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ABSTRACT

Graph neural networks (GNNs) have shown promise in learning unstructured
mesh-based simulations of physical systems, including fluid dynamics. In tandem,
geometric deep learning principles have informed the development of equivariant
architectures. However, the practical implications of rotational equivariance in
modeling fluids remains under-explored. We build a multi-scale equivariant GNN
to forecast buoyancy-driven shear fluid flow and study the effect of modeling in-
variant and non-invariant representations of the flow state. Our results show that
modeling invariant quantities produces more accurate long-term predictions and
that these invariant quantities may be learned from the velocity field using a data-
driven encoder.

1 INTRODUCTION

AI in the sciences is undergoing a renaissance of innovation as researchers are seeking to harness
the potential of rapidly evolving deep learning methods. These methods are especially promising
for applications such as approximating solutions to partial differential equations (PDEs) (Lu et al.,
2021; Kovachki et al., 2021; Chen et al., 2018) because they can be made computationally efficient
and data-driven, requiring partial domain knowledge to approximate solutions. Computational fluid
dynamics (CFD) methods stand to gain significantly from AI-enhanced algorithms as more com-
plex scientific and engineering flows test the limits of current numerical approaches (Brunton et al.,
2020). Data-driven modeling has deep roots in CFD, but machine learning (ML) has provided new
opportunities for model design, and many popular deep learning approaches have been explored for
fluids applications in recent years.

Despite the proliferation and diversity of ML modeling approaches for fluids, generalization re-
mains a core issue for data-driven models. Imbuing models with physically sound inductive biases
has been identified as a potential path to better generalization by constraining the model class to
satisfy certain physical laws, assumptions or behavior necessary for accurate predictions (Brunton,
2021). As fluid systems exhibit Euclidean symmetry, in this work we are concerned with the use of
spatial and rotationally equivariant graph neural network (GNN) models. We examine four model
architectures to understand the effect of embedded equivariance on modeling invariant and tensor-
valued representations of fluid data. We assess model performance with regards to both accuracy
and computational cost to provide a full picture of modeling strategies. We find that invariant rep-
resentations of the flow state are effective for long-term forecasts of the flow field. Absent existing
invariant representations, a neural network can be used to encode the invariant representation.

2 BACKGROUND AND RELATED WORK

Graph neural networks: Graph neural networks have gained traction in the deep learning commu-
nity for applications where the data contain some underlying graph or network structure. GNNs are
more flexible than convolutional neural networks (CNNs), which require the use of structured grid
data, but still allow for some measure of locality through graph edges. Graph-based architectures
have found a natural application in data-driven modeling of fluid flows, where data are typically ob-
tained from numerical PDE solutions on unstructured computational meshes. The grid-independent
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framework is essential for problems in complex domains where a structured grid representation
would require interpolation or other transformations. Indeed, GNNs have been used in a variety of
fluid modeling contexts. Graph representations have been leveraged for modeling Lagrangian dy-
namics (Li et al., 2018; Ummenhofer et al., 2020; Sanchez-Gonzalez et al., 2020), steady-state pre-
dictions have been tackled in various works (Yang et al., 2022), including with solvers-in-the-loop
(De Avila Belbute-Peres et al., 2020), and attention-style mechanisms have shown improvements in
turbulence modeling (Peng et al., 2022). Pfaff et al. (2020) lays the foundation for unsteady PDE
forecasting on graphs with derivative efforts (Lino et al., 2022) employing similar Encode-Process-
Decode architectures.

Equivariance: We recognize Euclidean rotations and translations as the set of symmetries to embed
in our models. While there are other important symmetries in fluid motion, such as Galilean invari-
ance, we do not consider them here. Given a roto-translation operator R, an equivariant network fθ
obeys the following:

Rfθ(x) = fθ(Rx). (1)

Equivariant neural networks are increasingly finding use in scientific machine learning applications.
Rotation equivariant graph networks and tensor-field networks in particular have demonstrated value
in accelerating molecular and N-body particle dynamics simulations (Thomas et al., 2018; Batzner
et al., 2022). However, exploration of equivariance’s role and application of these neural architec-
tures to fluids problems has remained sparse in literature. Nevertheless, some studies leveraging
equivariance and invariances for modeling fluid problems have been conducted. Ling et al. (2016)
and Gao et al. (2020) use rotation invariant and equivariant networks for turbulence modeling. Rota-
tion equivariant CNNs (Wang et al., 2020) and GNNs (Lino et al., 2022; Suk et al., 2022) have also
demonstrated improved predictive accuracy in forecasting tasks.

3 METHODS

The model follows similar design principles as existing literature on learning simulations on graphs,
such as Pfaff et al. (2020). The system is described at a point in time by a point cloud given by
coordinates xi ∈ x0, ...,xN , fixed node features fi corresponding to boundary conditions, external
force fields, or global flow characteristics, e.g. Reynolds number, and modeled quantities ui, such
as velocity and temperature. The model predicts the state of the system at the next time step t + 1
and any future time steps t + n using an iterative integrator. The model uses the Encode-Process-
Decode paradigm, illustrated in Fig. 1, that has shown to be effective for modeling dynamical
systems. The encoder generates the graph and transforms inputs into latent features. The latent
features are processed with a series of message-passing layers and decoded to produce the update
quantity passed to the integrator. We evaluate several model architectures that follow this general
framework, described subsequently.
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Figure 1: Schematic of the overall model architecture, indicating encoder and decoder blocks en-
closing the multi-level message-passing graph processor.

Message-passing layers: Nonlinear graph message-passing layers comprise the bulk of the model,
especially within the processor. Following general GNN schemes, an edge update is performed be-
fore aggregating edge features and applying a node update. Equivariance is achieved by ensuring
that both updates are equivariant transformations. We leverage two equivariant operations, equiv-
ariant linear transformations and tensor products. Multi-layer perceptrons (MLPs) with one hidden
layer are used; an MLP with equivariant linear layers is denoted MLPeq .
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Given incoming edge features hij and node features hi, first the edge update is computed:
vij = MLPeq(hij ,hi,hj) (2)

h′
ij = vij ⊗ (W) Y (rij),W = MLP(||rij ||), (3)

where ⊗(W) denotes a fully connected tensor product with linear weights W, rij is the relative
position vector xi − xj , Y (rij) are spherical harmonics, and the edge update is given by h′

ij , added
as a residual update if the input and output sizes are the same. The node update is another MLP:

h′
i = MLPeq(

∑
N

h′
ij ,hi). (4)

As we wish to explore the use of equivariance, we also form a non-equivariant layer. Here, any
MLPeq’s are replaced with MLPs. In addition, the tensor product reduces to a standard linear op-
eration with weights W. However, since any directional information from rij is lost, we include
xi,xj as additional inputs to the weight MLP. Finally, we utilize one more variation of the layer, the
isotropic layer. This is nearly equivalent to the non-equivariant layer, except ||rij || is again the only
input to the weight MLP, producing an isotropic kernel. If the incoming edge and node features are
genuine scalars, this is a rotationally equivariant operation.

Encoder/Decoder: The encoder transforms all inputs into both latent edge and latent node features
for processing. Only nodal information xi, fi,ui is provided as input. Thus, first edges with relative
position vector rij are generated using a radial cutoff. Two steps complete the transformation –
a node- and edge-wise linear projection to the hidden layer and one message-passing layer to the
output latent space. The encoder can also be made equivariant or non-equivariant by selecting
the appropriate linear and message-passing layers. The decoder mirrors the encoder architecture,
however, only the node features are decoded. The output is passed to the integrator to produce the
system state at the next time step.

Graph coarsening: Research efforts on graph representation learning have motivated the develop-
ment of various graph coarsening or pooling strategies (Mesquita et al., 2020; Chen et al., 2022; Gao
& Ji, 2022). When data are represented on a physical grid in space, pooling can capture multi-scale
features that have been shown to be effective for better convergence and accuracy of models. We use
a very simple coarsening strategy in the model for improved learning by generating a random sub-
graph using uniform sampling of the top-level graph nodes and a radial cutoff (specific to the graph
level) to produce edges. The unpooling operation distributes lower-level node features to an empty
feature matrix on the top-level graph, while a node-wise MLP computes new top-level features.

Models and training: Various combinations of the encoder/decoder and processor blocks are com-
bined to produce three distinct model classes. The first equivariant model, denoted as eq, encodes
latent features comprising scalar and vector-valued quantities using the equivariant encoder/decoder
and equivariant processor. Another equivariant model (eqscl) generates scalar invariant latent fea-
tures using the equivariant encoder, but the processor consists of isotropic message-passing layers,
which provides a computational advantage. The non-equivariant model (neq) trades all equivariant
blocks for non-equivariant blocks. A fourth model is tested, neqaug, which uses the same architec-
ture as neq, but equivariance is included by augmenting the training data with random rotations.

Models are constructed in PyTorch using the e3nn package (Geiger et al., 2022) for equivariant
operations and PyG (Fey & Lenssen, 2019) for graph-specific functionality. Models are trained with
the Adam optimizer using a decaying learning rate varying from 10−3 to 10−5 on 8 V100 GPUs. To
predict long trajectories, the standard approach of perturbing training samples with noise is used.

4 EXPERIMENTS

We evaluate our approach on a canonical strong-shear flow that exhibits the Kelvin-Helmholtz insta-
bility, known as Marsigli flow (Ahmed et al., 2021). Two fluids of different densities, or equivalently
temperatures, are contained in a channel separated by a barrier. Once the barrier is removed, the flu-
ids mix according to the Boussinesq equations. Marsigli flow is often used as an idealized case
study for understanding ocean current dynamics. This is a particularly challenging problem for
data-driven models due to the highly transient nature of the flow. Numerical ground truth solutions
are obtained using standard second-order central finite difference schemes. The training dataset con-
tains flow at four different Re, 700, 900, 1100, and 1300 for 8 seconds. The test set consists of flow
at Re = 1000.
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Data
type

Model
type

1-step test
MSE

Forecast
R2

Equivariance
MSE

Train
time (hrs)

Evaluation
time (s)

wst neq 7.55e-7 0.9988 4.88e-3 12.9 3.41
wst neqaug 2.25e-6 0.9324 1.27e-6 19.5 3.40
wst eq 2.60e-6 0.9700 1.02e-7 64.2 9.38
wst eqscl 1.86e-6 0.9972 1.32e-7 19.3 3.94

uvt neq 7.58e-7 0.9772 1.40e-3 12.9 3.71
uvt neqaug 2.57e-6 0.9487 8.41e-7 19.5 3.68
uvt eq 1.84e-6 0.9755 1.42e-7 65.2 9.07
uvt eqscl 7.75e-7 0.9863 9.20e-7 19.5 4.10

Table 1: Comparison of model performance on the Marsigli flow test dataset.

Figure 2: Snapshots of equivariant model wst-eqscl temperature field predictions at an unseen
Reynolds number compared to the ground truth.

The fluid state can be represented by the temperature field and either the velocity field or the vorticity
and streamfunction. The vorticity and streamfunction are scalar invariant fields in two-dimensions
and thus do not transform under rotation, in contrast to the velocity field. We investigate the effect
of modeling both representations in addition to model architecture choices. The data are coded
with tags wst or uvt for modeling vorticity, streamfunction, temperature or velocity and temperature
respectively.

Fig. 2 shows a qualitative comparison of temperature fields from the ground truth simulation and
model wst-eqscl. In Table 1, we report the 1-step mean-squared error (MSE) on the test set, the
coefficient of determination R2 on the full trajectory forecast, an unsupervised equivariance error
comparing both sides of Eq. 1, as well as train and evaluation times of each model. Metrics are
computed using the temperature field, which is consistent across flow state representations. All
models achieve comparable 1-step errors, however, differences are observed in the forecast R2.
Generally, modeling the invariant fields wst results in higher forecast accuracy, except for within
the data-augmented models. Data-augmentation also leads to a significant decrease in accuracy,
although equivariance can be maintained. eqscl consistently outperforms eq in both cost and forecast
accuracy, which we believe is due to the invariant latent state representation instead of higher-order
tensor representations. While it may be expected that neq would trade higher accuracy for higher
equivariance error, we find that when modeling uvt, eqscl improves over both baselines neq and
neqaug and maintains equivariance at a reasonable computational cost.

5 CONCLUSIONS

We assess the efficacy of several rotation equivariant and non-equivariant graph neural networks
on modeling spatiotemporal dynamics exhibited by buoyancy-driven fluid flow. The models are
trained on both invariant and non-invariant representations of the flow state and tested by forecast-
ing the flow field at an unseen Reynolds number. We see that the use of invariant representations
provides a significant benefit to the generalization task. Embedded equivariance is most effective
when modeling the vector-valued velocity field, and can be made computationally efficient with in-
variant latent representations. In fluid forecasting tasks, we suggest modeling invariant quantities,
with data-driven invariant encoders serving as a viable alternative if invariant representations are
unknown.
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