)$ represents the dynamic SLAM framework. This SLAM
 257 integration is effective in that it not only estimates the camera parameters of the input frames but
 258 also reconstructs the 3D structure of the scene, which can be further utilized to represent the 3D
 259 static geometry.
 260

261 While the camera poses $\hat{\mathbf{C}}$ enable efficient spatial retrieval by comparing viewpoint similarity with the target trajectory \mathbf{C} , the aggregated 3D point cloud \mathbf{P} still contains both static and dynamic regions. Thus, we now explain our full pipeline on how to identify dynamic regions and only maintain the persistent static geometry of the input video.
 262

263 **Dynamic masking for static scene extraction.** Naively aggregating points across frames creates
 264 ghosting artifacts where moving objects appear frozen at multiple positions, as shown in Fig. 4-(a).
 265 We address this through a comprehensive three-stage masking pipeline that identifies and excludes
 266 all dynamic content as depicted in Fig. 5.
 267

Figure 4: **Illustration of dynamic masking for static scene extraction.** When aggregating 3D points across frames, moving objects create ghosting artifacts if not properly masked. (a) Without masking, dynamic elements (horses and riders) appear frozen at multiple positions, severely degrading the warped views. (b) With our dynamic masking pipeline, these elements are identified and excluded, resulting in clean static-only point clouds that can be reliably warped to new viewpoints.

We begin with pixel-level motion detection following MonST3R (Zhang et al., 2024). For each frame pair, we compute optical flow using SEA-RAFT (Wang et al., 2024a) ($\text{Flow}_{\text{optical}}$) and compare it against the flow induced by camera motion alone ($\text{Flow}_{\text{warp}}$). Regions where the L1 difference exceeds a specific threshold τ are marked as potentially dynamic:

$$M_i^{\text{pixel}} = \mathbb{1} [\|\text{Flow}_{\text{optical}} - \text{Flow}_{\text{warp}}\|_1 > \tau]. \quad (6)$$

However, pixel-level detection captures motion only at specific instants and misses complete object boundaries. We therefore propagate these sparse detections to full objects using SAM2 (Ravi et al., 2024), where we sample points from dynamic pixels in the first frame for prompts. Yet this approach still has limitations: static objects that begin moving in later frames may not be detected if they appear static initially.

Our solution employs backward tracking with CoTracker3 (Karaev et al., 2024) to aggregate motion evidence across the entire sequence. From the sampled points in each frame obtained from our pixel-level motion detection, we track these points from all frames back to $t = 0$, capturing motions of objects that move at any point. These aggregated points are used to prompt the final SAM2 pass, producing complete object-level masks M_i^{obj} that cleanly separate all dynamic content (Fig. 4-(b)). With the full dynamic mask, we can now obtain the static-only 3D geometry $\mathbf{P}_{\text{static}}$:

$$\mathbf{P}_{\text{static}} = \bigcup_{i=1}^L \mathbf{P}_i \odot (1 - M_i^{\text{obj}}). \quad (7)$$

From the constructed static-only 3D geometry $\mathbf{P}_{\text{static}}$ with our proposed dynamic masking strategy, we now obtain the 3D scene memory:

$$\mathcal{M} = (\hat{\mathbf{C}}, \mathbf{P}_{\text{static}}), \quad (8)$$

where we now explain how this 3D scene memory \mathcal{M} can be used for scene-consistent camera-controllable video generation in the following section.

3.4 3D SCENE PROMPTING

Having constructed the static-only 3D representation $\mathbf{P}_{\text{static}}$, rather than naïvely retrieving T frames from the input video based on viewpoint similarity, we synthesize static-only spatial frames through the projection of $\mathbf{P}_{\text{static}}$. For each target camera pose $C_t \in \mathbf{C}$, we generate the corresponding spatial frame by projecting the static points from the most spatially relevant input frames:

$$\text{Spatial}(t) = \Pi(K \cdot C_t \cdot \mathbf{P}_{\text{static}}^{(n)}), \quad (9)$$

where $\mathbf{P}_{\text{static}}^{(n)} \subset \mathbf{P}_{\text{static}}$ contains points from the top- n spatially adjacent input frames to C_t , $\Pi(\cdot)$ denotes perspective projection, and K is the camera intrinsic matrix. The complete spatial conditioning becomes $\text{Spatial}(T) = \{\text{Spatial}(t)\}_{t=1}^T \in \mathbb{R}^{T \times H \times W \times 3}$, where spatial adjacency is calculated by field-of-view overlap.

Figure 5: **Dynamic masking strategy.** A three-stage pipeline refines dynamic region detection to produce complete object-level masks: (1) optical-flow differences detect pixel-level motion (Dynamic thresholding); (2) sample points from these regions for all frames and perform backward tracking (BW tracking) with CoTracker3 (Karaev et al., 2024) to aggregate motion evidence across all frames back to $t=0$ (dynamic aggregation), capturing objects that move at any time; (3) propagate aggregated points in the first frame to the entire video using SAM2 (Ravi et al., 2024). The resulting dynamic masks cleanly separate moving elements (people, objects) from the static background, enabling construction of the static-only point cloud P_{static} .

This projection-based approach ensures only static content appears in conditioning while providing geometrically consistent views aligned to target poses. Notably, the static point cloud aggregates information from multiple viewpoints, potentially filling regions occluded by dynamic objects. These projected views serve as 3D scene prompts that provide explicit guidance about persistent scene structure, enabling precise camera control without additional encoding modules.

The projected views $\text{Spatial}(T)$ serve as what we term *3D scene prompts*—they provide the model with explicit guidance about the persistent scene structure. By conditioning on both $\text{Temporal}(w)$ and $\text{Spatial}(T)$, our framework effectively enables scene-consistent camera-controllable video generation with computational efficiency while preserving the prior for high-quality video synthesis.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model architecture. We build upon CogVideoX-I2V-5B (Yang et al., 2024), extending its single-image conditioning to accept dual spatio-temporal inputs with minimal architectural changes. The key modification is repurposing the existing image conditioning channel to accept concatenated latents from both temporal frames and spatial projections. Specifically, we provide the last $w = 9$ frames from \mathbf{V}_{in} as temporal conditioning and T projected views from the static point cloud as spatial conditioning. This enables the DiT backbone to remain entirely unchanged, preserving all pretrained video priors. Both conditions are encoded through the frozen 3D VAE and concatenated channel-wise such that $\mathbf{Z}_{\text{cond}} = \mathcal{E}[\text{Concat}(\text{Temporal}(w), \text{Spatial}(T))]$.

Fine-tuning. We fully fine-tune the model for a total of 4K iterations with a batch size of 8 using 4 H100 GPUs, which required approximately 48 hours. We used the 16-bit Adam optimizer with a learning rate of 1×10^{-5} , and adopted the same hyperparameter settings as those used in the training of CogVideoX (Yang et al., 2024). For the temporal sliding window, we provide the last 9 frames of the input video, setting $w = 9$. For the projection of top- n spatially adjacent views, we set $n = 7$.

Experimental settings. We evaluate our method across four key aspects: camera controllability, video quality, scene consistency, and geometric consistency. Since no prior work directly addresses scene-consistent camera-controllable video generation, we compare against two categories of baselines: (1) camera-controllable methods (CameraCtrl (He et al., 2024), MotionCtrl (Wang et al.,

Methods	RealEstate10K				DynPose-100K			
	PSNR↑	SSIM↑	LPIPS↓	MEt3R↓	PSNR↑	SSIM↑	LPIPS↓	MEt3R↓
DFoT (Song et al., 2025)	18.3044	0.5960	0.3077	0.181164	12.1471	0.3040	0.4172	0.183202
3DSceenePrompt (Ours)	20.8932	0.7171	0.2120	0.040843	13.0468	0.3666	0.3812	0.124189

Table 1: **Evaluation of spatial and geometric consistency.** We compare DFoT and our framework on the RealEstate10K (Zhou et al., 2018) and DynPose-100K (Rockwell et al., 2025) datasets. For spatial consistency, we evaluate PSNR, SSIM, and LPIPS on revisited camera trajectories, while for geometric consistency, we report the MEt3R (Asim et al., 2025) metric.

2024b), FloVD (Jin et al., 2025), AC3D (Bahmani et al., 2025a)) for camera control and video quality metrics, and (2) DFoT (Song et al., 2025), which attempts scene-consistent camera-controllable generation, for spatial and geometric consistency metrics.

We primarily evaluate on 1,000 dynamic videos from DynPose-100K (Rockwell et al., 2025). For scene consistency evaluation, we additionally test on 1,000 static videos from RealEstate10K (Zhou et al., 2018), as static scenes provide clearer spatial consistency assessment.

4.2 SCENE-CONSISTENT VIDEO GENERATION

Evaluation Protocol. As mentioned in Section 3.1, one of the unique and key challenges in scene-consistent camera-controllable video generation is maintaining spatial consistency over extended durations. From a given input video, we evaluate spatial consistency by generating camera trajectories that revisit the viewpoints in the given video. By matching frames in the generated video and the input video that share the same viewpoint, we calculate PSNR, SSIM, and LPIPS. For RealEstate10K, we evaluate the whole image, whereas we only evaluate the static regions by masking out the dynamic regions for DynPose-100K. We also assess geometric consistency using Met3R (Asim et al., 2025), which measures multi-view alignment of generated frames under the recovered camera pose.

Results. As shown in Tab. 1, **3DSceenePrompt** significantly outperforms DFoT across all metrics for both static and dynamic scenes. Most notably, our Met3R evaluation error drops 77% (0.041 vs 0.181), demonstrating superior multi-view geometric alignment. While DFoT similarly tackles scene-consistent camera-controllable video generation through history guidance, their approach fails to maintain scene-consistency for long sequences due to memory constraints. In contrast, our dual spatio-temporal conditioning enables long-term scene-consistency without causing significant computational overhead. The qualitative comparisons shown in Fig. 6 also validate the effectiveness of our approach over DFoT.

4.3 CAMERA-CONTROLLABLE VIDEO GENERATION

Evaluation Protocol. We employ the evaluation protocol of previous methods (He et al., 2024; Zheng et al., 2024; Jin et al., 2025) for the camera controllability. We provide an input image along with associated camera parameters for I2V models (He et al., 2024; Wang et al., 2024b; Jin et al., 2025) and solely provide camera parameters for the T2V model (Bahmani et al., 2025a). We conduct experiments using two variants of our framework, leveraging different numbers of frames (w) for temporal conditioning baselines, $w = 1$ and $w = 9$. The $w = 1$ uses only the last single frame as temporal conditioning, whereas the $w = 9$ model takes the last nine frames as temporal conditioning. To evaluate how faithfully the generated video follows the camera condition, we estimate camera parameters from the synthesized video using MegaSAM (Li et al., 2024), and compare the estimated camera parameters against the condition camera trajectory C.

The comparison between the estimated and input camera parameters is quantified using three metrics: mean rotation error (mRotErr), mean translation error (mTransErr), and mean error in the camera extrinsic matrices (mCamMC). For the generated video, we also assess video synthesis per-

Table 2: Camera controllability evaluation.

Methods	DynPose-100K		
	mRotErr (°)↓	mTransErr↓	mCamMC↓
MotionCtrl Wang et al. (2024b)	3.5654	7.8231	9.7834
CameraCtrl He et al. (2024)	3.3273	9.5989	11.2122
FloVD Jin et al. (2025)	3.4811	11.0302	12.6202
AC3D Bahmani et al. (2025a)	3.0675	9.7044	11.1634
DFoT Song et al. (2025)	2.3977	8.0866	9.2330
3DSceenePrompt ($w = 1$)	2.3898	7.7819	8.9785
3DSceenePrompt ($w = 9$)	2.3772	7.4174	8.6352

Figure 6: **Visualization of generated videos following trajectories that revisit early frames in the input video.** We visualize and compare frames obtained from DFoT (Song et al., 2025) and Ours. We condition to generate a frame of a viewpoint that aligns with the viewpoint within the input. The comparison shows that ours shows much more consistent generation, whereas DFoT fails to generate scene-consistent frames mainly due to the limited number of frames it can condition on.

Table 3: **Evaluation of video generation quality.** We assess the quality of generated videos using FVD and VBench++ scores. For FVD, lower values indicate higher video quality. For VBench++ scores, higher values indicate better performance. All VBench++ scores are normalized.

Methods	DynPose-100K								
	FVD	Overall Score	Subject Consist	Bg Consist	Aesthetic Quality	Imaging Quality	Temporal Flicker	Motion Smooth	Dynamic Degree
MotionCtrl (Wang et al., 2024b)	1017.4247	0.5625	0.5158	0.7093	0.3157	0.3149	0.8297	0.8432	0.7900
CameraCtrl (He et al., 2024)	737.0506	0.6280	0.6775	0.8238	0.3736	0.3888	0.6837	0.6955	0.9900
FoVD (Jin et al., 2025)	171.2697	0.7273	0.7964	0.8457	0.4722	0.5546	0.7842	0.8364	0.9900
AC3D (Bahmani et al., 2025a)	281.2140	0.7428	0.8360	0.8674	0.4766	0.5381	0.8020	0.8673	1.0000
3DScenePrompt (Ours)	127.4758	0.7747	0.8669	0.8727	0.4990	0.5964	0.8551	0.9260	1.0000

formance using the Fréchet Video Distance (FVD)(Skorokhodov et al., 2022) and seven metrics from VBench++(Huang et al., 2024): subject consistency, background consistency, aesthetic quality, imaging quality, temporal flickering, motion smoothness, and dynamic degree.

Results. We first evaluate camera controllability and compare our method with competitive baselines. As shown in Tab. 2, our approach consistently outperforms existing methods, indicating **3DScenePrompt** is capable of generating videos with precise camera control. We also note that the effect of using different temporal conditioning window sizes is minimal for the camera-controllability performance, suggesting that better camera-controllability is achieved from our spatial prompts rather than the increased temporal context. We then assess the overall video quality (Tab. 3) and provide qualitative comparisons (Fig. 7). As observed in Tab. 3, our method achieves the best generation quality across all metrics for dynamic video generation, which is further supported by the visual results in Fig. 7.

4.4 ABLATION STUDIES

We analyze two critical components of our framework: the dynamic masking strategy that separates static and dynamic elements, and the number of spatially adjacent frames n retrieved for spatial conditioning. Tab. 4 demonstrates the impact of varying n and the necessity of dynamic masking. Without dynamic masking

Table 4: **Ablation study on varying n .**

Methods	Dynamic mask M	DynPose-100K			
		PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	ME3R \downarrow
Ours ($n = 1$)	✓	13.0207	0.3732	0.3771	0.124773
Ours ($n = 4$)	✓	13.0382	0.3733	0.3758	0.124893
Ours ($n = L$)	✓	13.0206	0.3631	0.3810	0.123507
Ours ($n = 7$)	✗	12.2304	0.3063	0.3821	0.134885
Ours ($n = 7$)	✓	13.0468	0.3666	0.3812	0.124189

513 **Figure 7: Visualization of scene-consistent camera-controllable video generation.** Comparison
 514 of different methods for generating videos from the same input (shown in Input Video) that follow
 515 the camera trajectory shown in GT, which is the ground truth future video. Our method best
 516 preserves scene consistency with the input video. Note the red-boxed regions in the left scene: while
 517 the input video shows a white wall, competing methods either lose scene detail or fail to maintain
 518 the original scene structure. In contrast, our approach accurately remembers the white wall and
 519 maintains consistent scene elements throughout generation. In addition, when compared with the
 520 GT Future Video, ours best follows the camera condition, effectively verifying the strength of our
 521 framework for scene-consistent camera-controllable video generation.

522
 523 (4th row), the model suffers significantly across all, showing a large drop of PSNR of approximately
 524 0.8dB and also an increase of MEt3R error. This degradation occurs because unmasksed dynamic
 525 objects create ghosting artifacts when warped to new viewpoints, corrupting the spatial condition-
 526 ing. Regarding the number of spatially adjacent frames, we find that performance stabilizes around
 527 $n = 7$, with minimal improvements beyond this point, suggesting that 7 frames provide sufficient
 528 spatial context while maintaining computational efficiency.

530 5 CONCLUSION

531
 532 In this work, we introduced **3DScenePrompt**, a framework for scene-consistent camera-controllable
 533 video generation. By combining dual spatio-temporal conditioning with a static-only 3D scene
 534 memory constructed through dynamic SLAM and our dynamic masking strategy, we enable gen-
 535 erating continuations from arbitrary-length videos while preserving scene geometry and allowing
 536 natural motion evolution. Extensive experiments demonstrate superior performance in camera con-
 537 trollability, scene consistency, and generation quality compared to existing methods. Our approach
 538 opens new possibilities for long-form video synthesis applications where maintaining both spatial
 539 consistency and precise camera control is essential.

540 REFERENCES
541

542 Niket Agarwal, Arslan Ali, Maciej Bala, Yogesh Balaji, Erik Barker, Tiffany Cai, Prithvijit Chat-
543 topadhyay, Yongxin Chen, Yin Cui, Yifan Ding, et al. Cosmos world foundation model platform
544 for physical ai. *arXiv preprint arXiv:2501.03575*, 2025.

545 Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, and Jan Eric Lenssen.
546 Met3r: Measuring multi-view consistency in generated images. *arXiv preprint arXiv:2501.06336*,
547 2025.

548 Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian,
549 Michael Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, et al.
550 Vd3d: Taming large video diffusion transformers for 3d camera control. *arXiv preprint
551 arXiv:2407.12781*, 2024.

552 Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, An-
553 drea Tagliasacchi, David B. Lindell, and Sergey Tulyakov. Ac3d: Analyzing and improving 3d
554 camera control in video diffusion transformers. In *Proceedings of the IEEE/CVF Conference on
555 Computer Vision and Pattern Recognition (CVPR)*, pp. 22875–22889, June 2025a.

556 Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, An-
557 drea Tagliasacchi, David B Lindell, and Sergey Tulyakov. Ac3d: Analyzing and improving 3d
558 camera control in video diffusion transformers. In *Proceedings of the Computer Vision and Pat-
559 tern Recognition Conference*, pp. 22875–22889, 2025b.

560 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
561 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from
562 a single video. *arXiv preprint arXiv:2503.11647*, 2025.

563 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
564 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
565 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023.

566 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
567 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
568 generation models as world simulators. 2024. URL [https://openai.com/research/
569 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).

570 Decart, Julian Quevedo, Quinn McIntyre, Spruce Campbell, Xinlei Chen, and Robert Wachen. Oa-
571 sis: A universe in a transformer. 2024. URL <https://oasis-model.github.io/>.

572 Chen Gao, Ayush Saraf, Jia-Bin Huang, and Johannes Kopf. Flow-edge guided video completion.
573 In *European Conference on Computer Vision*, pp. 713–729. Springer, 2020.

574 Zekai Gu, Rui Yan, Jiahao Lu, Peng Li, Zhiyang Dou, Chenyang Si, Zhen Dong, Qifeng Liu, Cheng
575 Lin, Ziwei Liu, Wenping Wang, and Yuan Liu. Diffusion as shader: 3d-aware video diffusion for
576 versatile video generation control. *arXiv preprint arXiv:2501.03847*, 2025.

577 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
578 Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
579 sion models without specific tuning. *arXiv preprint arXiv:2307.04725*, 2023.

580 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
581 Yang. Cameractrl: Enabling camera control for text-to-video generation. *arXiv preprint
582 arXiv:2404.02101*, 2024.

583 Hao He, Ceyuan Yang, Shanchuan Lin, Yinghao Xu, Meng Wei, Liangke Gui, Qi Zhao, Gordon
584 Wetzstein, Lu Jiang, and Hongsheng Li. Cameractrl ii: Dynamic scene exploration via camera-
585 controlled video diffusion models. *arXiv preprint arXiv:2503.10592*, 2025a.

586 Haoran He, Yang Zhang, Liang Lin, Zhongwen Xu, and Ling Pan. Pre-trained video generative
587 models as world simulators. *arXiv preprint arXiv:2502.07825*, 2025b.

594 Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol Chan-
 595 paisit, Chenyang Si, Yuming Jiang, et al. Vbench++: Comprehensive and versatile benchmark
 596 suite for video generative models. *arXiv preprint arXiv:2411.13503*, 2024.

597

598 Wonjoon Jin, Qi Dai, Chong Luo, Seung-Hwan Baek, and Sunghyun Cho. Flovd: Optical flow
 599 meets video diffusion model for enhanced camera-controlled video synthesis. *arXiv preprint*
 600 *arXiv:2502.08244*, 2025.

601 Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
 602 Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. *arXiv*
 603 *preprint arXiv:2410.11831*, 2024.

604 Václav Knapp and Maty Bohacek. Synthetic human action video data generation with pose transfer.
 605 In *Synthetic Data for Computer Vision Workshop@ CVPR 2025*, 2025.

606

607 Zhengqi Li, Richard Tucker, Forrester Cole, Qianqian Wang, Linyi Jin, Vickie Ye, Angjoo
 608 Kanazawa, Aleksander Holynski, and Noah Snavely. Megasam: Accurate, fast, and robust struc-
 609 ture and motion from casual dynamic videos. *arXiv preprint arXiv:2412.04463*, 2024.

610 Haotong Lin, Sili Chen, Jun Hao Liew, Donny Y. Chen, Zhenyu Li, Guang Shi, Jiashi Feng, and
 611 Bingyi Kang. Depth anything 3: recovering the visual space from any views. *arXiv preprint*
 612 *arXiv:2511.10647*, 2025a.

613

614 Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng
 615 Xiao, and Lu Jiang. Autoregressive adversarial post-training for real-time interactive video gen-
 616 eration. *arXiv preprint arXiv:2506.09350*, 2025b.

617 Yu Lu, Yuanzhi Liang, Linchao Zhu, and Yi Yang. Freelong: Training-free long video generation
 618 with spectralblend temporal attention. *arXiv preprint arXiv:2407.19918*, 2024.

619

620 Kepan Nan, Rui Xie, Penghao Zhou, Tiehan Fan, Zhenheng Yang, Zhijie Chen, Xiang Li, Jian Yang,
 621 and Ying Tai. Openvid-1m: A large-scale high-quality dataset for text-to-video generation. *arXiv*
 622 *preprint arXiv:2407.02371*, 2024.

623 Federico Perazzi, Jordi Pont-Tuset, Brian McWilliams, Luc Van Gool, Markus Gross, and Alexander
 624 Sorkine-Hornung. A benchmark dataset and evaluation methodology for video object segmen-
 625 tation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 626 724–732, 2016.

627 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 628 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
 629 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

630

631 Xuanchi Ren, Tianchang Shen, Jiahui Huang, Huan Ling, Yifan Lu, Merlin Nimier-David, Thomas
 632 Müller, Alexander Keller, Sanja Fidler, and Jun Gao. Gen3c: 3d-informed world-consistent video
 633 generation with precise camera control. *arXiv preprint arXiv:2503.03751*, 2025.

634 Chris Rockwell, Joseph Tung, Tsung-Yi Lin, Ming-Yu Liu, David F Fouhey, and Chen-Hsuan Lin.
 635 Dynamic camera poses and where to find them. In *Proceedings of the Computer Vision and*
 636 *Pattern Recognition Conference*, pp. 12444–12455, 2025.

637

638 Runway. Runway. <https://runwayml.com/>. Accessed: 2024-11-05.

639

640 Junyoung Seo, Jisang Han, Jaewoo Jung, Siyoon Jin, Joungbin Lee, Takuya Narihira, Kazumi
 641 Fukuda, Takashi Shibuya, Donghoon Ahn, Shoukang Hu, et al. Vid-camedit: Video cam-
 642 era trajectory editing with generative rendering from estimated geometry. *arXiv preprint*
 643 *arXiv:2506.13697*, 2025.

644

645 Ivan Skorokhodov, Sergey Tulyakov, and Mohamed Elhoseiny. Stylegan-v: A continuous video
 646 generator with the price, image quality and perks of stylegan2. In *Proceedings of the IEEE/CVF*
 647 *conference on computer vision and pattern recognition*, pp. 3626–3636, 2022.

648

649 Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann.
 650 History-guided video diffusion. *arXiv preprint arXiv:2502.06764*, 2025.

648 Jianyu Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 649 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision*
 650 and *Pattern Recognition Conference*, pp. 5294–5306, 2025.

651

652 Yihan Wang, Lahav Lipson, and Jia Deng. Sea-raft: Simple, efficient, accurate raft for optical flow.
 653 In *European Conference on Computer Vision*, pp. 36–54. Springer, 2024a.

654

655 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo,
 656 and Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In
 657 *ACM SIGGRAPH 2024 Conference Papers*, pp. 1–11, 2024b.

658

659 Tong Wu, Shuai Yang, Ryan Po, Yinghao Xu, Ziwei Liu, Dahua Lin, and Gordon Wetzstein. Video
 660 world models with long-term spatial memory. *arXiv preprint arXiv:2506.05284*, 2025.

661

662 Zeqi Xiao, Yushi Lan, Yifan Zhou, Wenqi Ouyang, Shuai Yang, Yanhong Zeng, and Xingang
 663 Pan. Worldmem: Long-term consistent world simulation with memory, 2025. URL <https://arxiv.org/abs/2504.12369>.

664

665 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 666 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
 667 with an expert transformer. *arXiv preprint arXiv:2408.06072*, 2024.

668

669 Mark Yu, Wenbo Hu, Jinbo Xing, and Ying Shan. Trajectorycrafter: Redirecting camera trajec-
 670 tory for monocular videos via diffusion models. In *Proceedings of the IEEE/CVF international*
 671 *conference on computer vision*, 2025.

672

673 Shangjin Zhai, Zhichao Ye, Jialin Liu, Weijian Xie, Jiaqi Hu, Zhen Peng, Hua Xue, Danpeng Chen,
 674 Xiaomeng Wang, Lei Yang, et al. Stargen: A spatiotemporal autoregression framework with video
 675 diffusion model for scalable and controllable scene generation. *arXiv preprint arXiv:2501.05763*,
 676 2025.

677

678 Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, De-
 679 qing Sun, and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the
 680 presence of motion. *arXiv preprint arXiv:2410.03825*, 2024.

681

682 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 683 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 684 pp. 3836–3847, 2023.

685

686 Ruihan Zhang, Borou Yu, Jiajian Min, Yetong Xin, Zheng Wei, Juncheng Nemo Shi, Mingzhen
 687 Huang, Xianghao Kong, Nix Liu Xin, Shanshan Jiang, et al. Generative ai for film creation:
 688 A survey of recent advances. In *Proceedings of the Computer Vision and Pattern Recognition*
 689 *Conference*, pp. 6267–6279, 2025.

690

691 Zhoutong Zhang, Forrester Cole, Zhengqi Li, Michael Rubinstein, Noah Snavely, and William T
 692 Freeman. Structure and motion from casual videos. In *European Conference on Computer Vision*,
 693 pp. 20–37. Springer, 2022.

694

695 Guangcong Zheng, Teng Li, Rui Jiang, Yehao Lu, Tao Wu, and Xi Li. Cami2v: Camera-controlled
 696 image-to-video diffusion model. *arXiv preprint arXiv:2410.15957*, 2024.

697

698 Siyuan Zhou, Yilun Du, Yuncong Yang, Lei Han, Peihao Chen, Dit-Yan Yeung, and Chuang Gan.
 699 Learning 3d persistent embodied world models, 2025. URL <https://arxiv.org/abs/2505.05495>.

700

701 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
 Learning view synthesis using multiplane images. *arXiv preprint arXiv:1805.09817*, 2018.

APPENDIX

NOTATION SUMMARY

Symbol	Meaning
$V_{\text{in}} \in \mathbb{R}^{L \times H \times W \times 3}$	input arbitrary-length video with L frames.
$V_{\text{out}} \in \mathbb{R}^{T \times H \times W \times 3}$	generated futussh -L 6006:localhost:6006 USER@SERVERre video with T frames.
\mathcal{T}	text prompt for video generation for video models based on text-to-video (T2V) generation.
$\mathbf{C} = \{C_t\}_{t=1}^T$	desired camera trajectory the generated video V_{out} should follow.
C_t	camera extrinsics parameter where $C_t \in \mathbb{SE}(3)$.
K	camera intrinsics parameter.
$\mathcal{F}(\cdot)$	camera-controllable video generation framework.
$\mathcal{G}(\cdot)$	video-to-future-video generation framework.
\mathbf{I}_{ref}	image condition for image-to-video (I2V) generation.
$V[x : y]$	indexing operation; samples frames between frame x and $(y-1)$.
$\text{Temporal}(w)$	temporally adjacent w frames for condition.
$\text{Spatial}(T)$	spatially adjacent T frames for condition.
\hat{V}_{in}	conditioning frames for our framework, includes both $\text{Temporal}(w)$ and $\text{Spatial}(T)$.
$\mathcal{D}(\cdot)$	dynamic SLAM frameworks.
$\Pi(\cdot)$	perspective projection operator.
\mathbf{P}	aggregated 3D point clouds.
$\mathbf{P}_{\text{static}}$	aggregated 3D point clouds only from static regions.
\mathcal{M}	3D scene memory composed of camera extrinsics C_t and static point clouds $\mathbf{P}_{\text{static}}$.
M_i^{obj}	object-level masks representing dynamic regions of frame i .
$\mathcal{E}(\cdot)$	3D VAE.

A ADDITIONAL EXPERIMENTAL RESULTS

More Qualitative Results. We provide additional qualitative results of our method to further demonstrate its ability to generate high-quality outputs, as shown in Fig. 9, 10, 11, 12, and 13.

Long-Video Generation Results. Although our primary interest is building a framework capable of generating a spatially consistent next-video chunk given an arbitrary video as context, by iteratively applying our method, one of the potential applications of our framework is generating videos of arbitrary length.

To generate longer videos, we extend our method using iterative autoregressive generation, and conduct quantitative evaluations on long-video generation using the DAVIS dataset (Perazzi et al., 2016), where we evaluate video generation quality (PSNR, SSIM, LPIPS) and camera-controllability (RMSE, MSE, ATE), and compare with previous I2V baselines as reported in Tab. 5. However, as there are no publicly available video-to-future-video camera-controllable generation methods for our baselines, for a fairer comparison, we adopt three different strategies to generate long videos with our baseline methods. Specifically, we adopt 1) iterative autoregressive generation, 2) latent interpolation with autoregressive generation, and 3) applying training-free long video generation techniques.

For iterative autoregressive generation, we simply provide the last frame of the previously generated video as the input condition when generating the next video. For latent interpolation, we increase the number of input latents through interpolation, which can directly increase the number of generated frames at inference. After applying latent interpolation, we similarly adopt autoregressive generation to generate videos with the desired number of frames. By generating more frames at once, this reduces the number of iterations of autoregressive generation, which can increase overall video quality by reducing error accumulation. Finally, we also adopt FreeLong (Lu et al., 2024), a training-free approach for long video generation, which introduces frequency blending of latents specifically in Stable Video Diffusion (Blattmann et al., 2023). As we compare with the FloVD (Jin et al., 2025) model fine-tuned from CogVideoX (Yang et al., 2024), which is a transformer-based

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
Table 5: **Quantitative evaluation of spatially consistent long video generation on DAVIS (Perazzi et al., 2016) dataset.**

Methods	DAVIS					
	PSNR↑	SSIM↑	LPIPS↓	RMSE↓	MSE↓	ATE↓
CameraCtrl (He et al., 2024)	8.64	0.19	0.66	95.45	9332.08	0.1709
+ latent interpolation	14.12	0.49	0.45	53.50	3214.71	0.2225
+ FreeLong (Lu et al., 2024)	13.46	0.44	0.48	55.84	3314.31	0.2147
FloVD (Jin et al., 2025)	10.77	0.42	0.55	76.08	6131.95	0.2242
Ours	17.28	0.60	0.35	37.28	1583.77	0.1794

Table 6: **Dynamic mask ablation study.**

Methods	DynPose-100K						
	PSNR↑	SSIM↑	LPIPS↓	MEt3R↓	mRotErr (°)↓	mTransErr↓	mCamMC↓
(a) w/o dynamic mask	11.9963	0.2898	0.3748	0.104002	3.4142	8.5920	10.5049
(b) (a) + L1 difference mask	12.1083	0.3248	0.3690	0.155589	2.9390	7.7819	9.1524
(c) (b) + SAM2 propagation	13.5957	0.4036	0.3548	0.157610	2.7188	7.5402	8.9696
(d) (c) + point BW tracking	13.7311	0.4112	0.3454	0.122859	2.6103	7.4858	8.9181

model, we apply FreeLong only for CameraCtrl (He et al., 2024). Due to latent interpolation significantly increasing the computation in CogVideoX, we also apply the latent interpolation technique for CameraCtrl only. The qualitative results of our generated long videos can be found in the supplementary videos or in Fig. 14.

As shown in the results, our method shows its potential for long video generation, significantly outperforming previous baselines. However, as is common in auto-regressive generation, extending our framework to extremely long durations introduces the challenge of temporal error accumulation. While our method provides the critical *spatial consistency* required for long videos, solving long-term drift (error accumulation) typically requires dedicated refinement modules and techniques. We believe that further extending our framework to mitigate the aforementioned issues is a very important and interesting future direction to explore.

Ablation Study on Dynamic Masking Pipeline. We ablate each stage of our dynamic masking pipeline presented in Sec. 3.3. Stage (a) performs training without any dynamic mask, causing moving objects to interfere with static-scene learning. Stage (b) introduces a pixel-level L1 flow-difference mask, as described in Eq. 6, which detects motion per frame but often fails to fully capture dynamic objects due to noisy or fragmented flow estimation. Stage (c) improves object-level consistency by using SAM2 propagation from points sampled in the first frame; however, this stage cannot detect new or displaced dynamic objects appearing in later frames. Stage (d) further adds point tracking across the sequence, enabling backward propagation into the first frame before SAM2 segmentation, which allows the mask to capture all dynamic objects throughout the entire clip. The quantitative comparison for each variant is summarized in Tab. 6, where we evaluate the video generation quality (PSNR, SSIM, LPIPS), scene-consistency (Met3r), and camera-controllability (mRotErr, mTransErr, mCamMC) in a subset of the DynPose-100K dataset. The results effectively verify the need for each stage of our proposed dynamic mask generation pipeline.

Ablation study on the number of temporal condition images. As CogVideoX generates 49 frames simultaneously, the temporal window size w can be selected within the range $1 < w < 49$, meaning $(49 - w)$ frames are newly generated. In our framework, setting the window size to $w = 9$ (providing the last few frames) is one of the key contributions and design choices to ensure sufficient temporal context to maintain motion continuity and coherency with the input video, while still generating a sufficient number of frames (40). To better validate this choice, we conduct experiments with varying window sizes ($w = 1$ and $w = 5$). As summarized in Tab. 7, the results demonstrate that while the window size has a negligible effect on camera controllability metrics (mRotErr, mTransErr, mCamMC), providing a larger context window ($w = 9$) yields superior motion smoothness and temporal coherence, as evidenced by improved VBench metrics (Temporal Flicker and Motion Smoothness), which is aligned with our intentions.

810
 811 Table 7: **Ablation study on the size of temporal window w .** We conduct an ablation study on
 812 camera controllability with respect to the number of conditioned images w , and evaluate motion co-
 813 herence by measuring VBench (Huang et al., 2024)’s Temporal Flicker and Motion Smooth metrics.
 814 VBench metrics are normalized.

Methods	DynPose-100K				
	mRotErr \downarrow	mTransErr \downarrow	mCamMC \downarrow	Temporal Flicker \uparrow	Motion Smooth \uparrow
Ours ($w = 1$)	2.3898	7.7819	8.9785	0.8379	0.9253
Ours ($w = 5$)	2.3837	7.5512	8.6233	0.8508	0.9262
Ours ($w = 9$)	2.3772	7.4174	8.6352	0.8561	0.9335

815
 816
 817 Table 8: **Ablation study on the number of projected images n .** We conduct an ablation study on
 818 scene consistency and camera controllability with respect to the number of spatially adjacent frames
 819 n retrieved for spatial conditioning on the DynPose-100K (Rockwell et al., 2025) dataset.

Methods	DynPose-100K					
	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	mRotErr \downarrow	mTransErr \downarrow	mCamMC \downarrow
Ours ($n = 0$)	11.9555	0.3370	0.4512	3.4142	8.5920	10.5049
Ours ($n = 4$)	13.0382	0.3733	0.3758	2.3739	7.4278	8.6488
Ours ($n = 7$)	13.0468	0.3666	0.3812	2.3772	7.4174	8.6352

820
 821
 822 **Ablation study on the number of projected images.** We further evaluate the impact of using
 823 different numbers of projected views as spatial conditions. To do this, we compare our method
 824 against a baseline setting ($n = 0$), where n denotes the number of projected frames. In this baseline,
 825 the model is conditioned solely on the temporal frames without any projected spatial views. The
 826 results, presented in Tab. 8, show that without the incorporation of our spatial prompts, the baseline
 827 framework fails to maintain scene consistency (resulting in significantly lower PSNR and SSIM
 828 scores) and struggles to adhere to the target camera trajectory. In contrast, the variants utilizing
 829 projected images ($n = 4$ and $n = 7$) significantly outperform the $n = 0$ baseline across all metrics.
 830 This effectively verifies the critical importance of our spatial prompts for ensuring both high-fidelity
 831 scene consistency and precise camera control.

832
 833
 834 **DepthAnything v3 for 3D memory.** One of the advantages of our framework is that we do not
 835 have any special architecture designs tailored to MegaSAM and can always replace MegaSAM with
 836 a more robust and powerful model to resolve the current limitations. Here, we show an experiment
 837 where we replace MegaSAM with the recently released DepthAnything v3 (Lin et al., 2025a) for
 838 inference. The results, summarized in Tab. 9, show improvements across metrics, together with
 839 reduced inference time. This confirms that our method directly benefits from stronger priors and
 840 highlights a key advantage of our design: the components can be swapped at inference time without
 841 changing the overall pipeline, allowing users to flexibly choose different pretrained models.

842
 843
 844 **Inference Time.** Tab. 10 presents the end-to-end inference latency of our method in comparison
 845 to existing camera-controllable video diffusion models. Approaches such as CameraCtrl (He et al.,
 846 2024), MotionCtrl (Wang et al., 2024b), and FloVD (Jin et al., 2025) rely exclusively on diffusion-
 847 based synthesis, where inference time is primarily determined by the denoising process. In con-
 848 trast, our pipeline incorporates additional stages for SLAM-based 3D reconstruction and dynamic
 849 masking. With MegaSAM (Li et al., 2024) employed for dynamic SLAM, the preprocessing stage
 850 requires approximately 4 minutes, resulting in a total inference time of over 9 minutes. However, re-
 851 placing MegaSAM with a more lightweight and advanced method, such as DepthAnything v3 (Lin
 852 et al., 2025a), significantly reduces the SLAM processing time to roughly 10 seconds. This sim-
 853 ple replacement reduces the total latency to approximately 5 minutes, where the overall runtime is
 854 dominated by the diffusion-based video generation itself. Consequently, our framework achieves in-
 855 ference speeds comparable to CameraCtrl and MotionCtrl, which leverage a more lightweight video
 856 generation backbone, demonstrating that the proposed method introduces negligible computational
 857 overhead while enabling spatially consistent and camera-controllable generation.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
Table 9: **Using various methods for generating 3D memory.**

Methods	DynPose-100K		
	PSNR↑	SSIM↑	LPIPS↓
Ours w/ MegaSAM (Li et al., 2024)	13.0468	0.3666	0.3812
Ours w/ DepthAnything v3 (Lin et al., 2025a)	13.4534	0.3980	0.3637

872
873
874
875
876
877
878
879
Table 10: **Inference time comparison of different methods.**

Method	SLAM-Processing	Dynamic Masking & Depth Warping	Video Generation	Inference Time
CameraCtrl (He et al., 2024)	–	–	1 min 38 sec	1 min 38 sec
MotionCtrl (Wang et al., 2024b)	–	–	2 min 9.5 sec	2 min 9.5 sec
FloVD (Jin et al., 2025)	–	–	8 min 5.32 sec	8 min 5.32 sec
Ours – MegaSAM (Li et al., 2024)	4 min 18.813 sec	58.88 sec	4 min 3.62 sec	9 min 21.31 sec
Ours – DepthAnything v3 (Lin et al., 2025a)	10.031 sec	58.88 sec	4 min 3.62 sec	5 min 12.53 sec

B TRAINING DATASET CURATION PIPELINE.

886 Our training data is curated from two primary sources: RealEstate10K (Zhou et al., 2018), which
887 consists of static indoor scenes, and OpenVid-1M (Nan et al., 2024), which features diverse dynamic
888 content. For static videos from RealEstate10K, we directly extract 3D scene geometry without
889 applying dynamic masking, as these scenes contain negligible motion. In contrast, for dynamic
890 videos from OpenVid-1M, we conduct extensive data filtering and preprocessing: we remove game-
891 like or low-resolution videos, exclude samples with excessive camera motion, and apply the dynamic
892 masking pipeline described in Section 3.3 to separate static and dynamic regions. We further select
893 long video sequences with lengths of at least $L \geq 100$ frames to ensure sufficient input video length.
894 To construct the 3D scene memory, we employ VGGT (Wang et al., 2025) for static scenes and
895 MegaSAM (Li et al., 2024) for dynamic scenes. After filtering and processing, our final dataset
896 comprises approximately 30K and 20K high-quality long videos from RealEstate10K and OpenVid-
897 1M, respectively.

C DISCUSSION AND COMPARISON WITH RELATED WORKS

900 In this section, we discuss the differences between our proposed framework and recent relevant
901 works, focusing on 3D memory integration, camera-controllable generation, and dynamic object
902 handling.

904 **Explicit 3D Memory and World Models** Several recent works have explored utilizing 3D mem-
905 ory for video generation. Persistent embodied world model (Zhou et al., 2025) introduces 3D mem-
906 ory but relies on implicit memory representations and targets *static* scenes. In contrast, our work
907 leverages explicit 3D memory to achieve scene-consistent generation specifically for *real-world*
908 *dynamic* videos. Similarly, WorldMem (Xiao et al., 2025) builds upon the Oasis (Decart et al.,
909 2024) architecture and is trained primarily on the Minecraft dataset. It addresses static scenes
910 (RealEstate10K) or synthetic domains and requires key frames as conditions by increasing the
911 sequence size. Our approach differs by leveraging the learned priors of DiTs to generate scene-
912 consistent, camera-controllable videos in complex real-world dynamic scenarios. Furthermore, by
913 projecting constructed static-only 3D point clouds to the target trajectory, we condition on long
914 videos efficiently without increasing computational costs.

915 We also differentiate our work with SPMem (Wu et al., 2025), a concurrent work conceptually sim-
916 ilar to ours. However, our method distinguishes itself in two key aspects. First, regarding dynamic
917 object handling, while SPMem computes static components via naïve TSDF fusion, we introduce a
918 concise and accurate dynamic mask generation pipeline to effectively remove dynamic regions. Sec-

Figure 8: **Visualization of the 3D scene memory and the generated results.**

ond, in terms of efficiency, SPMem employs an additional ControlNet-style Diffusion-as-Shader (Gu et al., 2025) architecture, necessitating architecture search, such as the number of sufficient layers for the ControlNet-style block for different diffusion backbones, and the introduction of the additional model leads to extra computational resources for training. Conversely, we achieve scene-consistent generation without any architectural changes by injecting spatial and temporal conditioning into zero-padding slots, enabling efficient training and inference. While a direct comparison in performance and efficiency would better highlight these differences, it is currently not possible due to the unavailability of public code.

Camera-Controllable Video Generation Works such as CameraCtrl2 (He et al., 2025a) and APT2 (Lin et al., 2025b) explore camera conditioning using Plücker embeddings and autoregressive generation. While effective for short sequences, these methods typically model consistent video generation by taking only previous images as conditions without explicitly modeling 3D scene structure or considering spatial adjacency. Consequently, they fail to incorporate all previous frames due to computational constraints.

In contrast, our approach constructs an explicit 3D static memory using point clouds, enabling precise pixel-wise spatial alignment across views. Instead of relying on autoregressive propagation or feature-level Plücker conditioning, our 3D memory is directly integrated into the diffusion transformer via 3D-warped point clouds, providing scene-consistent constraints that do not accumulate drift over time. Additionally, our design explicitly handles dynamic objects by separating static and dynamic components, a challenge not addressed by these prior methods.

Dynamic Object Removal and Inpainting Regarding the removal of dynamic objects, our spatial conditioning shares surface-level similarities with video inpainting techniques such as FGVC (Gao et al., 2020). However, a fundamental difference lies in the role of the condition, as shown in Fig. 8. In standard inpainting, the model operates under hard constraints to fill masked regions. In our framework, spatial prompts serve as a *soft spatial guide*. This allows the diffusion model to fill holes and refine details while respecting the geometric layout where reliable projections exist. Crucially, this flexibility ensures the model can generate dynamic details on top of the condition, blending geometric consistency with realistic temporal dynamics, rather than merely filling static holes.

D LIMITATION

Our framework, **3DScenePrompt**, enables scene-consistent, camera-controllable video generation and demonstrates improved performance over existing methods. Nonetheless, it has a few limitations. To obtain point clouds, we rely on MegaSAM (Li et al., 2024) to process the input videos, which introduces additional computational overhead and increases inference time. This overhead could be reduced by adopting a more advanced module, *e.g.*, DepthAnything3 (Lin et al., 2025a).

In addition, the quality of the dynamic masks directly affects the fidelity of the generated videos. Thanks to our general and modular design, replacing the current component with a more advanced dynamic masking strategy that benefits from stronger models could further improve overall performance.

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

Figure 10: **Visualization of scene-consistent camera-controllable video generation.** Comparison of different methods (Wang et al., 2024b; He et al., 2024; Jin et al., 2025; Bahmani et al., 2025b) for generating videos from the same input (shown in Input Video) that follow the camera trajectory shown in the rightmost column (Camera). Our method best preserves scene consistency with the input video. Note the red-boxed regions: while the input video shows a white wall, competing methods either lose scene detail or fail to maintain the original scene structure. In contrast, our approach accurately remembers the white wall and maintains consistent scene elements throughout generation. In addition, when compared with the GT Future Video, ours best follows the camera condition, effectively verifying the strength of our framework for scene-consistent camera-controllable video generation.

1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Figure 11: **More qualitative results.**

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

Figure 12: **More qualitative results.**

1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

Figure 13: **More qualitative results.**

1296 **E REPRODUCIBILITY STATEMENT**
12971298 As mentioned in Section 3.1, our model builds upon the open-sourced CogVideoX-I2V-5B (Yang
1299 et al., 2024) model, where each of the processes for dynamic masking is also detailedly explained.
1300 We will also make all the codes publicly available.
13011302 **F USE OF LARGE LANGUAGE MODELS**
13031304 In accordance with the ICLR 2026 submission policy, we disclose that we used Large Language
1305 Models to assist in grammar correction for the writing in this manuscript.
13061307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349