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Abstract

Differentially private stochastic gradient descent (DP-SGD) allows models to be trained
in a privacy-preserving manner, but has proven difficult to scale to the era of foundation
models. We introduce DP-ZO, a private fine-tuning method for large language models by
privatizing zeroth order optimization methods. A key insight into the design of our method
is that the direction of the gradient in the zeroth-order optimization we use is random
and the only information from training data is the step size, i.e., a scalar. Therefore, we
only need to privatize the scalar step size, which is memory-efficient. DP-ZO provides a
strong privacy-utility trade-off across different tasks, and model sizes that are comparable to
DP-SGD in (ε, δ)-DP. Notably, DP-ZO possesses significant advantages over DP-SGD in
memory efficiency, and obtains higher utility in ε-DP when using the Laplace mechanism.

1 INTRODUCTION

The proliferation of open-source models pretrained on web-scale datasets (Brown et al., 2020; Zhang et al.,
2022; Touvron et al., 2023) has created a paradigm shift in privacy preserving machine learning. Differential
Privacy (DP) (Dwork et al., 2006) is the gold standard for preserving privacy while training models on private
data, but it requires additional data (Tramèr & Boneh, 2021) to prevent a drop in utility (Yu et al., 2021a).
Pretrained model checkpoints have emerged as a compelling “free” source of prior information to boost the
performance of DP training (Ganesh et al., 2023; Tang et al., 2023; Panda et al., 2024a). By only requiring
DP during the fine-tuning phase, a recent line of work (Li et al., 2022b;a; Yu et al., 2022; He et al., 2023; Bu
et al., 2023d) is able to obtain impressive performance with DP-SGD (Abadi et al., 2016). Despite these
advancements, DP-SGD causes additional memory cost and needs additional engineering effort, especially for
large models across devices. We propose a new direction for DP fine-tuning of large pretrained models that
achieves strong privacy-utility trade-off and is more resource-efficient, easy to implement, and portable.
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Figure 1: Visualization of DP-ZO. The only informa-
tion from private data is a scalar step size for direction
with lower target function value and we only need to
add noise to this scalar. This scalar privatization enjoys
the benefits of flexibility with DP mechanisms, ease of
implementation, and reduced computation.

In this work, we study DP fine-tuning of large pre-
trained models with zeroth-order optimization and
introduce DP-ZO. Our method uses zeroth-order op-
timization (ZO) (Spall, 1992). Our key insight is the
synergy between differentially private fine-tuning and
zeroth-order optimization. ZO provides the gradi-
ent estimates and the only information from private
data in ZO is a scalar. We only need to privatize the
scalar update by adding noise to it. Specifically, the
scalar is the differences between losses from models
with the same random perturbation but flipped signs.
DP-ZO privatizes the zeroth-order update, by adding
noise to the difference between the losses (visualized
in Figure 1). This noise is proportional to the sensi-
tivity of this loss difference with respect to changing
a single example in the training set, which is con-
trolled by clipping. We limit the ℓp sensitivity by
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Figure 2: DP-ZO provides a strong
privacy-utility trade-off across dif-
ferent tasks under conservative pri-
vacy budgets. F1 is for SQuAD and
DROP and accuracy is for SST2.
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Figure 3: DP-ZO achieves compa-
rable performance as DP-SGD with
same model size and scales seam-
lessly to large models like 30B/66B,
that are challenging for DP-SGD.
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Figure 4: DP-ZO achieves non-
trivial performance for ε-DP. In
contrast, DP-SGD (laplace) suffers
to improve upon ε = 0 (zero-shot)
due to high variance.

clipping the norm of the difference in scalar losses, between the two random perturbations. Therefore, DP-ZO
is flexible for both ε-DP and (ε, δ)-DP. By removing the need for per-example gradient clipping (Abadi et al.,
2016), DP-ZO enables DP training of language models with just a few lines of code without backpropagation.

DP-ZO provides a strong privacy-utility trade-off across different tasks, model sizes, dataset sizes, and DP
mechanisms under conservative privacy budgets. DP-ZO only slightly degrades the performance compared
to the non-private baseline (Figure 2). DP-ZO achieves comparable performance as DP-SGD within the
same model size from 1.3B to 13B (Figure 3). DP-ZO scales seamlessly to large models without additional
engineering, while DP-SGD requires much more memory and effort to implement per-example gradient
clipping across GPUs (within a reasonable research computation limit, DP-SGD results on OPT-30B/66B
are not available and omitted in Figure 3). As the model size increases to OPT-66B, the performance of
DP-ZO increases and the utility gap between DP-ZO and the non-private baseline also decreases (Figure 3).
Because our method only privatizes a scalar, it is compatible with multiple DP mechanisms. Specifically,
DP-ZO is the first method to provide pure ε-DP with nontrivial utility (73.52 for SQuAD at ε = 4) for large
models by using the Laplace mechanism (Figure 4).

Besides, we provide the empirical privacy analysis of (DP-)ZO. While ZO itself incurs less empirical privacy
loss than SGD, such empirical privacy leakage estimated by membership inference attacks (Shokri et al., 2017;
Panda et al., 2024b) is still much higher than random guess. DP-ZO can reduce such privacy attack close
to random guess. We also show the computation efficiency of DP-ZO over DP-SGD, even when applying
gradient checkpointing and half-precision to both methods.

Independently and concurrently, Zhang et al. (2024a) also studied privatizing the scalar loss in Zeroth-order
optimization with Gaussian noise and proposed DPZero. Our DP-ZO shares some similar motivation and
design as DPZero, and there are several differences between our work and theirs. We provide a detailed
discussion on DP-ZO and Zhang et al. (2024a) in Section 5.

2 BACKGROUND

2.1 Differential Privacy

Differential privacy (DP) is the gold standard method for providing algorithmic privacy (Dwork et al., 2006).
Definition 2.1 ((ε, δ)− Differential Privacy (DP)). We call D, D′ ∈ Dn (where D is the set of all possible
data points) are neighboring datasets if they differ in exactly one record by adding or removing one record.1
An algorithm M is said to be (ε, δ)-DP if for all sets of events S ⊆ Range(M) and neighboring datasets
D ≃ D′ ∈ Dn we have the guarantee:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ (1)
1This neighboring definition is for add/removal DP and the most common one. There are other neighboring definitions in the

literature (Desfontaines & Pejó, 2020; Ponomareva et al., 2023).
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When δ = 0, we term it as pure (ε, 0)-DP or ε-DP for simplicity.

For a vector x = (x1, x2, .., xn), we use lp to denote the p-norm of x, lp(x) = (|x1|p + |x2|p + ... + |xn|p)
1
p .

We now introduce a set of existing DP mechanisms that we will use in our work.
Proposition 2.2 (Gaussian mechanism (Dwork & Roth, 2014; Balle & Wang, 2018)). For any function
f : Xn → R with l2 sensitivity ∆, the mechanism defined as

M(X) = f(X) + z,

where z ∼ N
(
0, σ2)

, provides (ε, δ)-DP where Φ( ∆
2σ −

εσ
∆ ) − eεΦ(− ∆

2σ −
εσ
∆ )) ≤ δ. Φ(t) is the cumulative

distribution function (CDF) of the univariate Gaussian distribution N (0, 1).

Proposition 2.3 (Laplace mechanism (Dwork & Roth, 2014)). For any function f : Xn → R with l1
sensitivity ∆ the mechanism defined as

M(X) = f(X) + z,

where z ∼ Laplace
(
0, ∆

ε

)
, provides (ε, 0)-DP.

2.2 Zeroth-order Optimization

Zeroth-order optimization methods (Kiefer & Wolfowitz, 1952; Spall, 1992; Shamir, 2013; Ghadimi & Lan,
2013; Nesterov & Spokoiny, 2017) use finite difference of function values to estimate gradients, instead of
computing gradients in first-order methods like SGD. By evaluating the objective function values around
the points x, ZO provides the step size towards the direction where the point has a lower function value;
See Liu et al. (2020); Zhang et al. (2024c) for a more detailed review of Zeroth-order optimization methods.
Particularly, we use the difference in losses between two random perturbations SPSA (Spall, 1992; Duchi
et al., 2015) with opposite signs to determine the magnitude of a gradient update in the direction of the
random perturbations. Following (Spall, 1992; Malladi et al., 2023), we define SPSA in Definition 2.4.
Definition 2.4 (Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall, 1992)). Given a model
with parameters θ ∈ Rd and a loss function L, the gradient estimate on a minibatch B drawn from a dataset
D is computed by projecting the loss on the minibatch L(θ;B) onto a random perturbation z ∈ Rd that is a
standard Gaussian random variable (i.e., z ∼ N (0, Id)) scaled by perturbation scale ϕ:

∇̂Lb(θ;B) =L(θ + ϕz;B)− L(θ − ϕz;B)
2ϕ

z (2)

As noted in the Malladi et al. (2023), when ϕ → 0, the SPSA estimate could be considered as a rank-1
reconstruction of the gradient. While SPSA only provides a scalar information from the data, interestingly,
Malladi et al. (2023) show this method converges at a rate that is not catastrophically slower than SGD in
fine-tuning large language models in downstream tasks. Malladi et al. (2023) reason this phenomena as a
result of the Hessian of the loss exhibiting small local effective rank.

Zeroth-order optimization (ZO) serves as high-variance estimates of the actual gradient (Liu et al., 2018),
enabling optimization without the need for explicit gradient computations. While the update of model is from
the random perturbation scaled by the step size where the only information from data is the step size, ZO
still carries a privacy risk, leaking information about the data (as we show later in Section 4.3). Therefore,
incorporating differential privacy into ZO is essential to safeguard against these vulnerabilities.

3 OUR METHOD: DP-ZO

We introduce our method for differentially private zeroth order optimization (DP-ZO) by integrating DP
into Definition 2.4. In DPZ-O, the information obtained from training data can be represented as a scalar.
This scalar has a bounded sensitivity (when applying clipping) and can be privatized by adding noise. If
we compare the noise added in DP-ZO to a single dimension to the noise added in DP-SGD to the entire
gradient, we expect the univariate noise to be less detrimental to the utility (due to the curse dimensionality in
differential privacy Dwork & Roth (2014)). In other words, we would expect the gap between non-private and
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Algorithm 1 Differentially Private-ZO
1: Model parameters θ, dataset D, learning rate η, perturbation scale ϕ, privacy parameter σ, noising

mechanism Z (Gaussian or Laplace), clipping threshold C, expected batch size B, sub-sampling rate
p = B/|D|).

2: g = 0
3: for t ∈ 1, . . . T do
4: Poisson sample B from D with sub-sampling rate p
5: z⃗ ∼ N (⃗0|θ|, I|θ|×|θ|)
6: θ+ ← θ + ϕz⃗
7: θ− ← θ − ϕz⃗
8: for (xi, yi) ∈ B do
9: l+

i ← L(θ+, (xi, yi))
10: l−

i ← L(θ−, (xi, yi))
11: li = clip(l+

i − l−
i , C)

12: end for
13: if Z is Gaussian then
14: s =

∑
i∈B

li+N (0,C2σ2)
B·2ϕ

15: else if Z is Laplace then
16: s =

∑
i∈B

li+Laplace(0,Cσ)
B·2ϕ

17: end if
18: θ = θ − ηsz⃗
19: end for

private utility to be smaller than that of DP-SGD. However, it is possible that for some tasks the non-private
performance of zeroth-order optimization is poor (see Section 4.3).

DP-ZO. We explain the steps of our algorithm while emphasizing the key differences from Definition 2.4
required to guarantee (ε, δ)-DP. We first sample a batch from the dataset with Poisson sampling (Balle et al.,
2018) which allows us to use privacy amplification by subsampling. For each model parameter θi we want to
update, we independently sample a perturbation zi from a standard Gaussian distribution and scale it by a
predetermined constant ϕ; we denote the full perturbation vector as ϕz⃗. Now we compute an approximation
of the gradient by projecting it onto the random perturbation z⃗. That is, for a training sample xi we compute
the difference in scalar losses between θ + ϕz⃗, θ − ϕz⃗. Intuitively, this scalar tells us how much better one
random step is than the other. We clip this scalar to limit the sensitivity . We add noise to the aggregation
over samples in our training batch (described in detail in the subsequent paragraph). Finally, we take a step
in the direction of z⃗ by scaling our private step size by the expected batch size, perturbation constant ϕ, and
the learning rate η.

DP-ZO enables new mechanisms by privatizing the difference in losses between perturbations.
DP-ZO proposes an update direction determined by a d-dimensional random vector (sampled from standard
Gaussian distribution) independent of the private training data. The only private aspect is the step size, that
is influenced by the difference in losses between perturbations with opposite signs. To privatize this step size,
we add noise proportional to the sensitivity of the step size. We bound the sensitivity of the step size by
clipping the per-example step sizes to a specific range [−C, C], so the sensitivity under add-remove DP is C.

Given a private scalar with bounded sensitivity, we can apply the classical Gaussian mechanism to release
a privatized scalar with (ε, δ)-DP. The Gaussian mechanism is widely studied in privacy-preserving ma-
chine learning techniques like DP-SGD, in part because the best accounting techniques for the Gaussian
mechanism (Dong et al., 2019; Gopi et al., 2021) are tight. However, the Gaussian mechanism can only
provide (ε, δ)-DP and researchers often recommend using cryptographically small values of δ (Vadhan, 2017).
Unfortunately, due to limitations of accounting methods, there are challenges for calculating the tight privacy
of composition of sub-sampled Gaussian mechanism for values of δ smaller than 10−10 (Wang et al., 2023).
Alternatively, we can resort to mechanisms that can obtain pure ε-DP. These mechanisms, such as Laplace
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mechanism, come with a guarantee that the mechanism will never fail catastrophically. However, due to large
tails of the Laplace mechanism, it has never been a contender for high dimensional optimization.

Although it is possible to obtain pure DP with DP-SGD by adding Laplace noise scaled to the ℓ1 sensitivity
of the gradient, this is challenging for large models because the ℓ1 sensitivity can be

√
d times larger than

the ℓ2 sensitivity (and often is; see Section 4.3), especially for billion-parameter LLMs. In contrast, DP-ZO
only requires privatizing the loss. The one-dimensional private estimation of the step size is amenable to the
Laplace mechanism, because the ℓp norms are equivalent. Specifically, DP-ZO with the Laplace mechanism is
the first method to achieve a reasonable privacy-utility trade-off under pure ϵ-DP for private fine-tuning of
LLMs. While this work primarily explores these two mechanisms, DP-ZO ss flexible enough to be extended
to other differential privacy mechanisms, broadening its applicability.
Privacy analysis. As we consider multiple accounting methods with multiple previously proposed mech-
anisms, we give the overview of the analysis below and defer the full privacy analysis to Appendix A.

Theorem 3.1. Algorithm 1 is (ε, δ)-DP. Particularly, for Laplace mechanism Laplace(0, σ), Algorithm 1
is ε-DP with ε = T · log(1 + p · (e1/σ − 1)).
Proof Overview. We first provide the privacy analysis for each step. At each step, line 11 upper bounds
the ℓ1 (and therefore ℓp∀p ≥ 1 for the scalar value) sensitivity of the difference in losses li by C. Lines 14
and 16 add noise based on DP mechanisms such that each step in Algorithm 1 satisfies (ε, δ)-DP with
some privacy parameters. For laplace mechanism, each step satisfies log(1 + p · (e1/σ − 1)). For Gaussian
mechanism, each step satisfies (ε, δ) where Heε(N (0, σ2)∥(1− p)N (0, σ2) + pN (1, σ2)) ≤ δ and Heε(·, ·) is
Hockey-stick divergence (see Definition A.3 in Appendix A). Therefore Algorithm 1 is (ε, δ)-DP with some
privacy parameters that are calculated via some mechanism-dependent composition theorem. Most of the
privacy analyses in Appendix A are similar to the privacy analysis of DP-SGD and are based on the numerical
composition of privacy loss random variable (see Definition A.8 in Appendix A) for the corresponding privacy
curve (Gopi et al., 2021) except for the pure ε-DP analysis. The analysis for pure ε-DP by the Laplace
mechanism is based on the basic composition (Dwork & Roth, 2014). Given a number of iterations T and
the use of the Laplace mechanism Laplace(0, Cσ), Algorithm 1 is ε-DP with ε = T · log(1 + p · (e1/σ − 1)).
Remark. We can get a tighter composition of ε by relaxing Laplace mechanism’s ε-DP to (ε, δ)-DP. Note that
since we are dealing with scalar values, our mechanism in each iteration will be a one dimensional Laplace
mechanism. Therefore we can compute the dominating pair for a single dimensional Laplace mechanism
based on Zhu et al. (2022); Wang et al. (2023), that is tighter than directly using the private random variable
for privacy curve of a ε-DP algorithm in Gopi et al. (2021). We detail the full privacy analysis in Appendix A.

Prior works (Song et al., 2021; Li et al., 2022a) have analyzed when the convergence rate of DP-SGD is
dependent on the effective rank r of the problem rather than the model dimension size d. A concurrent
and independent work (Zhang et al., 2024a) propose DPZero by privatizing the loss difference scalar in ZO
with Gaussian noise, that shares some similar design as DP-ZO. They provide the convergence guarantee for
DPZero that is independent of the model dimension in private training. Here we briefly discuss the algorithm
design difference between DPZero in Zhang et al. (2024a) and our DP-ZO. DPZero (Zhang et al., 2024a)
is Algorithm 2 in Zhang et al. (2024a), and the random perturbation is by sampling z⃗ from a unit Sphere
Sd−1 = {x ∈ Rd|∥x∥ = 1}. In our Algorithm 1, z⃗ is sampled from Gaussian distribution. We reimplemented
our perturbation method based on the algorithms in Zhang et al. (2024a), and we obtain 82.320.82 for LoRA
fine-tuning OPT-13B on SQuAD with (1, 10−5)-DP, that is comparable as the perturbation method in
our Algorithm 1, that achieves 82.280.84 under the same setting. We also note that Zhang et al. (2024a) also
share same observation on this by experiments on Roberta-large models (Liu et al., 2019) in their Table 7.
Algorithm 2 DPZero is under full batch setting.2 As we show in Appendix D.2, in the evaluated number of
iteration range, given the same amount of computation time on a single GPU, by training more steps with
small batch size DP-ZO achieves better performance than by accumulating steps for large batch size. This
result is consistent with the observation in the non-private zeroth-order optimization results in MeZO (Malladi
et al., 2023). Besides, Algorithm 2 in DPZero considers the sensitivity as 2C with clipping threshold C,
this leads to adding twice necesssary noise under add/remove DP. Our Algorithm 1 analyzes the sensitivity
C with clipping threshold C, and we share this add/remove DP choice with popular DP-SGD library like
Opacus (Yousefpour et al., 2021). We further discuss our work and Zhang et al. (2024a) in Section 5.

2The experiment section in Zhang et al. (2024a) also uses small batch size and perturbation from random Gaussian distribution.
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4 EVALUATION

We first overview our experimental setup in Section 4.1 and then evaluate the performance of DP-ZO in
Section 4.2. We find that DP-ZO provides a competitive privacy-utility trade-off for conservative privacy
budgets across multiple datasets, model architectures and can scale to large models under conservative privacy
budgets. We also compare DP-ZO to DP-SGD in Section 4.2 and show that DP-ZO achieves comparable
performance to DP-SGD for the same model size. Furthermore, we show that DP-ZO achieves a non-trivial
privacy-utility trade-off under pure ε-DP under a conservative privacy budget like ε = 4 on large language
models. In Section 4.3 we first provides results of DP-ZO across different model architectures. We then
measure the empirical privacy loss and computation efficiency of DP-ZO. We also characterize DP-ZO under
different few-shot settings and different noise mechanisms for (ε, δ)-DP.

4.1 Experimental Setup

We report the metric of interest (F1 score or accuracy) and standard deviation averaged across 5 independent
runs with different random seeds. We detail the full hyperparameter searches in Appendix D.2.

Datasets. Following Malladi et al. (2023), we mainly consider three different benchmark NLP tasks:
SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019) for text generation, and SST2 (Socher et al.,
2013) for text classification. We use F1 for text generation and accuracy for text classification as evaluation
metric (see details in Appendix D.1). Although all these datasets have very different dataset sizes, we consider
the few-shot setting for all these datasets where we sample 1000 points for each dataset. Fine-tuning LLMs
with O(n = 1000) samples is a standard setting in the NLP community (Gao et al., 2021; Malladi et al., 2023)
because we are generally interested in the few-shot abilities of LLMs (Brown et al., 2020). This represents
a departure from prior works that privately finetune LLMs; Yu et al. (2022); Li et al. (2022b); Yu et al.
(2021b) use the entire training dataset of SST2 that has about 65,000 examples. It is well known that the
privacy-utility tradeoff improves greatly with more data (Tramèr & Boneh, 2021). It is straightforward to see
that our setting with datasets of the size n = 1000 with δ = 10−5 is simultaneously more challenging and
more aligned with real-world usecases than previous works in DP finetuning of LLMs. Despite the increased
difficulty of our few-shot setting as compared to prior work, our results validate that DP-ZO realizes a strong
privacy-utility trade-off. We also varies the training sample size from the few-shot to the full training set by
conducting experiments on the QNLI (Wang et al., 2019) dataset to be consistent with previous works (Li
et al., 2022b; Yu et al., 2022) for a fair comparison.

Models. We present our main results (Table 1) using a pretrained OPT-13B (Zhang et al., 2022) model
that is finetuned with LoRA (Hu et al., 2022); that is, we update < 1% of the total parameters. We include
a range of analysis, including varying the model size among the OPT series, model architectures including
Mistral-7B-v1 (Jiang et al., 2023) and amount of parameters to be updated, after we present the main results.
We also include one experiments for QNLI on Roberta-base (Liu et al., 2019) to be consistent with previous
works (Li et al., 2022b; Yu et al., 2022) for a fair comparison.

Privacy budgets. We consider various privacy levels with ε = [0.5, 1, 4] and fix δ = 10−5 for (ε, δ)-DP. We
include the zero-shot ε = 0 that does not incur any privacy loss because we evaluate the pretrained model
directly without finetuning on private data. We also include the non-private ε =∞ baseline that is trained
without any DP guarantee. That is, we iterate over the shuffled dataset instead of doingPoisson sampling
(replacing line 4), do not clip the step size (skipping line 11) and set σ = 0 (in line 14). We make these
modifications because Poisson sampling and small threshold like C = 0.1 for per-example clipping makes
gradient estimator biased and loss convergence issues in σ = 0 for DP-SGD (Andrew et al., 2021; Chen et al.,
2020; De et al., 2022; Bu et al., 2023b), and we want to compare to the strongest possible nonprivate baseline.

4.2 Main Results

DP-ZO provides a strong privacy-utility trade-off for conservative privacy budgets. As shown
in Table 1, across all three tasks and all εs, DP-ZO significantly improves upon the ε = 0 baseline, and
only slightly degrades the performance compared to the non-private baseline. For SQuAD, even at ε = 0.5,
DP-ZO can still achieve 80.10%, that significantly outperforms ε = 0 baseline (46.23%). The gap between
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ε = 0.5 and ε =∞ is about 6.75%. By increasing ε from 0.5 to 4, this gap can be further reduced to 3%. For
DROP and SST2, DP-ZO (Gaussian) achieves comparable performance as the non-private baseline at ε = 4.

Table 1: Main results with 1000 training samples for each dataset. OPT-13B model with LoRA fine-tuning.
DP-ZO (G) is DP-ZO instantiated with the Gaussian mechanism. δ = 10−5. The ε = ∞ by ZO is 86.85
for SQuAD, 33.22 for DROP, and 93.69 for SST2. The ε = 0 baseline, i.e., directly doing model evaluation
without training, is 46.23 for SQuAD, 14.64 for DROP, and 58.83 for SST2. The results of DP-SGD on DROP
are omitted because fine-tuning OPT-13B on the DROP dataset by LoRA will cause the out of memory issue
on a single A100 GPU even in the non-private setting.

Task SQuAD DROP SST2
Task type generation (metric: F1) classification (metric: accuracy)
Method ε = 0.5 ε = 1 ε = 4 ε = 0.5 ε = 1 ε = 4 ε = 0.5 ε = 1 ε = 4

DP-ZO(G) 80.100.63 82.280.84 83.870.50 28.390.82 30.300.51 31.990.51 85.412.91 91.190.90 92.590.30
DP-SGD 79.850.89 82.140.18 83.050.51 − − − 64.336.47 90.250.78 92.060.52

DP-ZO scales to large models. In Table 2 we show that DP-ZO continues improving as the model size
increases from 1.3B to 66B. Due to space constraints, we provide the non-private (ε =∞) performance of all
models and methods in Appendix E. Table 2 shows an promising insight: as the model size and nonprivate
performance increase, the gap in performance between private and nonprivate models shrinks. Specifically, the
gap for OPT-1.3B is 5.68% (80.97% at ε =∞ reduced to 75.29% under ε = 1). But this gap shrinks to just
3.37% for OPT-66B, where the private performance at ϵ = 1 is 84.12% compared to 87.49% non-privately.
Our findings suggest that DP-ZO scales to large models not only because it is compatible with existing
pipeline without much additional engineering effort but also because the utility drop due to privacy is smaller
as the model size increases.

Table 2: DP-ZO (Gaussian) and DP-SGD with full parameter and LoRA fine-tuning on SQuAD with 1000
training samples across different model sizes. (1, 10−5)-DP. ‘−’ means the approach did not scale with
straightforward implementation; Section 5 details the additional engineering required to scale DP-SGD to
larger models. ‘−−’ for DP-ZO means the results are omitted due to limited computational resources. Due
to limited computing resources, this table does not include the standard deviation for OPT-66B model.

Method OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B
DP-ZO-LoRA (Gaussian) 75.290.90 80.341.14 81.341.04 82.280.84 82.480.83 84.121.01

DP-SGD-LoRA 75.390.33 79.420.57 79.530.52 82.140.18 − −
DP-ZO-Full (Gaussian) 72.841.03 77.250.27 79.060.67 82.160.41 −− −−

DP-SGD-Full 75.500.89 79.810.64 − − − −

Comparison with DP-SGD. We compare DP-ZO to differentially private stochastic gradient descent (DP-
SGD) (Abadi et al., 2016) which has been applied to fine-tune LLMs with full parameter fine-tuning (Li et al.,
2022b) and with LoRA (Yu et al., 2022; He et al., 2023). Recall that DP-ZO is compatible out-of-the-box with
mixed precision training and GPU parallelism, enabling us to fine-tune OPT-66B. As we discuss in Section 5,
it is significantly more challenging to integrate DP-SGD with these techniques, and furthermore, DP-SGD
requires more memory than DP-ZO to store activations and compute per-sample gradients (see Section 4.3).
As a direct result, DP-SGD cannot directly scale past 2.7B with full fine-tuning or 13B with LoRA without
additional implementation effort for multi-GPU training, while DP-ZO can scale seamlessly to larger models.
In Table 2 we present comparisons between DP-ZO and DP-SGD with full parameter finetuning and LoRA.
With the same model size, DP-ZO achevies comparable performance as DP-SGD as by LoRA finetuning, i.e.,
both DP-ZO and DP-SGD achieves 82% on OPT-13B models. The best performance by DP-ZO is 84.12% by
OPT-66B finetuned with LoRA. This is ≈ 2% better than the best performance of DP-SGD in Table 2 that
is 82.14% by OPT-13B with LoRA.

DP-ZO with pure ε-DP. To the best of our knowledge, DP-ZO (Laplace) is the first method that achieves
a non-trivial privacy-utility trade-off under pure ε-DP under a conservative privacy budget like ε = 4 on large
language models.
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In Table 3, DP-ZO (Laplace) can significantly improve upon ε = 0. Given a budget ε = 4, which some prior
work has considered reasonable (Ponomareva et al., 2023), DP-ZO (Laplace) can obtain 73.52% on SQuAD.
When increasing ε = 4 to ε = 15, DP-ZO (Laplace) can obtain 78.82% on SQuAD. Note that the l1 sensitivity
required for Laplace mechanism makes it hard to DP-SGD to achieve comparable performance as DP-ZO
because the gradients in DP-SGD have high dimension. Table 3 shows that DP-SGD with l1 norm clipping
and Laplace noise only achieves 47.25% for reasonable privacy budgets with ε ranging from 4 to 15, that
is only marginal improvement upon the zero-shot performance. Even when relaxing the privacy budget to
near-vacuous guarantees such as ε = 10450, DP-SGD (Laplace) still achieves worse performance compared to
DP-ZO due to the Laplace noise added in high-dimension gradients.

Table 3: Pure ε-DP by DP-ZO (Laplace), SQuAD with 1000 training samples. OPT-13B with LoRA
fine-tuning. The ε = 0 baseline is 46.23%.

ε ε = 4 ε = 10 ε = 15 ε = 10450
DP-ZO (Laplace) 73.521.04 76.751.39 78.821.57 81.021.24

DP-SGD (Laplace) 47.250.79 47.270.95 47.361.02 76.500.89

4.3 Analysis

In this section, we provide experiments for DP-ZO across different model architectures, empirical privacy
analysis to measure how private is DP-ZO, memory efficiency of DP-ZO, the amount of training data that we
sample in DP-ZO, and the choice of DP mechanism in DP-ZO.

DP-ZO provides a strong privacy-utility trade-off across different model architectures. Table 1
and Table 2 show that DP-ZO achieves the comparable performance as DP-SGD on various OPT models
sizes. We now run experiments on SQuAD with Mistral-7B-v1 model (Jiang et al., 2023) in Table 4 and
include the results of OPT-6.7B and OPT-13B for the ease of comparison. DP-ZO and DP-SGD both achieve
comparable performance at ε = 1, that are around 89%. Moreover, even Mistral-7B-v1 has similar model
parameters as OPT-6.7B and much fewer parameters than OPT-13B, DP-ZO achieves better performance by
Mistral-7B-v1 than OPT-13B. This indicates that with the development of more advanced models, the power
of DP-ZO will be further unlocked.

Table 4: The results of DP-ZO on different model architectures. The ε = 0 baseline for Mistral-7B-v1 is 68.37.
Models OPT-6.7B OPT-13B Mistral-7B-v1
DP-ZO 81.341.04 82.280.84 89.790.41

DP-SGD 79.530.52 82.140.18 89.440.41

DP-ZO is memory efficient. We omitted several results of DP-SGD in Section 4.2 due to excessive memory
consumption of DP-SGD that leads to out-of-memory (OOM) on a single A100 80G GPU. We now provide a
more fine-grained memory analysis for a better understanding of DP-ZO and DP-SGD.

The naive implementation of DP-SGD causes additional memory consumption due to the per-example
gradient computation. An ongoing line of work (Li et al., 2022b; Yu et al., 2022; He et al., 2023; Bu
et al., 2024) has continued improving the scalability of DP-SGD over the past few years. For memory cost
comparison, we consider several variants of DP-SGD including DP-SGD-full (Abadi et al., 2016; Li et al.,
2022b), DP-SGD-full(ghost) (Li et al., 2022b), DP-SGD-LoRA (Yu et al., 2022), DP-SGD-BitFiT (Bu et al.,
2024) and DP-ZO (including full and LoRA) for a fair comparison.3

As discussed in (Li et al., 2022b; De et al., 2022), small batch size will incur sub-optimal performance of
DP-SGD and therefore large batch size is preferred, we consider gradient accumulation in memory analysis to
enable large batch size. We consider full precision both for DP-SGD and DP-ZO for fair comparison. We
present the results of such memory consumption for different sequence lengths on OPT-2.7B in Table 5.

3DP-SGD-full, DP-SGD-full(ghost), DP-SGD-LoRA are based on https://github.com/lxuechen/private-transformers. For
DP-SGD-BitFit, we use fastDP https://github.com/awslabs/fast-differential-privacy/tree/main/fastDP and follow the guideline
by using one line of code [param.requires_grad_(False) for name, param in model.named_parameters() if ’.bias’ not in name].
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Table 5: Comparison of memory consumption (GB) of DP-ZO and DP-SGD varying differnet sequence length
on OPT-2.7B. Full-precision, no gradient check-pointing. Batch size=2, gradient accumulation steps=2.
OOM indicates out-of-memory on a single A100 80G GPU.

Methods DP-SGD-full DP-SGD-full(ghost) DP-SGD-LoRA DP-SGD-BitFit DP-ZO-full DP-ZO-LoRA
seq_len=128 51.3 32.9 11.4 12.2 11.6 10.3
seq_len=512 51.4 39.6 18.1 21.3 11.7 11.1
seq_len=2048 OOM OOM OOM OOM 15.6 15.6

Table 5 shows that the naive implementation of DP-SGD incurs around 50GB for sequence length equal
to 128 and incurs out-of-memory (OOM) issue when increasing sequence length to 2048. Ghost clipping
can help reduce the memory consumption by removing per-sample gradient computation, but still needs
to accumulate gradients and consumes memory more than 30GB. Parameter efficient fine-tuning methods
including DP-SGD-LoRA, DP-SGD-BitFiT can largely reduce the memory cost for gradient accumulation
with fewer parameters in gradients. However, as the input sequence length increases, the activation saved in
forward-pass for gradients computation significantly increases and still causes OOM error for sequence length
equals to 2048. Note that such long sequence input exists in practical scenarios such as digesting from a long
documents and recent foundation models put efforts to support longer context (Gemini-Team et al., 2023). In
contrast, DP-ZO does not need to store gradients nor store additional activation for gradients, therefore can
reduce the memory consumption to be less than 16GB even when sequence length is 2048. In fact, DP-ZO
incurs nearly no additional memory cost than ZO (Malladi et al., 2023).

DP-SGD-full DP-SGD-lora DP-ZO-full DP-ZO-lora
Methods
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Figure 5: Memory comparison of DP-ZO
and DP-SGD with half-precision and gradi-
ent checkpointing. Batch size=1, gradient
accumulation steps=2.

We now consider a more restrictive memory setting such as on-
device mobile setting, i.e., 8GB as a memory limit (Gim & Ko,
2022; Guo et al., 2024). As discussed in Malladi et al. (2023),
gradient checkpointing can help reduce the activation memory
consumption. We use gradient checkpointing to reduce the
memory consumption of activation and half-precision to reduce
the memory consumption of weights and gradients. We measure
with the default implementation of activation checkpointing
where we checkpoint every block of the model. We consider
batch size=1 and accumulate gradients in 2 steps to enable
training in large batch size. We present the results of such
memory consumption for different sequence lengths on OPT-
2.7B model in Figure 5. While gradient checkpointing largely
reduces the memory consumption in DP-SGD, DP-SGD-full is
still beyond the 8GB memory limit due to gradient accumulation.
Similarly, with gradient checkpointing, DP-SGD-LoRA still
exceeds the 8GB limit when increasing sequence to 2048. In contrast, DP-ZO incurs just 6.2GB even when
input sequence length is 2048.

How private is DP-ZO and ZO: an empirical privacy analysis. We discussed earlier in Section 2.2
that the single scalar information from Zeroth-order Optimization will leak private information and therefore
motivate our design of DP-ZO. We now validate our design by conducting empirical privacy evaluation
through membership inference attacks (MIA) (Shokri et al., 2017) to understand the privacy implication of
DP-ZO. We use the state-of-the-art privacy auditing method in Panda et al. (2024b) for empirical privacy
evaluation. Similar to Panda et al. (2024b), we construct synthetic canaries by creating one new token for
each canary to the vocabulary to increase the information from canaries for better auditing. Following Panda
et al. (2024b); Mireshghallah et al. (2022), we use MIA Area under the ROC Curve (AUC-ROC) for empirical
privacy evaluation. We report the results for DP-ZO and DP-SGD in Table 6 for different εs including
[0.5, 1, 4, 10,∞].

As observed in Panda et al. (2024b), such privacy attack is very successful for DP-SGD when no noise added,
and DP-SGD can effectively reduce the attack AUC to 54.8 that is closed to random guess at ε = 0.5. For
DP-ZO, when no noise added, the MIA AUC is 71.4 that is lower than DP-SGD(ε = ∞), however much
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higher than the random guess baseline 50. Interestingly, in this empirical privacy case study, the privacy
leakage of ZO is similar to the privacy leakage of DP-SGD at ε = 10. DP-ZO is motivated to get a formal
privacy guarantee by differential privacy. DP-ZO can reduce the attack AUC to around random guess at
ε = [0.5, 1, 4]. To the best of our knowledge, this is the first experimental result that measures the privacy
leakage in ZO and DP-ZO. This result shows the necessity of DP-ZO to reduce MIA close to random guess,
and also raises an open problem about the inherent privacy property of zeroth-order optimization.

Table 6: Membership Inference Attack AUC-ROC for DP-ZO and DP-SGD.
ε = 0.5 ε = 1 ε = 4 ε = 10 ε =∞

DP-ZO 53.2 54.5 55.6 58.8 71.4
DP-SGD 54.8 55.0 61.5 71.9 100.0
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Figure 6: (Smoothed) training loss. n =
5000 has better convergence rate compared
to n = 250.

Characterizing the effect of data size. Although it is known
that private learning requires more data than non-private learn-
ing (Bassily et al., 2014), prior work has not characterized
this improvement for fine-tuning language models. In Table 7
and Figure 6 we first vary the number of training samples n
around the n = 1000 setting in the main results while keep-
ing δ = 10−5 fixed for all choices of n. Table 7 shows that
DP-ZO can achieve nontrivial performance in few-shot set-
tings under conservative privacy guarantees. Furthermore, we
find that while increasing the amount of training data by 10×
barely increases non-private performance, it increases private
performance by ≈ 6% (n = 500 vs. n = 5000). Similarly,
acquiring more data enhances privacy amplification and reduces
the amount of noise we need to add to achieve a target ε-DP
+ guarantee. In Table 8 we find that increasing the number
of training examples from 1000 to 5000 improves performance
at ε = 4 from 73.52% to 79.89%, although the improvement of
non-private performance at ϵ =∞ by increasing training samples from 1000 to 5000 is insignificant.

While non-private few-shot learning can succeed by just memorizing the training data, Figure 6 indicates
that the convergence rate for different shots for private few-shot learning is different. With the proliferation
of pretrained models, we anticipate that privately fine-tuning downstream tasks in the few-shot setting will be
more aligned with real-world use cases (Gao et al., 2021).
Table 7: The effect of different n training samples for
DP-ZO (Gaussian) fon SQuAD dataset. (1, 10−5)-DP.
OPT-13B with LoRA finetuning.

n-shot n = 250 n = 500 n = 1000 n = 5000
ε = 1 74.860.74 78.252.38 82.280.84 84.290.92
ε =∞ 86.40 86.53 86.85 86.92

Table 8: Pure ε-DP by DP-ZO (Laplace) at ε = 4,
SQuAD with different training samples. OPT-
13B with LoRA fine-tuning. The ε = ∞ by ZO
is 86.85% and 86.92% for 1000 and 5000 samples
respectively. The ε = 0 baseline is 46.2%.

n-shot n = 1000 n = 5000
DP-ZO (Laplace) 73.521.04 79.890.49

Table 9: Comparison of DP-ZO and DP-SGD on differ-
ent samples on QNLI dataset with Roberta-base model.

1000 5000 10000 50000 104743
DP-SGD 73.27 79.44 80.54 84.81 87.40
DP-ZO 76.19 78.66 79.28 79.70 79.85

Table 10: DP-ZO with different DP mechanism.
SQuAD with 1000 training samples. δ = 10−5.

ε ε = 0.5 ε = 1 ε = 4
DP-ZO (G) 80.100.63 82.280.84 83.870.50
DP-ZO (L) 77.580.81 80.490.63 82.940.69

Besides the few-shot setting, we now scale the size of training data size up to more than 100k samples and
compare the performance of DP-SGD and DP-ZO. For the ease of comparison, we follow Li et al. (2022b); Yu
et al. (2022) and conduct experiments for DP-ZO and DP-SGD on QNLI with RoBERTa-base with a range
of examples at ε = 3 and report result in Table 9. Similar to previous observation, Table 9 shows that at a
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small data regime, i.e., samples=1000, DP-ZO achieves comparable performance as DP-SGD. DP-ZO can
also improve its performance within more samples. Compared to DP-SGD, we notice that when increasing
the data size, there is a utility gap between DP-ZO and DP-SGD. This limitation shows an open problem
that how to improve data efficiency in zeroth-order optimization (Zhang et al., 2024c; Zhao et al., 2024) and
DP-ZO, and we leave this data efficiency improvement in ZO as future work.

Different noise mechanisms for (ε, δ)-DP. We now relax the privacy guarantee provided by the Laplace
mechanism to approximate (ε, δ)-DP. In Table 10, we compare DP-ZO instantiated with the Laplace and
Gaussian mechanisms. DP-ZO (Gaussian) outperforms DP-ZO (Laplace) for strict privacy budgets such as
ε = 0.5 because it enjoys tighter accounting (Gopi et al., 2021) and lower variance (Dwork & Roth, 2014).
These advantages are less significant for larger privacy budgets; for ε = 4, the gap between DP-ZO (Gaussian)
and DP-ZO (Laplace) is within 1%.

Our experiments on the DP-ZO with laplace for ε-DP and the comparisons of Laplace and Gaussian
mechanisms for (ε, δ)-DP shows that DP-ZO provides a strong privacy-utility trade-off under different DP
mechanisms while DP-SGD suffers from Laplace mechanisms for (ε, δ)-DP, which opens the new opportunity
for the synergy between DP mechanisms and large language models.

5 DISCUSSION

Discussion of our work and DPZero (Zhang et al., 2024a). Most recently, a concurrent work (Zhang
et al., 2024a) also privatizes the zeroth-order optimization method DP-SPSA algorithm. Zhang et al. (2024a)
propose DPZero and provide the convergence guarantee for DPZero that is independent of the model
dimension in private training. Zhang et al. (2024a) presented experimental results for DPZero/DP-SGD
on Roberta-large model and DPZero on OPT 1.3B-6.7B models. Our work focus on understanding the
privacy-utility trade-off for DP-ZO as well as the privacy implication and the practical implication of DP-ZO.
We provide a comprehensive understanding of the privacy-utility trade-off for DP-ZO and DP-SGD for
OPT-1.3b-66B models. We consider DP-ZO as a general framework for private machine learning. We found
that DP-ZO is compatible with Laplace mechanism and enabling ε-DP with a reasonable privacy-utility
trade-off while DP-SGD with Laplace mechanism suffers to optimize.The result indicates that DP-ZO can
open the new opportunity for the synergy between DP mechanisms and large language models. To the
best of our knowledge, we provide first experimental result that measures the privacy leakage in (DP-)ZO.
We also conduct experiments for analyzing the effect of data size and the memory consumption for limited
resource scenarios. Our findings could provide insights on future directions for improving the analysis and
implementation of DP-ZO methods.

Discussion on DP-SGD and DP-ZO. In Section 4.2 we showed that DP-ZO obtains competitive privacy-
utility tradeoff. Now we examine the amount of engineering effort necessary to scale DP-SGD to larger
models, a topic on which many papers have been written (Bu et al., 2023b;c; Yousefpour et al., 2021; Li et al.,
2022b; He et al., 2023; Bu et al., 2023a). We find that DP-ZO seamlessly scales to larger models and believe
its simplicity presents a compelling alternative to DP-SGD for practitioners.

DP-SGD. Differentially Private Stochastic Gradient Descent (DP-SGD) (Song et al., 2013; Abadi et al.,
2016) is the standard privacy-preserving algorithm to train models on private data, with an update rule
given by w(t+1) = w(t) − ηt

|B|
(∑

i∈B
1
c clipc(∇ℓ(xi, w(t))) + σξ

)
where the changes to SGD are the per-

sample gradient clipping clipc(∇ℓ(xi, w(t))) = c×∇ℓ(xi,w(t))
max(c,||∇ℓ(xi,w(t))||2) and addition of noise sampled from a

d-dimensional Gaussian distribution ξ ∼ N (0, 1) with standard deviation σ. DP-SGD is the marquee
algorithm for privacy-preserving machine learning, but it requires implementing per-example gradient clipping.
This creates a slew of challenges for deploying DP-SGD.

Computational and memory challenges in DP-SGD. DP-SGD requires the computation of per-example
gradients, which can be naively implemented by storing each gradient in the batch separately. This approach
inflates the memory overhead by a factor of B, where B is the batch size. Tensorflow Privacy avoids this
issue by clipping microbatches rather minibatches, which does not slow down training but increases the noise
added and therefore hurts utility. Jax can automatically vectorize the per-sample gradient computation, but
training is still slowed down. Recently, specialized libraries have been developed that instead analytically
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compute the norm of the gradients for different layers (Li et al., 2022b; Bu et al., 2023d; Ding et al., 2024).
This requires actually implementing the computation, which is challenging for new layers. Parameter efficient
fine-tuning methods (Yu et al., 2022; Bu et al., 2024) can help reduce such computation cost by reducing
the number of trainable parameters. However, as discussed in Section 4.3, those methods still incur much
more memory cost than DP-ZO for long sequences. Besides, when model cannot be loaded into a single
GPU, model parallelism is needed to load large models across several GPUs and per-example gradient norm
clipping requires additional implementation, both for gradient clipping and communication across device. He
et al. (2023) investigate how to make group-wise gradient clipping efficient and achieve good performance in
DP-SGD and fine-tunes 175B GPT3 model with 16 V100 GPUs each with 32 gigabytes of VRAM. Bu et al.
(2023a) implements DP-SGD based on Zero Redundancy Optimizer (Rajbhandari et al., 2020) to scale model
size up to GPT-100B and maintain efficiency. It currently also only supports layer-wise or block-wise clipping.

We now discuss the advantage of DP-ZO that can scale to large language models seamlessly. Note that
DP-ZO inherits the seamless scalability from ZO as a result of only additional computation cost on loss.
DP-ZO achieves comparable performance as DP-SGD. In contrast, DP-SGD incurs more computational and
memory challenges than SGD due to per-example gradient clipping.

Model parallelism and data parallelism in DP-ZO. To train large models like OPT-66B, whose
parameters cannot be loaded into memory on a single A100 GPU, we need to implement some form of
parallelism across GPUs. It is easy for such parallelism in DP-ZO (in the simplest form, just running DP-ZO
on a machine with 2 GPUs will prompt HuggingFace to implement naive model parallelism), while much
more effort in DP-SGD.To synchronize model state between GPUs in data-parallel-DP-ZO, we just transfer
the random seed and its corresponding half-precision float16 scalar step size; this is just a few bytes. However,
first-order approaches such as DP-SGD require the transfer of gradients across devices to update all the
models, necessitating expensive allgather and reduce operations. This communication overhead is 1.5d in
PyTorch FSDP, where d is the size of the model.

DP-ZO is storage and communication-efficient even after training has completed. DP-ZO offers
significant advantages in terms of storage and communication efficiency, especially beneficial for bandwidth-
constrained environments like edge devices (Li et al., 2024). Unlike traditional methods where the difference
in model parameters θ0 − θf is shared—which could amount to multiple gigabytes for large models—DP-ZO
allows for the storage and transmission of a sequence of updates. This sequence is represented as an array of
tuples [(seed0, 0.54), · · · , (seedf ,−0.14)], where each tuple contains a seed and a step size, taking up only 4
bytes. Even for 1× 104 fine-tuning iterations, this array would require less than 1MB of storage, representing
a substantial reduction in both storage and communication overhead. We can apply these weight differences
to a model by simply iterating over the array, sampling from the PRNG using the given seed, scaling that
random vector, and applying it to the current model parameters. This procedure is highly efficient, as it
involves only sequential memory accesses and scalar floating-point operations.

DP-SGD vs. DP-ZO. We have discussed the memory efficiency of DP-ZO over DP-SGD in details. This
is helpful in limited memory scenarios as we show in Figure 5. While being much more memory effient,
DP-ZO achieves comparable performance as DP-ZO on several tasks including OPT-13B models on 1000
SQuAD examples with Gaussian mechanism (Table 1) and provides reasonable privacy-utility trade-off for
ε-DP (Table 3), which is promising. We also note that the utility challenge of DP-ZO when scaling with
more samples (Table 7), mostly due to the gap of ZO and SGD. This indicates the future improvement for
data efficiency in zeroth-order optimization, that will benefit DP-ZO with Gaussian and Laplace mechanism.

6 CONCLUSION

DP-SGD has been the de-facto private training method of the last decade. In this work we propose DP-ZO, a
novel method for private fine-tuning that privatizes the zeroth-order update by adding noise to the difference
in loss between two perturbations. DP-ZO’s unique univariate privatization unlocks training larger models
with better parallelism than DP-SGD. DP-ZO provides a strong privacy-utility trade-off across different tasks,
model sizes, dataset sizes, and DP mechanisms. We anticipate that future work can further study these
design choices, integrate more DP mechanisms into DP-ZO, and apply it to the vision domain.

12



Under review as submission to TMLR

References
Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pp. 308–318, 2016.

Galen Andrew, Om Thakkar, Brendan McMahan, and Swaroop Ramaswamy. Differentially private learning
with adaptive clipping. Advances in Neural Information Processing Systems, 34:17455–17466, 2021.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy: Analytical
calibration and optimal denoising. In International Conference on Machine Learning, pp. 394–403. PMLR,
2018.

Borja Balle, Gilles Barthe, and Marco Gaboardi. Privacy amplification by subsampling: Tight analyses via
couplings and divergences. In Advances in Neural Information Processing Systems, 2018.

Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves Strub. Proving differential
privacy via probabilistic couplings. In 2016 31st Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pp. 1–10. IEEE, 2016.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of
Computer Science, pp. 464–473, 2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris
Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Advances in Neural Information Processing Systems, pp. 1877–1901, 2020.

Zhiqi Bu, Justin Chiu, Ruixuan Liu, Sheng Zha, and George Karypis. Zero redundancy distributed learning
with differential privacy. arXiv preprint arXiv:2311.11822, 2023a.

Zhiqi Bu, Hua Wang, Zongyu Dai, and Qi Long. On the convergence and calibration of deep learning
with differential privacy. Transactions on Machine Learning Research, 2023b. ISSN 2835-8856. URL
https://openreview.net/forum?id=K0CAGgjYS1.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Automatic clipping: Differentially private deep
learning made easier and stronger. In Advances in Neural Information Processing Systems, 2023c.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private optimization on large model
at small cost. In Proceedings of the 40th International Conference on Machine Learning, pp. 3192–3218.
PMLR, 2023d.

Zhiqi Bu, Yu-Xiang Wang, Sheng Zha, and George Karypis. Differentially private bias-term fine-tuning of
foundation models. In Forty-first International Conference on Machine Learning, 2024.

T-H Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics. ACM Transactions
on Information and System Security (TISSEC), (3):1–24, 2011.

Xiangyi Chen, Steven Z Wu, and Mingyi Hong. Understanding gradient clipping in private sgd: A geometric
perspective. Advances in Neural Information Processing Systems, 33:13773–13782, 2020.

Soham De, Leonard Berrada, Jamie Hayes, Samuel L Smith, and Borja Balle. Unlocking high-accuracy
differentially private image classification through scale. arXiv preprint arXiv:2204.13650, 2022.

Damien Desfontaines and Balázs Pejó. Sok: differential privacies. Proceedings on Privacy Enhancing
Technologies, 2020(2):288–313, 2020.

13

https://openreview.net/forum?id=K0CAGgjYS1


Under review as submission to TMLR

Youlong Ding, Xueyang Wu, Yining Meng, Yonggang Luo, Hao Wang, and Weike Pan. Delving into
differentially private transformer. In Proceedings of the 41st International Conference on Machine Learning,
pp. 11049–11071. PMLR, 2024.

Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. arXiv preprint arXiv:1905.02383,
2019.

Minxin Du, Xiang Yue, Sherman S. M. Chow, Tianhao Wang, Chenyu Huang, and Huan Sun. Dp-forward:
Fine-tuning and inference on language models with differential privacy in forward pass. In Proceedings of
the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 2665–2679, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. Drop:
A reading comprehension benchmark requiring discrete reasoning over paragraphs. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), pp. 2368–2378, 2019.

Haonan Duan, Adam Dziedzic, Nicolas Papernot, and Franziska Boenisch. Flocks of stochastic parrots:
Differentially private prompt learning for large language models. In Advances in Neural Information
Processing Systems, 2023.

John C. Duchi, Michael I. Jordan, Martin J. Wainwright, and Andre Wibisono. Optimal rates for zero-order
convex optimization: The power of two function evaluations. IEEE Transactions on Information Theory,
61(5):2788–2806, 2015. doi: 10.1109/TIT.2015.2409256.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Foundations and
Trends® in Theoretical Computer Science, 9(3-4):211–407, 2014.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private
data analysis. In Theory of Cryptography Conference, pp. 265–284, 2006.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. Differential privacy under continual
observation. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, pp. 715–724,
2010.

Arun Ganesh, Mahdi Haghifam, Milad Nasr, Sewoong Oh, Thomas Steinke, Om Thakkar, Abhradeep
Guha Thakurta, and Lun Wang. Why is public pretraining necessary for private model training? In
Proceedings of the 40th International Conference on Machine Learning, pp. 10611–10627. PMLR, 2023.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners.
In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 3816–3830,
2021.

Gemini-Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for nonconvex stochastic
programming. arXiv preprint arXiv:1309.5549, 2013.

In Gim and JeongGil Ko. Memory-efficient dnn training on mobile devices. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services, pp. 464–476, 2022.

Sivakanth Gopi, Yin Tat Lee, and Lukas Wutschitz. Numerical composition of differential privacy. In
Advances in Neural Information Processing Systems, pp. 11631–11642, 2021.

Cristiano Gratton, Naveen K. D. Venkategowda, Reza Arablouei, and Stefan Werner. Privacy-preserved
distributed learning with zeroth-order optimization. IEEE Transactions on Information Forensics and
Security, 17:265–279, 2022. doi: 10.1109/TIFS.2021.3139267.

14



Under review as submission to TMLR

Wentao Guo, Jikai Long, Yimeng Zeng, Zirui Liu, Xinyu Yang, Yide Ran, Jacob R Gardner, Osbert Bastani,
Christopher De Sa, Xiaodong Yu, et al. Zeroth-order fine-tuning of llms with extreme sparsity. arXiv
preprint arXiv:2406.02913, 2024.

Jiyan He, Xuechen Li, Da Yu, Huishuai Zhang, Janardhan Kulkarni, Yin Tat Lee, Arturs Backurs, Nenghai
Yu, and Jiang Bian. Exploring the limits of differentially private deep learning with group-wise clipping.
In The Eleventh International Conference on Learning Representations, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022.

Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong. Dp-admm: Admm-based
distributed learning with differential privacy. IEEE Transactions on Information Forensics and Security,
15:1002–1012, 2020. doi: 10.1109/TIFS.2019.2931068.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b.
arXiv preprint arXiv:2310.06825, 2023.

J. Kiefer and Jacob Wolfowitz. Stochastic estimation of the maximum of a regression function. Annals of Math-
ematical Statistics, 23:462–466, 1952. URL https://api.semanticscholar.org/CorpusID:122078986.

Antti Koskela and Antti Honkela. Computing differential privacy guarantees for heterogeneous compositions
using fft. arXiv preprint arXiv:2102.12412, 2021.

Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guarantees using fft. In
International Conference on Artificial Intelligence and Statistics, pp. 2560–2569. PMLR, 2020.

Antti Koskela, Joonas Jälkö, Lukas Prediger, and Antti Honkela. Tight differential privacy for discrete-valued
mechanisms and for the subsampled gaussian mechanism using fft. In International Conference on Artificial
Intelligence and Statistics, pp. 3358–3366. PMLR, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt tuning. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 3045–3059,
2021.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 4582–4597, 2021.

Xuechen Li, Daogao Liu, Tatsunori Hashimoto, Huseyin A Inan, Janardhan Kulkarni, YinTat Lee, and
Abhradeep Guha Thakurta. When does differentially private learning not suffer in high dimensions? In
Advances in Neural Information Processing Systems, pp. 28616–28630, 2022a.

Xuechen Li, Florian Tramèr, Percy Liang, and Tatsunori Hashimoto. Large language models can be strong
differentially private learners. In International Conference on Learning Representations, 2022b.

Zhe Li, Bicheng Yang, Zidong Liu, Chaosheng Dong, and Haibo Yang. Achieving dimension-free communication
in federated learning via zeroth-order optimization. arXiv preprint arXiv:2405.15861, 2024.

Sijia Liu, Bhavya Kailkhura, Pin-Yu Chen, Paishun Ting, Shiyu Chang, and Lisa Amini. Zeroth-order
stochastic variance reduction for nonconvex optimization. In Advances in Neural Information Processing
Systems, 2018.

Sijia Liu, Pin-Yu Chen, Bhavya Kailkhura, Gaoyuan Zhang, Alfred O Hero III, and Pramod K Varshney. A
primer on zeroth-order optimization in signal processing and machine learning: Principals, recent advances,
and applications. IEEE Signal Processing Magazine, 37(5):43–54, 2020.

15

https://api.semanticscholar.org/CorpusID:122078986


Under review as submission to TMLR

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and Sanjeev Arora.
Fine-tuning language models with just forward passes. In Advances in Neural Information Processing
Systems, 2023.

Fatemehsadat Mireshghallah, Kartik Goyal, Archit Uniyal, Taylor Berg-Kirkpatrick, and Reza Shokri.
Quantifying privacy risks of masked language models using membership inference attacks. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 8332–8347. Association for
Computational Linguistics, 2022. doi: 10.18653/v1/2022.emnlp-main.570. URL https://aclanthology.
org/2022.emnlp-main.570.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th Computer Security foundations Symposium
(CSF), pp. 263–275, 2017.

Yurii Nesterov and Vladimir G. Spokoiny. Random gradient-free minimization of convex functions. Foundations
of Computational Mathematics, 17:527–566, 2017.

Ashwinee Panda, Xinyu Tang, Saeed Mahloujifar, Vikash Sehwag, and Prateek Mittal. A new linear scaling
rule for private adaptive hyperparameter optimization. In Forty-first International Conference on Machine
Learning, 2024a.

Ashwinee Panda, Xinyu Tang, Milad Nasr, Christopher A. Choquette-Choo, and Prateek Mittal. Privacy
auditing of large language models. In ICML 2024 Workshop on Foundation Models in the Wild, 2024b.
URL https://openreview.net/forum?id=JlAwAMJT5P.

Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H. Brendan McMahan,
Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to DP-fy ML: A practical guide to
machine learning with differential privacy. Journal of Artificial Intelligence Research, 77:1113–1201, jul
2023. doi: 10.1613/jair.1.14649.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations toward
training trillion parameter models. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 2383–2392, 2016.

Ohad Shamir. On the complexity of bandit and derivative-free stochastic convex optimization. In Proceedings
of the 26th Annual Conference on Learning Theory, pp. 3–24. PMLR, 2013.

Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks against
machine learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE, 2017.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642,
2013.

David M Sommer, Sebastian Meiser, and Esfandiar Mohammadi. Privacy loss classes: The central limit
theorem in differential privacy. Proceedings on Privacy Enhancing Technologies, 2019(2):245–269, 2019.

Shuang Song, Kamalika Chaudhuri, and Anand D. Sarwate. Stochastic gradient descent with differentially
private updates. In 2013 IEEE Global Conference on Signal and Information Processing, pp. 245–248,
2013.

16

https://aclanthology.org/2022.emnlp-main.570
https://aclanthology.org/2022.emnlp-main.570
https://openreview.net/forum?id=JlAwAMJT5P


Under review as submission to TMLR

Shuang Song, Thomas Steinke, Om Thakkar, and Abhradeep Thakurta. Evading the curse of dimensionality
in unconstrained private glms. In International Conference on Artificial Intelligence and Statistics, pp.
2638–2646. PMLR, 2021.

James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approxi-
mation. IEEE Transactions on Automatic Control, 37:332–341, 1992.

Xinyu Tang, Ashwinee Panda, Vikash Sehwag, and Prateek Mittal. Differentially private image classification
by learning priors from random processes. In Advances in Neural Information Processing Systems, 2023.

Xinyu Tang, Richard Shin, Huseyin A Inan, Andre Manoel, Fatemehsadat Mireshghallah, Zinan Lin, Sivakanth
Gopi, Janardhan Kulkarni, and Robert Sim. Privacy-preserving in-context learning with differentially
private few-shot generation. In The Twelfth International Conference on Learning Representations, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models. arXiv preprint
arXiv:2302.13971, 2023.

Florian Tramèr and Dan Boneh. Differentially private learning needs better features (or much more data). In
International Conference on Learning Representations, 2021.

Salil Vadhan. The complexity of differential privacy. Tutorials on the Foundations of Cryptography: Dedicated
to Oded Goldreich, pp. 347–450, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, 2019.

Jiachen T Wang, Saeed Mahloujifar, Tong Wu, Ruoxi Jia, and Prateek Mittal. A randomized approach for
tight privacy accounting. In Advances in Neural Information Processing Systems, 2023.

Tong Wu, Ashwinee Panda, Jiachen T. Wang, and Prateek Mittal. Privacy-preserving in-context learning for
large language models. In International Conference on Learning Representations, 2024.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani Malek,
John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, Graham Cormode, and Ilya Mironov. Opacus:
User-friendly differential privacy library in PyTorch. arXiv preprint arXiv:2109.12298, 2021.

Da Yu, Huishuai Zhang, Wei Chen, and Tie-Yan Liu. Do not let privacy overbill utility: Gradient embedding
perturbation for private learning. In International Conference on Learning Representations, 2021a.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Large scale private learning via low-rank
reparametrization. In International Conference on Machine Learning, pp. 12208–12218. PMLR, 2021b.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan Kulkarni,
Yin Tat Lee, Andre Manoel, Lukas Wutschitz, Sergey Yekhanin, and Huishuai Zhang. Differentially private
fine-tuning of language models. In International Conference on Learning Representations, 2022.

Liang Zhang, Bingcong Li, Kiran Koshy Thekumparampil, Sewoong Oh, and Niao He. DPZero: Private
fine-tuning of language models without backpropagation. In Forty-first International Conference on
Machine Learning, 2024a.

Qinzi Zhang, Hoang Tran, and Ashok Cutkosky. Private zeroth-order nonsmooth nonconvex optimization. In
The Twelfth International Conference on Learning Representations, 2024b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

17



Under review as submission to TMLR

Yihua Zhang, Pingzhi Li, Junyuan Hong, Jiaxiang Li, Yimeng Zhang, Wenqing Zheng, Pin-Yu Chen, Jason D.
Lee, Wotao Yin, Mingyi Hong, Zhangyang Wang, Sijia Liu, and Tianlong Chen. Revisiting zeroth-order
optimization for memory-efficient LLM fine-tuning: A benchmark. In Forty-first International Conference
on Machine Learning, 2024c.

Yanjun Zhao, Sizhe Dang, Haishan Ye, Guang Dai, Yi Qian, and Ivor W Tsang. Second-order fine-tuning
without pain for llms: A hessian informed zeroth-order optimizer. arXiv preprint arXiv:2402.15173, 2024.

Yuqing Zhu, Jinshuo Dong, and Yu-Xiang Wang. Optimal accounting of differential privacy via characteristic
function. In International Conference on Artificial Intelligence and Statistics, pp. 4782–4817. PMLR, 2022.

18



Under review as submission to TMLR

A Privacy Analysis

DP-ZO can be instantiated with different noise mechanisms. In this subsection we provide privacy analysis
for the Gaussian mechanism and Laplace mechanism.
Proposition A.1 (Basic Composition theorem (Dwork & Roth, 2014)). If M1 is (ε1, δ1)-DP and M2 is
(ε2, δ2), then the adaptive composition of M1 and M2 is (ε1 + ε2, δ1 + δ2)-DP.
Proposition A.2 (Privacy Amplification via Subsampling (Balle et al., 2018)). If M is (ε, δ)-DP, then the
subsampled mechanism with sampling rate p obeys (ε′, δ′)-DP with privacy parameters ε′ = log(1 + p(eε − 1))
and δ′ = pδ.

Following Zhu et al. (2022), we define Hockey-stick divergence as follows.
Definition A.3 (Hockey-stick Divergence). For α > 0, the Hockey-stick divergence is defined as Hα(P∥Q) :=
Eo∼Q[( P (o)

Q(o) − α)+], where (x)+ := x1(x ≥ 0).
Lemma A.4. (Barthe et al., 2016) For a randomized algorithm M, supD≃D′ Heε(M(D)∥M(D′)) ≤ δ is
equivalent to Definition 2.1.

We follow Zhu et al. (2022); Wang et al. (2023) and formalize δ as a function of ε.
Definition A.5 (Optimal Privacy Curve). The optimal privacy curve of a mechanism M is the function
δM : R+ → [0, 1] s.t. δM(ε) := supD≃D′ Heε(M(D)∥M(D′)).
Definition A.6 (Dominating Pair of Distributions (Zhu et al., 2022)). (P, Q) is a dominating pair of
distributions for M (under neighboring relation ≃) if for all α ≥ 0

sup
D≃D′

Hα(M(D)∥M(D′)) ≤ Hα(P∥Q) (3)

When P, Q is chosen such that equation 3 takes “=” for all α, (P, Q) is a tight dominating pair of distributions
or simply, tightly dominating.
Proposition A.7. (Zhu et al., 2022) Let M be a randomized algorithm. If (P, Q) dominates M then
(P, (1− p)P + pQ) dominates M◦ Sp

Poisson, where Sp
Poisson is poisson sampling with subsampling rate p.

Based on Sommer et al. (2019); Koskela et al. (2020); Gopi et al. (2021), we follow Zhu et al. (2022); Wang
et al. (2023) and define the privacy loss random variable as follows.
Definition A.8 (Privacy Loss Random Variable). We call Y := log P (o)

Q(o) , o ∼ P the privacy loss random
variable (PRV) for mechanism M associated with dominating pair (P, Q).

Zhu et al. (2022) proves that any privacy mechanism has a tightly dominating pair of distributions and provide
the dominating pairs for basic privacy mechanisms such as Gaussian mechanism and Laplace mechanism.

Further, based on Definitions A.3 and A.8, Heε(P∥Q) can be written as an expectation: Heε(P∥Q) =
EY

[(
1− eε−Y

)
+

]
. δM(ε) can be bounded by first identifying M’s dominating pair distributions as well

as the associated PRV Y , and then computing this expectation, denoted as δY (ε) := EY

[(
1− eε−Y

)
+

]
.

δM(ε) ≤ δY (ε), where δM(ε) = δY (ε) for tight dominating pair (P, Q).

Given the privacy curves of the dominating pairs, for T steps, we could get the numerical composition of T
steps based on Fourier accountant and an FFT-based approximation scheme (Koskela et al., 2020; Koskela &
Honkela, 2021; Koskela et al., 2021). Gopi et al. (2021) further improves the FFT accountant.

We now provide the privacy analysis for DP-ZO.

Gaussian Mechanism. As outlined in Line 11, the ℓ2 sensitivity of Algorithm 1 is C and we are adding
N (0, C2σ2) noise to the estimated loss. From Zhu et al. (2022), we know that the tight dominating pair for
Gaussian mechanisms is P = N (0, σ2) and Q = N (1, σ2). By Proposition A.7, each step therefore satisfies
(ε, δ)-DP where

Heε(N (0, σ2)∥(1− p)N (0, σ2) + pN (1, σ2)) ≤ δ (4)
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For T step, we analyze the compositions of subsampled Gaussian for T steps with the PRV accountant
of Gopi et al. (2021).

Laplace Mechanism. Laplace mechanism can give a pure DP guarantee of δ = 0 which can be of interest
in some scenarios. Here we first analyze the pure ε-DP guarantee provided by laplace mechanism and then
provide the analysis for approximate (ε, δ)-DP analysis.

Pure ε-DP by Laplace mechanism. We use data in a single batch instead of all training data to compute
the gradients in each updates. For the privacy analysis for Laplace mechanism in Algorithm 1, when we sample
each batch in the poisson manner, we could leverage Proposition A.2 to compute the private amplification by
subsampling. We first analyze the privacy cost for one step by the Laplace mechanism. At each step, we
sample a new batch of data with the sample rate of p = B/|D|. As outlined in Line 11, the ℓ1 sensitivity
of Algorithm 1 is C. By Proposition 2.3, the privacy cost at one step would cost (1/σ, 0)-DP on this batch.
By Proposition A.2, the privacy cost at one step would cost (log(1 + p · (e1/σ − 1)), 0)-DP on the full dataset
D. By Proposition A.1, the privacy cost of Algorithm 1 instantiated with Laplace mechanism satisfies
(T · log(1 + p · (e1/σ − 1)), 0)-DP.

We provide the privacy parameters we used for pure ε-DP by the Laplace mechanism in Table 11.

Table 11: ε-DP by Laplace. BSZ=20, Steps=2000.
σ |D| ε

10.5 1000 4
4.5 1000 10
3.2 1000 15
2.5 5000 4

Table 12: (ε, δ)-DP guarantee for Laplace. δ = 10−5.
|D| = 1000. BSZ=16, Steps=75000.

σ ε (by Monte-Carlo) ε (by pure-DP PRV)
30.8 0.5 0.51
16.3 1 1.04
4.6 4 4.70

Approximate ε-DP by Laplace mechanism. We can also get tighter composition of ε with relaxation to
δ > 0. The most straight forward way is to instantiate the privacy loss random variable of random response
with (log(1 + p · (e1/σ − 1)), 0) because the dominating pair for random response is a dominating pair for the
pure DP mechanism. Then, we can use the numerical composition of Pure DP PRV accountant by Gopi et al.
(2021). Note that this method is agnostic to the DP mechanisms used for pure ε-DP. We now provide a more
fine-grained privacy analysis for the laplace mechanism. Specifically, we could compute the privacy cost of
composition for the Laplace mechanism by Monte Carlo based DP accountant (Wang et al., 2023). Note that
since we are dealing with scalar values, our mechanism in each iteration will be a one dimensional Laplace
mechanism. Let b be the scale of Laplace noise, p the sub-sampling rate, and assume the sensitivity is 1, and
assume we are doing composition for T iterations, each iteration with sampling rate p. By Zhu et al. (2022)
we know that the pair of distribution (P, Q) dominating pair for a single dimensional Laplace mechanism,
where P and Q are distributed according to the following pdfs,

fP = 1
2b

exp(−|x|/b) and fQ = 1
2b

exp(−|x− 1|/b).

Therefore, (P, (1 − p) · P + p · Q) is the dominating pair for the sub-sampled Laplace. We plug this into
the standard Monte-Carlo accountant of Wang et al. (2023) (without importance sampling, see Algorithm
2 and Theorem 10 in Wang et al. (2023)) while using 1010 samples to calculate the δ at a given value of
ϵ. Also, using the analytical accountant explained above, we always make sure that E[δ̂2

MC ] is bounded by
10−8 (we use the fact that E[δ̂2

MC ] is bounded by E[Y 2] and the fact the PRV Y is always bounded for Laplace
mechanism). This ensures that the error of our estimation of δ is at most 10−8 with probability at least
1− 10−5. Putting all together, for all reported values of ε, our δ is bounded by 10−5, with probability at least
0.99999. This privacy analysis is tighter with ε is high compared to the former analysis which uses the pure
DP PRV accountant. This is consistent with the intuition. As we increase the distance between the Laplace
dominating pairs, the probability of sampling points from the area between the centers increases. And that is
where the Laplace Mechanism is different from the Randomized Response. We present the accounting results
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for the Laplace method to achieve (ε, δ)-DP by these two accounting methods in Table 12. Table 12 shows
that the Monte Carlo based DP accountant can give tighter analysis for the Laplace mechanism for (ε, δ)-DP
than the pure ε-DP PRV method.

B Implementation Details

We follow Malladi et al. (2023) and provide the memory-efficient version of DP-ZO in Algorithm 2. Algorithm 2
enjoys the benefit that it does not incur additional GPU memory cost compared to inference.

Algorithm 2 Differentially Private-ZO (GPU memory efficient version. Adapted from Malladi et al. (2023))
1: Model parameters θ, dataset D, learning rate α, perturbation scale ϕ, random seed s, weight decay λ,

noise scale σ, noising mechanism Z, clipping threshold C, expected batch size B and sampling rate
p = B/|D|. Lines with * are DP modifications.

2: procedure DP-ZO((θ, D, ϵ, σ, T , s, ϕ, C, α))
3: for t ∈ 1, . . . T do
4: Poisson samples B from dataset D with sampling rate p *
5: θ ← PerturbParameters(θ, ϕ, s)
6: Compute per-sample loss L1(θ,B)*
7: θ ← PerturbParameters(θ,−2ϕ, s)
8: Compute per-sample loss L2(θ,B)*
9: θ ← PerturbParameters(θ, ϕ, s)

10: Compute difference in loss L = L1 − L2
11: Clamp L between −C and C*
12: g =

∑
i∈B

L+Z(C,σ)
B∗2ϕ *

13: Reset random number generator with seed s
14: for θi ∈ θ do
15: z ∼ N (0, 1)
16: θi ← θi − α ∗ g ∗ z
17: end for
18: end for
19: end procedure
20: procedure PerturbParameters((θ, ϕ, s))
21: Reset random number generator with seed s
22: for θi ∈ θ do
23: z ∼ N (0, 1)
24: θi ← θi + ϕz
25: end for
26: end procedure

C Design Choices

Algorithm 1 outlines our DP-ZO that estimates the gradients via privatized loss value without backpropagation.
In this subsection, we provide several design choices for Algorithm 1.

Definition 2 (n-SPSA Gradient Estimator) The n-SPSA gradient estimate averages ∇Lb(θ; B) over n
randomly sampled z. We can write this in vector notation, dropping the normalizing constants for succinctness.

gi = L(θ + ϵzi; B)− L(θ − ϵzi; B)(projected gradient for each i)
Z = [z1, z2, ..., zn](matrix whose columns are the z vectors)
g = [g1, g2, ..., gn](vector of projected gradients)

Then the n-SPSA gradient estimate can be written as:

21



Under review as submission to TMLR

∇Ln(θ; B) = g · Z (2)

How Many Gradients to be Estimated in a Model Update. Algorithm 1 estimates the gradients
once. As outlined above, SPSA can be extended to n-SPSA gradient estimator and n-SPSA can improve the
performance in the non-private setting (Malladi et al., 2023). Here we discuss our design choice of why we
choose n = 1 in Algorithm 1.

• Estimate the average. Previous work (Malladi et al., 2023) shows that averaged estimation helps
the non-private setting. In a private setting, we have to privatize the gradient estimation. Here
we discuss our initial design of the privatized n-SPSA gradient estimation. For the sampled batch,
assuming we are adding the Gaussian noise N (0, C2σ2) for 1-SPSA. Then for n-SPSA, to ensure we
have the same privacy cost as 1-SPSA, we need to add N (0, n · C2σ2) to each gradient estimation
and finally average the n gradients. Our privacy analysis follows the n-fold composition of Gaussian
mechanism (Corollary 3.3 in Gaussian differential privacy (Dong et al., 2019)). Our initial experiment
result shows that our current analysis for n-SPSA noise addition does not make n-SPSA improve in
the private setting compared to 1-SPSA. We leave the improvement in tighter analysis for private
n-SPSA as future work and use 1-SPSA to conduct experiments.

The Type of Noise for DP. As discussed in Section 3, Algorithm 1 can be incorporated in different
noise mechanisms. We focus on the Gaussian noise mechanism and the Laplace mechanism in this work.
The Gaussian noise mechanism has been widely studied in previous literature both for privacy analysis and
empirical performance in DP-SGD (Abadi et al., 2016; Mironov, 2017; Dong et al., 2019). The Laplace
mechanism, though less studied for privacy-preserving machine learning, can provide pure DP while the
Gaussian mechanism can only provide approximate DP. We have provided the privacy analysis in Section A.

D Experimental Details

D.1 Datasets and Metrics

Datasets. Following Malladi et al. (2023), we use SST2 (Socher et al., 2013) for text classification and
SQuAD (Rajpurkar et al., 2016) and DROP (Dua et al., 2019) for text generation. SST2 is a binary
classification for sentiment classification based on text from movie reviews. SQuad and DROP are question
answering tasks, that given the context and question, the language model should output needed answers.
Such answers are generated tokens one by one and therefore considered as generation task. In Section 4.3,
we follow prior works (Yu et al., 2022; Li et al., 2022b) and run experiments on QNLI (Wang et al., 2019).
QNLI is a binary classification task to determine whether the two sentences in a pair are entailment or not.

Metrics. Following Rajpurkar et al. (2016), we use the F1 score for text generation task. For ground
truth and generation, we count the number for each different tokens (therefore ignoring the ordering of
the tokens) and calculate the number of same tokens Nsame between the ground truth and the predictions.
Precision is Precision = Nsame/Ngt, where Ngt is the total number of tokens of ground truth. Recall is
Recall = Nsame/Npred, where Npred is the total number of tokens of ground truth. F1 is the harmonic mean
of precision and recall F1 = 2/( 1

precision + 1
recall ). We use classification accuracy for text classification as

evaluation metric

D.2 Hyperparameter Search

Our experiments are based on the open-source code4 of Malladi et al. (2023). We provide the prompts we
use in Table 13. In this section, we first provide several initial results for hyperparameter search on clipping
threshold and finally present the hyperparameter tables. We also provide an initial study to systematically
evaluate the interplay between batch size and training iterations for DP-ZO.

4https://github.com/princeton-nlp/MeZO.
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Table 13: The prompts of the datasets we used for DP-ZO.
Dataset Type Prompt
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

SST-2 classification <text> It was terri-
ble/great

Different Clipping Threshold. Li et al. (2022b); De et al. (2022) recommend small clipping C threshold
for DP-SGD training. For example, Li et al. (2022b) use C = 0.1 for training language models. We therefore
study the effect of different clipping threshold and present the results in Table 14. We find that while C = 1
performs significantly worse, setting C as 0.1, 0.05, 0.01 are within the 2% performance gap. We therefore
choose C = 0.05.

Table 14: Different clipping C. σ = 15.9. batch size=16, 10,000 steps. ε = 0.35.
Clip=1 Clip=0.1 Clip=0.05 Clip=0.01

F1 66.04 74.26 76.81 75.39

Hyperparameter for DP-ZO (Gaussian) in Main Results. We present the hyperparameter for
DP-ZO (Gaussian) in Table 15 and Table 16.

Table 15: Hyperparameter search for DP-ZO in main results Table 1.
|D| 1000

Steps T 75000
Clipping C 0.05
Batch size 16

σ 30.9 for ε = 0.5, 16.4 for ε = 1, 4.8 for ε = 4
learning rate [5e-6, 1e-5, 2e-5, 5e-5, 1e-4]
LoRA rank 8

ϕ 0.01

Table 16: Hyperparameter search for DP-ZO with full parameter fine-tuning in Table 2.
|D| 1000

Steps T 10000
Clipping C 0.05
Batch size 16

σ 11.47 for ε = 0.5, 6.08 for ε = 1, 1.88 for ε = 4
learning rate [2e-7, 5e-7, 1e-6, 2e-6, 5e-6]

ϕ 0.001

Hyperparameter for DP-SGD. We present the hyperparameter search for DP-SGD in Table 17.
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Table 17: Hyperparameter search for DP-SGD in Table 2.
|D| 1000

Steps T 200
Clipping C 0.1
Batch size 64

σ 6.60 for ε = 0.5, 3.59 for ε = 1, 1.28 for ε = 4

learning rate [1e-4, 2e-4, 5e-4, 1e-3, 2e-3] for LoRA fine-tuning.
[1e-5, 2e-5, 5e-5, 1e-4, 2e-4, 5e-4] for Full fine-tuning.

LoRA rank 8

Hyperparamter for DP-ZO (Laplace). The hyperparameter search for DP-ZO (Laplace) is similar to
DP-ZO (Gaussian).

Effects of Batch Size and Steps. In Table 18 and Table 19, we did an initial study to systematically
evaluate the interplay between batch size and training iterations by varying batch size in [16,32,64,128] and
steps in [10000, 2000, 40000, 80000]. Similar to main results, we run 5 independent runs for each setting
and compute the average of 5 runs. This set of experiments is done on OPT-13B on SQuAD dataset with
LoRA fine-tuning. Table 18 and Table 19 show that increasing steps T improves the performance more than
increasing the batch size. We also provide results of T in [200, 400, 800, 1600] for DP-SGD (and did not
observe significant improvements in DP-SGD) to ensure the fair comparison of DP-SGD and DP-ZO. Taking
the computation limitation into consideration, we set T = 75000 and BSZ=16 for main results in Table 1.
We leave more investigation on the batch size and steps for DP-ZO, such as variance reduction method, as
future work.

Table 18: T = 10000, Varying batch size.
BSZ=16 BSZ=32 BSZ=64 BSZ=128

F1 81.35 81.63 81.47 81.72

Table 19: Batch size=16. Varying steps T .
T 10000 20000 40000 80000
F1 81.35 81.65 81.42 82.52

Computation Cost. DP-ZO for OPT-13B models on SQuAD datasets takes around 4hrs for 10000 steps.
DP-SGD for OPT-13B models on SQuAD datasets takes around 4hrs for 200 steps. When increasing T or B
in DP-ZO, the training time scales proportionally to the scaling factor. Future work includes how to reduce
the computation time of DP-ZO, e.g., by variance reduction method to improve the convergence rate.

E Effect of Model Size

Section 4.2 shows that DP-ZO scales to larger models and provides the results of DP-ZO for model size
varying from 1.3B to 66B parameters in Table 2. Here we provide the full results of DP-ZO finetuned with
LoRA at ε = 1, with model size ranging from 1.3B to 66B. We also include the ε = 0 and ε =∞ baseline as
a reference in Table 20.

Table 20 shows the full trend of DP-ZO with model size scaling from 1.3B to 66B, that is DP-ZO scales to
larger models.

For OPT-1.3B, the gap between private and non-private baseline is 5.67. For OPT-66B, the non-private
baseline is 87.49 and the gap between the private and non-private results is 3.37.
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Table 20: The experiment results of DP-ZO across different model sizes. (1, 10−5)-DP.
Model OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B OPT-30B OPT-66B
ε = 0 27.20 29.89 36.48 46.23 46.53 48.13
ε = 1 75.290.90 80.341.14 81.341.04 82.280.84 82.480.83 84.121.01
ε =∞ 80.97 84.14 86.44 86.85 86.98 87.49

F RELATED WORK

In this section we give an overview of the broader body of work privacy preserving large language models and
private zeroth-order optimization method.

Privacy preserving large language models. Recent studies have leveraged DP-SGD to fine-tune large
language models. Li et al. (2022b) provide methods for fine-tuning large language models with DP-SGD
by ghost clipping to mitigate the memory burden of per-sample gradient clipping. Yu et al. (2022) report
compelling results by only updating a sparse subset of the LLMs with parameter efficient fine-tuning (PEFT)
methods such as LoRA (Hu et al., 2022). He et al. (2023) leverage group-wise clipping with adaptive clipping
threshold and privately fine-tune the 175 billion-parameter GPT-3. Duan et al. (2023); Li et al. (2022b) also
consider private prompt tuning by adding noise to the soft prompt (Li & Liang, 2021; Lester et al., 2021). Du
et al. (2023) add non-i.i.d. noise from a matrix Gaussian distribution to directly perturb embedding in the
forward pass of language models. With the emergence in-context learning of large language models (Brown
et al., 2020), recent works (Duan et al., 2023; Wu et al., 2024; Tang et al., 2024) study private in-context
learning of large language models without fine-tuning.

Private zeroth-order optimization. Most recently, a concurrent work (Zhang et al., 2024a) also considers
the same DP-SPSA algorithm for zeroth-order optimization. We have discussed our work and DPZero (Zhang
et al., 2024a) in Section 5.

Zhang et al. (2024b) study private zeroth-order nonsmooth nonconvex optimization. Their work incorporates
two zeroth-order estimators to reduce variance and samples d (model dimension) i.i.d. estimators for each data
point to achieve optimal dimension dependence. Zhang et al. (2024b) leverage the tree mechanism (Dwork
et al., 2010; Chan et al., 2011) on disjoint data to ensure the privacy cost of the algorithm. The main focus of
our work is private fine-tuning of large language models and one estimator for each batch could successfully
converge in this set-up. Therefore, we only need to privatize such scalar. We leave the investigation on the
private zeroth-order for more than one estimators such as the variance reduction method proposed in Zhang
et al. (2024b) as future work.

Gratton et al. (2022) analyze the intrinsic privacy of the zeroth-order optimization for DP-ADMM (Huang
et al., 2020) in distributed learning. Their work states that if the output of the zeroth-order method itself
follows Gaussian distribution, the noise can be analyzed as the Gaussian mechanism and provide intrinsic
privacy. However, this is merely stated as an assumption for lemma 1. To the best of our knowledge there
is no work that proves that the zeroth-order gradient estimator can actually be analyzed as the sum of an
unbiased gradient estimator and some Gaussian error term.
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