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Figure 1: Teaser. Our framework generates the next video chunk that follows a user-specified
camera trajectory while maintaining scene consistency. Our dual spatio-temporal conditioning
jointly leverages the last few frames to ensure temporal continuity and the rendered point cloud
to enforce spatial consistency.

ABSTRACT

We present 3DScenePrompt, a framework that generates the next video chunk
from arbitrary-length input video chunk while supporting highly complex and pre-
cise camera control and preserving scene consistency. Unlike previous methods
conditioned on a single image or a short clip, our approach employs dual spatio-
temporal conditioning that reformulates context-view referencing across the en-
tire input video. Specifically, we condition on both temporally adjacent frames to
ensure motion continuity and spatially adjacent content to preserve scene consis-
tency, enabled by a 3D scene memory that exclusively represents the static geome-
try extracted from the full input sequence. To construct this memory, we leverage
dynamic SLAM with a newly introduced dynamic masking strategy that explic-
itly separates static scene geometry from moving elements. The resulting static
representation can then be projected to arbitrary target viewpoints, providing ge-
ometrically consistent warped views that act as strong 3D spatial prompts, while
allowing dynamic regions to evolve naturally from temporal context. This design
allows our model to maintain long-range spatial coherence and precise camera
control without compromising computational efficiency or motion realism. Exten-
sive experiments demonstrate that our framework significantly outperforms exist-
ing methods in scene consistency, camera controllability, and generation quality.

1 INTRODUCTION

Camera-controllable video generation (He et al., 2024; Wang et al., 2024b; Jin et al., 2025) aims to
synthesize videos following user-specified camera trajectories while maintaining visual coherence
and temporal consistency. Recent advances have progressed from generating entirely new videos

1
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with controllable viewpoints (Bahmani et al., 2025a) to enabling users to extend a single image or
short video clips along desired camera paths (He et al., 2024; Agarwal et al., 2025). Yet these meth-
ods share a fundamental limitation: they can only process extremely short conditioning sequences,
typically just a few frames, which constrains their ability to understand longer videos and hence
fails to preserve the rich scene context present in those longer videos. What if we could provide a
model with arbitrary-length video sequences and generate continuations that not only follow pre-
cise camera controls but also maintain scene consistency with the entire input? Such technology,
which we refer to as scene-consistent camera-controllable video generation, has immediate appli-
cations in film production (Zhang et al., 2025), virtual reality (He et al., 2025b), and synthetic data
generation (Knapp & Bohacek, 2025).

Scene-consistent camera-controllable video generation poses three intertwined challenges that must
be solved jointly. First, static and dynamic elements must be handled differently: while static scene
elements should remain consistent throughout generation, dynamic elements such as moving ob-
jects and people should evolve naturally from their most recent states rather than rigidly preserving
motions from the distant past. Second, camera control demands understanding the underlying 3D
geometry of the scene: the generated content must respect physical constraints, properly handle
occlusions, and seamlessly compose dynamic elements onto static geometry, while extrapolating
plausible content for previously unobserved regions. Third, these capabilities must be achieved
within practical computational constraints, as naive approaches that process all input frames quickly
become intractable when the input video sequence is long.

How can we tackle this challenging task by leveraging existing video generative models? Our key
insight comes from fundamentally rethinking how video models should reference prior content. Cur-
rent image-to-video (Yang et al., 2024) and video-to-future-video models 1 (Agarwal et al., 2025)
achieve realistic generation by conditioning on temporally adjacent frames to maintain short-term
consistency and motion continuity. However, adjacency in video is not purely temporal—it can also
be spatial. When generating scene-consistent videos, the frames we synthesize may be spatially
adjacent to frames from much earlier in the input sequence, particularly when the camera revis-
its similar viewpoints or explores nearby regions. This dual nature of adjacency suggests a new
conditioning paradigm that leverages both temporal and spatial relationships.

Based on these motivations, we propose 3DScenePrompt, a novel video generation framework de-
signed for scene-consistent camera-controllable video synthesis. It takes an arbitrary-length video
as context and generates the future video that is consistent with the scene geometry of the context
video. The key innovation lies in our dual spatio-temporal conditioning strategy: the model con-
ditions on both temporally adjacent frames (for motion continuity) and spatially adjacent frames
(for scene consistency). However, an important consideration for spatial conditioning for our task
is that it must provide only the persistent static scene structure while excluding dynamic content, as
directly conditioning on spatially adjacent frames from the past would incorrectly preserve dynamic
elements. To enable this without temporal contradictions, we construct a 3D scene memory that
represents exclusively the static geometry extracted from the entire input video.

To construct this 3D scene memory from dynamic videos, we leverage recent advances in dynamic
SLAM frameworks (Zhang et al., 2022; 2024; Li et al., 2024) to estimate camera poses and 3D
structure from the input video. To extract only the static regions from the estimated 3D structure, we
introduce a dynamic masking strategy that explicitly separates static elements and moving objects.
The static-only 3D representation can then be projected to target viewpoints, yielding geometrically-
consistent warped views that serve as spatial prompts while allowing dynamic elements to evolve
naturally from temporal context alone. Surprisingly, the integration of 3D scene memory provides
an additional benefit: the geometrically-consistent warped views provide rich visual references that
significantly reduce uncertainty in viewpoint manipulation, enabling precise camera control without
any other explicit camera conditioning.

In summary, 3DScenePrompt enables both accurate camera control and long-range spatial consis-
tency by treating the static scene representation as a persistent spatial prompt that guides generation
across arbitrary timescales. Extensive experiments demonstrate that our framework significantly

1Throughout our paper, video-to-future-video models refer to models that are capable of generating the
subsequent frames of the given input video (e.g., cosmos-predict2 (Agarwal et al., 2025).
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Figure 2: Comparison to existing architectures. (a) Camera-controllable video generation
methods condition on a single frame and camera trajectory (Wang et al., 2024b; He et al., 2024;
Jin et al., 2025). (b) The video-to-future-video generation method (Agarwal et al., 2025) lever-
ages the last few frames of the input video to preserve temporal continuity in future video
generation; however, it fails to maintain long-term spatial consistency when revisiting previ-
ously defined viewpoints that are not visible in the given frames. Unlike these, (c) our approach
combines temporal conditioning (last few frames) with spatial conditioning (spatially adjacent
frames) to achieve scene-consistent generation with precise camera control.

outperforms existing methods in maintaining scene consistency, achieving precise camera control,
and generating high-quality videos from arbitrary-length inputs.

2 RELATED WORK

Single-frame conditioned camera-controllable video generation. Building upon the recent suc-
cess of video diffusion models (Blattmann et al., 2023; Guo et al., 2023; Yang et al., 2024; Runway;
Brooks et al., 2024), recent works (He et al., 2024; Wang et al., 2024b; Bahmani et al., 2024) have
achieved camera-controllable video generation by introducing additional adapters into U-Net-based
video diffusion models that accept camera trajectories. For instance, CameraCtrl and VD3D (Bah-
mani et al., 2024; He et al., 2024) incorporate spatiotemporal camera embeddings, such as Plücker
coordinates, via ControlNet-like mechanisms (Zhang et al., 2023). While these methods enable
precise trajectory following, they only condition on single starting images, lacking mechanisms to
maintain consistency with extended video context. In contrast, our approach enables leveraging en-
tire video sequences as spatial prompts through 3D memory construction, enabling scene-consistent
generation that preserves the rich scene context within arbitrary-length inputs.

Multi-frame conditioned camera-controllable video generation. Recently, CameraCtrl2 (He
et al., 2025a) and Seaweed-APT2 (Lin et al., 2025b) have proposed to take multiple frames as
a condition for camera-controllable video generation. This allows the generated videos to main-
tain temporal smoothness with the provided frames, enhancing the motion fidelity of the generated
videos. However, these methods only consider temporal adjacency, which restricts the model from
maintaining scene-consistencies with long videos due to memory constraints. In contrast, we intro-
duce SLAM to process the conditioning video to consider dual spatio-temporal adjacency, enabling
the model to maintain scene-consistency with long videos under efficient computation.

Geometry-grounded video generation. Recent works (Ren et al., 2025; Yu et al., 2025; Seo et al.,
2025) have integrated off-the-shelf geometry estimators into video generation pipelines to improve
geometric accuracy. Gen3C (Ren et al., 2025), for instance, similarly adopts dynamic SLAM to lift
videos to 3D representations. However, these methods exclusively address dynamic novel view syn-
thesis—generating new viewpoints within the same temporal window as the input. This constrained
setting allows them to simply warp entire scenes without distinguishing static and dynamic elements.
Our work fundamentally differs by generating content beyond temporal boundaries, requiring selec-
tive masking of dynamic regions during 3D construction—a critical challenge that emerges only
when static geometry must persist while dynamics evolve naturally into the future.

3
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Figure 3: Overview of 3DScenePrompt framework. To generate the next chunk video that
remains spatially consistent with the input video, we design a dual spatio-temporal conditioning
pipeline to extract the most relevant information from the input video. The last few frames are
utilized to provide temporal conditioning, ensuring motion continuity between conditioning
inputs and the generated frames. In parallel, for the spatial conditioning, we first select the most
representative frames from the input sequence, lift their static regions into a 3D point cloud
using the dynamic mask, and render it along a user-specified camera trajectory to preserve
scene geometry.

Long-horizon scene-consistent generation. Various approaches attempt scene-consistent long
video generation through different strategies. ReCamMaster (Bai et al., 2025) and Trajecto-
ryCrafter (Yu et al., 2025) interpolate frames or construct 3D representations but remain confined
to the input’s spatiotemporal coverage, essentially performing dynamic novel view synthesis. Star-
Gen (Zhai et al., 2025) scales to long trajectories but assumes static worlds, eliminating temporal
dynamics entirely. DFoT (Song et al., 2025) most closely relates to our work, proposing guidance
methods that condition on previous frames for scene consistency. However, DFoT also faces fun-
damental memory constraints when processing extended sequences, limiting its ability to maintain
long-range spatial coherence. Our dual spatio-temporal strategy with SLAM-based spatial memory
overcomes these limitations by selectively retrieving only the most relevant frames, both tempo-
rally and spatially, enabling computationally efficient processing of arbitrary-length videos while
maintaining both motion continuity and scene consistency.

3 METHODOLOGY

3.1 PROBLEM FORMULATION AND MOTIVATION

We address the task of scene-consistent camera-controllable video generation: given a dynamic
video Vin ∈ RL×H×W×3 of arbitrary length L as context with height H and width W , our goal
is to generate T subsequent frames Vout ∈ RT×H×W×3 that follow a desired camera trajectory
C = {Ct}Tt=1 while maintaining consistency with the scene captured in the context input:

Vout = F(Vin, T ,C), (1)

where Ct ∈ SE(3) represents camera extrinsic matrices and T is a text prompt when a video gener-
ator F(·) is based on pretrained text-to-video priors (Yang et al., 2024; Bahmani et al., 2025a).

Comparison to existing solutions. This task fundamentally differs from existing video generation
paradigms. Existing camera-controllable generation methods (He et al., 2024; Wang et al., 2024b;
Bahmani et al., 2024) synthesize videos following user-specified trajectories but only condition on
a single image Iref or plain text T (Fig. 2-(a)):

Vout = F(Iref, T ,C), or Vout = F(T ,C), (2)

which is insufficient for our task, where the entire underlying 3D scene of the context
video should be considered. In contrast, video-to-future-video generation methods such as
Cosmos-predict-2 (Agarwal et al., 2025) G(·) employ temporal sliding windows to generate
future frames (Fig. 2-(b)):

Vout = G(Vin[L− w : L], T ) (3)

4
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where Vin[L − w : L] for w ≪ L represents a small overlap window, typically consisting of the
last few frames of Vin. Although this design encourages temporal smoothness by providing the last
few frames when generating the future video, it often fails to preserve long-term spatial consistency
when the camera revisits regions not covered by the small window w.

3.2 TOWARDS SCENE-CONSISTENT CAMERA-CONTROLLABLE VIDEO GENERATION

The key challenge of scene-consistent camera-controllable video generation lies in reconciling two
competing requirements: maintaining consistency with potentially distant frames that share spatial
proximity (when the camera returns to similar viewpoints), while evolving dynamic content naturally
from the recent temporal context. Ideally, conditioning on all frames Vin would ensure optimal
global spatial consistency. However, this quickly becomes impractical as the sequence grows, since
standard self-attention incurs quadratic time/memory in the sequence length.

Dual spatio-temporal sliding window strategy. Instead of increasing the temporal window size
w of the existing video-to-future-video generation methods, we introduce a dual sliding window
strategy that conditions on frames selected along both temporal and spatial axes (Fig. 2-(c)). Beyond
the standard temporal window that captures recent motion dynamics, we add a spatial window that
retrieves frames sharing similar 3D viewpoints, regardless of their temporal distance:

Vout = F(Ṽin, T ,C), where Ṽin = {Temporal(w)} ∪ {Spatial(T )}, (4)

where the model F generates a future sequence Vout conditioned on Temporal(w), last w frames of
the input video Vin[L−w : L], and Spatial(T ), the T retrieved frames from the entire input sequence
based on viewpoint similarity to the target viewpoint C. This dual conditioning enables the model
to reference distant frames that observe the same spatial regions, maintaining scene consistency
without processing all L input frames.

While this dual conditioning is conceptually appealing, naı̈vely retrieving and providing spatially
adjacent frames directly would be problematic for our task. Since we aim to generate future con-
tent beyond the input’s temporal boundary, directly conditioning on frames from earlier timestamps
would incorrectly preserve dynamic elements (e.g., a walking person from frame 50 should not nec-
essarily reappear at that same location when generating frame 200). The spatial conditioning must
therefore provide only the persistent scene structure while excluding dynamic content. Rather than
retrieving individual frames, we introduce a 3D scene memory M that represents exclusively the
static geometry extracted from all spatially relevant frames.

3.3 3D SCENE MEMORY CONSTRUCTION

Our 3D scene memory must efficiently encode spatial relationships across all L frames while ex-
tracting only persistent static geometry. To construct the 3D scene memory, we leverage dynamic
SLAM frameworks (Li et al., 2024; Zhang et al., 2024) to estimate camera poses and reconstruct 3D
structure:

(Ĉ,P) = DSLAM(Vin), (5)

where Ĉ = {Ĉi}Li=1 are the estimated camera poses, P represents the aggregated 3D point cloud
from the L input frames, and DSLAM(·) represents the dynamic SLAM framework. This SLAM
integration is effective in that it not only estimates the camera parameters of the input frames but
also reconstructs the 3D structure of the scene, which can be further utilized to represent the 3D
static geometry.

While the camera poses Ĉ enable efficient spatial retrieval by comparing viewpoint similarity with
the target trajectory C, the aggregated 3D point cloud P still contains both static and dynamic
regions. Thus, we now explain our full pipeline on how to identify dynamic regions and only
maintain the persistent static geometry of the input video.

Dynamic masking for static scene extraction. Naı̈vely aggregating points across frames creates
ghosting artifacts where moving objects appear frozen at multiple positions, as shown in Fig. 4-(a).
We address this through a comprehensive three-stage masking pipeline that identifies and excludes
all dynamic content as depicted in Fig. 5.

5
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Figure 4: Illustration of dynamic masking for static scene extraction. When aggregating 3D
points across frames, moving objects create ghosting artifacts if not properly masked. (a) Without
masking, dynamic elements (horses and riders) appear frozen at multiple positions, severely degrad-
ing the warped views. (b) With our dynamic masking pipeline, these elements are identified and
excluded, resulting in clean static-only point clouds that can be reliably warped to new viewpoints.

We begin with pixel-level motion detection following MonST3R (Zhang et al., 2024). For each
frame pair, we compute optical flow using SEA-RAFT (Wang et al., 2024a) (Flowoptical) and compare
it against the flow induced by camera motion alone (Flowwarp). Regions where the L1 difference
exceeds a specific threshold τ are marked as potentially dynamic:

M pixel
i = 1 [∥Flowoptical − Flowwarp∥1 > τ ] . (6)

However, pixel-level detection captures motion only at specific instants and misses complete object
boundaries. We therefore propagate these sparse detections to full objects using SAM2 (Ravi et al.,
2024), where we sample points from dynamic pixels in the first frame for prompts. Yet this approach
still has limitations: static objects that begin moving in later frames may not be detected if they
appear static initially.

Our solution employs backward tracking with CoTracker3 (Karaev et al., 2024) to aggregate motion
evidence across the entire sequence. From the sampled points in each frame obtained from our
pixel-level motion detection, we track these points from all frames back to t = 0, capturing motions
of objects that move at any point. These aggregated points are used to prompt the final SAM2 pass,
producing complete object-level masks M obj

i that cleanly separate all dynamic content (Fig. 4-(b)).
With the full dynamic mask, we can now obtain the static-only 3D geometry Pstatic:

Pstatic =

L⋃
i=1

Pi ⊙ (1−M obj
i ). (7)

From the constructed static-only 3D geometry Pstatic with our proposed dynamic masking strategy,
we now obtain the 3D scene memory:

M = (Ĉ,Pstatic), (8)

where we now explain how this 3D scene memory M can be used for scene-consistent camera-
controllable video generation in the following section.

3.4 3D SCENE PROMPTING

Having constructed the static-only 3D representation Pstatic, rather than naı̈vely retrieving T frames
from the input video based on viewpoint similarity, we synthesize static-only spatial frames through
the projection of Pstatic. For each target camera pose Ct ∈ C, we generate the corresponding spatial
frame by projecting the static points from the most spatially relevant input frames:

Spatial(t) = Π(K · Ct ·P(n)
static), (9)

where P
(n)
static ⊂ Pstatic contains points from the top-n spatially adjacent input frames to Ct, Π(·) de-

notes perspective projection, and K is the camera intrinsic matrix. The complete spatial condition-
ing becomes Spatial(T ) = {Spatial(t)}Tt=1 ∈ RT×H×W×3, where spatial adjacency is calculated
by field-of-view overlap.

6
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Figure 5: Dynamic masking strategy. A three-stage pipeline refines dynamic region detection to
produce complete object-level masks: (1) optical-flow differences detect pixel-level motion (Dy-
namic thresholding); (2) sample points from these regions for all frames and perform backward
tracking (BW tracking) with CoTracker3 (Karaev et al., 2024) to aggregate motion evidence across
all frames back to t=0 (dynamic aggregation), capturing objects that move at any time; (3) prop-
agate aggregated points in the first frame to the entire video using SAM2 (Ravi et al., 2024). The
resulting dynamic masks cleanly separate moving elements (people, objects) from the static back-
ground, enabling construction of the static-only point cloud Pstatic.

This projection-based approach ensures only static content appears in conditioning while providing
geometrically consistent views aligned to target poses. Notably, the static point cloud aggregates in-
formation from multiple viewpoints, potentially filling regions occluded by dynamic objects. These
projected views serve as 3D scene prompts that provide explicit guidance about persistent scene
structure, enabling precise camera control without additional encoding modules.

The projected views Spatial(T ) serve as what we term 3D scene prompts—they provide the model
with explicit guidance about the persistent scene structure. By conditioning on both Temporal(w)
and Spatial(T ), our framework effectively enables scene-consistent camera-controllable video gen-
eration with computational efficiency while preserving the prior for high-quality video synthesis.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Model architecture. We build upon CogVideoX-I2V-5B (Yang et al., 2024), extending its single-
image conditioning to accept dual spatio-temporal inputs with minimal architectural changes. The
key modification is repurposing the existing image conditioning channel to accept concatenated
latents from both temporal frames and spatial projections. Specifically, we provide the last w = 9
frames from Vin as temporal conditioning and T projected views from the static point cloud as
spatial conditioning. This enables the DiT backbone to remain entirely unchanged, preserving all
pretrained video priors. Both conditions are encoded through the frozen 3D VAE and concatenated
channel-wise such that Zcond = E [Concat(Temporal(w), Spatial(T ))].

Fine-tuning. We fully fine-tune the model for a total of 4K iterations with a batch size of 8 using
4 H100 GPUs, which required approximately 48 hours. We used the 16-bit Adam optimizer with a
learning rate of 1×10−5, and adopted the same hyperparameter settings as those used in the training
of CogVideoX (Yang et al., 2024). For the temporal sliding window, we provide the last 9 frames of
the input video, setting w = 9. For the projection of top-n spatially adjacent views, we set n = 7.

Experimental settings. We evaluate our method across four key aspects: camera controllability,
video quality, scene consistency, and geometric consistency. Since no prior work directly addresses
scene-consistent camera-controllable video generation, we compare against two categories of base-
lines: (1) camera-controllable methods (CameraCtrl (He et al., 2024), MotionCtrl (Wang et al.,

7
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Methods RealEstate10K DynPose-100K
PSNR↑ SSIM↑ LPIPS↓ MEt3R↓ PSNR↑ SSIM↑ LPIPS↓ MEt3R↓

DFoT (Song et al., 2025) 18.3044 0.5960 0.3077 0.181164 12.1471 0.3040 0.4172 0.183202
3DScenePrompt (Ours) 20.8932 0.7171 0.2120 0.040843 13.0468 0.3666 0.3812 0.124189

Table 1: Evaluation of spatial and geometric consistency. We compare DFoT and our framework
on the RealEstate10K (Zhou et al., 2018) and DynPose-100K (Rockwell et al., 2025) datasets. For
spatial consistency, we evaluate PSNR, SSIM, and LPIPS on revisited camera trajectories, while for
geometric consistency, we report the MEt3R (Asim et al., 2025) metric.

2024b), FloVD (Jin et al., 2025), AC3D (Bahmani et al., 2025a)) for camera control and video qual-
ity metrics, and (2) DFoT (Song et al., 2025), which attempts scene-consistent camera-controllable
generation, for spatial and geometric consistency metrics.

We primarily evaluate on 1,000 dynamic videos from DynPose-100K (Rockwell et al., 2025). For
scene consistency evaluation, we additionally test on 1,000 static videos from RealEstate10K (Zhou
et al., 2018), as static scenes provide clearer spatial consistency assessment.

4.2 SCENE-CONSISTENT VIDEO GENERATION

Evaluation Protocol. As mentioned in Section 3.1, one of the unique and key challenges in scene-
consistent camera-controllable video generation is maintaining spatial consistency over extended du-
rations. From a given input video, we evaluate spatial consistency by generating camera trajectories
that revisit the viewpoints in the given video. By matching frames in the generated video and the in-
put video that share the same viewpoint, we calculate PSNR, SSIM, and LPIPS. For RealEstate10K,
we evaluate the whole image, whereas we only evaluate the static regions by masking out the dy-
namic regions for DynPose-100K. We also assess geometric consistency using Met3R (Asim et al.,
2025), which measures multi-view alignment of generated frames under the recovered camera pose.

Results. As shown in Tab. 1, 3DScenePrompt significantly outperforms DFoT across all metrics
for both static and dynamic scenes. Most notably, our MEt3R evaluation error drops 77% (0.041
vs 0.181), demonstrating superior multi-view geometric alignment. While DFoT similarly tack-
les scene-consistent camera-controllable video generation through history guidance, their approach
fails to maintain scene-consistency for long sequences due to memory constraints. In contrast, our
dual spatio-temporal conditioning enables long-term scene-consistency without causing significant
computational overhead. The qualitative comparisons shown in Fig. 6 also validate the effectiveness
of our approach over DFoT.

4.3 CAMERA-CONTROLLABLE VIDEO GENERATION

Table 2: Camera controllability evaluation.

Methods DynPose-100K
mRotErr (◦)↓ mTransErr↓ mCamMC↓

MotionCtrl Wang et al. (2024b) 3.5654 7.8231 9.7834
CameraCtrl He et al. (2024) 3.3273 9.5989 11.2122
FloVD Jin et al. (2025) 3.4811 11.0302 12.6202
AC3D Bahmani et al. (2025a) 3.0675 9.7044 11.1634
DFoT Song et al. (2025) 2.3977 8.0866 9.2330
3DScenePrompt (w = 1) 2.3898 7.7819 8.9785
3DScenePrompt (w = 9) 2.3772 7.4174 8.6352

Evaluation Protocol. We employ the
evaluation protocol of previous meth-
ods (He et al., 2024; Zheng et al., 2024; Jin
et al., 2025) for the camera controllability.
We provide an input image along with as-
sociated camera parameters for I2V mod-
els (He et al., 2024; Wang et al., 2024b;
Jin et al., 2025) and solely provide camera
parameters for the T2V model (Bahmani
et al., 2025a). We conduct experiments using two variants of our framework, leveraging different
numbers of frames (w) for temporal conditioning baselines, w = 1 and w = 9. The w = 1 uses
only the last single frame as temporal conditioning, whereas the w = 9 model takes the last nine
frames as temporal conditioning. To evaluate how faithfully the generated video follows the camera
condition, we estimate camera parameters from the synthesized video using MegaSAM (Li et al.,
2024), and compare the estimated camera parameters against the condition camera trajectory C.

The comparison between the estimated and input camera parameters is quantified using three met-
rics: mean rotation error (mRotErr), mean translation error (mTransErr), and mean error in the
camera extrinsic matrices (mCamMC). For the generated video, we also assess video synthesis per-
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Figure 6: Visualization of generated videos following trajectories that revisit early frames in the
input video. We visualize and compare frames obtained from DFoT (Song et al., 2025) and Ours.
We condition to generate a frame of a viewpoint that aligns with the viewpoint within the input.
The comparison shows that ours shows much more consistent generation, whereas DFoT fails to
generate scene-consistent frames mainly due to the limited number of frames it can condition on.

Table 3: Evaluation of video generation quality. We assess the quality of generated videos using
FVD and VBench++ scores. For FVD, lower values indicate higher video quality. For VBench++
scores, higher values indicate better performance. All VBench++ scores are normalized.

Methods DynPose-100K

FVD Overall
Score

Subject
Consist

Bg
Consist

Aesthetic
Quality

Imaging
Quality

Temporal
Flicker

Motion
Smooth

Dynamic
Degree

MotionCtrl (Wang et al., 2024b) 1017.4247 0.5625 0.5158 0.7093 0.3157 0.3149 0.8297 0.8432 0.7900
CameraCtrl (He et al., 2024) 737.0506 0.6280 0.6775 0.8238 0.3736 0.3888 0.6837 0.6955 0.9900
FloVD (Jin et al., 2025) 171.2697 0.7273 0.7964 0.8457 0.4722 0.5546 0.7842 0.8364 0.9900
AC3D (Bahmani et al., 2025a) 281.2140 0.7428 0.8360 0.8674 0.4766 0.5381 0.8020 0.8673 1.0000
3DScenePrompt (Ours) 127.4758 0.7747 0.8669 0.8727 0.4990 0.5964 0.8551 0.9260 1.0000

formance using the Fréchet Video Distance (FVD)(Skorokhodov et al., 2022) and seven metrics
from VBench++(Huang et al., 2024): subject consistency, background consistency, aesthetic qual-
ity, imaging quality, temporal flickering, motion smoothness, and dynamic degree.

Results. We first evaluate camera controllability and compare our method with competitive base-
lines. As shown in Tab. 2, our approach consistently outperforms existing methods, indicat-
ing 3DScenePrompt is capable of generating videos with precise camera control. We also note
that the effect of using different temporal conditioning window sizes is minimal for the camera-
controllability performance, suggesting that better camera-controllability is achieved from our spa-
tial prompts rather than the increased temporal context. We then assess the overall video quality
(Tab. 3) and provide qualitative comparisons (Fig. 7). As observed in Tab. 3, our method achieves
the best generation quality across all metrics for dynamic video generation, which is further sup-
ported by the visual results in Fig. 7.

4.4 ABLATION STUDIES

Table 4: Ablation study on varying n.

Methods Dynamic
mask M

DynPose-100K
PSNR↑ SSIM↑ LPIPS↓ MEt3R↓

Ours (n = 1) ✓ 13.0207 0.3732 0.3771 0.124773
Ours (n = 4) ✓ 13.0382 0.3733 0.3758 0.124893
Ours (n = L) ✓ 13.0206 0.3631 0.3810 0.123507
Ours (n = 7) ✗ 12.2304 0.3063 0.3821 0.134885
Ours (n = 7) ✓ 13.0468 0.3666 0.3812 0.124189

We analyze two critical components of our
framework: the dynamic masking strategy that
separates static and dynamic elements, and the
number of spatially adjacent frames n retrieved
for spatial conditioning. Tab. 4 demonstrates
the impact of varying n and the necessity of
dynamic masking. Without dynamic masking

9
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Figure 7: Visualization of scene-consistent camera-controllable video generation. Comparison
of different methods for generating videos from the same input (shown in Input Video) that follow
the camera trajectory shown in GT, which is the ground truth future video. Our method best pre-
serves scene consistency with the input video. Note the red-boxed regions in the left scene: while
the input video shows a white wall, competing methods either lose scene detail or fail to maintain
the original scene structure. In contrast, our approach accurately remembers the white wall and
maintains consistent scene elements throughout generation. In addition, when compared with the
GT Future Video, ours best follows the camera condition, effectively verifying the strength of our
framework for scene-consistent camera-controllable video generation.

(4th row), the model suffers significantly across all, showing a large drop of PSNR of approximately
0.8dB and also an increase of MEt3R error. This degradation occurs because unmasksed dynamic
objects create ghosting artifacts when warped to new viewpoints, corrupting the spatial condition-
ing. Regarding the number of spatially adjacent frames, we find that performance stabilizes around
n = 7, with minimal improvements beyond this point, suggesting that 7 frames provide sufficient
spatial context while maintaining computational efficiency.

5 CONCLUSION

In this work, we introduced 3DScenePrompt, a framework for scene-consistent camera-controllable
video generation. By combining dual spatio-temporal conditioning with a static-only 3D scene
memory constructed through dynamic SLAM and our dynamic masking strategy, we enable gen-
erating continuations from arbitrary-length videos while preserving scene geometry and allowing
natural motion evolution. Extensive experiments demonstrate superior performance in camera con-
trollability, scene consistency, and generation quality compared to existing methods. Our approach
opens new possibilities for long-form video synthesis applications where maintaining both spatial
consistency and precise camera control is essential.
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APPENDIX

NOTATION SUMMARY

Symbol Meaning

Vin ∈ RL×H×W×3 input arbitrary-length video with L frames.
Vout ∈ RT×H×W×3 generated futussh -L 6006:localhost:6006 USER@SERVERre video with T frames.
T text prompt for video generation for video models based on text-to-video (T2V) generation.
C = {Ct}Tt=1 desired camera trajectory the generated video Vout should follow.
Ct camera extrinsics parameter where Ct ∈ SE(3).
K camera intrinsics parameter.
F(·) camera-controllable video generation framework.
G(·) video-to-future-video generation framework.
Iref image condition for image-to-video (I2V) generation.
V [x : y] indexing operation; samples frames between frame x and (y-1).
Temporal(w) temporally adjacent w frames for condition.
Spatial(T ) spatially adjacent T frames for condition.
Ṽin conditioning frames for our framework, includes both Temporal(w) and Spatial(T ).
D(·) dynamic SLAM frameworks.
Π(·) perspective projection operator.
P aggregated 3D point clouds.
Pstatic aggregated 3D point clouds only from static regions.
M 3D scene memory composed of camera extrinsics Ct and static point clouds Pstatic.
M obj

i object-level masks representing dynamic regions of frame i.
E(·) 3D VAE.

A ADDITIONAL EXPERIMENTAL RESULTS

More Qualitative Results. We provide additional qualitative results of our method to further
demonstrate its ability to generate high-quality outputs, as shown in Fig. 9, 10, 11, 12, and 13.

Long-Video Generation Results. Although our primary interest is building a framework capable
of generating a spatially consistent next-video chunk given an arbitrary video as context, by itera-
tively applying our method, one of the potential applications of our framework is generating videos
of arbitrary length.

To generate longer videos, we extend our method using iterative autoregressive generation, and
conduct quantitative evaluations on long-video generation using the DAVIS dataset (Perazzi
et al., 2016), where we evaluate video generation quality (PSNR, SSIM, LPIPS) and camera-
controllability (RMSE, MSE, ATE), and compare with previous I2V baselines as reported in Tab. 5.
However, as there are no publicly available video-to-future-video camera-controllable generation
methods for our baselines, for a fairer comparison, we adopt three different strategies to generate
long videos with our baseline methods. Specifically, we adopt 1) iterative autoregressive genera-
tion, 2) latent interpolation with autoregressive generation, and 3) applying training-free long video
generation techniques.

For iterative autoregressive generation, we simply provide the last frame of the previously generated
video as the input condition when generating the next video. For latent interpolation, we increase
the number of input latents through interpolation, which can directly increase the number of gen-
erated frames at inference. After applying latent interpolation, we similarly adopt autoregressive
generation to generate videos with the desired number of frames. By generating more frames at
once, this reduces the number of iterations of autoregressive generation, which can increase overall
video quality by reducing error accumulation. Finally, we also adopt FreeLong (Lu et al., 2024),
a training-free approach for long video generation, which introduces frequency blending of latents
specifically in Stable Video Diffusion (Blattmann et al., 2023). As we compare with the FloVD (Jin
et al., 2025) model fine-tuned from CogVideoX (Yang et al., 2024), which is a transformer-based
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Table 5: Quantitative evaluation of spatially consistent long video generation on DAVIS (Per-
azzi et al., 2016) dataset.

Methods DAVIS
PSNR↑ SSIM↑ LPIPS↓ RMSE↓ MSE↓ ATE↓

CameraCtrl (He et al., 2024) 8.64 0.19 0.66 95.45 9332.08 0.1709
+ latent interpolation 14.12 0.49 0.45 53.50 3214.71 0.2225
+ FreeLong (Lu et al., 2024) 13.46 0.44 0.48 55.84 3314.31 0.2147

FloVD (Jin et al., 2025) 10.77 0.42 0.55 76.08 6131.95 0.2242
Ours 17.28 0.60 0.35 37.28 1583.77 0.1794

Table 6: Dynamic mask ablation study.

Methods DynPose-100K
PSNR↑ SSIM↑ LPIPS↓ MEt3R↓ mRotErr (◦)↓ mTransErr↓ mCamMC↓

(a) w/o dynamic mask 11.9963 0.2898 0.3748 0.104002 3.4142 8.5920 10.5049
(b) (a) + L1 difference mask 12.1083 0.3248 0.3690 0.155589 2.9390 7.7819 9.1524
(c) (b) + SAM2 propagation 13.5957 0.4036 0.3548 0.157610 2.7188 7.5402 8.9696
(d) (c) + point BW tracking 13.7311 0.4112 0.3454 0.122859 2.6103 7.4858 8.9181

model, we apply FreeLong only for CameraCtrl (He et al., 2024). Due to latent interpolation sig-
nificantly increasing the computation in CogVideoX, we also apply the latent interpolation tech-
nique for CameraCtrl only. The qualitative results of our generated long videos can be found in the
supplementary videos or in Fig. 14.

As shown in the results, our method shows its potential for long video generation, significantly out-
performing previous baselines. However, as is common in auto-regressive generation, extending our
framework to extremely long durations introduces the challenge of temporal error accumulation.
While our method provides the critical spatial consistency required for long videos, solving long-
term drift (error accumulation) typically requires dedicated refinement modules and techniques. We
believe that further extending our framework to mitigate the aforementioned issues is a very impor-
tant and interesting future direction to explore.

Ablation Study on Dynamic Masking Pipeline. We ablate each stage of our dynamic masking
pipeline presented in Sec. 3.3. Stage (a) performs training without any dynamic mask, causing
moving objects to interfere with static-scene learning. Stage (b) introduces a pixel-level L1 flow-
difference mask, as described in Eq. 6, which detects motion per frame but often fails to fully
capture dynamic objects due to noisy or fragmented flow estimation. Stage (c) improves object-
level consistency by using SAM2 propagation from points sampled in the first frame; however, this
stage cannot detect new or displaced dynamic objects appearing in later frames. Stage (d) further
adds point tracking across the sequence, enabling backward propagation into the first frame be-
fore SAM2 segmentation, which allows the mask to capture all dynamic objects throughout the
entire clip. The quantitative comparison for each variant is summarized in Tab. 6, where we eval-
uate the video generation quality (PSNR, SSIM, LPIPS), scene-consistency (Met3r), and camera-
controllability (mRotErr, mTransErr, mCamMC) in a subset of the DynPose-100K dataset. The
results effectively verify the need for each stage of our proposed dynamic mask generation pipeline.

Ablation study on the number of temporal condition images. As CogVideoX generates 49
frames simultaneously, the temporal window size w can be selected within the range 1 < w < 49,
meaning (49−w) frames are newly generated. In our framework, setting the window size to w = 9
(providing the last few frames) is one of the key contributions and design choices to ensure sufficient
temporal context to maintain motion continuity and coherency with the input video, while still gen-
erating a sufficient number of frames (40). To better validate this choice, we conduct experiments
with varying window sizes (w = 1 and w = 5). As summarized in Tab. 7, the results demon-
strate that while the window size has a negligible effect on camera controllability metrics (mRotErr,
mTransErr, mCamMC), providing a larger context window (w = 9) yields superior motion smooth-
ness and temporal coherence, as evidenced by improved VBench metrics (Temporal Flicker and
Motion Smoothness), which is aligned with our intentions.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 7: Ablation study on the size of temporal window w. We conduct an ablation study on
camera controllability with respect to the number of conditioned images w, and evaluate motion co-
herence by measuring VBench (Huang et al., 2024)’s Temporal Flicker and Motion Smooth metrics.
VBench metrics are normalized.

Methods DynPose-100K
mRotErr↓ mTransErr↓ mCamMC↓ Temporal Flicker↑ Motion Smooth↑

Ours (w = 1) 2.3898 7.7819 8.9785 0.8379 0.9253
Ours (w = 5) 2.3837 7.5512 8.6233 0.8508 0.9262
Ours (w = 9) 2.3772 7.4174 8.6352 0.8561 0.9335

Table 8: Ablation study on the number of projected images n. We conduct an ablation study on
scene consistency and camera controllability with respect to the number of spatially adjacent frames
n retrieved for spatial conditioning on the DynPose-100K (Rockwell et al., 2025) dataset.

Methods DynPose-100K
PSNR↑ SSIM↑ LPIPS↓ mRotErr↓ mTransErr↓ mCamMC↓

Ours (n = 0) 11.9555 0.3370 0.4512 3.4142 8.5920 10.5049
Ours (n = 4) 13.0382 0.3733 0.3758 2.3739 7.4278 8.6488
Ours (n = 7) 13.0468 0.3666 0.3812 2.3772 7.4174 8.6352

Ablation study on the number of projected images. We further evaluate the impact of using
different numbers of projected views as spatial conditions. To do this, we compare our method
against a baseline setting (n = 0), where n denotes the number of projected frames. In this baseline,
the model is conditioned solely on the temporal frames without any projected spatial views. The
results, presented in Tab. 8, show that without the incorporation of our spatial prompts, the baseline
framework fails to maintain scene consistency (resulting in significantly lower PSNR and SSIM
scores) and struggles to adhere to the target camera trajectory. In contrast, the variants utilizing
projected images (n = 4 and n = 7) significantly outperform the n = 0 baseline across all metrics.
This effectively verifies the critical importance of our spatial prompts for ensuring both high-fidelity
scene consistency and precise camera control.

DepthAnything v3 for 3D memory. One of the advantages of our framework is that we do not
have any special architecture designs tailored to MegaSAM and can always replace MegaSAM with
a more robust and powerful model to resolve the current limitations. Here, we show an experiment
where we replace MegaSAM with the recently released DepthAnything v3 (Lin et al., 2025a) for
inference. The results, summarized in Tab. 9, show improvements across metrics, together with
reduced inference time. This confirms that our method directly benefits from stronger priors and
highlights a key advantage of our design: the components can be swapped at inference time without
changing the overall pipeline, allowing users to flexibly choose different pretrained models.

Inference Time. Tab. 10 presents the end-to-end inference latency of our method in comparison
to existing camera-controllable video diffusion models. Approaches such as CameraCtrl (He et al.,
2024), MotionCtrl (Wang et al., 2024b), and FloVD (Jin et al., 2025) rely exclusively on diffusion-
based synthesis, where inference time is primarily determined by the denoising process. In con-
trast, our pipeline incorporates additional stages for SLAM-based 3D reconstruction and dynamic
masking. With MegaSAM (Li et al., 2024) employed for dynamic SLAM, the preprocessing stage
requires approximately 4 minutes, resulting in a total inference time of over 9 minutes. However, re-
placing MegaSAM with a more lightweight and advanced method, such as DepthAnything v3 (Lin
et al., 2025a), significantly reduces the SLAM processing time to roughly 10 seconds. This sim-
ple replacement reduces the total latency to approximately 5 minutes, where the overall runtime is
dominated by the diffusion-based video generation itself. Consequently, our framework achieves in-
ference speeds comparable to CameraCtrl and MotionCtrl, which leverage a more lightweight video
generation backbone, demonstrating that the proposed method introduces negligible computational
overhead while enabling spatially consistent and camera-controllable generation.
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Table 9: Using various methods for generating 3D memory.

Methods DynPose-100K
PSNR↑ SSIM↑ LPIPS↓

Ours w/ MegaSAM (Li et al., 2024) 13.0468 0.3666 0.3812
Ours w/ DepthAnything v3 (Lin et al., 2025a) 13.4534 0.3980 0.3637

Table 10: Inference time comparison of different methods.

Method SLAM-Processing Dynamic Masking
& Depth Warping Video Generation Inference Time

CameraCtrl (He et al., 2024) – – 1 min 38 sec 1 min 38 sec
MotionCtrl (Wang et al., 2024b) – – 2 min 9.5 sec 2 min 9.5 sec
FloVD (Jin et al., 2025) – – 8 min 5.32 sec 8 min 5.32 sec

Ours – MegaSAM (Li et al., 2024) 4 min 18.813 sec 58.88 sec 4 min 3.62 sec 9 min 21.31 sec
Ours – DepthAnything v3 (Lin et al., 2025a) 10.031 sec 58.88 sec 4 min 3.62 sec 5 min 12.53 sec

B TRAINING DATASET CURATION PIPELINE.

Our training data is curated from two primary sources: RealEstate10K (Zhou et al., 2018), which
consists of static indoor scenes, and OpenVid-1M (Nan et al., 2024), which features diverse dynamic
content. For static videos from RealEstate10K, we directly extract 3D scene geometry without
applying dynamic masking, as these scenes contain negligible motion. In contrast, for dynamic
videos from OpenVid-1M, we conduct extensive data filtering and preprocessing: we remove game-
like or low-resolution videos, exclude samples with excessive camera motion, and apply the dynamic
masking pipeline described in Section 3.3 to separate static and dynamic regions. We further select
long video sequences with lengths of at least L≥100 frames to ensure sufficient input video length.
To construct the 3D scene memory, we employ VGGT (Wang et al., 2025) for static scenes and
MegaSAM (Li et al., 2024) for dynamic scenes. After filtering and processing, our final dataset
comprises approximately 30K and 20K high-quality long videos from RealEstate10K and OpenVid-
1M, respectively.

C DISCUSSION AND COMPARISON WITH RELATED WORKS

In this section, we discuss the differences between our proposed framework and recent relevant
works, focusing on 3D memory integration, camera-controllable generation, and dynamic object
handling.

Explicit 3D Memory and World Models Several recent works have explored utilizing 3D mem-
ory for video generation. Persistent embodied world model (Zhou et al., 2025) introduces 3D mem-
ory but relies on implicit memory representations and targets static scenes. In contrast, our work
leverages explicit 3D memory to achieve scene-consistent generation specifically for real-world
dynamic videos. Similarly, WorldMem (Xiao et al., 2025) builds upon the Oasis (Decart et al.,
2024) architecture and is trained primarily on the Minecraft dataset. It addresses static scenes
(RealEstate10K) or synthetic domains and requires key frames as conditions by increasing the
sequence size. Our approach differs by leveraging the learned priors of DiTs to generate scene-
consistent, camera-controllable videos in complex real-world dynamic scenarios. Furthermore, by
projecting constructed static-only 3D point clouds to the target trajectory, we condition on long
videos efficiently without increasing computational costs.

We also differentiate our work with SPMem (Wu et al., 2025), a concurrent work conceptually sim-
ilar to ours. However, our method distinguishes itself in two key aspects. First, regarding dynamic
object handling, while SPMem computes static components via naı̈ve TSDF fusion, we introduce a
concise and accurate dynamic mask generation pipeline to effectively remove dynamic regions. Sec-
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Figure 8: Visualization of the 3D scene memory and the generated results.

ond, in terms of efficiency, SPMem employs an additional ControlNet-style Diffusion-as-Shader (Gu
et al., 2025) architecture, necessitating architecture search, such as the number of sufficient layers for
the ControlNet-style block for different diffusion backbones, and the introduction of the additional
model leads to extra computational resources for training. Conversely, we achieve scene-consistent
generation without any architectural changes by injecting spatial and temporal conditioning into
zero-padding slots, enabling efficient training and inference. While a direct comparison in perfor-
mance and efficiency would better highlight these differences, it is currently not possible due to the
unavailability of public code.

Camera-Controllable Video Generation Works such as CameraCtrl2 (He et al., 2025a) and
APT2 (Lin et al., 2025b) explore camera conditioning using Plücker embeddings and autoregressive
generation. While effective for short sequences, these methods typically model consistent video gen-
eration by taking only previous images as conditions without explicitly modeling 3D scene structure
or considering spatial adjacency. Consequently, they fail to incorporate all previous frames due to
computational constraints.

In contrast, our approach constructs an explicit 3D static memory using point clouds, enabling pre-
cise pixel-wise spatial alignment across views. Instead of relying on autoregressive propagation or
feature-level Plücker conditioning, our 3D memory is directly integrated into the diffusion trans-
former via 3D-warped point clouds, providing scene-consistent constraints that do not accumulate
drift over time. Additionally, our design explicitly handles dynamic objects by separating static and
dynamic components, a challenge not addressed by these prior methods.

Dynamic Object Removal and Inpainting Regarding the removal of dynamic objects, our spatial
conditioning shares surface-level similarities with video inpainting techniques such as FGVC (Gao
et al., 2020). However, a fundamental difference lies in the role of the condition, as shown in Fig.
8. In standard inpainting, the model operates under hard constraints to fill masked regions. In our
framework, spatial prompts serve as a soft spatial guide. This allows the diffusion model to fill holes
and refine details while respecting the geometric layout where reliable projections exist. Crucially,
this flexibility ensures the model can generate dynamic details on top of the condition, blending
geometric consistency with realistic temporal dynamics, rather than merely filling static holes.

D LIMITATION

Our framework, 3DScenePrompt, enables scene-consistent, camera-controllable video generation
and demonstrates improved performance over existing methods. Nonetheless, it has a few limita-
tions. To obtain point clouds, we rely on MegaSAM (Li et al., 2024) to process the input videos,
which introduces additional computational overhead and increases inference time. This overhead
could be reduced by adopting a more advanced module, e.g., DepthAnything3 (Lin et al., 2025a).
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Figure 9: Visualization of generated videos following trajectories that revisit early frames
in the input video. We visualize and compare frames obtained from DFoT (Song et al., 2025)
and Ours. We condition both DFoT and ours to generate a video that follows the camera tra-
jectory shown in the top row (GT Future Video), which revisits a viewpoint in the input (Input
Video). The comparison shows that ours shows much more consistent generation, whereas
DFoT fails to generate scene-consistent frames mainly due to the limited number of frames it
can condition on. Also, the comparison of the camera trajectory shows that our method more
faithfully follows the given camera condition.

In addition, the quality of the dynamic masks directly affects the fidelity of the generated videos.
Thanks to our general and modular design, replacing the current component with a more advanced
dynamic masking strategy that benefits from stronger models could further improve overall perfor-
mance.
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Figure 10: Visualization of scene-consistent camera-controllable video generation. Com-
parison of different methods (Wang et al., 2024b; He et al., 2024; Jin et al., 2025; Bahmani
et al., 2025b) for generating videos from the same input (shown in Input Video) that follow the
camera trajectory shown in the rightmost column (Camera). Our method best preserves scene
consistency with the input video. Note the red-boxed regions: while the input video shows a
white wall, competing methods either lose scene detail or fail to maintain the original scene
structure. In contrast, our approach accurately remembers the white wall and maintains con-
sistent scene elements throughout generation. In addition, when compared with the GT Future
Video, ours best follows the camera condition, effectively verifying the strength of our frame-
work for scene-consistent camera-controllable video generation.
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Figure 11: More qualitative results.
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Figure 12: More qualitative results.
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Figure 13: More qualitative results.
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Figure 14: Long-video generation results.
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E REPRODUCIBILITY STATEMENT

As mentioned in Section 3.1, our model builds upon the open-sourced CogVideoX-I2V-5B (Yang
et al., 2024) model, where each of the processes for dynamic masking is also detailedly explained.
We will also make all the codes publicly available.

F USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 submission policy, we disclose that we used Large Language
Models to assist in grammar correction for the writing in this manuscript.
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