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Abstract

Large language models (LLMs) can store a significant amount of factual knowledge
in their parameters. However, their parametric knowledge may conflict with the
information provided in the context. Such conflicts can lead to undesirable model
behaviour, such as reliance on outdated or incorrect information. In this work,
we investigate whether LLMs can identify knowledge conflicts and whether it is
possible to know which source of knowledge the model will rely on by analysing
the residual stream of the LLM. Through probing tasks, we find that LLMs can
internally register the signal of knowledge conflict in the residual stream, which can
be accurately detected by probing the intermediate model activations. This allows
us to detect conflicts within the residual stream before generating the answers
without modifying the input or model parameters. Moreover, we find that the
residual stream shows significantly different patterns when the model relies on
contextual knowledge versus parametric knowledge to resolve conflicts. This
pattern can be employed to estimate the behaviour of LLMs when conflict happens
and prevent unexpected answers before producing the answers. Our analysis offers
insights into how LLMs internally manage knowledge conflicts and provides a
foundation for developing methods to control the knowledge selection processes.

1 Introduction

Large language models (LLMs) have shown remarkable capability to memorise factual knowledge
and solve knowledge-intensive tasks [16, 2, 20, 9, 19]. Nevertheless, the knowledge stored in
their parameters (parametric knowledge) can be inaccurate or outdated. To alleviate this issue,
retrieval and tool-augmented approaches have been widely adopted to provide LLMs with external
knowledge (contextual knowledge) [10, 11, 22, 17]. However, such contextual knowledge can include
information that conflicts with the parametric knowledge of the model, which may result in undesired
behaviour; for example, the model can rely on inaccurate information sources and produce inaccurate
generations [13, 23, 18, 21, 8, 25].

Prior research found that LLMs tend to prefer contextual knowledge (e.g. retrieved passages) over
their parametric knowledge [18, 23]. However, in more general applications, LLMs should retain the
ability to use parametric knowledge when presented with incorrect or undesirable information [4,
3, 28, 13, 26]. To achieve this goal, LLMs are expected to acknowledge the existence of conflicts,
allowing them to alert the user while keeping the decision-making process under the user’s control
for further action. Existing works investigate the fine-tuning and prompting-based strategies to detect
knowledge conflicts [21]. These methods need additional interactions with the model, e.g., by asking
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the LLMs to examine the conflicts sentence by sentence [21], which may result in high latency times
and prevent practical applications of these models. Additionally, they do not provide insight into how
LLMs internally detect and resolve conflicts.

In this work, we analyse the residual stream [7, 14] in LLMs to better understand their behaviour
when knowledge conflicts arise, especially between parametric knowledge and contextual knowledge.
Our probing experiments on the residual stream indicate that the signal of knowledge conflict rises
from the intermediate layers (e.g., the 13th layer of Llama3-8B). Utilising this signal, a simple logistic
regression model can achieve 90% accuracy in knowledge conflict detection without modifying the
input and parameters of LLMs while introducing only a negligible computation overhead. Moreover,
we also observe that the residual stream exhibits different patterns starting from the middle layers
(e.g., the 17th layers of Llama3-8B) when the model takes different source information to resolve
the conflict. For example, when the model uses contextual knowledge, the residual stream exhibits a
significantly more skewed distribution compared with when it uses its parametric knowledge.

In conclusion, our analysis of the residual stream reveals that: 1) LLMs exhibit internal mechanisms
for identifying conflicts, and this signal can be leveraged to detect conflicts effectively in the mid-
layers of LLMs; 2) LLMs display distinct skewness patterns in the residual stream when using
different sources of information, which provides insights on the model’s behaviour.

2 Background and Methods

Residual Stream We examine the Transformer architecture from the perspective of the residual
stream [7, 14]. In this framework, tokens flow through the model, with their embeddings being
modified by vector additions from the attention and feed-forward blocks in each layer. We denote the
hidden states at position i at l-th layer as hl

i ∈ Rd, where d is the dimension of the internal states of
the model. The model produces the initial residual stream h0

i by applying an embedding matrix to the
tokens. Then, the model modifies the residual stream by a sequence of L layers Transformers, where
each Transformer layer consists of a Self-Attention block and MLP at l-th layer. Formally, denote ali
and ml

i as the activations of Self-Attention and MLP respectively, the update of the residual stream at
l-th layer is hl′ = LayerNorm(hl−1) + ali and hl = LayerNorm(hl′) +ml

i.

Linear Probing Linear probing [5, 27, 1] is a commonly used technique to analyse whether certain
information is encoded within the residual stream of a language model. Specifically, for an activation
x from the residual stream, i.e., h, a, or m, a logistic regression model is applied to perform binary
classification: P (y = 1|x) = δ (xW), where W ∈ Rd×1 is the learned weight that linearly projects
the activation into a scalar value , and δ is the Sigmoid function that outputs the likelihood of probed
information existing in the activation.

3 Experimental Setup

Problem Setup Following previous studies [12, 8, 23, 18, 21], we use open-domain question-
answering (ODQA) tasks to investigate the behaviours of LLMs when there is a conflict between
the model’s parametric knowledge and contextual knowledge. In ODQA datasets with knowledge
conflicts, each instance is presented as (q, eM , eC , aM , aC), where q is the question, eM is the
evidence that supports the memorised knowledge, eC is the evidence that conflicts with the language
model’s memorised knowledge, aM is the answer based on and eM , and aC is the answer based
on the eC . The model’s parametric knowledge is tested in the close-book setting, where the model
generates answer aM based on the question q without external evidence. We generate the answers
using a greedy decoding strategy. We use three in-context demonstrations to align the answer format
and, for fairness, use the same in-context demonstrations in all experiments.

Datasets and Models We use NQSwap [12], Macnoise [8] and ConflictQA [23] to analyse the
residual stream when knowledge conflicts arise. We present the experiment results of NQSwap
using Llama3-8B [6] in the main paper, and the results of other datasets and models are provided in
Appendix B and Appendix C. The training details of the probing model are presented in Appendix A
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(a) Accuracy
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Figure 1: Accuracy, AUROC, and AUPRC of probing models on detecting the knowledge conflicts
based on the activations of Llama3-8B. The probing results on hidden state, MLP and Self-Attention
activation are coloured red, blue and green, respectively. More analysis is presented in Appendix B.

4 Results and Findings

In this work, we aim to answer the two following research questions: 1) Can we identify the conflict
between context and parameter knowledge by probing the residual stream? 2) Can we know which
source of knowledge the models will use before they generate the answers? We probe and analyse
the residual stream to answer these two questions in the following parts.

Identifying Knowledge Conflicts by Probing the Residual Stream We analyse whether language
models can identify contextual-parametric knowledge conflicts by probing the residual stream. To
this end, we create two groups of instances, DeC = {(q, eC)} and DeM = {(q, eM )}, where the
model generates answers based on conflict evidence in DeC and non-conflict evidence in DeM . The
probing model is trained to classify whether a given activation is from DeC or DeM . We probe the
residual stream at the final position to determine if the model is aware of the conflict during the first
token generation. This is because the hidden state at the last position in the output layer is used
to predict the first token of the answer. For each activation hl, al and ml at each layer, we train a
probing model to classify whether it belongs to DeM or DeC .

As shown in Figure 1(b) and Figure 1(c), the AUROC and AUPRC of the probing models increase
from the first layer to the 14th layer, and this trend is same across the hidden state, MLP, and
Self-Attention activations. In Figure 1(a), the accuracy of the probing models at the early layers is
random; similar to the trend of AUROC and AUPRC, the accuracy also reaches the highest score at
the 14th layer. The above observation indicates that the residual stream does not contain information
about knowledge conflict at the early layers. This information rises from around the 8th layer and
reaches the highest point at the 14th layer.

After the 14th layer, the probing model’s performance decreases slightly until the last layer. Besides,
we also observe that the probing results of MLP and Self-Attention activations show a significantly
lower accuracy than the hidden state after the 14th layer, which may suggest that MLP and Self-
Attention do not provide further conflicting information into the residual stream. We find the same
trend using Llama2-7B as shown in Figure 4.

Analysis of the Residual Stream When LLMs Using Different Sources of Knowledge We
investigate the distribution patterns of the residual stream when the language model uses different
sources of information to generate the answer. Based on the model’s predictions on instances belongs
to DeC , we classify them into two groups: DeC

aC
and DeC

aM
. Here, DeC

aC
represents the set of instances

where the model’s predictions align with aC , while DeC
aM

contains the instances where the predictions
align with aM . The model uses contextual knowledge and parametric knowledge to answer the
questions from DeC

aC
and DeC

aM
, respectively.

First, we examine the residual streams’ distribution patterns in the two groups of instances DeC
aC

and
DeC

aM
. We measure the skewness of the residual stream using Kurtosis, Hoyer and Gini index. We

present the results of NQSwap using Llama3-8B in Figure 2, and more results are provided in the
Appendix C. We find that when the model uses contextual knowledge for prediction (DeC

aC
, blue

lines shown in Figure 2), the residual stream shows a significantly skewed distribution compared

3
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Figure 2: Skewness of the hidden state activations of Llama3-8B when in presence of knowledge
conflicts. Blue and red lines represent the skewness of hidden states from DeC

aC
and DeC

aM
, respectively.

Higher scores indicate a more skewed distribution. Additional analyses are available in Appendix C.
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Figure 3: Accuracy, AUROC, and AUPRC of probing models on predicting which source of knowl-
edge the model will use to predict the answer in Llama3-8B. More results are Skewness of the hidden
state activations of Llama3-8B when the model uses knowledge from different sources to predict the
answer. Additional results are available in Appendix E.

with using parametric knowledge from the 20th to 30th layers. Therefore, the distribution patterns
of the residual stream can indicate the model will use different sources of knowledge. It provides
the foundation for predicting the model’s behaviour in advance, which can be used to mitigate the
generation of undesirable responses in advance.

Based on the above observation, we probe the residual stream to analyse the possibility of predicting
which source of knowledge will be used to generate the answer. The probing model is trained to
classify whether the model will generate aC or aM based on the activation from DeC

aC
or DeC

aM
. We

present the probing results in Figure 3. We observe that the probing model’s performance gradually
improves from the first layer to the 16th layer, which occurs after the signal of knowledge conflict
has already reached its peak at the 13th and 14th layers. This observation suggests that the decision
of which knowledge to use occurs after the detection of the knowledge conflict signal.

5 Related Work

Contextual and parametric knowledge conflict can happen when the retrieved external knowledge in
the context does not agree with the parametric knowledge which is memorised during pre-training [12,
24, 23, 18, 21, 13]. Previous works found models may prefer the contextual knowledge [21, 18,
23, 15] when parametric and contextual knowledge conflicts, and the relevance, length, and the
number of the evidence will influence the model’s preferences [23, 18]. To detect the conflict,
previous work [21] designed a multi-step prompting strategy to detect the knowledge, which involves
parametric knowledge generation, fine-grained sentence consistency checking, and potential conflict
reduction. However, this pipeline significantly reduces efficiency and lacks an understanding of the
mechanism of how LLMs detect and resolve conflict.

6 Conclusions

In this work, we analyse the residual stream of the language models when context-parameter knowl-
edge conflicts. First, we find that LLMs exhibit internal mechanisms for identifying conflicts in the
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mid-layers. Second, we find that the residual stream shows distinct skewness patterns when the model
uses context and parametric knowledge to predict. Our analysis provides insights into the behaviour
of LLMs in the presence of knowledge conflicts.
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A Probing Model Training Settings

For all probing experiments, we train the probing model with an L1 norm regularisation. The training
objective is L = − logP (y = yi) + λ∥W∥1, where we set λ to 3 × 10−4 and yi is the label. We
train 20 times with different random seeds for each probing task, and we report the average and
deviation in our experiments. We split the training and test datasets for the probing tasks, ensuring no
overlapping questions between them.

B More Experimental Results on Knowledge Conflict Probing

We present the knowledge conflict probing results on Macnoise, NQSwap, ConflictQA using Llama2-
7B in Figure 4, Figure 5 and Figure 6. The results match the trend discussed in Section 4, where the
model exhibits an internal mechanism for identifying conflicts. The signal of knowledge conflict
peaks around the 13th to 14th layers and gradually decreases in the later layers.
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Figure 4: Knowledge conflict probing results using Llama2-7B on NQSwap.
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Figure 5: Knowledge conflict probing results using Llama2-7B on Macnoise.
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Figure 6: Knowledge conflict probing results using Llama2-7B on ConflictQA.
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C More Analysis of Skewness Patterns of Residual Streams

We present the skewness of the hidden state of Llama2-7B on NQSwap in Figure 7. It shows the same
pattern as we discussed in Figure 2, where the residual stream exhibits significantly more skewed
distribution when using contextual knowledge compared with using parametric knowledge from the
17th layer.

In addition to NQSwap, we analyse the skewness pattern using Macnoise [8] and ConflictQA [23].
As shown in Figure 8, Figure 9, Figure 10, we find that the model also shows a similar skewness
pattern with NQSwap, where the residual stream exhibits a more skewed distribution from middle
layers when the model uses the contextual knowledge.

We also analyse the skewness of MLP and Self-Attention activations, presented in Figure 11, Fig-
ure 12, Figure 13, and Figure 14. However, we do not observe a specific skewness pattern in MLP
and Self-Attention activations.
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Figure 7: Skewness of the hidden states of Llama2-7B on NQSwap.
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Figure 8: Skewness of the hidden states of Llama3-8B on Macnoise.
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Figure 9: Skewness of the hidden states of Llama2-7B on Macnoise.
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Figure 10: Skewness of the hidden states of Llama-27B on ConflictQA.

0 5 10 15 20 25 30

Layer

0

50

100

150

200

K
u

rt
o
si

s

group

DeC
aM

DeC
aC

0 5 10 15 20 25 30

Layer

0.20

0.25

0.30

0.35

0.40

H
o
y
e
r

group

DeC
aM

DeC
aC

0 5 10 15 20 25 30

Layer

0.42

0.43

0.44

0.45

0.46

0.47

G
in

i

group

DeC
aM

DeC
aC

Figure 11: Skewness of the MLP activation of Llama3-8B on NQSwap.
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Figure 12: Skewness of the Self-Attention activation of Llama3-8B on NQSwap.
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Figure 13: Skewness of the MLP activation of Llama2-7B on NQSwap.
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Figure 14: Skewness of the Self-Attention activation of Llama2-7B on NQSwap.
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D L1 Norm and L2 Norm Values of Residual Streams

We present L1 Norm and L2 Norm of the residual stream in the Figure 15 and Figure 16. We found
that though the residual stream show distinct skewness patterns in DeC

aC
and DeC

aM
, the L1 norm and

L2 norm of the them do not have a significant difference.
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Figure 15: L1 norm and L2 norm of the hidden states of Llama3-8B on NQSwap.

0 5 10 15 20 25 30

Layer

0

2000

4000

6000

8000

L
1
n

o
rm

group

DeC
aM

DeC
aC

0 5 10 15 20 25 30

Layer

0

25

50

75

100

125

150

175

L
2
n

o
rm

group

DeC
aM

DeC
aC

Figure 16: L1 norm and L2 norm of the hidden states of Llama2-7B on NQSwap.
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E More Experimental Results on Knowledge Selection Probing

We present additional knowledge selection probing results on NQSwap and Macnoise using Llama2-
7B and Llama3-8B in Figure 17, Figure 18 and Figure 19. The results show a similar trend as shown
in Figure 3, where the probing model reaches the highest accuracy at around the 17th layer, which is
later than the aggregation of knowledge conflict signal at the 14th layer.
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Figure 17: Knowledge selection probing results using Llama2-7B on NQSwap.

0 5 10 15 20 25 30

Layer

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

u
ra

cy

activation

hidden

mlp

attn

0 5 10 15 20 25 30

Layer

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

activation

hidden

mlp

attn

0 5 10 15 20 25 30

Layer

0.5

0.6

0.7

0.8

0.9

A
U

P
R

C

activation

hidden

mlp

attn

Figure 18: Knowledge selection probing results using Llama2-7B on Macnoise.
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Figure 19: Knowledge selection probing results using Llama3-8B on Macnoise.
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