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ABSTRACT

We present 3DScenePrompt, a framework for camera-controllable video gen-
eration that maintains scene consistency when extending arbitrary-length input
videos along user-specified trajectories. Unlike existing video generative methods
limited to conditioning on a single image or just a few frames, we introduce a
dual spatio-temporal conditioning strategy that fundamentally rethinks how video
models should reference prior content. Our approach conditions on both tempo-
rally adjacent frames for motion continuity and spatially adjacent content for scene
consistency. However, when generating beyond temporal boundaries, directly us-
ing spatially adjacent frames would incorrectly preserve dynamic elements from
the past. We address this through introducing a 3D scene memory that repre-
sents exclusively the static geometry extracted from the entire input video. To
construct this memory, we leverage dynamic SLAM with our newly introduced
dynamic masking strategy that explicitly separates static scene geometry from
moving elements. The static scene representation can then be projected to any
target viewpoint, providing geometrically-consistent warped views that serve as
strong spatial prompts while allowing dynamic regions to evolve naturally from
temporal context. This enables our model to maintain long-range spatial coher-
ence and precise camera control without sacrificing computational efficiency or
motion realism. Extensive experiments demonstrate that our framework signifi-
cantly outperforms existing methods in scene consistency, camera controllability,
and generation quality.

1 INTRODUCTION

Camera-controllable video generation (He et al., 2024; Wang et al., 2024b; Jin et al., 2025) aims to
synthesize videos following user-specified camera trajectories while maintaining visual coherence
and temporal consistency. Recent advances have progressed from generating entirely new videos
with controllable viewpoints (Bahmani et al., 2025) to enabling users to extend a single image or
short video clips along desired camera paths (He et al., 2024; Agarwal et al., 2025). Yet these meth-
ods share a fundamental limitation: they can only process extremely short conditioning sequences,
typically just a few frames, which constrains their ability to understand longer videos and hence
fails to preserve the rich scene context present in those longer videos. What if we could provide a
model with arbitrary-length video sequences and generate continuations that not only follow pre-
cise camera controls but also maintain scene consistency with the entire input? Such technology,
which we refer to as scene-consistent camera-controllable video generation, has immediate appli-
cations in film production (Zhang et al., 2025), virtual reality (He et al., 2025), and synthetic data
generation (Knapp & Bohacek, 2025).

Scene-consistent camera-controllable video generation poses three intertwined challenges that must
be solved jointly. First, static and dynamic elements must be handled differently: while static scene
elements should remain consistent throughout generation, dynamic elements such as moving ob-
jects and people should evolve naturally from their most recent states rather than rigidly preserving
motions from the distant past. Second, camera control demands understanding the underlying 3D
geometry of the scene: the generated content must respect physical constraints, properly handle
occlusions, and seamlessly compose dynamic elements onto static geometry, while extrapolating
plausible content for previously unobserved regions. Third, these capabilities must be achieved
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within practical computational constraints, as naive approaches that process all input frames quickly
become intractable when the input video sequence is long.

How can we tackle this challenging task by leveraging existing video generative models? Our key
insight comes from fundamentally rethinking how video models should reference prior content. Cur-
rent image-to-video (Yang et al., 2024) and video-to-future-video models 1 (Agarwal et al., 2025)
achieve realistic generation by conditioning on temporally adjacent frames to maintain short-term
consistency and motion continuity. However, adjacency in video is not purely temporal—it can also
be spatial. When generating scene-consistent videos, the frames we synthesize may be spatially
adjacent to frames from much earlier in the input sequence, particularly when the camera revis-
its similar viewpoints or explores nearby regions. This dual nature of adjacency suggests a new
conditioning paradigm that leverages both temporal and spatial relationships.

Based on these motivations, we propose 3DScenePrompt, a novel video generation framework de-
signed for scene-consistent camera-controllable video synthesis. It takes an arbitrary-length video
as context and generates the future video that is consistent with the scene geometry of the context
video. The key innovation lies in our dual spatio-temporal conditioning strategy: the model con-
ditions on both temporally adjacent frames (for motion continuity) and spatially adjacent frames
(for scene consistency). However, an important consideration for spatial conditioning for our task
is that it must provide only the persistent static scene structure while excluding dynamic content, as
directly conditioning on spatially adjacent frames from the past would incorrectly preserve dynamic
elements. To enable this without temporal contradictions, we construct a 3D scene memory that
represents exclusively the static geometry extracted from the entire input video.

To construct this 3D scene memory from dynamic videos, we leverage recent advances in dynamic
SLAM frameworks (Zhang et al., 2022; 2024; Li et al., 2024) to estimate camera poses and 3D
structure from the input video. To extract only the static regions from the estimated 3D structure, we
introduce a dynamic masking strategy that explicitly separates static elements and moving objects.
The static-only 3D representation can then be projected to target viewpoints, yielding geometrically-
consistent warped views that serve as spatial prompts while allowing dynamic elements to evolve
naturally from temporal context alone. Surprisingly, the integration of 3D scene memory provides
an additional benefit: the geometrically-consistent warped views provide rich visual references that
significantly reduce uncertainty in viewpoint manipulation, enabling precise camera control without
any other explicit camera conditioning.

In summary, 3DScenePrompt enables both accurate camera control and long-range spatial consis-
tency by treating the static scene representation as a persistent spatial prompt that guides generation
across arbitrary timescales. Extensive experiments demonstrate that our framework significantly
outperforms existing methods in maintaining scene consistency, achieving precise camera control,
and generating high-quality videos from arbitrary-length inputs.

2 RELATED WORK

Camera-controllable video generation. Building upon the recent success of video diffusion
models (Blattmann et al., 2023; Guo et al., 2023; Yang et al., 2024; Runway; Brooks et al., 2024),
recent works (He et al., 2024; Wang et al., 2024b; Bahmani et al., 2024) have achieved camera-
controllable video generation by introducing additional adapters into U-Net-based video diffusion
models that accept camera trajectories. For instance, CameraCtrl and VD3D (Bahmani et al., 2024;
He et al., 2024) incorporate spatiotemporal camera embeddings, such as Plücker coordinates, via
ControlNet-like mechanisms (Zhang et al., 2023). While these methods enable precise trajectory
following, they only condition on single starting images, lacking mechanisms to maintain consis-
tency with extended video context. In contrast, our approach enables leveraging entire video se-
quences as spatial prompts through 3D memory construction, enabling scene-consistent generation
that preserves the rich scene context within arbitrary-length inputs.

Geometry-grounded video generation. Recent works (Ren et al., 2025; Yu et al., 2025; Seo et al.,
2025) have integrated off-the-shelf geometry estimators into video generation pipelines to improve

1Throughout our paper, video-to-future-video models refer to models that are capable of generating the
subsequent frames of the given input video (e.g., cosmos-predict2 (Agarwal et al., 2025).
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geometric accuracy. Gen3C (Ren et al., 2025), for instance, similarly adopts dynamic SLAM to lift
videos to 3D representations. However, these methods exclusively address dynamic novel view syn-
thesis—generating new viewpoints within the same temporal window as the input. This constrained
setting allows them to simply warp entire scenes without distinguishing static and dynamic elements.
Our work fundamentally differs by generating content beyond temporal boundaries, requiring selec-
tive masking of dynamic regions during 3D construction—a critical challenge that emerges only
when static geometry must persist while dynamics evolve naturally into the future.

Long-horizon scene-consistent generation. Various approaches attempt scene-consistent long
video generation through different strategies. ReCamMaster (Bai et al., 2025) and Trajecto-
ryCrafter (Yu et al., 2025) interpolate frames or construct 3D representations but remain confined
to the input’s spatiotemporal coverage, essentially performing dynamic novel view synthesis. Star-
Gen (Zhai et al., 2025) scales to long trajectories but assumes static worlds, eliminating temporal
dynamics entirely. DFoT (Song et al., 2025) most closely relates to our work, proposing guidance
methods that condition on previous frames for scene consistency. However, DFoT also faces fun-
damental memory constraints when processing extended sequences, limiting its ability to maintain
long-range spatial coherence. Our dual spatio-temporal strategy with SLAM-based spatial memory
overcomes these limitations by selectively retrieving only the most relevant frames, both tempo-
rally and spatially, enabling computationally efficient processing of arbitrary-length videos while
maintaining both motion continuity and scene consistency.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND MOTIVATION

We address the task of scene-consistent camera-controllable video generation: given a dynamic
video Vin ∈ RL×H×W×3 of arbitrary length L as context with height H and width W , our goal
is to generate T subsequent frames Vout ∈ RT×H×W×3 that follow a desired camera trajectory
C = {Ct}Tt=1 while maintaining consistency with the scene captured in the context input:

Vout = F(Vin, T ,C), (1)

where Ct ∈ SE(3) represents camera extrinsic matrices and T is a text prompt when a video gener-
ator F(·) is based on pretrained text-to-video priors (Yang et al., 2024; Bahmani et al., 2025).

Comparison to existing solutions. This task fundamentally differs from existing video generation
paradigms. Existing camera-controllable generation methods (He et al., 2024; Wang et al., 2024b;
Bahmani et al., 2024) synthesize videos following user-specified trajectories but only condition on
a single image Iref or plain text T (Fig. 1-(a)):

Vout = F(Iref, T ,C), or Vout = F(T ,C), (2)

which is insufficient for our task, where the entire underlying 3D scene of the context
video should be considered. In contrast, video-to-future-video generation methods such as
Cosmos-predict-2 (Agarwal et al., 2025) G(·) employ temporal sliding windows to generate
future frames (Fig. 1-(b)):

Vout = G(Vin[L− w : L], T ) (3)
where Vin[L − w : L] for w ≪ L represents a small overlap window, typically consisting of the
last few frames of Vin. Although this design encourages temporal smoothness by providing the last
few frames when generating the future video, it often fails to preserve long-term spatial consistency
when the camera revisits regions not covered by the small window w.

3.2 TOWARDS SCENE-CONSISTENT CAMERA-CONTROLLABLE VIDEO GENERATION

The key challenge of scene-consistent camera-controllable video generation lies in reconciling two
competing requirements: maintaining consistency with potentially distant frames that share spatial
proximity (when the camera returns to similar viewpoints), while evolving dynamic content naturally
from the recent temporal context. Ideally, conditioning on all frames Vin would ensure optimal
global spatial consistency. However, this quickly becomes impractical as the sequence grows, since
standard self-attention incurs quadratic time/memory in the sequence length.

3
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(a) Camera control video generation

CaptionLast frame Traj.

Target video

ℱ

Input video

(b) Video-to-future-video generation

Future video

𝐺

Input video

CaptionLast few frames

Future video

ℱ

Input video

(c) Ours

Caption Traj.Last few frames Frames close to Traj.

Figure 1: Comparison of existing architectures. (a) Camera-controllable methods condition on
a single frame and camera trajectory. (b) Video-to-future-video methods use the last few frames
of the input video when generating the future video for temporal continuity, but fail to maintain
long-term spatial consistency when revisiting viewpoints unseen in the given few frames. (c) Our
approach combines temporal conditioning (last few frames) with spatial conditioning (spatially ad-
jacent frames) to achieve scene-consistent generation with precise camera control.

Dual spatio-temporal sliding window strategy. Instead of increasing the temporal window size
w of the existing video-to-future-video generation methods, we introduce a dual sliding window
strategy that conditions on frames selected along both temporal and spatial axes (Fig. 1-(c)). Beyond
the standard temporal window that captures recent motion dynamics, we add a spatial window that
retrieves frames sharing similar 3D viewpoints, regardless of their temporal distance:

Vout = F(Ṽin, T ,C), where Ṽin = {Temporal(w)} ∪ {Spatial(T )}, (4)

where the model F generates a future sequence Vout conditioned on Temporal(w), last w frames of
the input video Vin[L−w : L], and Spatial(T ), the T retrieved frames from the entire input sequence
based on viewpoint similarity to the target viewpoint C. This dual conditioning enables the model
to reference distant frames that observe the same spatial regions, maintaining scene consistency
without processing all L input frames.

While this dual conditioning is conceptually appealing, naı̈vely retrieving and providing spatially
adjacent frames directly would be problematic for our task. Since we aim to generate future con-
tent beyond the input’s temporal boundary, directly conditioning on frames from earlier timestamps
would incorrectly preserve dynamic elements (e.g., a walking person from frame 50 should not nec-
essarily reappear at that same location when generating frame 200). The spatial conditioning must
therefore provide only the persistent scene structure while excluding dynamic content. Rather than
retrieving individual frames, we introduce a 3D scene memory M that represents exclusively the
static geometry extracted from all spatially relevant frames.

3.3 3D SCENE MEMORY CONSTRUCTION

Our 3D scene memory must efficiently encode spatial relationships across all L frames while ex-
tracting only persistent static geometry. To construct the 3D scene memory, we leverage dynamic
SLAM frameworks (Li et al., 2024; Zhang et al., 2024) to estimate camera poses and reconstruct 3D
structure:

(Ĉ,P) = DSLAM(Vin), (5)

where Ĉ = {Ĉi}Li=1 are the estimated camera poses, P represents the aggregated 3D point cloud
from the L input frames, and DSLAM(·) represents the dynamic SLAM framework. This SLAM
integration is effective in that it not only estimates the camera parameters of the input frames but
also reconstructs the 3D structure of the scene, which can be further utilized to represent the 3D
static geometry.

While the camera poses Ĉ enable efficient spatial retrieval by comparing viewpoint similarity with
the target trajectory C, the aggregated 3D point cloud P still contains both static and dynamic
regions. Thus, we now explain our full pipeline on how to identify dynamic regions and only
maintain the persistent static geometry of the input video.

4
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Figure 2: Illustration of dynamic masking for static scene extraction. When aggregating 3D
points across frames, moving objects create ghosting artifacts if not properly masked. (a) Without
masking, dynamic elements (horses and riders) appear frozen at multiple positions, severely degrad-
ing the warped views. (b) With our dynamic masking pipeline, these elements are identified and
excluded, resulting in clean static-only point clouds that can be reliably warped to new viewpoints.

Dynamic masking for static scene extraction. Naı̈vely aggregating points across frames creates
ghosting artifacts where moving objects appear frozen at multiple positions, as shown in Fig. 2-(a).
We address this through a comprehensive three-stage masking pipeline that identifies and excludes
all dynamic content as depicted in Fig. 3.

We begin with pixel-level motion detection following MonST3R (Zhang et al., 2024). For each
frame pair, we compute optical flow using SEA-RAFT (Wang et al., 2024a) (Flowoptical) and compare
it against the flow induced by camera motion alone (Flowwarp). Regions where the L1 difference
exceeds a specific threshold τ are marked as potentially dynamic:

M pixel
i = 1 [∥Flowoptical − Flowwarp∥1 > τ ] . (6)

However, pixel-level detection captures motion only at specific instants and misses complete object
boundaries. We therefore propagate these sparse detections to full objects using SAM2 (Ravi et al.,
2024), where we sample points from dynamic pixels in the first frame for prompts. Yet this approach
still has limitations: static objects that begin moving in later frames may not be detected if they
appear static initially.

Our solution employs backward tracking with CoTracker3 (Karaev et al., 2024) to aggregate motion
evidence across the entire sequence. From the sampled points in each frame obtained from our
pixel-level motion detection, we track these points from all frames back to t = 0, capturing motions
of objects that move at any point. These aggregated points are used to prompt the final SAM2 pass,
producing complete object-level masks M obj

i that cleanly separate all dynamic content (Fig. 2-(b)).
With the full dynamic mask, we can now obtain the static-only 3D geometry Pstatic:

Pstatic =

L⋃
i=1

Pi ⊙ (1−M obj
i ). (7)

From the constructed static-only 3D geometry Pstatic with our proposed dynamic masking strategy,
we now obtain the 3D scene memory:

M = (Ĉ,Pstatic), (8)

where we now explain how this 3D scene memory M can be used for scene-consistent camera-
controllable video generation in the following section.

3.4 3D SCENE PROMPTING

Having constructed the static-only 3D representation Pstatic, rather than naı̈vely retrieving T frames
from the input video based on viewpoint similarity, we synthesize static-only spatial frames through
the projection of Pstatic. For each target camera pose Ct ∈ C, we generate the corresponding spatial
frame by projecting the static points from the most spatially relevant input frames:

Spatial(t) = Π(K · Ct ·P(n)
static), (9)

5
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BW tracking

Figure 3: Dynamic masking. A three-stage pipeline refines dynamic region detection to produce
complete object-level masks: (1) optical-flow differences detect pixel-level motion (Dynamic thresh-
olding); (2) sample points from these regions for all frames and perform backward tracking (BW
tracking) with CoTracker3 (Karaev et al., 2024) to aggregate motion evidence across all frames
back to t=0 (dynamic aggregation), capturing objects that move at any time; (3) propagate aggre-
gated points in the first frame to the entire video using SAM2 (Ravi et al., 2024). The resulting
dynamic masks cleanly separate moving elements (people, objects) from the static background, en-
abling construction of the static-only point cloud Pstatic.

where P
(n)
static ⊂ Pstatic contains points from the top-n spatially adjacent input frames to Ct, Π(·) de-

notes perspective projection, and K is the camera intrinsic matrix. The complete spatial condition-
ing becomes Spatial(T ) = {Spatial(t)}Tt=1 ∈ RT×H×W×3, where spatial adjacency is calculated
by field-of-view overlap.

This projection-based approach ensures only static content appears in conditioning while providing
geometrically consistent views aligned to target poses. Notably, the static point cloud aggregates in-
formation from multiple viewpoints, potentially filling regions occluded by dynamic objects. These
projected views serve as 3D scene prompts that provide explicit guidance about persistent scene
structure, enabling precise camera control without additional encoding modules.

The projected views Spatial(T ) serve as what we term 3D scene prompts—they provide the model
with explicit guidance about the persistent scene structure. By conditioning on both Temporal(w)
and Spatial(T ), our framework effectively enables scene-consistent camera-controllable video gen-
eration with computational efficiency while preserving the prior for high-quality video synthesis.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model architecture. We build upon CogVideoX-I2V-5B (Yang et al., 2024), extending its single-
image conditioning to accept dual spatio-temporal inputs with minimal architectural changes. The
key modification is repurposing the existing image conditioning channel to accept concatenated
latents from both temporal frames and spatial projections. Specifically, we provide the last w = 9
frames from Vin as temporal conditioning and T projected views from the static point cloud as
spatial conditioning. This enables the DiT backbone to remain entirely unchanged, preserving all
pretrained video priors. Both conditions are encoded through the frozen 3D VAE and concatenated
channel-wise such that Zcond = Concat[E(Temporal(w)), E(Spatial(T ))].

Fine-tuning. We fully fine-tune the model for a total of 4K iterations with a batch size of 8 using
4 H100 GPUs, which required approximately 48 hours. We used the 16-bit Adam optimizer with a
learning rate of 1×10−5, and adopted the same hyperparameter settings as those used in the training
of CogVideoX (Yang et al., 2024). For the temporal sliding window, we provide the last 9 frames of
the input video, setting w = 9. For the projection of top-n spatially adjacent views, we set n = 7.

6
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Methods RealEstate10K DynPose-100K
PSNR↑ SSIM↑ LPIPS↓ MEt3R↓ PSNR↑ SSIM↑ LPIPS↓ MEt3R↓

DFoT Song et al. (2025) 18.3044 0.5960 0.3077 0.181164 12.1471 0.3040 0.4172 0.183202
3DScenePrompt (Ours) 20.8932 0.7171 0.2120 0.040843 13.0468 0.3666 0.3812 0.124189

Table 1: Evaluation of spatial and geometric consistency. We compare DFoT and Ours on the
RealEstate10K (Zhou et al., 2018) and DynPose-100K (Rockwell et al., 2025) datasets. For spatial
consistency, we evaluate PSNR, SSIM, and LPIPS on revisited camera trajectories, while for geo-
metric consistency, we report the MEt3R (Asim et al., 2025) metric.

Experimental settings. We evaluate our method across four key aspects: camera controllability,
video quality, scene consistency, and geometric consistency. Since no prior work directly addresses
scene-consistent camera-controllable video generation, we compare against two categories of base-
lines: (1) camera-controllable methods (CameraCtrl (He et al., 2024), MotionCtrl (Wang et al.,
2024b), FloVD (Jin et al., 2025), AC3D (Bahmani et al., 2025)) for camera control and video qual-
ity metrics, and (2) DFoT (Song et al., 2025), which attempts scene-consistent camera-controllable
generation, for spatial and geometric consistency metrics.

We primarily evaluate on 1,000 dynamic videos from DynPose-100K (Rockwell et al., 2025). For
scene consistency evaluation, we additionally test on 1,000 static videos from RealEstate10K (Zhou
et al., 2018), as static scenes provide clearer spatial consistency assessment.

4.2 SCENE-CONSISTENT VIDEO GENERATION

Evaluation Protocol. As mentioned in Section 3.1, one of the unique and key challenges in scene-
consistent camera-controllable video generation is maintaining spatial consistency over extended du-
rations. From a given input video, we evaluate spatial consistency by generating camera trajectories
that revisit the viewpoints in the given video. By matching frames in the generated video and the in-
put video that share the same viewpoint, we calculate PSNR, SSIM, and LPIPS. For RealEstate10K,
we evaluate the whole image, whereas we only evaluate the static regions by masking out the dy-
namic regions for DynPose-100K. We also assess geometric consistency using Met3R (Asim et al.,
2025), which measures multi-view alignment of generated frames under the recovered camera pose.

Results. As shown in Tab. 1, 3DScenePrompt significantly outperforms DFoT across all metrics
for both static and dynamic scenes. Most notably, our MEt3R evaluation error drops 77% (0.041
vs 0.181), demonstrating superior multi-view geometric alignment. While DFoT similarly tack-
les scene-consistent camera-controllable video generation through history guidance, their approach
fails to maintain scene-consistency for long sequences due to memory constraints. In contrast, our
dual spatio-temporal conditioning enables long-term scene-consistency without causing significant
computational overhead. The qualitative comparisons shown in Fig. 4 also validate the effectiveness
of our approach over DFoT.

4.3 CAMERA-CONTROLLABLE VIDEO GENERATION

Table 2: Camera controllability evaluation.

Methods DynPose-100K
mRotErr (◦)↓ mTransErr↓ mCamMC↓

MotionCtrl Wang et al. (2024b) 3.5654 7.8231 9.7834
CameraCtrl He et al. (2024) 3.3273 9.5989 11.2122
FloVD Jin et al. (2025) 3.4811 11.0302 12.6202
AC3D Bahmani et al. (2025) 3.0675 9.7044 11.1634
DFoT Song et al. (2025) 2.3977 8.0866 9.2330
3DScenePrompt (Ours) 2.3772 7.4174 8.6352

Evaluation Protocol. We employ the
evaluation protocol of previous meth-
ods (He et al., 2024; Zheng et al., 2024; Jin
et al., 2025) for the camera controllability.
We provide an input image along with as-
sociated camera parameters for I2V mod-
els (He et al., 2024; Wang et al., 2024b;
Jin et al., 2025) and solely provide camera
parameters for the T2V model (Bahmani
et al., 2025). For our model, we provide the last 9 frames of the input video together with the
camera parameters. To evaluate how faithfully the generated video follows the camera condition,
we estimate camera parameters from the synthesized video using MegaSAM (Li et al., 2024), and
compare the estimated camera parameters against the condition camera trajectory C.
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Figure 4: Visualization of generated videos following trajectories that revisit early frames in the
input video. We visualize and compare frames obtained from DFoT (Song et al., 2025) and Ours.
We condition both DFoT and ours to generate a frame of a viewpoint that aligns with the viewpoint
within the input. The comparison shows that ours shows much more consistent generation, whereas
DFoT fails to generate scene-consistent frames mainly due to the limited number of frames it can
condition on.

Table 3: Evaluation of video generation quality. We assess the quality of generated videos using
FVD and VBench++ scores. For FVD, lower values indicate higher video quality. For VBench++
scores, higher values indicate better performance for all metrics. All VBench++ scores are normal-
ized.

Methods DynPose-100K

FVD Overall
Score

Subject
Consist

Bg
Consist

Aesthetic
Quality

Imaging
Quality

Temporal
Flicker

Motion
Smooth

Dynamic
Degree

MotionCtrl Wang et al. (2024b) 1017.4247 0.5625 0.5158 0.7093 0.3157 0.3149 0.8297 0.8432 0.7900
CameraCtrl He et al. (2024) 737.0506 0.6280 0.6775 0.8238 0.3736 0.3888 0.6837 0.6955 0.9900
FloVD Jin et al. (2025) 171.2697 0.7273 0.7964 0.8457 0.4722 0.5546 0.7842 0.8364 0.9900
AC3D Bahmani et al. (2025) 281.2140 0.7428 0.8360 0.8674 0.4766 0.5381 0.8020 0.8673 1.0000
3DScenePrompt (Ours) 127.4758 0.7747 0.8669 0.8727 0.4990 0.5964 0.8551 0.9260 1.0000

The comparison between the estimated and input camera parameters is quantified using three met-
rics: mean rotation error (mRotErr), mean translation error (mTransErr), and mean error in the
camera extrinsic matrices (mCamMC). For the generated video, we also assess video synthesis per-
formance using the Fréchet Video Distance (FVD)Skorokhodov et al. (2022) and seven metrics
from VBench++Huang et al. (2024): subject consistency, background consistency, aesthetic quality,
imaging quality, temporal flickering, motion smoothness, and dynamic degree.
Results. We first evaluate camera controllability and compare our method with competitive base-
lines. As shown in Tab. 2, our approach consistently outperforms existing methods, indicating
3DScenePrompt is capable of generating videos with precise camera control. We then assess the
overall video quality (Tab. 3) and provide qualitative comparisons (Fig. 5). As observed in Tab. 3,
our method achieves the best generation quality across all metrics for dynamic video generation,
which is further supported by the visual results in Fig. 5.

4.4 ABLATION STUDIES
Table 4: Ablation study.

Methods Dynamic
mask M

DynPose-100K
PSNR↑ SSIM↑ LPIPS↓ MEt3R↓

Ours (n = 4) ✓ 13.0382 0.3733 0.3758 0.124893
Ours (n = L) ✓ 13.0206 0.3631 0.3810 0.123507
Ours (n = 7) ✗ 12.2304 0.3063 0.3821 0.134885
Ours (n = 7) ✓ 13.0468 0.3666 0.3812 0.124189

We analyze two critical components of our
framework: the dynamic masking strategy that
separates static and dynamic elements, and the
number of spatially adjacent frames n retrieved
for spatial conditioning. Tab. 4 demonstrates
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Figure 5: Visualization of scene-consistent camera-controllable video generation. Comparison
of different methods for generating videos from the same input (shown in Input Video) that follow
the camera trajectory shown in GT, which is the ground truth future video. Our method best pre-
serves scene consistency with the input video. Note the red-boxed regions in the left scene: while
the input video shows a white wall, competing methods either lose scene detail or fail to maintain
the original scene structure. In contrast, our approach accurately remembers the white wall and
maintains consistent scene elements throughout generation. In addition, when compared with the
GT Future Video, ours best follows the camera condition, effectively verifying the strength of our
framework for scene-consistent camera-controllable video generation.

the impact of varying n and the necessity of dynamic masking. Without dynamic masking (3rd
row), the model suffers significantly across all, showing a large drop of PSNR of approximately
0.8dB and also an increase of MEt3R error. This degradation occurs because unmasksed dynamic
objects create ghosting artifacts when warped to new viewpoints, corrupting the spatial condition-
ing. Regarding the number of spatially adjacent frames, we find that performance stabilizes around
n = 7, with minimal improvements beyond this point. This suggests that 7 frames provide sufficient
spatial context while maintaining computational efficiency.

5 CONCLUSION

In this work, we introduced 3DScenePrompt, a framework for scene-consistent camera-controllable
video generation. By combining dual spatio-temporal conditioning with a static-only 3D scene
memory constructed through dynamic SLAM and our dynamic masking strategy, we enable gen-
erating continuations from arbitrary-length videos while preserving scene geometry and allowing
natural motion evolution. Extensive experiments demonstrate superior performance in camera con-
trollability, scene consistency, and generation quality compared to existing methods. Our approach
opens new possibilities for long-form video synthesis applications where maintaining both spatial
consistency and precise camera control is essential.
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APPENDIX

Symbol Meaning

Vin ∈ RL×H×W×3 input arbitrary-length video with L frames.
Vout ∈ RT×H×W×3 generated future video with T frames.
T text prompt for video generation for video models based on text-to-video (T2V) generation.
C = {Ct}Tt=1 desired camera trajectory the generated video Vout should follow.
Ct camera extrinsics parameter where Ct ∈ SE(3).
K camera intrinsics parameter.
F(·) camera-controllable video generation framework.
G(·) video-to-future-video generation framework.
Iref image condition for image-to-video (I2V) generation.
V [x : y] indexing operation; samples frames between frame x and (y-1).
Temporal(w) temporally adjacent w frames for condition.
Spatial(T ) spatially adjacent T frames for condition.
Ṽin conditioning frames for our framework, includes both Temporal(w) and Spatial(T ).
D(·) dynamic SLAM frameworks.
Π(·) perspective projection operator.
P aggregated 3D point clouds.
Pstatic aggregated 3D point clouds only from static regions.
M 3D scene memory composed of camera extrinsics Ct and static point clouds Pstatic.
M obj

i object-level masks representing dynamic regions of frame i.
E(·) 3D VAE.

A ADDITIONAL EXPERIMENTAL RESULTS

Additional qualitative results are provided in the supplementary zip file.

B REPRODUCIBILITY STATEMENT

As mentioned in Section 3.1, our model builds upon the open-sourced CogvideoX-I2V-5B (Yang
et al., 2024) model, where each of the processes for dynamic masking is also detailedly explained.
We will also make all the codes publicly available.

C USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 submission policy, we disclose that we used Large Language
Models to assist in grammar correction for the writing in this manuscript.
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