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ABSTRACT

Modern image retrieval methods typically rely on fine-tuning pre-trained encoders
to extract image-level descriptors. However, the most widely used models are
pre-trained on ImageNet-1K with limited classes. The pre-trained feature rep-
resentation is therefore not universal enough to generalize well to the diverse
open-world classes. In this paper, we first cluster the large-scale LAION 400M
dataset into one million pseudo classes based on the joint textual and visual fea-
tures extracted by the CLIP model. Due to the confusion of label granularity, the
automatically clustered dataset inevitably contains heavy inter-class conflict. To
alleviate such conflict, we randomly select partial inter-class prototypes to con-
struct the margin-based softmax loss. To further enhance the low-dimensional
feature representation, we randomly select partial feature dimensions when cal-
culating the similarities between embeddings and class-wise prototypes. The
dual random partial selections are with respect to the class dimension and the
feature dimension of the prototype matrix, making the classification conflict-robust
and the feature embedding compact. Our method significantly outperforms state-
of-the-art unsupervised and supervised image retrieval approaches on multiple
benchmarks. The code and pre-trained models are released to facilitate future
research https://github.com/deepglint/unicom.

1 INTRODUCTION

Modern image retrieval methods (Lim et al., 2022; Roth et al., 2022; Kim et al., 2022; Ermolov et al.,
2022; Patel et al., 2022) can be roughly decomposed into two major components: (1) the encoder
(e.g., Convolutional Neural Networks (Szegedy et al., 2015; He et al., 2016) or Vision Transformer
(Touvron et al., 2021; Dosovitskiy et al., 2021)) mapping the image to its compact representation and
(2) the loss function (Musgrave et al., 2020) grouping the representations of similar objects while
pushing away representations of dissimilar objects in the embedding space. To train the encoder,
networks pre-trained on crowd-labeled datasets (e.g., ImageNet (Deng et al., 2009)) are widely
used for fine-tuning (Wang et al., 2019; Kim et al., 2021). However, ImageNet only contains 1,000
pre-defined object classes. The feature representation learned from ImageNet is not universal enough
to generalize to diverse open-world objects.

Even though fully supervised pre-training can benefit from a strong semantic learning signal for
each training example, supervised learning is not scalable because manual annotation of large-scale
training data is time-consuming, costly, and even infeasible. By contrast, self-supervised pre-training
methods (He et al., 2020; 2022; Radford et al., 2021; Jia et al., 2021) can be easily scaled to billions
of unlabeled examples by designing an appropriate pretext task, such as solving jigsaw puzzles
(Noroozi & Favaro, 2016), invariant mapping (Chen & He, 2021), and image-text matching (Radford
et al., 2021; Jia et al., 2021). Among them, CLIP (Radford et al., 2021) has recently demonstrated
success across various downstream tasks (e.g., image retrieval and classification) due to superior
feature representation empowered by image-text contrastive learning. Specifically, CLIP aligns the
visual and textual signals of each instance into a unified semantic space by cross-modal instance

∗denotes corresponding author.
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(a) Performance comparison on CUB (b) The proposed Unicom

Figure 1: (a) Accuracy in Recall@1 versus embedding dimension on the CUB dataset. The proposed
Unicom is only trained on the LAION 400M dataset without any manual annotation. (b) The proposed
Unicom employs two random selections along the class dimension and the feature dimension to
alleviate inter-class conflict and achieve compact representation, respectively.

discrimination. Nevertheless, the instance discrimination method used by CLIP can hardly encode
the semantic structure of training data, because instance-wise contrastive learning always treats two
samples as a negative pair if they are from different instances, regardless of their semantic similarity.
When thousands of instances are selected into the training batch to form the contrastive loss, negative
pairs that share similar semantics will be undesirably pushed apart in the embedding space.

To handle the limitations of instance discrimination, cluster discrimination has been proposed for
deep unsupervised learning through jointly learning image embeddings and cluster assignments.
Learning representations with clusters will pull similar instances together, which is beneficial for
capturing semantic structures in data. DeepCluster (Caron et al., 2018) performs iterative clustering
by k-means and classification by cross-entropy loss, while SeLa (Asano et al., 2020) proposes to
solve an optimal transport problem for balanced assignment. However, both DeepCluster and SeLa
need labels to be assigned offline in a batch mode with representations of all instances. To reduce the
cost of batch mode clustering, ODC (Zhan et al., 2020), SwAV (Caron et al., 2020), and CoKe (Qian
et al., 2022) apply online clustering to avoid the multiple iterations over the entire dataset. Despite
improved efficiency, the online clustering method still suffers from the collapsing problem (i.e., a
dominant cluster includes instances from multiple classes or most of the instances).

In this paper, we aim at boosting the semantic embedding power of the CLIP model by introducing a
novel cluster discrimination approach. We first conduct one step of off-line clustering by using the
image and text features from a pre-trained CLIP model (Radford et al., 2021). Due to the limited
discrimination power of the CLIP model, the pseudo clusters contain heavy inter-class conflict.
Instead of optimizing the cluster assignment (Qian et al., 2022), we focus on how to robustly train a
classifier on the automatically clustered large-scale data. More specifically, we explore two random
selections on the prototype matrix W ∈ Rd×k when preparing the classification loss (as illustrated
in Fig. 1(b)). The first one is with respect to the class dimension (k), and only part of negative
prototypes are selected for inter-class comparisons, which helps alleviate inter-class conflict. The
second one is with respect to the feature dimension (d), and only part of features are randomly
selected to construct the classification loss, enhancing the representation power of each neuron and
making feature representation compact for the efficient image retrieval task. Concurrent with our
work, partial selection mechanisms along class and feature are separately proposed in (An et al.,
2021; 2022) and (Xu et al., 2022) to accelerate model training and enhance locally distinguishable
features. Both of their experiments are conducted on cleaned face recognition datasets. By contrast,
we target at universal and compact representation learning from automatically clustered large-scale
data. The main contributions of our paper are the following:

• We propose a novel cluster discrimination method for universal and compact representation
learning. In the clustering step, we employ both image and text features from the pre-trained
CLIP model. In the discrimination step, we explore two random selections along class and
feature, which can potentially alleviate inter-class conflict and improve the feature compactness,
respectively.
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• For both zero-shot learning tasks (e.g., linear probe and unsupervised image retrieval) and
transfer learning tasks (e.g., ImageNet-1K classification and supervised image retrieval), the
proposed random negative prototype selection for conflict-robust cluster discrimination can
significantly boost the representation power compared to the instance discrimination based
model (e.g., CLIP).

2 RELATED WORK

Visual Model Pre-training. Model pre-training for visual recognition can be categorized into three
main groups: (1) supervised pre-training on datasets with manually annotated class labels (e.g.,
ImageNet-1K/-21K (Deng et al., 2009) and JFT-300M/-3B (Dosovitskiy et al., 2021; Zhai et al.,
2022)), (2) weakly-supervised pre-training by using hashtag (Mahajan et al., 2018; Singh et al., 2022)
or text descriptions (Radford et al., 2021; Jia et al., 2021), and (3) unsupervised pre-training (Chen
et al., 2020; He et al., 2020; Caron et al., 2018). Since supervised pre-training relies on expensive
manual annotations, we focus on annotation-free pre-training which has the advantages of being
easily scaled to billions of training images and being able to learn universal feature representations
for downstream tasks.

Instance and Cluster Discrimination. Instance discrimination (Chen et al., 2020; He et al., 2020;
Radford et al., 2021) is realized with a contrastive loss which targets at pulling closer samples from
the same instance while pushing away samples from different instances. Despite the impressive
performance, instance-wise contrastive learning can not capture the semantic information from
the training data because it is trained to ignore the similarity between different instances. Cluster
discrimination (Caron et al., 2018; Zhan et al., 2020; Li et al., 2020a) is processed with iterative
steps: the clustering step to assign pseudo class labels for each sample, and then the classification
step to map each sample to its assigned label. Since one cluster has more than one instance, learning
representations with clusters will gather similar instances together, which can explore potential
semantic structures in data. As a representative work, DeepCluster (Caron et al., 2018) adopts a
standard k-means for clustering, but it contains degenerate solutions. To this end, recent research
work (Asano et al., 2020; Caron et al., 2020; Qian et al., 2022) focuses on improving the label
assignment during clustering but employs a standard cross-entropy loss during discrimination. In this
paper, we only employ one step of off-line clustering but design a robust classifier to achieve good
feature representation when training on the automatically clustered large-scale data.

Image Retrieval. Image retrieval task typically relies on fine-tuning pre-trained visual models
(Szegedy et al., 2015; He et al., 2016; Dosovitskiy et al., 2021) and can be divided into two learning
categories: supervised and unsupervised metric learning. For supervised metric learning, pair-wise
loss (Hadsell et al., 2006; Schroff et al., 2015; Sohn, 2016) and cross-entropy loss (Zhai & Wu, 2019;
Deng et al., 2019; Sun et al., 2020; Qian et al., 2019) are extensively studied and recent bench-marking
results (Musgrave et al., 2020) indicate that the margin-based softmax loss (e.g., ArcFace (Deng et al.,
2019)) can achieve state-of-the-art performance. For unsupervised metric learning, pseudo labeling
methods are employed to discover pseudo classes by applying k-means clustering (Kan et al., 2021;
Li et al., 2020b), hierarchical clustering (Yan et al., 2021), random walk (Iscen et al., 2018), and
class-equivalence relations (Kim et al., 2022) to unlabeled training data. In this paper, we focus on
universal and compact feature embedding for both unsupervised and supervised image retrieval task.

3 METHODOLOGY

3.1 PRELIMINARIES OF INSTANCE AND CLUSTER DISCRIMINATION

Given a training set X = {x1, x2, ..., xn} including n images, feature representation learning aims at
learning a function f that maps images X to embeddings E = {e1, e2, ..., en} with ei = f(xi), such
that embeddings can describe the similarities between different images.

Instance discrimination achieves this objective by optimizing a contrastive loss function defined as:

Linstance = −
n∑

i=1

log
exp(e′Ti ei)∑m
j=0 exp(e

′T
j ei)

, (1)
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(a) Multi-modal Clustering (b) Discrimination

Figure 2: Illustration of the proposed method. (a) The multi-modal clustering includes one off-line
step of k-means on features from image and text produced by a pre-trained CLIP model (Radford
et al., 2021). (b) Using the assigned clusters as pseudo-labels, we propose a conflict-robust and
representation-compact classification method through random class and feature selection along the
two dimensions of the prototype matrix.

where ei and e′i are positive embeddings of the instance i, and e′j consists of one positive embedding
of i and its m negative embeddings from other instances.

By contrast, cluster discrimination for representation learning consists of two main phases: clustering
and discrimination. The clustering step assigns each instance a pseudo class label that will be
subsequently used as supervision to train a classifier in the discrimination step. Following this,
automatic clustering on the features ei = f(xi) is first performed to obtain k clusters and the centroid
wi is viewed as the prototype of i-th cluster. Then, the training data {xi}ni=1 are partitioned into k
classes represented by prototypes W = {wi}ki=1. With pseudo labels and centroids obtained from
the clustering step, cluster discrimination can be implemented by optimizing a standard softmax
classification loss as:

Lcluster = −
n∑

i=1

log
exp(wT

i ei)∑k
j=1 exp(w

T
j ei)

, (2)

where ei is the embedding of the image xi and xi belongs to the class represented by wi. By
comparing Eq. 1 and Eq. 2, we can observe the difference that instance discrimination employs an
augmented feature e′i to calculate the similarities while cluster discrimination uses a prototype wi.

3.2 MULTIMODAL CLUSTERING

In this paper, we focus on the standard clustering algorithm, k-means, which takes a set of vectors as
input and clusters them into k distinct groups based on the nearest neighbor criterion. To seek a better
representation, we combined the image and text features produced by the pre-trained CLIP model
(Radford et al., 2021) due to their mutual complementary nature. The clustering step jointly learns a
d× k centroid matrix W and the cluster assignments yi of each image xi by solving the following
problem:

min
W∈Rd×k

1

n

n∑
i=1

min
yi∈{0,1}k

∥Φ(f(xi), f
′(x′

i))−Wyi∥22 s.t. y⊤i 1k = 1, (3)

where f(xi) is the image feature embedding by the image encoder f and f ′(x′
i) is the text feature

embedding by the text encoder f ′, Φ is a feature ensemble function, W ∈ Rd×k is the centroid
matrix, yi in {0, 1}k is a single label assignment constrained by y⊤i 1k = 1, and 1k is 1-vector of
size k. In this work, we employ the simplest feature ensemble function, that is, averaging the image
and text features, as the CLIP model provides an aligned visual-textual representation.

Considering that iterative clustering and discrimination are time-consuming, we only employ one
step of off-line clustering in this work. Aided by the efficient feature quantization (Johnson et al.,
2019), the large-scale LAION 400M dataset can be clustered within 10 minutes using the embedded
image and text features. The only hyper-parameter we consider here is the cluster number k. Even
though the clustering step is straightforward, the automatically clustered large-scale dataset inevitably
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(a) Wedding+Flower (b) Wedding+Pair (c) Wedding+Place

Figure 3: Inter-class conflict between the automatically-clustered classes. The class name is given
based on the observation of images and texts. Inter-class conflict exists due to specific granularity
definitions and multi-label signals in one image.

confronts inter-class conflict due to multi-label signals in one image and specific definition of class
granularity (as illustrated in Fig. 3). For instance, the bird pair in Fig. 3(b) is clustered into wedding
pair, which will be conflicted with another specific category of bird. In addition, the close-up capture
of wedding flowers in Fig. 3(a) also exists in the class of wedding place, where flowers are the most
popular decoration.

3.3 CONFLICT-ROBUST AND REPRESENTATION-COMPACT DISCRIMINATION

After the clustering step, we can employ a vanilla classification loss (e.g., softmax) to learn the feature
representation. For the softmax loss given in Eq. 2, the derivatives to a class-wise prototype wj ∈ Rd

and a sample embedding feature ei ∈ Rd are:
∂L
∂wj

=

b∑
i=1

(pij − 1{yi == j})ei,
∂L
∂ei

=

k∑
j=1

(pij − 1{yi == j})wj , (4)

where b is the batch size, k is the class number, and pij = ew
T
j ei/

∑k
l=1 e

wT
l ei is the normalized

probability of the sample embedding ei belonging to the prototype wj , 1(·) is the indicator function
which is 1 when the statement is true and 0 otherwise. In Eq. 4, the derivative of the prototype is a
“weighted sum” over sample features from the mini-batch, and the derivative of the sample feature is
a “weighted sum” over the prototypes of all classes. If conflicted classes exist, wrong gradient signals
from these conflicted negative prototypes will affect the update of model parameters.

To this end, we propose a random negative prototype selection to efficiently construct a negative
prototype subset from the entire negative prototypes. Therefore, the derivative to a sample embedding
feature is:

∂L
∂ei

= −((1− p+)w+ −
∑

j∈S,j ̸=yi

p−j w
−
j ), (5)

where p+ and w+ denote the probability and prototype of the positive class, p−j and w−
j refer to

negative probabilities and prototypes, S is a subset of all negative classes and one positive class,
|S| = k ∗ r1, and r1 ∈ [0, 1] is the sampling ratio. Even though all class-wise prototypes are still
maintained throughout the whole training process, only positive prototypes and a subset of negative
prototypes are selected and updated in each iteration. Therefore, the inter-class conflict will be
reduced as the possibility of sampling a conflict negative prototype is directly decreased by r1.

To achieve a compact representation for efficient image retrieval, previous methods (Babenko &
Lempitsky, 2015; Tolias et al., 2016) adopt Principal Component Analysis (PCA) on an independent
set for dimension reduction. To reduce the descriptor dimension to d′, only eigenvectors corresponding
to d′ largest eigenvalues are retained. However, the representation produced by PCA is sub-optimal
because it is a post-processing step detached from the target task. To this end, we propose a feature
approximation strategy by randomly selecting subspace features to construct the classification loss:

Lunicom = −
n∑

i=1

log
exp((Γt ⊙ wi)

T (Γt ⊙ ei))∑
j∈S exp((Γt ⊙ wj)T (Γt ⊙ ei))

, (6)

where Γt ∈ {0, 1}d is a random binary vector at the iteration step of t, the non-zero element ratio
of Γt is r2 ∈ [0, 1], ⊙ denotes element-wise product. Different from the well-known regularization
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technique, Dropout (Srivastava et al., 2014), our random feature selection Γt is same for all training
samples within the mini-batch. Γt is applied to both feature ei and prototypes wj , thus the dimension
of derivatives in Eq. 4 decreases to d′. By contrast, Dropout is independently applied to each
individual feature ei within the mini-batch by setting a specific ratio r3 ∈ [0, 1] of neurons to 0 and
enlarging the rest neurons by 1/(1− r3). The dimension of derivatives in Eq. 4 is still d. Therefore,
the sub-feature optimization in the proposed random feature selection can not be completed by
directly calling the Dropout function. Since the binary vector varies at different iterations, different
sub-features are trained and sub-gradients are calculated. This leads to a solution that each embedding
neuron contains the similarity representation power.

The schematic of the proposed method is in Fig. 2(b). As shown, the prototype matrix W is maintained
in the memory at the dimension of d × k during the whole training process, but only part of the
classes (k′ = k ∗ r1) and features (d′ = d ∗ r2) are randomly selected to construct the softmax
loss. The first random selection along the class dimension is for conflict-robust learning to achieve
universal representation and the second random selection along the feature dimension is for feature
compression required by efficient retrieval. Therefore, we name our method UNIversal and COMpact
(UNICOM) representation learning.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Unless otherwise specified, all ViT models in our experiments follow the same architecture designs in
CLIP, and are trained from scratch for 32 epochs on the automatically clustered LAION 400M dataset
(Section 3.2) with cluster number k = 1M . During training, we randomly crop and horizontally flip
each image to get the input image with 224× 224 resolution. We set the random class sampling ratio
r1 as 0.1 in the pre-training step. The training is conducted on 128 NVIDIA V100 GPUs across 16
nodes. To save memory and scale up the batch size, mixed-precision and gradient checkpoint are
used. We use AdamW (Loshchilov & Hutter, 2018) as the optimizer with an initial learning rate of
0.001, and a weight decay of 0.05. We employ margin-based softmax loss, ArcFace (Deng et al.,
2019; 2020), for both pre-training and image retrieval tasks. The margin value is set to 0.3 and the
feature scale is set to 64. For supervised retrieval, we follow the data-split settings of the baseline
methods (Patel et al., 2022; Ermolov et al., 2022) to fine-tune models.

4.2 COMPARISONS ON FEATURE REPRESENTATION LEARNING

In this section, we first compare the performance of the proposed method and other baseline models
(i.e., CLIP and OPEN-CLIP) on the linear probe and unsupervised image retrieval. Specifically, after
the training on the automatically clustered 1M classes, we fix the backbones of our models. For the
linear probe task, we learn an additional FC layer for classification on each test set. For unsupervised
image retrieval, we directly use the embedding features for testing. Then, we fine-tune the pre-trained
models for supervised image retrieval on each image retrieval dataset.

Linear Probe. Following the same evaluation setting as CLIP (Radford et al., 2021), we freeze the
pre-trained models on LAION 400M dataset and only fine-tune the last linear classification layer. We
report the linear probing performance over 13 datasets in Tab. 1. The proposed conflict-robust cluster
discrimination method significantly outperforms the CLIP and OPEN-CLIP (Ilharco et al., 2021)
models. Notably, our ViT B/32, ViT B/16, and ViT L/14 models surpass counterparts of OPEN-CLIP
by 3.6%, 2.7% and 1.4% on average with the same training data, indicating that the proposed cluster
discrimination can enhance the representation power over instance discrimination.

Unsupervised Image Retrieval. In Tab. 2, we compare the performance of unsupervised image
retrieval by directly using the pre-trained models for feature embedding. The GLDv2 (Weyand
et al., 2020) employs mean Average Precision@100 (mAP@100) as the evaluation metric, while
other datasets use Recall@1. Our ViT L/14 model achieves 69.9% average result across 7 image
retrieval datasets, surpassing the OPEN-CLIP counterpart by 7.5% and even outperforming the larger
OPEN-CLIP model ViT H/14 by 5.4%. The reason behind this significant improvement is that the
proposed cluster discrimination can capture the semantic structure in data, which is crucial for the
image retrieval task. In Fig. 1(a), we compare our method with the state-of-the-art unsupervised
image retrieval approach, STML (Kim et al., 2022), under different dimension constraints on the
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Table 1: Top-1 accuracy(%) of linear probe on 13 image classification datasets. The proposed cluster
discrimination significantly outperforms OPEN-CLIP (Ilharco et al., 2021) on average by using the
same training data (i.e., LAION 400M). “CLIP-R” denotes testing the public CLIP-ViT models in
our code base. “-336” refers to one additional epoch of pre-training at a higher 336× 336 resolution
to boost performance.
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ViT B/32 95.1 80.5 93.0 81.8 96.9 88.8 58.5 76.6 76.5 52.0 90.0 97.0 76.1 81.8
ViT B/16 96.2 83.1 94.7 86.7 98.1 92.8 67.8 78.4 79.2 59.5 93.1 97.1 80.2 85.1
ViT L/14 98.0 87.5 96.5 90.9 99.2 95.2 77.0 81.8 82.1 69.4 95.1 98.2 83.9 88.8
ViT L/14-336 97.9 87.4 96.0 91.5 99.2 95.9 79.9 82.2 83.0 71.6 95.1 98.1 85.4 89.5

C
L

IP
-R

ViT B/32 96.0 82.5 94.1 86.0 97.8 92.7 61.1 79.1 78.4 58.9 93.0 95.3 75.3 83.9
ViT B/16 96.0 82.5 94.1 86.0 97.8 92.7 69.5 79.1 78.4 58.9 93.0 95.3 79.6 84.8
ViT L/14 98.1 87.2 96.0 90.7 99.2 95.3 77.8 81.5 80.9 68.0 94.9 96.7 84.1 88.5
ViT L/14-336 97.8 87.1 96.3 91.4 99.2 95.9 80.9 82.2 82.4 71.2 95.1 96.8 84.9 89.3

O
PE

N ViT B/32 95.3 82.2 93.3 87.5 96.5 86.2 61.4 75.3 78.8 52.4 88.0 96.5 73.8 82.1
ViT B/16 96.4 84.0 94.1 91.8 98.1 90.7 71.2 78.7 81.6 59.3 90.0 96.2 78.5 85.4
ViT L/14 97.9 87.9 95.5 93.6 98.8 93.3 78.0 81.0 83.0 64.4 93.3 97.1 81.5 88.1

O
ur

s

ViT B/32 96.8 86.6 94.6 93.3 98.5 85.8 70.2 74.6 78.0 70.7 93.1 96.8 75.0 85.7
ViT B/16 97.3 87.7 95.1 94.3 98.9 91.2 79.3 77.1 81.2 73.4 93.9 97.0 79.1 88.1
ViT L/14 98.5 90.8 95.7 94.6 99.3 93.4 82.4 80.0 82.2 74.5 94.2 96.7 81.8 89.5
ViT L/14-336 98.5 90.7 95.7 95.1 99.4 94.3 85.1 79.7 82.0 78.1 94.5 97.2 82.7 90.2

Table 2: Performance of unsupervised image retrieval on 7 image retrieval datasets. The proposed
conflict-robust cluster discrimination significantly outperforms OPEN-CLIP on average by using the
same training data.

CUB Cars SOP In-Shop INaturalist VehicleID GLDv2 Average
Small Medium Large Private Public

C
L

IP

B/32 56.7 79.0 60.5 45.4 53.0 54.8 52.2 44.6 7.5 7.5 46.1
B/16 66.1 85.2 63.2 56.1 63.1 55.1 50.9 43.8 8.4 10.6 50.3
L/14 76.0 90.3 65.6 62.9 72.9 62.4 58.9 51.8 12.1 13.6 56.7
L/14-336 77.3 90.9 67.8 66.3 76.8 64.1 60.3 53.8 17.0 15.6 59.0

O
PE

N

B/32 62.3 89.2 65.9 64.6 54.9 71.0 67.1 59.9 9.17 8.4 55.2
B/16 71.4 92.9 68.7 74.2 64.1 73.3 70.1 63.7 12.1 11.0 60.2
L/14 79.4 94.9 70.6 77.1 71.0 72.0 69.1 62.0 14.5 13.8 62.4
H/14 83.1 95.7 72.7 78.8 77.0 72.7 69.7 61.9 17.7 15.3 64.5

O
ur

s

B/32 83.7 95.9 70.0 72.8 64.6 74.9 72.0 65.4 15.1 13.3 62.8
B/16 86.5 96.8 70.4 74.6 73.6 74.5 70.6 58.7 18.7 17.2 64.2
L/14 88.5 96.9 72.7 83.6 77.1 83.7 80.2 74.6 21.1 20.1 69.9
L/14-336 89.2 97.3 74.5 86.7 81.0 84.1 81.4 75.6 23.2 22.0 71.5

CUB dataset. We set the random feature selection ratio r2 as 0.5 for one additional training epoch on
the LAION 400M dataset. Then, we select the first 256-D, 128-D, 64-D, and 32-D features for testing.
STML employs an ImageNet-1K pre-trained GoogleNet (Szegedy et al., 2015) and then explores
unsupervised training on the CUB dataset. Even though our ViT-based model is only trained on the
automatically clustered LAION 400M dataset without any further training on the image retrieval
dataset, our method outperforms STML (Kim et al., 2022) by a large margin across different test
dimensions, indicating the superiority of the proposed random feature selection for compact feature
representation learning.

Fine-tune for ImageNet-1K Classification. In Tab. 3, we compare our method with state-of-the-art
supervised and weakly supervised pre-training (Dosovitskiy et al., 2021; Zhai et al., 2022; Singh et al.,
2022) in transfer-learning experiments on ImageNet-1k. Our models consistently outperform OPEN-
CLIP models in the Top-1 accuracy, showing the superiority of the proposed cluster discrimination.
For ViT B/16, our pre-training achieves 85.9%, surpassing both the supervised pre-training on IN-21K
(84.0%) and the weakly supervised pre-training on IG 3.6B (85.3%). In addition, our ViT L/14
obtains 88.3%, outperforming ViT L/16 pre-trained on JFT 300M (87.8%) and ViT L/16 pre-trained
on IG 3.6B (88.1%). The overall results in ImageNet-1K classification task show that our models are
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Table 3: Transfer-learning accuracy of models pre-trained on the specified dataset followed by
fine-tuning and testing on ImageNet.

Model Pre-training Resolution IN-1K FLOPs
Dataset Pretrain Finetune Top-1 Accuracy (B)

Supervised pre-training

ViT L/32 (Dosovitskiy et al., 2021) IN-21k 224 384 81.3 54.4
ViT B/16 (Dosovitskiy et al., 2021) IN-21k 224 384 84.0 55.6
ViT L/16 (Dosovitskiy et al., 2021) IN-21k 224 384 85.2 191.5
ViT L/16 (Dosovitskiy et al., 2021) JFT 300M 224 512 87.8 362.9
ViT L/16 (Zhai et al., 2022) JFT 3B 224 384 88.5 191.5

Weakly supervised pre-training

ViT B/16 (Singh et al., 2022) IG 3.6B 224 384 85.3 55.6
ViT L/16 (Singh et al., 2022) IG 3.6B 224 512 88.1 362.9

ViT B/32 OPEN-CLIP LAION 400M 224 384 83.0 15.5
ViT B/16 OPEN-CLIP LAION 400M 224 384 85.4 55.6
ViT L/14 OPEN-CLIP LAION 400M 224 518 87.7 507.8
ViT B/32 Ours LAION 400M 224 384 83.6 15.5
ViT B/16 Ours LAION 400M 224 384 85.9 55.6
ViT L/14 Ours LAION 400M 224 518 88.3 507.8

Table 4: Performance of supervised image retrieval on 7 image retrieval datasets.
ViT-B/32 ViT-B/16 ViT-L/14 ViT-L/14-336 Previous SOTA

CUB 85.8 88.8 89.7 90.1 85.6 ViT-S/16 (Ermolov et al., 2022)
Cars 97.3 97.7 97.9 98.2 94.8 SE-ResNet-50 (Jun et al., 2019)
SOP 87.1 88.8 89.9 91.2 88.0 ViT-B/16 (Patel et al., 2022)
In-Shop 94.8 95.5 96.0 96.7 92.7 ViT-S/16 (Ermolov et al., 2022)
INaturalist 72.8 82.5 85.4 88.9 83.9 ViT-B/16 (Patel et al., 2022)
VehicleID-Small 95.4 96.4 96.5 97.0 96.2 ViT-B/16 (Patel et al., 2022)
VehicleID-Medium 94.1 95.1 95.7 96.1 95.2 ViT-B/16 (Patel et al., 2022)
VehicleID-Large 93.6 95.0 95.4 96.0 94.7 ViT-B/16 (Patel et al., 2022)
GLDv2-Private 32.6 35.7 36.1 36.4 32.5 ResNet101 (Lee et al., 2022)
GLDv2-Public 29.7 32.4 33.0 33.1 24.6 ResNet50 (Tan et al., 2021)

very competitive as they can achieve better or comparable accuracy even though the training data
used by the competitors are much larger (e.g., JFT 3B and IG 3.6B).

Fine-tune for Supervised Image Retrieval. In Tab. 4, we compare the proposed approach with the
latest image retrieval methods (Patel et al., 2022; Ermolov et al., 2022) trained with vision transformer.
During fine-tuning of our models, the random negative class selection ratio r1 is set to 1.0 as the
training data is clean. Under different computing regimes, the proposed method consistently surpasses
RA@K (Patel et al., 2022) on the SOP, iNaturalist, and VehicleID datasets and outperforms Hyp-ViT
(Ermolov et al., 2022) on the CUB and In-shop datasets.

4.3 ABLATION STUDY

Encoder for Clustering. In Tab. 5, we compare the results of linear probe and unsupervised image
retrieval under image-based clustering and text-based clustering by using the pre-trained CLIP and
OPEN-CLIP models. As we can see, the text encoder is more powerful than the image encoder,
and image and text signals are complementary as the joint clustering significantly outperforms each
individual. By referring to Tab. 1 and Tab. 2, the OPEN-CLIP ViT B/32 model achieves 82.1% and
55.2% average results on the linear probe and unsupervised image retrieval tasks, while the proposed
cluster discrimination method (r1 = 0.1) significantly boosts the performance to 84.1% and 61.1%
by using the OPEN-CLIP image and text models for clustering. By using the CLIP image and text
models for clustering, the performance can further increase to 85.7% and 62.8% on the linear probe
and unsupervised image retrieval tasks. Therefore, we choose the CLIP models for clustering.

Cluster Number. In Tab. 5, we also compare the performance under different cluster numbers, i.e.,
100K, 1M, and 10M, by using the CLIP image and text models. As can be seen, the best results can be
achieved when the cluster number is set as 1 million, with the average image number per class being
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Table 5: Ablation study on multi-modal clustering. ViT B/32 is used here for model training on the
LAION 400M dataset, which is automatically clustered by different pre-trained models. We report
the average performance of linear probe and unsupervised image retrieval.

Tasks CLIP OPEN-CLIP Cluster Number by CLIP
Image Text Joint Image Text Joint 100K 1M 10M

Linear Probe 84.4 85.3 85.7 83.9 84.0 84.1 75.9 85.7 83.6
Unsup. Retr. 61.8 62.3 62.8 58.9 60.1 61.1 53.2 62.8 60.7

Table 6: Ablation study on random negative class selection and random feature selection. ViT-B/32 is
used here and we report the average performance of linear probe and unsupervised image retrieval.

Tasks Random Class Ratio (r1) Random Feature Ratio (r2) Dropout Ratio (r3)
0.05 0.1 0.3 1.0 1.0 0.5 0.25 0.25 0.5

Linear Probe 85.1 85.7 84.9 77.9 85.7 85.5 84.2 85.4 85.1
Unsup. Retr. 62.3 62.8 62.1 55.9 62.8 62.7 62.0 62.5 62.3

Unsup. Retr. 256 - - - - 61.4 61.8 61.0 60.7 60.1

around 400. The cluster number needs to be balanced between the intra-class noises and inter-class
noises. Too small cluster numbers will incur heavy intra-class noise, which dramatically decreases
the performance of the pre-trained classification model. Besides, too many clusters will increase
the computation and storage burden on the FC layer. Most important, the over-decomposition will
increase the inter-class noise ratio and undermine the discriminative power of the pre-trained model.

Random Class Selection. In Tab. 6, we train ViT B/32 models under different inter-class sampling
ratios. The basic margin-based softmax loss (r1 = 1.0) only achieves 77.9% on the linear probe
task as it can hardly adapt to the heavy inter-class conflict in the automatically clustered dataset.
When the sampling ratio is decreased from 1.0 to 0.3 and 0.1, our method exhibits consistently
better performance than the baseline, indicating random inter-class sampling is beneficial for the
model’s robustness. When r1 is set to 0.05, there is a slight performance drop because the inter-class
interaction is insufficient during training. Therefore, we choose the random negative class selection
ratio as 0.1, obtaining 85.7% and 62.8% on the linear probe and unsupervised image retrieval tasks.

Random Feature Selection. In Tab. 6, we compare the performance of the proposed Unicom under
different random feature selection ratios (r2) on the task of dimension-constrained unsupervised
image retrieval. Here, we also include Dropout at different drop ratios (r3) for comparison. From
the results, we can have the following observations: (1) both random feature selection and Dropout
can not improve linear probe and unsupervised image retrieval at a full dimension of 512 as the
LAION 400M dataset is large enough and regularization is not necessary for the final classification
layer, (2) there is slight performance drop when the random feature selection ratio is decreasing, and
(3) the proposed random feature selection (r2 = 0.5) can improve 0.4% for 256-D unsupervised
image retrieval, while Dropout can not improve dimension-constrained unsupervised image retrieval.
Even though Dropout enforces partial features for classification, the global randomization within the
mini-batch makes the optimization involve all feature dimensions. By contrast, the proposed random
feature selection is fixed within the mini-batch thus it can benefit from optimization in a sub-feature
space.

5 CONCLUSIONS

This paper introduces Unicom, a simple yet effective framework for universal and compact feature
embedding. Given the automatically clustered large-scale data, we employ one random negative
class selection to improve the robustness under the heavy inter-class conflict and another random
feature selection to improve the compactness of the feature representation. For both unsupervised
and supervised image retrieval on different datasets, the proposed Unicom achieves state-of-the-art
performance, confirming that cluster discrimination is beneficial to explore the semantic structure
within the large-scale training data.
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A APPENDIX

A.1 MODEL ARCHITECTURES

We follow the same architecture design as CLIP. Tab. 7 describes the details of architectures.

A.2 VISUALIZATION OF PSEUDO CLUSTERS AND DATA DISTRIBUTION

In Fig. 4, we show the data distribution under different settings of class number k. In Fig. 5, we
show some exemplar classes from the proposed automatic clustering. As we can see, there are some
fine-grained classes, such as the top with love icons and the top with cartoons. Even though such
clustering is reasonable and explainable, there is class confusion if we classify these samples from
other views, such as color and targeting customer age.
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Table 7: The architecture parameters for ViT models.

Model Batch Size FLOPs Embedding Input Vision Transformer
(128 V100) G dimension resolution layers width heads

ViT-B/32 256*128 4.3 512 224 12 768 12
ViT-B/16 256*128 17.6 768 224 12 768 12
ViT-L/14 64*128 80.9 768 224 24 1024 16
ViT-L/14-336 48*128 191.3 768 336 24 1024 16
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Figure 4: Data distribution under different settings of cluster number k.
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Figure 5: Pseudo classes clustered by the image encoder and text encoder of the pre-trained CLIP
model. The class name is given based on the manual observation of images and texts.

0 5 10 15 20 25 30 35
Epoch

15

20

25

30

Lo
ss

Fine-tune
Train From Scratch

Figure 6: Training loss curves of fine-tuning from the CLIP model and training from scratch.
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Table 8: Comparison between fine-tuning and training from scratch. Top-1 accuracy(%) of linear
probe is reported on 13 image classification datasets. ViT B/32 is used here.
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Table 9: Object detection and instance segmentation on COCO. We evaluate bounding-box AP (APbb)
and mask AP (APmk) on val2017.

Method Pre-training Data APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

ViT B/16 (Li et al., 2022) IN-1K 47.6 - - 42.4 - -
ViT B/16 (Li et al., 2022) IN-21K 47.8 - - 42.6 - -
ViT B/16 OPEN-CLIP LAION 400M 48.1 69.1 51.7 42.6 66.4 44.3
ViT B/16 Ours LAION 400M 48.5 69.8 52.4 42.9 66.9 45.9

A.3 TRAINING FROM SCRATCH VS. FINE-TUNING FROM THE CLIP MODEL

In this paper, the CLIP model is only used for the clustering step and our models are trained from
scratch. In Fig. 6, we compare the training loss curves between fine-tuning and training from scratch.
For fine-tuning, the backbone is initialized from the CLIP model (ViT-B/12), and the classifier (FC
layer) is randomly initialized. The fine-tuning strategy can converge faster than training from scratch,
but the final loss value is higher. In Tab. 8, we also find that training from scratch outperforms
fine-tuning from the CLIP model by 0.7% on the task of linear probe.

A.4 COMPARISONS ON COCO DETECTION AND SEGMENTATION

Following the experiment setting in (Li et al., 2022), we use Mask R-CNN (He et al., 2017) for
bounding-box object detection and instance segmentation. We fine-tune models on the COCO (Lin
et al., 2014) train2017 split and evaluate on the val2017 split. In Tab. 9, our method outperforms
both OPEN-CLIP and supervised pre-training in all metrics, demonstrating the effectiveness of the
proposed cluster discrimination.

A.5 LINEAR PROBE DATASETS

We use 13 image classification datasets to prove the effectiveness of our method. These datasets
include CIFAR10(Krizhevsky & Hinton, 2009), CIFAR100(Krizhevsky & Hinton, 2009), Cal-
tech101(Fei-Fei et al., 2004), Stanford Cars(Krause et al., 2013a), Oxford Flowers(Nilsback &
Zisserman, 2008), Food-101(Bossard et al., 2014), Birdsnap(Berg et al., 2014), SUN397(Xiao et al.,
2010), Describable Textures(Cimpoi et al., 2014), FGVC Aircraft(Maji et al., 2013), Oxford-IIIT
Pets(Parkhi et al., 2012), EuroSAT(Helber et al., 2019), ImageNet-1k(Russakovsky et al., 2015).
Details on each dataset and the corresponding evaluation metrics are provided in Tab. 10.

A.6 IMAGE RETRIEVAL DATASETS

The training and evaluation of image retrieval experiments on seven widely used datasets, namely
CUB-200-2011(CUB) (Welinder et al., 2010), Stanford Cars(Cars196) (Krause et al., 2013b), Stanford
Online Products(SOP) (Oh Song et al., 2016), In-shop Clothes Retrieval(In-Shop) (Liu et al., 2016b),
iNaturalist (Van Horn et al., 2018), VehicleID (Liu et al., 2016a), and Google Landmarks dataset
(GLDv2) (Weyand et al., 2020). The number of examples and classes can be found in Tab. 11.
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Table 10: List of linear probe datasets with the data distribution and evaluation metrics.

Dataset Classes Train size Test size Evaluation metric
CIFAR-10 10 50,000 10,000 accuracy
CIFAR-100 100 50,000 10,000 accuracy
Caltech-101 102 3,060 6,085 mean-per-class
Stanford Cars 196 8,144 8,041 accuracy
Oxford Flowers 102 2,040 6,149 mean per class
Food-101 102 75,750 25,250 accuracy
Birdsnap 500 42,283 2,149 accuracy
SUN397 397 19,850 19,850 accuracy
Describable Textures 47 3,760 1,880 accuracy
FGVC Aircraft 100 6,667 3,333 mean per class
Oxford-IIIT Pets 37 3,680 3,669 mean per class
EuroSAT 10 10,000 5,000 accuracy
ImageNet 1000 1,281,167 50,000 accuracy

Table 11: Dataset composition for training and evaluation in the image retrieval task.

Dataset Images Classes
CUB Train (Welinder et al., 2010) 5,864 100
CUB Test (Welinder et al., 2010) 5,924 100
Cars196 Train (Krause et al., 2013b) 8,054 98
Cars196 Test (Krause et al., 2013b) 8,131 98
SOP Train (Oh Song et al., 2016) 59,551 11,318
SOP Test (Oh Song et al., 2016) 60,502 11,316
In-Shop (Liu et al., 2016b) 25,882 3,997
In-Shop (Liu et al., 2016b) 26,830 3,985
iNaturalist Train (Van Horn et al., 2018) 325,846 5,690
iNaturalist Test (Van Horn et al., 2018) 136,093 2,452
VehicleID Train (Liu et al., 2016a) 110,178 13,134
VehicleID Test (Liu et al., 2016a) 40,365 4,800
GLDv2 Train (Weyand et al., 2020) 1,580,470 81,314
GLDv2 Test (Weyand et al., 2020) 762,884 1,129
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