
Dynamic Correlation Clustering in Sublinear Update Time

Vincent Cohen-Addad * 1 Silvio Lattanzi * 1 Andreas Maggiori * 2 Nikos Parotsidis * 1

Abstract
We study the classic problem of correlation clus-
tering in dynamic node streams. In this setting,
nodes are either added or randomly deleted over
time, and each node pair is connected by a pos-
itive or negative edge. The objective is to con-
tinuously find a partition which minimizes the
sum of positive edges crossing clusters and neg-
ative edges within clusters. We present an algo-
rithm that maintains an O(1)-approximation with
O(polylog n) amortized update time. Prior to
our work Behnezhad et al. (2023b) achieved a 5-
approximation with O(1) expected update time
in edge streams which translates in node streams
to an O(D)-update time where D is the maxi-
mum possible degree. Finally we complement
our theoretical analysis with experiments on real
world data.

1. Introduction
Clustering is a cornerstone of contemporary machine learn-
ing and data analysis. A successful clustering algorithm
partitions data elements so that similar items reside within
the same group, while dissimilar items are separated. Intro-
duced in 2004 by Bansal, Blum and Chawla (Bansal et al.,
2004), the correlation clustering objective offers a natural
approach to model this problem. Due to its concise and
elegant formulation, this problem has drawn significant in-
terest from researchers and practitioners, leading to appli-
cations across diverse domains. These include ensemble
clustering identification (Bonchi et al., 2013), duplicate de-
tection (Arasu et al., 2009), community mining (Chen et al.,
2012), disambiguation tasks (Kalashnikov et al., 2008), au-
tomated labeling (Agrawal et al., 2009; Chakrabarti et al.,
2008), and many more.

In the correlation clustering problem we are given a graph

*Equal contribution 1Google Research 2Columbia
University. Correspondence to: Andreas Maggiori
<am6292@columbia.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024
by the author(s).

where each edge has either a positive or negative label, and
where a positive edge (u, v) indicates that u, v are similar
elements (and a negative edge (u, v) indicates that u, v are
dissimilar), the objective is to compute a partition of the
graph that minimizes the number of negative edges within
clusters plus positive edges between clusters. Since the
problem is NP-hard, researchers have focused on design-
ing approximation algorithms.

The algorithm proposed by Cao et al. (2024) achieves an
approximation ratio of 1.43 + ϵ, improving upon the pre-
vious 1.73 + ϵ and 1.994 + ϵ achieved by Cohen-Addad
et al. (2023; 2022b). Prior to these developments, the best
approximation guarantee of 2.06 was attained by the algo-
rithm of Chawla et al. (2015).1

These above approaches are linear-programming-based:
they require to solve a linear program and then provide a
rounding algorithm. The best known “combinatorial” al-
gorithm is due to a recent local search algorithm of Cohen-
Addad et al. (2024) achieving a 1.845 + ε-approximation.
Prior to this, the best known “combinatorial” algorithm
was the celebrated pivot algorithm of Ailon et al. (2008)
which consists in repeatedly creating a cluster by pick-
ing a random unclustered node, and clustering it with all
its positive unclustered neighbors. The versatility of the
scheme has led the pivot algorithm to be used in a variety
of contexts, and in particular for designing dynamic algo-
rithms (Behnezhad et al., 2019; 2022; 2023a).

Dynamic algorithms hold a key position in algorithm de-
sign due to their relevance in handling real-world, evolving
datasets. Consequently, substantial research has focused on
crafting clustering algorithms expressly designed for dy-
namic environments (including streaming, online, and dis-
tributed settings) (Lattanzi & Vassilvitskii, 2017; Fichten-
berger et al., 2021; Jaghargh et al., 2019; Cohen-Addad
et al., 2019; Guo et al., 2021; Cohen-Addad et al., 2022a;
Assadi & Wang, 2022; Lattanzi et al., 2021; Behnezhad
et al., 2022; 2023a; Bateni et al., 2023).

1Note also that there is also a version of the problem (Bansal
et al., 2004) where the objective is to maximize the number of
positive edges whose both endpoints are in the same cluster plus
the number of negative edges across clusters. Similarly, if the
input is weighted an O(logn) approximation has been shown by
Demaine et al. (Demaine et al., 2006).

1

Dynamic Correlation Clustering in Sublinear Update Time

While the classical approach is to design variations of the
Pivot algorithm of Ailon et al. (2008), Cohen-Addad et al.
(2021) provide an alternative approach based on a notion
called agreement, which entails the calculation of the pos-
itive neighborhood similarity of pairs of nodes. While that
approach is initially used in the context of distributed corre-
lation clustering, it has been also used in (Assadi & Wang,
2022) to design a static algorithm with n polylog n time
complexity. In the latter setting the algorithm does not read
the entire input, otherwise a time complexity of npolylog n
would be impossible for dense graphs. However the algo-
rithm has access to the graph through queries. We formal-
ize that model in Definition 1 and ask the following natural
question: in which settings can correlation clustering be
solved in o(n2) time?

Our Contribution In this paper, our focus lies on the dy-
namic case, where nodes are inserted adversarially and /
or deleted randomly over time. This setting has already
been studied for other clustering problems in (Epasto et al.,
2015) and serves as a bridge between the fully adversarial
and random input models. Our objective is to maintain an
O(1)-approximate solution at any point in time, while pay-
ing as little computation time as possible upon modification
of the input (node insertion or deletion). Unfortunately, the
approximation algorithms mentioned above are computa-
tionally expensive and cannot be re-executed each time the
input changes.

The best known bound for the fully dynamic setting
is due to Behnezhad et al. (2023a) who provided a 5-
approximation in O(m) total update time for adversarial
edge insertions and deletions, where m is the total num-
ber of positive edges of the graph. Of course, for node
updates, the above approach can be used to achieve a 5-
approximation with O(D) update time, where D is the
maximum positive degree of a node throughout the vertex
sequence. Note that for dense graphs this is equivalent to a
Θ(n2) algorithm. We ask whether it is possible to go be-
yond this bound if we are given indirect access to the graph
through queries and we do not need to read the entire input.

We answer the above question positively. More precisely,
we provide the first algorithm which achieves a constant
factor approximation model with poly-logarithmic update
time per node insertion/deletion . We also complement our
theoretical result with experiments showing the effective-
ness of our algorithm in practice.

2. Problem Definition and the Database
Model of Computation

The disagreements minimization version of the correlation
clustering problem receives as input a complete signed
undirected graph G = (V,E, s) where each edge e =

{u, v} is assigned a sign s(e) ∈ {‘ + ’, ‘ − ’} and
the goal is to find a partition of the nodes such that
the number of ‘ − ’ edges inside the same cluster and
‘ + ’ edges in between clusters is minimized. For sim-
plicity we denote the set of ‘ + ’ and ‘ − ’ edges by
E+ and E− respectively. A clustering is a partition
of the nodes C = {C1, C2, . . . , Ck} and the cost of
that clustering is |{u, v} ∈ E+ : u ∈ Ci, v ∈ Cj , i ̸= j| +
|{u, v} ∈ E− : ∃i : u, v ∈ Ci|

Note that a complete undirected signed graph G =
(V,E, s) can be converted into a non-signed undirected
graph G = (V,E) where for each pair of nodes {u, v} there
is an edge between them in G if and only if s ({u, v}) =
‘ + ’. Thus the absence of an edge between two nodes cor-
responds to a negative edge in the original signed graph
and the presence of an edge to a positive edge in the orig-
inal graph. For simplicity, throughout the paper we work
with the non-signed equivalent definition of the correlation
clustering problem.

The cost of a clustering C becomes:

|{u, v} ∈ E : u ∈ Ci, v ∈ Cj , i ̸= j|+
|{u, v} ̸∈ E : ∃i : u, v ∈ Ci|

In our setting, nodes arrival are adversarial and node dele-
tions are random. More precisely, at each time t an ad-
versary can decide either to add to the graph an adver-
sarially chosen node or to delete a random node from the
graph. Upon arrival a node reveals all the edges to pre-
viously arrived nodes and upon deletion all edges of the
node are deleted. We denote by ut the node that arrived or
left at time t and by Gt the graph structure after the first t
node arrivals/deletions. We also denote by Vt, Et the set of
nodes and edges of graph Gt and by n,m the total number
of nodes and edges respectively that appeared throughout
the dynamic stream. Note that ∀t we have |Vt|⩽ n and
|Et|⩽ m.

We denote by OPTt the cost of an optimal correlation clus-
tering solution for graph Gt and by ALGt the cost of a
dynamic algorithm solution at time t. We say that an al-
gorithm maintains a c−approximate solution if ∀t, input
graphs and node streams we have ALGt ⩽ c ·OPTt.

We now formally define the computation model that we
study in the paper. For an unsigned graph G = (V,E)
we denote by V , E the set of nodes and edges respectively,
and for a node u ∈ V we use NG(u) to denote the neigh-
borhood of u in G. This model was considered by Assadi
and Wang (Assadi & Wang, 2022) for designing sublinear
algorithms for correlation clustering.

Definition 1 (Database model (Assadi & Wang, 2022)).
Given a graph G = (V,E) we have access to the graph
structure through the following queries which have a cost

2

Dynamic Correlation Clustering in Sublinear Update Time

of O(log|V |) :

1. Degree queries: ∀u ∈ V we get its degree |NG(u)|

2. Edge queries: ∀u, v ∈ V we get whether (u, v) ∈ E

3. Neighborhood sample queries: ∀u, we get a node v ∈
NG(u) uniformly at random from set NG(u)

Note that all these queries are easily implementable in the
classical computational model where the graph is stored in
the same processing unit as the one we use to compute
our clustering solution. Thus, other than permitting us to
avoid reading and storing the graph locally the Database
model is strictly harder than the classical RAM computa-
tional model. Our goal is to maintain a constant approxi-
mation with respect to OPTt using only polylog n amor-
tized update time (queries and computational operations).
Note that for a dense graph this is sublinear in the time of
reading the entire input sequence.

3. Algorithm and Techniques
Our approach draws inspiration from the Agreement algo-
rithm, initially presented in (Cohen-Addad et al., 2021). In
particular, we leverage their key insight that to obtain a con-
stant factor approximation it is enough to cluster together
nodes with similar neighborhoods. Essentially, it is enough
to focus on identifying near-clique structures. A second key
idea that we use comes from Assadi & Wang (2022) where
it is noted that to discover these dense substructures one
does not need to examine the entire neighborhood of each
node but it is possible to carefully sub-sample the edges of
the graph to obtain a sparser structure. We build upon these
two ideas along with developing several new techniques to
obtain a constant factor approximation algorithm for dy-
namic graph with sublinear complexity.

The section is structured as follows: (1) we introduce the
Agreement algorithm of (Cohen-Addad et al., 2021) along
with its useful properties; (2) we describe the challenges
in applying that algorithm on a dynamic graph; (3) we de-
scribe a notification procedure which is the base of our al-
gorithm; and (4) provide the pseudocode of our algorihtm.

3.1. The Agreement Algorithm

Before describing the Agreement algorithm of (Cohen-
Addad et al., 2021) we need to introduce two central no-
tions to quantify the similarity between the neighborhood
of two nodes.
Definition 2 (Agreement). Two nodes u, v are in ϵ-
agreement in G if

|NG(u)△NG(v)|< ϵmax{|NG(u)|, |NG(v)|}

where△ denotes the symmetric difference of two sets.

Definition 3 (Heaviness). A node is called ϵ-heavy if it is in
ϵ-agreement with more than a (1− ϵ)-fraction of its neigh-
bors. Otherwise it is called ϵ-light.

When ϵ is clear from the context we will simply say that
two nodes are or are not in agreement and that a node is
heavy or light.

The Agreement algorithm uses the agreement and heavi-
ness definitions to compute a solution to the correlation
clustering problem, as described in Algorithm 1. We call
the output of Algorithm 1 the agreement decomposition of
the graph G.

Algorithm 1 AGREEMENTALGORITHM(G)

Create a graph G̃ from G by discarding all edges whose
endpoints are not in ϵ-agreement.
Discard all edges of G̃ between light nodes of G.
Compute the connected components of G̃, and output
them as the solution.

At a high level, the first two steps of Algorithm 1 can be
characterized as a filtering procedure which ensures that
two nodes with similar neighborhoods end up in the same
connected component of G̃ and consequently in the same
cluster of the final partitioning. The main lemma which
helps bounding the approximation ratio of the Agreement
algorithm and which will be also used to analyze the per-
formance of our algorithm is the following: 2

Lemma 4 (rephrased from (Cohen-Addad et al., 2021)).
Let C = {C1, C2, . . . , Ck} be a clustering solution for
graph G = (V,E) and ϵ a small enough constant. If the
following properties hold:

1. ∀i ∈ {1, 2, . . . , k} and u ∈ Ci such that |Ci|> 1 we
have |NG(u) ∩ Ci|⩾ 3/4|Ci|

2. ∀e = (u, v) ∈ E such that u ∈ Ci, v ∈ Cj and
i ̸= j then either u and v are not in ϵ-agreement or
both nodes are not ϵ-heavy.

Then the cost of C is a constant factor approximation to that
of the optimal correlation clustering solution for graph G

For ϵ small enough Cohen-Addad et al. (2021) prove
that Algorithm 1 satisfies both properties of Lemma 4 and
therefore produces a constant factor approximation.

3.2. Challenges of Dynamic Agreement

Our goal is to design a dynamic version of the Agree-
ment algorithm which consistently maintains a sparse

2We note that Lemma 4 is not explicitly stated in (Cohen-
Addad et al., 2021) but it is a combination of lemmas 3.5, 3.6,
3.7 and 3.8 in the latter paper

3

Dynamic Correlation Clustering in Sublinear Update Time

graph G̃ whose induced clustering satisfy both conditions
of Lemma 4 while only spending O(polylog n) update time
upon node insertions and random deletions.

We briefly describe what are the main challenges that we
face in such endeavour:

1. computing the agreement between two nodes or the
heaviness of a node may take time Θ(n);

2. the number of agreement calculations performed
by Algorithm 1 is equal to the number of edges in our
graph; and

3. since the total complexity that we aim is
O(npolylog n), the graph G̃ that we maintain
should be both sparse at any point and stable (do not
change significantly between consecutive times).

From a high level perspective, we solve those is-
sues as follows. First, instead of computing exactly
whether two nodes are in ϵ-agreement and whether
a node is ϵ-heavy, we design two stochastic proce-
dures, namely PROBABILISTICAGREEMENT(u, v, ϵ) and
HEAVY(u, ϵ), which only need a sample of logarithmic
size of the two neighborhoods to answer correctly, with
high probability, those questions. We defer the descrip-
tion of those procedures in Appendix E. Second, for each
dense substructure, we maintain dynamically a random set
of O(polylog n) heavy nodes. We call that sample the an-
chor set and show that the connections of those nodes are
enough to recover a good clustering. Finally, to efficiently
maintain our sparse graph G̃ we design a message-passing
procedure, which we call Notify, to communicate events
across neighboring nodes. Roughly, this procedure prop-
agates information about the arrival or deletion of a node
u to a O(polylog n)-size randomly chosen subset of nodes
within small hop distance from u. Whenever a node re-
ceives a “notification”, we either add, with some probabil-
ity, this node to the anchor set and we revisit the agreement
between that node and nodes already in the anchor set.

While similar ideas to resolve the first and second chal-
lenges have been already explored in the sublinear static al-
gorithm of Assadi & Wang (2022) it is important to observe
that applying the same principles in the dynamic sublinear
setting is highly non-trivial. Indeed, in this setting it is not
even clear if one can even maintain a good approximation
of the degrees of nodes in sublinear time3.

3.3. Notify Procedure

A central sub-procedure in our algorithm, which allow us to
keep track of evolving clusters is the Notify procedure. We

3While we are able to circumvent the degree computation in
our algorithm, we note that this is an interesting open problem.

believe that it is of independent interest and we devote Sec-
tion 3.3 entirely to its description. As mentioned before the
Notify procedure is responsible to propagate the informa-
tion of node arrivals and deletions to O(polylog n) nodes.
We distinguish between different types of notifications de-
pending on how many nodes did the notification propagate
through from the “source” node that initiated the notify pro-
cedure.

Notifications are subdivided in categories depending on
their type, which could be Typei, i = 0, 1, 2. A central
definition in our algorithm and in its analysis is the “inter-
esting event” definition.

Definition 5. We say that u participates in an “interest-
ing event” either when u arrives or u receives a Type0 or
Type1 notification.

To simplify the description of the algorithm. We denote
by d(u) the current degree of a node u and we define the
function l(x) = ⌊log(x)⌋,∀x > 0. With a slight abuse of
notation for a node u we denote by lu the quantity l(d(u)).
Note that for all nodes u we have that 2lu ⩽ d(u) < 2lu+1.

Each node u stores sets I0u, I
1
u, I

2
u, . . . , I

logn
u and

B0
u, B

1
u, B

2
u, . . . , B

logn
u . Set Iiu contains u’s last neighbor-

hood sample when its degree was in [2i, 2i+1) and set Bi
u

contains all nodes v such that u ∈ Iiv .

Each time a node u participates in an “interesting event” or
receives a Type2 notification it stores a random sample of
size O(log n) of its neighborhood in I luu . Further, u enters
the sets Blu

v for all nodes v ∈ I luu of its sample. Those
nodes are responsible to notify u when they get deleted.
Thus, upon u’s deletion all nodes in

⋃
i B

i
u are notified.

This notification strategy has two key properties, that are:
(1) u gets notified and participates in an “interesting event”
when a constant fraction of its neighborhood gets deleted;
and (2) w.h.p. u gets notified when its 2-hop neighborhood
changes substantially. Interestingly, the notification strat-
egy does this while maintaining the expected complexity
bounded by O(polylog n) each time the Notify procedure
is called. Algorithm 2 contains the pseudocode of the noti-
fication procedure

3.4. Our Dynamic Algorithm Pseudocode

Our Algorithm 3 contains 4 procedures: the Notify(vt, ϵ)
procedure which we described in Section 3.3, the
Clean(u, ϵ, t) procedure, the Anchor(u, ϵ, t) procedure and
the Connect(u, ϵ, t) procedure. Before describing the last
three we introduce some auxiliary notation.

We denote by It the set of nodes that participated in an
“interesting event” at round t. We also denote by Φ a dy-
namically changing (across the execution of our algorithm)
subset of the nodes which we call anchor set. We avoid the

4

Dynamic Correlation Clustering in Sublinear Update Time

Algorithm 2 Notify(u, ϵ)
if u arrived then
I luu ←− sample 1010 log n/ϵ random neighbors
∀v ∈ I luu : Blu

v ←− Blu
v ∪ {u}

∀v ∈ I luu : u sends v a Type0 notification
else if u was deleted then
∀v ∈

⋃
i B

i
u: u sends v a Type0 notification

end if
for i = 0, 1, 2 do

for all w that received a Typei notification do
∀v ∈ I lww : Blw

v ←− Blw
v \ {w}

I lww ←− sample 1010 log n/ϵ random neighbors
∀v ∈ I lww : Blw

v ←− Blw
v ∪ {w}

if i ∈ {0, 1} then
∀v ∈ I lww : w sends v a Typei+1 notification

end if
end for

end for

subscript t in the set Φ notation as it is always clear for the
context at what time we are referring to. When a node u is
deleted, then, we also apply Φ ← Φ \ {u}. We maintain
a sparse graph G̃t with the same node set of Gt and with
edge set Ẽt ⊆ Et. We start our algorithm with G̃0 being an
empty graph. The backbone of our sparse solution G̃t is the
anchor set nodes Φ. Indeed, we have that ∀e = (u, v) ∈ Ẽt

either u or v are in Φ. Moreover, for any node u we denote
by Φu the subset of the nodes in Φ connected to u in our
sparse solution G̃t.

Algorithm 3 Dynamic Agreement (DA)
on arrival/deletion of vt do

Notify(vt, ϵ)
for all u ∈ It do

Clean(u, ϵ, t)
Anchor(u, ϵ, t)
Connect(u, ϵ, t)

end for
end on

After the arrival or deletion of node vt and the propagation
of notifications through the Notify(vt, ϵ) procedure, for all
nodes u in an important event we do the following.

First we call the Clean(u, ϵ, t) procedure which is respon-
sible to delete edges between nodes which are not in ϵ-
agreement anymore and delete from the anchor set nodes
that lost too many edges in our sparse solution. These op-
erations enable our algorithm to refine clusters which be-
came too sparse or refine cluster assignment for nodes that
are not anymore in ϵ-agreement.

Then we call the Anchor(u, ϵ, t) where if u is heavy then
with probability min{1, 107 logn

ϵ|NGt (u)|
} we add this node to Φ.

If u is added in Φ then we calculate agreements with all
of its neighbors and whenever u is in agreement with a
neighbor v we add edge (u, v) to our sparse solution G̃t.
As mentioned previously the anchor nodes are representa-
tive nodes of clusters. Thus, the Anchor(u, ϵ, t) procedure
allows us to update the set of anchor nodes so that they be-
have approximately like a uniform sample of each cluster.

Finally, we initiate the Connect procedure. The purpose of
this step is to add some redundant information so that the
clustering is stable and also ensure that nodes that are in-
serted lately are guaranteed to be connected to some anchor
node of their cluster.

Algorithm 4 Connect(u, ϵ, t)
Let Ju be a random sample of size 105 logn/ϵ from
NGt(u).
for w ∈ Ju do

for r ∈ Φw do
If r is heavy and in agreement with u then add the
edge (r, w) to G̃t

end for
end for

Algorithm 5 Anchor(u, ϵ, t)
Xu ∼ Bernoulli(min{107 logn/ϵ|NGt (u)|, 1})
if u ∈ Φ then

Delete all edges (u, v) where v ̸∈ Φ from G̃t

end if
if u is heavy in Gt and Xu = 1 then

For every neighbor v, if u and v are in agreement add
edge (u, v) in our sparse solution G̃t.

end if
if Xu = 1 then

Add u to Φ at the end of iteration t
else if u ∈ Φ and Xu = 0 then

Delete u from Φ at the end of iteration t
end if

Algorithm 6 Clean(u, ϵ, t)
for w ∈ Φu do

if w not in agreement with u or w is not heavy then
Delete edge (w, u) from G̃t

end if
if w lost more than an ϵ fraction of its edges in G̃t

from when it entered Φ then
Delete w from Φ and all edges between w and its
neighbors in G̃t

end if
end for

5

Dynamic Correlation Clustering in Sublinear Update Time

4. Overview of our Analysis
In this section we give a high level description of our proof
strategy, the full proof is available in the Appendix. We first
present the high-level ideas on how to prove Theorem 6 and
then we bound the running time.

Theorem 6. For each time t the Dynamic Agreement algo-
rithm outputs an O(1)−approximate clustering with prob-
ability at least 1− 5/n.

4.1. Overview of the Correctness Proof

To prove the correctness of our algorithm we show that at
any time t: 1) for every cluster C that is identified by the of-
fline Agreement algorithm (which is known to be constant
factor approximate) our algorithm w.h.p. forms a cluster
that is a superset of C, and 2) every cluster C ′ detected
by our algorithm is a dense cluster w.h.p., meaning that
∀u ∈ C ′, |NGt(u)∩C ′|⩾ (1− c′ · ϵ)|C ′| for small enough
ϵ, and a constant c′ ≪ 1/ϵ. Combining the above two facts
and union bounding over all time t, we get that all clusters
detected by the offline agreement algorithm are found, and
all detected clusters are very dense. So using the fact that
the offline agreement algorithm is a constant approxima-
tion algorithm we can show that also our algorithm is. The
formal proof of the two facts requires the introduction of
several concepts and probabilistic events, and is deferred
to Appendix A and Appendix B. Here we give a high-level
overview of our proof strategy. For the remainder of this
section, we call a cluster computed by the offline agree-
ment algorithm a good cluster.

All good clusters are detected. As discussed in Sec-
tion 3 the key idea of the algorithm is to design a sam-
pling strategy and a notify procedure to keep track of the
good clusters efficiently. The key idea is to not identify a
good cluster only at the time that is formed, but to design
a strategy to track the most important events that affect any
node in the graph during the execution of the algorithm and
to maintain the clustering structure through connections to
the anchor set nodes.

Let a cluster C be a good cluster at time t. In our anal-
ysis, we analyze the last ϵ

c |C| interesting events involving
nodes of cluster C. Let L ⊂ C be the set of nodes involved
in these last interesting events, we further subdivide L into
L1 containing the half of L that participated earlier in in-
teresting events, and L2 containing those that participated
later. We also denote R = C \ L. Intuitively we show that
every node connects to another node in the anchor set either
in the first or second part of our analysis.

Let tu be the last time in which a node u ∈ L participates
in an “interesting event”. Our notification procedure en-
sures that w.h.p. u’s neighborhood does not change signif-

icantly after its last participation in an “interesting event”,
i.e., NGtu

(u) ≃ NGt′ (u), ∀t
′ ∈ [tu, t] (see Lemma 14 and

the preceding discussion). At the same time, we know that
at time t, u belongs to the good cluster C and by the prop-
erties of the agreement decomposition (see Appendix G)
we have that NGt

(u) ≃ C. Combining the last two obser-
vations we can conclude that NGtu

(u) ≃ C. This line of
arguments can be extended to all nodes v ∈ NGtu

(u) ∩ R
which by the definition of R do not participate in an “inter-
esting event” after time tu. Thus, ∀v ∈ NGtu

(u) ∩ R, it
holds that: NGtu

(v) ≃ C. In addition, R contains almost
all nodes of C, thus NGtu

(u) ∩ R ≃ C. Combining all
these observations we can conclude that u is in agreement
with almost all of its neighbors at time tu, and therefore
it is heavy. In addition, if u enters in the anchor set, it
remains there until time t. This is proved in Theorem 17
of Appendix A.

We are ready to prove that our algorithm finds a cluster
C ′ ⊇ C at time t for every good cluster C detected by
the offline agreement algorithm. As described in Section 3,
the clusters that our algorithms form are determined by the
connected components in our sparse solution graph G̃t. To
this end we argue that each node of C is connected to a
node in C that is in the anchor set in G̃t. We show how this
is true for each of the three sets R,L1, L2. For R we recall
that each node in L1 ⊂ L is heavy and enters the anchor
set with probability O(logn

ϵ|NGtu
(u)|) at time tu.

Given that |L1|= c
2ϵ |C| for c ≪ ϵ, we can show that

each v ∈ R has a neighbor v′ ∈ L1 that enters the an-
chor set w.h.p., and v′ connects to v in G̃t during the
Anchor(v′, ϵ, tv′) procedure. This is formally proved in
Lemma 20 of Appendix A. Similarly, each node in L1 has
a neighbor in L2 that enters the anchor set w.h.p.. Finally,
we prove that each node v in L2 is connected to a node v′

in the anchor set in L1 w.h.p.. In fact, since most pairs of
nodes in L1 ∪ L2 are in agreement w.h.p. there are many
common neighbors w ∈ R such that w is in agreement with
both v′ and v, which implies that the Connect(v, ϵ, tv) will
connect v to v′. See Lemma 22 of Appendix A for the for-
mal proof. Hence, all nodes in C get connected to a node in
the anchor set (which as we claimed above remains in the
anchor set until time t). To conclude the argument we also
note that the nodes in the anchor set are connected to each
other because they share most of their neighbors. This is
proved in Theorem 23 of Appendix A.

All found clusters are good. To prove that all clusters
identified by our algorithm are good clusters, we follow
a proof strategy similarly to (Cohen-Addad et al., 2021).
Roughly speaking, we show that each connected compo-
nent C ′ of G̃t has diameter 4, which follows by observing
that all nodes in the anchor set are within distance 2 from
each other, and that each other node is connected to a node

6

Dynamic Correlation Clustering in Sublinear Update Time

in the anchor set. Then, due to the transitivity of the agree-
ment property, it follows that all nodes in the connected
component C ′ are in agreement with each other. This last
claim, then further implies that for each v ∈ C ′ it holds that
|NGt

∩ C ′|⩾ (1− cϵ)|C ′| which makes C ′ a good cluster.
See Appendix B for the formal proof.

4.2. Overview of Running Time Bound

We observe that our algorithm is correct even when dele-
tions occur adversarially, but this unfortunately does not
hold for the analysis of its running time. Notice that for in-
sertions the running time is bounded by the O(polylog n)
forward notifications sent as a result of the insertion of a
new node. On the other hand, the deletion of a node u
may cause all nodes in

⋃
i B

i
u to receive a notification,

and this in turn causes those nodes to send forward no-
tifications. The issue arises in that there is no bound in
the size of |

⋃
i B

i
u| when deletions occur adversarially. In

fact, we can construct an instance where |
⋃

i B
i
u|∈ Θ̃(n)

for Õ(n) many deletions. Thankfully, in the case where
the deletions appear in a random order, this cannot happen
as we can nicely bound the expectation of |

⋃
i B

i
u| to be

O(polylog n) for a node u chosen uniformly at random.
We devote Appendix C in the formal proof of the running
time analysis.

5. Experimental Evaluation
We conduct two sets of experiments. We first evaluate the
performance of our algorithm to the same set of real-world
graphs that were used in (Lattanzi et al., 2021). Then, we
investigate how the running time of our algorithm scales
with the size of the input.

5.1. Baselines and Datasets

We compare our algorithm to SINGLETONS where its out-
put always consists of only singleton clusters and PIVOT-
DYNAMIC (Behnezhad et al., 2023a) which is a dynamic
variation of the Pivot algorithm (Ailon et al., 2008) for edge
streams with O(1) update time. While PIVOT-DYNAMIC
guarantees a constant factor approximation, SINGLETONS
does not have any theoretical guarantees. Nevertheless,
it has been observed in (Lattanzi et al., 2021) that sparse
graphs tend to not have a good correlation clustering struc-
ture, and often the clustering that consists of only singleton
clusters is a competitive solution.

We consider five real-world datasets. For the first set of
experiments, we use four graphs from SNAP (Leskovec
& Krevl, 2014) that include a Social network (musae-
facebook), an email network (email-Enron), a collabo-
ration network (ca-AstroPh), and a paper citation network
(cit-HepTh).

In the second set of experiments where we investigate
the runtime of our algorithm with respect to the size of
the input we use Drift (Vergara et al., 2012; Rodriguez-
Lujan et al., 2014) from the UCI Machine Learning Repos-
itory (Dua & Graff, 2017). The dataset contains 13, 910
points embedded in a space of 129 dimensions. Each point
corresponds to a node in our graph and we add a positive
connection between two nodes if the euclidean distance of
the corresponding points is below a certain threshold. The
lower we set that threshold the denser the graph becomes.

All graphs are formatted so as to be undirected and without
parallel edges. In addition, we create the node streams of
node additions and deletions as follows: we first create a
random arrival sequence for all the nodes. Subsequently in
between any two additions, with probability p, we select
at random a node of the current graph and delete it. If all
nodes have already arrived then at each time we randomly
select one of those and delete it.

5.2. Setup and Experimental Details

Our code is written in Python 3.11.5 and is available at
https://github.com/andreasr27/DCC. We set
the deletion probability in between any two node arrivals
to be 0.2. The agreement parameter is set to ϵ = 0.2, as
this setting exhibited the best behavior in (Cohen-Addad
et al., 2021) and (Lattanzi et al., 2021).

In addition, we set the number of samples in our procedures
to a small constant. More precisely, all our subroutines use
a random sample of size 2 and the probability of a node
joining the anchor set is set to 20/du where du denotes
its degree in the current graph. Here we deviate from the
numbers we use in theory as we observe that, in practice,
for sparse graphs only running time is affected. We note
that in the runtime calculation we do not include reading
the input and calculating the quality of our clustering. We
do this in an effort to best approximate the Database model
in Definition 1 while reading the input we implement suit-
able data structures4 where the graph is stored in the form
of adjacency lists which permit node additions, deletions
and getting a random sample in O(1) expected time.

Solution quality. In the first set of experiments we
run all three algorithms and plot their performance rel-
ative to SINGLETONS, that is, we plot the cost of solu-
tion produced by our algorithm or PIVOT-DYNAMIC di-
vided by the cost of the solution of SINGLETONS. In
all datasets, DYNAMIC-AGREEMENT consistently outper-
forms both PIVOT-DYNAMIC and SINGLETONS. For ex-
ample, in Fig. 1 we plot the correlation clustering objec-
tive every 10 nodes additions/deletions in the node stream.

4e.g.: https://leetcode.com/problems/
insert-delete-getrandom-o1/description/

7

https://github.com/andreasr27/DCC
https://leetcode.com/problems/insert-delete-getrandom-o1/description/
https://leetcode.com/problems/insert-delete-getrandom-o1/description/

Dynamic Correlation Clustering in Sublinear Update Time

0 100 200 300 400 500 600
Node Arrivals/Deletions

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Cl
us

te
rin

g
Ob

je
ct

iv
es

CA-AstroPh

DYNAMIC-AGREEMENT
SINGLETONS
PIVOT-DYNAMIC

Figure 1. Correlation clustering objective relative to singletons

DA PD

MUSAE-FACEBOOK 2.27 0.1
EMAIL-ENRON 2.79 0.12
CIT-HEPTH 3.84 0.21
CA-ASTROPH 2.96 0.11

Table 1. RUNTIMES OF THE ALGORITHMS DYNAMIC-
AGREEMENT (DA) AND PIVOT-DYNAMIC (PD).

We observe that after a constant fraction of all nodes have
arrived, the clustering objective of our algorithm relative
to SINGLETONS remains stable both for node additions
and deletions. On the contrary the performance of PIVOT-
DYNAMIC fluctuates and tends to increase especially in
the last part of the sequence when all nodes have already
arrived and the node stream contains predominantly dele-
tions. A similar behaviour is observed in the other three
datasets which are deferred to Appendix H. In Appendix H
we also present a table which gives an estimate of the op-
timum offline solution based on the classical PIVOT algo-
rithm of Ailon et al. (2008). In Section 5.2 we see that
our algorithm is slower to the PIVOT-DYNAMIC imple-
mentation. This is something that we expect since PIVOT-
DYNAMIC is extremely efficient for sparse graphs.

Running time. As mentioned previously, we constructed
a graph using the Drift dataset by associating points with
nodes and adding positive edges between nodes if the Eu-
clidean distance of the corresponding points is less than a
threshold. Different thresholds lead to the creation of dis-
tinct graphs. Now we relate the density of the graph (aver-
age node degree) with the runtimes and clustering quality
of both DYNAMIC-AGREEMENT and PIVOT-DYNAMIC.
Section 5.2 shows the average relative clustering quality of
each algorithm over the entire node stream and their run-

Relative Objective Running Time

Density DA PD DA PD

253.36 0.696 0.610 12.48 0.28
114.87 0.605 0.551 14.54 0.16
69.74 0.522 0.504 15.82 0.11
52.17 0.389 0.416 14.10 0.09
42.25 0.320 0.375 12.85 0.07

Table 2. Summary of our scalability experiment for the algorithms
DYNAMIC-AGREEMENT (DA) and PIVOT-DYNAMIC (PD), on
the Drift dataset at varying densities.

ning times.

We observe that both DYNAMIC-AGREEMENT and PIVOT-
DYNAMIC outperform SINGLETONS, as expected, since
SINGLETONS excels in sparse graphs and offers poor qual-
ity solutions in denser graphs. Additionally, the running
time of DYNAMIC-AGREEMENT remains stable when the
density of the graphs increases confirming that the algo-
rithm’s running time is not affected by the graph density.
On the other hand, the running time of PIVOT-DYNAMIC
increases linearly with the density. This suggests that
for very large and dense graphs, where even reading the
entire input is prohibitive DYNAMIC-AGREEMENT scales
smoothly, further validating the theory.

Experimental summary. We observe that the newly pro-
posed algorithm computes high quality solutions for both
sparse and dense graphs. This is in contrast with compari-
son methods that fail to produce good solutions in at least
one of the two settings. We also show that even if the run-
time of our algorithm is higher compared to the competi-
tor, its runtime does not increase with the density of the
input graph. This is inline with our theoretical results and
is achieved via our sampling and notify strategies.

Conclusion and Future Work
We provide the first sublinear time algorithm for correla-
tion clustering in dynamic streams where nodes are added
adversarially and deleted randomly. Our algorithm is based
on new and carefully defined sampling and notification
strategies that can be of independent interest. We also show
experimentally that our algorithm provides high quality so-
lution both for dense and sparse graph outperforming pre-
viously known algorithms.

A very interesting open question is to extend our result in
the general setting where both nodes’ addition and dele-
tion is adversarial. One possible way of achieving the later
would be to use a different sparse-dense decomposition
which is more stable and requires less updates so that it

8

Dynamic Correlation Clustering in Sublinear Update Time

is maintained approximately, e.g., the one proposed by As-
sadi & Wang (2022).

Reducing the amortize update time in our setting is another
very interesting and natural question.

Impact Statement
This paper presents work whose goal is to provide a theo-
retical foundation to machine learning heuristics often used
in practice. We do not feel that any particular societal con-
sequences of our work should be highlighted here.

References
Agrawal, R., Halverson, A., Kenthapadi, K., Mishra, N.,

and Tsaparas, P. Generating labels from clicks. In Pro-
ceedings of the 2nd ACM International Conference on
Web Search and Data Mining, pp. 172–181, 2009.

Ailon, N., Charikar, M., and Newman, A. Aggregating in-
consistent information: Ranking and clustering. Journal
of the ACM (JACM), 55(5), 2008.

Arasu, A., Ré, C., and Suciu, D. Large-scale deduplication
with constraints using dedupalog. In Proceedings of the
25th International Conference on Data Engineering, pp.
952–963, 2009.

Assadi, S. and Wang, C. Sublinear time and space algo-
rithms for correlation clustering via sparse-dense decom-
positions. In Proceedings of the 13th Innovations in The-
oretical Computer Science Conference (ITCS), pp. 10:1–
10:20, 2022.

Bansal, N., Blum, A., and Chawla, S. Correlation cluster-
ing. Machine learning, 56(1):89–113, 2004.

Bateni, M., Esfandiari, H., Fichtenberger, H., Henzinger,
M., Jayaram, R., Mirrokni, V., and Wiese, A. Optimal
fully dynamic k-center clustering for adaptive and obliv-
ious adversaries. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 2677–2727. SIAM, 2023.

Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Stein,
C., and Sudan, M. Fully dynamic maximal indepen-
dent set with polylogarithmic update time. In Zucker-
man, D. (ed.), 60th IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pp. 382–405.
IEEE Computer Society, 2019. doi: 10.1109/FOCS.
2019.00032. URL https://doi.org/10.1109/
FOCS.2019.00032.

Behnezhad, S., Charikar, M., Ma, W., and Tan, L.
Almost 3-approximate correlation clustering in con-
stant rounds. In 63rd IEEE Annual Symposium on

Foundations of Computer Science, FOCS 2022, Den-
ver, CO, USA, October 31 - November 3, 2022, pp.
720–731. IEEE, 2022. doi: 10.1109/FOCS54457.
2022.00074. URL https://doi.org/10.1109/
FOCS54457.2022.00074.

Behnezhad, S., Charikar, M., Ma, W., and Tan, L. Single-
pass streaming algorithms for correlation clustering.
In Bansal, N. and Nagarajan, V. (eds.), Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2023, Florence, Italy, January 22-
25, 2023, pp. 819–849. SIAM, 2023a. doi: 10.1137/
1.9781611977554.ch33. URL https://doi.org/
10.1137/1.9781611977554.ch33.

Behnezhad, S., Charikar, M., Ma, W., and Tan, L. Single-
pass streaming algorithms for correlation clustering. In
Proceedings of the 34th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pp. 819–849, 2023b.

Bonchi, F., Gionis, A., and Ukkonen, A. Overlapping cor-
relation clustering. Knowledge and information systems,
35(1):1–32, 2013.

Cao, N., Cohen-Addad, V., Lee, E., Li, S., Newman, A.,
and Vogl, L. Understanding the cluster lp for correlation
clustering. In STOC’24, 2024.

Chakrabarti, D., Kumar, R., and Punera, K. A graph-
theoretic approach to webpage segmentation. In Pro-
ceedings of the 17th International World Wide Web Con-
ference (WWW), pp. 377–386, 2008.

Chawla, S., Makarychev, K., Schramm, T., and Yaroslavt-
sev, G. Near optimal lp rounding algorithm for cor-
relation clustering on complete and complete k-partite
graphs. In Proceedings of the 47th Annual ACM Sym-
posium on Theory of Computing (STOC), pp. 219–228,
2015.

Chen, Y., Sanghavi, S., and Xu, H. Clustering sparse
graphs. In Proceedings of the 25th Annual Conference
on Neural Information Processing Systems (NeurIPS),
pp. 2204–2212, 2012.

Cohen-Addad, V., Hjuler, N., Parotsidis, N., Saulpic, D.,
and Schwiegelshohn, C. Fully dynamic consistent fa-
cility location. In Proceedings of the 33rd Annual
Conference on Neural Information Processing Systems
(NeurIPS), 2019.

Cohen-Addad, V., Lattanzi, S., Mitrovic, S., Norouzi-Fard,
A., Parotsidis, N., and Tarnawski, J. Correlation cluster-
ing in constant many parallel rounds. In Proceedings of
the 38th International Conference on Machine Learning
(ICML), volume 139, pp. 2069–2078, 2021.

9

https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1109/FOCS.2019.00032
https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1109/FOCS54457.2022.00074
https://doi.org/10.1137/1.9781611977554.ch33
https://doi.org/10.1137/1.9781611977554.ch33

Dynamic Correlation Clustering in Sublinear Update Time

Cohen-Addad, V., Lattanzi, S., Maggiori, A., and Parot-
sidis, N. Online and consistent correlation clustering.
In Proceedings of the 39th International Conference on
Machine Learning (ICML), pp. 4157–4179, 2022a.

Cohen-Addad, V., Lee, E., and Newman, A. Correlation
clustering with sherali-adams. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2022, Denver, CO, USA, October 31 - November 3, 2022,
pp. 651–661. IEEE, 2022b. doi: 10.1109/FOCS54457.
2022.00068. URL https://doi.org/10.1109/
FOCS54457.2022.00068.

Cohen-Addad, V., Lee, E., Li, S., and Newman, A. Han-
dling correlated rounding error via preclustering: A
1.73-approximation for correlation clustering. In 64th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2023, Santa Cruz, CA, USA, November
6-9, 2023, pp. 1082–1104. IEEE, 2023. doi: 10.1109/
FOCS57990.2023.00065. URL https://doi.org/
10.1109/FOCS57990.2023.00065.

Cohen-Addad, V., Lolck, D. R., Pilipczuk, M., Thorup, M.,
Yan, S., and Zhang, H. Combinatorial correlation clus-
tering. In STOC’24, 2024.

Demaine, E. D., Emanuel, D., Fiat, A., and Immorlica, N.
Correlation clustering in general weighted graphs. The-
oretical Computer Science, 361(2-3):172–187, 2006.

Dua, D. and Graff, C. UCI machine learning repository,
2017. URL http://archive.ics.uci.edu/ml.

Epasto, A., Lattanzi, S., and Sozio, M. Efficient densest
subgraph computation in evolving graphs. In Proceed-
ings of the 24th international conference on world wide
web, pp. 300–310, 2015.

Fichtenberger, H., Lattanzi, S., Norouzi-Fard, A., and
Svensson, O. Consistent k-clustering for general metrics.
In Proceedings of the 32nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 2660–2678.
SIAM, 2021.

Guo, X., Kulkarni, J., Li, S., and Xian, J. Consistent k-
median: Simpler, better and robust. In Proceedings of
the 24th International Conference on Artificial Intelli-
gence and Statistics, pp. 1135–1143, 2021.

Jaghargh, M. R. K., Krause, A., Lattanzi, S., and Vassil-
vtiskii, S. Consistent online optimization: Convex and
submodular. In Proceedings of the 22nd International
Conference on Artificial Intelligence and Statistics, pp.
2241–2250, 2019.

Kalashnikov, D. V., Chen, Z., Mehrotra, S., and Nuray-
Turan, R. Web people search via connection analysis.
IEEE Transactions on Knowledge and Data Engineer-
ing, 20(11):1550–1565, 2008.

Lattanzi, S. and Vassilvitskii, S. Consistent k-clustering.
In Proceedings of the 34th International Conference on
Machine Learning (ICML), pp. 1975–1984, 2017.

Lattanzi, S., Moseley, B., Vassilvitskii, S., Wang, Y., and
Zhou, R. Robust online correlation clustering. In Pro-
ceedings of the 34th Annual Conference on Neural Infor-
mation Processing Systems (NeurIPS), 2021.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford
large network dataset collection. http://snap.
stanford.edu/data, 2014.

Rodriguez-Lujan, I., Fonollosa, J., Vergara, A., Homer, M.,
and Huerta, R. On the calibration of sensor arrays for
pattern recognition using the minimal number of exper-
iments. Chemometrics and Intelligent Laboratory Sys-
tems, 130:123–134, 2014.

Vergara, A., Vembu, S., Ayhan, T., Ryan, M. A., Homer,
M. L., and Huerta, R. Chemical gas sensor drift compen-
sation using classifier ensembles. Sensors and Actuators
B: Chemical, 166:320–329, 2012.

10

https://doi.org/10.1109/FOCS54457.2022.00068
https://doi.org/10.1109/FOCS54457.2022.00068
https://doi.org/10.1109/FOCS57990.2023.00065
https://doi.org/10.1109/FOCS57990.2023.00065
http://archive.ics.uci.edu/ml
http://snap.stanford.edu/data
http://snap.stanford.edu/data

Dynamic Correlation Clustering in Sublinear Update Time

A. Finding Dense Clusters
In this section we prove that our algorithm correctly finds the non-singleton clusters of Gt that are also found by the
AGREEMENTALGORITHM(Gt) when the agreement and heaviness parameters are set to a small enough value. That is, let
C be a non-singleton cluster that is found by AGREEMENTALGORITHM(Gtcurrent) at time tcurrent when the agreement
and heaviness parameters are set to ϵ/1014. It can be proven that cluster C is extremely dense, i.e., it forms almost a clique,
with very few outgoing edges. In Theorem 23 we prove that at time tcurrent our algorithm outputs a cluster C ′ that contains
all nodes of C, i.e., C ′ ⊇ C. While the latter may not seem surprising per se (note that a trivial algorithm which clusters
all nodes in the same partition also achieves that property), our approach consists in a delicate argument where we prove
that for all non-trivial clusters C found by AGREEMENTALGORITHM(Gtcurrent) our algorithm always constructs a cluster
C ′ ⊇ C and at the same time in Appendix B all clusters C ′ constructed by our algorithm (which may not be constructed
by AGREEMENTALGORITHM(Gtcurrent

)) are very dense. In order to simplify the notation we use tc instead of tcurrent in
our formulas.

The first challenge in the current section is to prove that the notify procedure correctly samples enough nodes of C, “close
enough” to time tcurrent, so that many of these nodes enter the anchor set and help us reconstruct C. Note that the latter
ensures that enough nodes from a specific cluster enter the anchor set, but does not ensure that these clusters are correctly
found. Indeed, the last arriving node may not enter the anchor set and at the same time the “interesting events” that its
arrival generates may not induce any node to join the anchor set. However, to get a constant factor approximation, we
still need to ensure that the last node of C is clustered correctly with the rest of the cluster. In order to ensure the latter,
our algorithm uses the CONNECT(v, ϵ) procedure. CONNECT(v, ϵ) constructs a sample of v’s neighborhood and for every
node w in that sample, it checks whether v is in ϵ-agreement with any node r ∈ Φw, i.e., any node that is in the anchor set
of and if so v is connected to r.

In the current section we make great use of the relation between C and NGtc
(u) for a node u ∈ C, indeed since C is a

dense cluster found by AGREEMENTALGORITHM(Gtcurrent
) at time tcurrent, informally we have that NGtc

(u) ≈ C (see
the properties of the Agreement decomposition in Appendix G).

Consider the last ⌊ϵ/104|C|⌋ nodes of C that participate in an “interesting event” and denote those nodes by ui for i =
1, 2, . . . , ⌊ϵ/104|C|⌋. For each ui denote by ti the last time that this node participated in an “interesting event”, so that
t1 ⩽ t2 ⩽ . . . ⩽ t⌊ϵ/104|C|⌋. If two nodes ui, uj participated in an “interesting event” after the same arrival or deletion in
the node streams then we order with respect to the type of notification received, that is, ti ⩽ tj if ui just arrived or received
a notification of a lower type than uj . Ties are broken arbitrarily but consistently. Note that both nodes ui and times ti for
i = 1, 2, . . . , ⌊ϵ/104|C|⌋ are random variables which depend on the internal randomness of the Notify procedure.

We now introduce some auxiliary notation:

1. L = {u1, u2, . . . , u⌊ϵ/104|C|⌋} and R = C \ L.

2. L1 = {u1, u2, . . . , u⌊ϵ/2·104|C|⌋}.

3. L2 = {u⌊ϵ/2·104|C|⌋+1, u⌊ϵ/2·104|C|⌋+2, . . . , u⌊ϵ/104|C|⌋}.

4. Li = {u1, u2, . . . , ui}.

5. We denote as t′ the earliest time that all nodes of R have arrived.

Again, note that since the ui’s and ti’s are random variables then also R,L,L1, L2, L
i and t′ are random variables.

We start by some simple observations where we argue that after time t′ all nodes of C that have already arrived form a
dense subgraph.

Observation 7. ∀u ∈ C we have:

(1− ϵ/1013)|C|⩽ |NGtc
(u)|⩽ (1 + ϵ/1013)|C|

Proof. From Property 6 and Property 10 in Appendix G the result is immediate.

Observation 8. ∀u ∈ C we have:
|NGtc

(u) ∩ C|⩾ (1− ϵ/1013)|C|

11

Dynamic Correlation Clustering in Sublinear Update Time

Proof. Follows immediately from Property 4.

Observation 9. For each u ∈ C that arrived at time t ∈ [t′, tc] we have:

|NGt
(u)|⩾ |NGt

(u) ∩ C|⩾ (1− 2ϵ/104)|C|

Proof. The left-hand side inequality is obvious. For the right inequality note that at time t′ all nodes in R have arrived.
Thus,

|NGt
(u) ∩ C| ⩾ |NGtc

(u) ∩ C|−|L|⩾ (1− ϵ/1013)|C|−ϵ/104|C|
⩾ (1− 2ϵ/104)|C|

Where in the second inequality we use Observation 8 and |L|= ⌊ϵ/104|C|⌋.

Observation 10. For each u ∈ C that has already arrived before time t ∈ [t′, tc] we have:

|C \NGt(u)|⩽ 2ϵ/104|C|⩽ ϵ/103|NGt(u)|

Proof. The left inequality is immediate from Observation 9 and the second one holds for ϵ small enough again using
Observation 9.

Observation 10 informally states that the neighborhood of any node v ∈ C between times t′ and tc contains C almost in
its entirety. Let t ∈ [t′, tc] be a time when node v has already arrived, then we have that: NGt

(v) ⊇ C ′ and C ′ ≃ C.
Ideally, we would like all nodes v ∈ C to have almost their final neighborhood between times t′ and tc so that the Anchor
procedure correctly reconstructs the cluster C. That is, we would like to also have NGt(v) ⊆ C ′′ and C ′′ ≃ C. While the
latter may be not true in general, we prove that with high probability at every time ti it is true for ui and a large part of its
neighborhood.

We introduce auxiliary notation to formalize these claims.

Definition 11. For a node v ∈ C and time t we define the following events:

M t
v = {|NGt

(v) \NGtc
(v)|< ϵ/8·104|NGt

(v)|}
At

v = {{v ∈ It} ∨ {v received a Type2 notification at time t}}

M t
v is true if at least a (1−ϵ/8·104) fraction of v’s neighborhood at time t does not get deleted until time tc. Also, note that if

At
v is true then v samples with replacement 1010 log n/ϵ neighbors at time t. By M t

v and At
v we denote the complementary

events of M t
v and At

v respectively.

The rest of the section is devoted in arguing that with high probability at each time ti, both ui and nearly all its neighbors
possess almost their “final” neighborhood. The crux of our analysis is based on the following two observations (stated
informally for the moment). For all v ∈ R ∪ Li: (1) If M ti

v is true, then NGti
(v) ≃ C; and (2) The event M ti

v ∧ Ati
v

happens with low probability.

In the following lemma we prove structural properties of the neighborhood NGti
(v) of a node when v when M ti

v is true.

Lemma 12. ∀v ∈ R ∪ Li we have that if M ti
v is true then:

|NGti
(v)|< (1 + ϵ/2·104)|C| (1)

|NGti
(v) \ C|< ϵ/104|C|< ϵ/103|NGti

(v)| (2)

Proof. 1. For the first statement we prove the contrapositive, i.e., we argue that |NGti
(v)|⩾ (1 + ϵ/2·104)|C| implies

M ti
v . We distinguish between the cases:

• |NGti
(v)|⩾ |NGtc

(v)|
(1−ϵ/(8·104)) , then

|NGti
(v) \NGtc

(v)| ⩾ |NGti
(v)|−|NGtc

(v)|
⩾ ϵ/(8 · 104)|NGti

(v)|

12

Dynamic Correlation Clustering in Sublinear Update Time

• |NGti
(v)|< |NGtc

(v)|
(1−ϵ/(8·104)) , in that case from Observation 7 we have the bound |NGtc

(v)|⩽ (1 + ϵ/1013)|C|

|NGti
(v) \NGtc

(v)|
⩾ |NGti

(v)|−|NGtc
(v)|

⩾ (1 + ϵ/(2 · 104))|C|−|NGtc
(v)|

⩾

(
1 + ϵ/(2 · 104)
1 + ϵ/1013

− 1

)
|NGtc

(v)|

⩾

(
1 + ϵ/(2 · 104)
1 + ϵ/1013

− 1

)(
1− ϵ/(8 · 104)

)
|NGti

(v)|

⩾
(
ϵ/(2 · 104)− ϵ/1013

)(1− ϵ/(8 · 104)
1 + ϵ/1013

)
|NGti

(v)|

⩾ ϵ/(8 · 104)|NGti
(v)|

Where in the second inequality we used our assumption that |NGti
(v)|⩾ (1+ ϵ/2·104)|C|, the third one from Ob-

servation 7, the fourth one from the fact that we are in the second case and the last one holds for ϵ small enough.

2. From the first part of the current lemma we have that |NGti
(v)|< (1 + ϵ/2·104)|C| and from Observation 9 we have

that |NGti
(v) ∩ C|⩾ (1− 2ϵ/104)|C|, consequently:

|NGti
(v) \ C| = |NGti

(v)|−|NGti
(v) ∩ C|

< (1 + ϵ/(2 · 104))|C|−(1− 2ϵ/104)|C|
< 3ϵ/104|C|

< 3ϵ/104
|NGti

(v)|
(1− 2ϵ/104)

< ϵ/103|NGti
(v)|

Where the second inequality holds for ϵ small enough and proves the first inequality of (2) in the current lemma, the
third inequality uses again Observation 9 and the last inequality holds for ϵ small enough.

By Combining Lemma 12 and Observation 10 we can argue that ∀v ∈ R ∪ Li if M ti
v is true then NGti

(v) ≃ C. Conse-
quently for two neighboring nodes v, u ∈ R ∪ Li: M ti

v ∧M ti
u implies that NGti

(v) ≃ NGti
(u) ≃ C and consequently u

and v are in agreement. We formalize the latter in the following lemma.

Lemma 13. For all neighboring nodes v, u ∈ R ∪ Li: if M ti
v ∧M ti

u is true then v and u are in ϵ/10-agreement.

Proof. Since both M ti
u and M ti

v are true, from Lemma 12 we have that:

|NGti
(u) \ C|< ϵ/103|NGti

(u)|

and

|NGti
(v) \ C|< ϵ/103|NGti

(v)|

Also from Observation 10 it holds that:
|C \NGti

(u)|⩽ ϵ/103|NGti
(u)|

and
|C \NGti

(v)|⩽ ϵ/103|NGti
(v)|

13

Dynamic Correlation Clustering in Sublinear Update Time

To argue that |NGti
(u)△NGti

(v)|⩽ ϵ/10max{|NGti
(u)|, NGti

(v)|}, we bound both |NGti
(u)\NGti

(v)| and |NGti
(v)\

NGti
(u)| by ϵ/102 max{|NGti

(ui)|, NGti
(w)|}. From the latter the lemma follows since 2ϵ/102 < ϵ/10 for ϵ small

enough. We upper bound the size of NGti
(u) \NGti

(v):

|NGti
(u) \NGti

(v)| ⩽ |NGti
(u) \ C|+|C \NGti

(v)|
⩽ ϵ/103|NGti

(u)|+ϵ/103|NGti
(v)|

⩽ ϵ/102 max{|NGti
(u)|, NGti

(v)|}

and the upper bound of |NGti
(v) \NGti

(u)| follows the same line of arguments.

We know prove that the probability of a node v ∈ R ∪ Li both sampling its neighborhood at time ti and having a
neighborhood which is very different than C is very low. The following lemma is crucial, as it subsequently help us argue
that most of the neighboring nodes of ui at time ti have almost their final neighborhoods.

Lemma 14. ∀v ∈ C and time t we have that:

Pr[M t
v ∧At

v ∧ {v ∈ R ∪ Li} ∧ {t ⩾ ti}] < 1/n104

Proof. Let dt′ denote the degree of node v at time t′ and lt′ = l(dt′). In this proof we write Iv,t′ to denote the neighborhood
sample stored in I ltv at time t′. Note that Iv,t′ and Iv,t′′ for t′ < t′′ may be different if for example v received a Type2
notification between those times and updated its neighborhood sample.

Also, for all w ∈ NGt
(v) \ NGtc

(v) let tw be the time when w gets deleted from the node stream and let wj be the j-th
element to be deleted in NGt

(v) \NGtc
(v). For j = 1, 2, . . . , |NGt

(v) \NGtc
(v)|, we define event Ej = {wj ̸∈ Iv,tw}.

We argue that {v ∈ R ∪ Li} ∧ {t ⩾ ti} implies
⋂

1⩽j⩽|NGt (v)\NGtc
(v)|

Ej . Indeed, Ej implies that v ∈ Blt
w at time tw.

Consequently, upon its deletion, w would send a Type0 notification to v and v would participate in an “interesting event”
between times [ti + 1, tc). The latter implies that v ̸∈ R ∪ Li.

Thus:

Pr[M t
v ∧At

v ∧ {v ∈ R ∪ Li} ∧ {t ⩾ ti}] ⩽ Pr[M t
v ∧At

v ∧
⋂

1⩽j⩽|NGt (v)\NGtc
(v)|

Ej]

⩽ Pr[At
v ∧

⋂
1⩽j⩽ϵ/8·104dt

Ej]

=
∏

1⩽j⩽ϵ/8·104dt

Pr[At
v ∧ Ej |

⋂
j′<j

{At
v ∧ Ej′}]

where in the second inequality we used that |NGt
(v) \NGtc

(v)|⩾ ϵ/8·104|NGt
(v)|. Note that since:

(1− 1/2·dt)
(1010 log n/ϵ)·(ϵ/8·104dt) < 1/n104

It is enough to argue that:

Pr[At
v ∧ Ej |

⋂
j′<j

{At
v ∧ Ej′}] < (1− 1/2·dt)

1010 logn/ϵ

Let t̃wj′ , j
′ < j, be the random variable denoting the last time before twj′ that I ltv was updated. Since t < twj

:

1. At
v implies that:

(a) t ⩽ t̃wj
< twj

; and

14

Dynamic Correlation Clustering in Sublinear Update Time

(b) wj ∈ NGt̃wj
(v)

2. By the definition of t̃wj : |NGt̃wj
(v)|< 2 · dt

Let ri be the i-th random sample used to construct I ltv at time tw, i.e., Iwj ,twj
. By the principle of deferred decisions it is

enough to decide whether ri is equal to wj at time twj . Note that given
⋂

j′<j

{At
v ∧ Ej′}, ri is a uniform at random sample

from a set that contains wj and has at most 2 · dt elements, i.e., set NGt̃wj
(v) \

⋃
j′<j wj′ . Thus:

Pr[{ri = v} |
⋂
j′<j

{At
v ∧ Ej′}}] ⩽ (1− 1/2·dt)

and the proof is concluded by noting that Iwj ,twj
=

⋃
i⩽1010 logn/ϵ

ri and ri’s are independent.

As already mentioned, we prove that for time ti most of ui’s neighboring nodes have almost their final neighborhood.
Towards that goal, for every ti we define a random set which contains all neighboring nodes of ui whose neighborhood at
time ti is “very” different from their final one.

Definition 15. For ti we define the random set: Dti = {v : v ∈ NGti
(ui) ∩ (R ∪ Li) ∧M ti

v }.

We prove that the size of this random set is small with high probability.
Lemma 16. ∀ti we have that:

Pr[|Dti |⩾ ϵ/105|NGti
(ui)|] < 1/n103

Proof. In this proof when we write Iui we refer to ui’s neighborhood sample constructed via the connect procedure at that
specific time ti. Note that:

Pr[|Dti |⩾ ϵ/105|NGti
(ui)|] = Pr[{|Dti |⩾ ϵ/105|NGti

(ui)|} ∧ {Dti ∩ Iui
= ∅}]

+Pr[{|Dti |⩾ ϵ/105|NGti
(ui)|} ∧ {Dti ∩ Iui ̸= ∅}]

We bound each of the two terms in the right hand side independently.

For the first term we have:

Pr[{|Dti |⩾ ϵ/105|NGti
(ui)|} ∧ {Dti ∩ Iui

= ∅}] ⩽ (1− ϵ/105)10
10 logn/ϵ

⩽ 1/n105

since NGti
(ui) \Dti is at least a (1− ϵ/105) fraction of NGti

(ui).

For the second term we have:

Pr[{|Dti |⩾ ϵ/105|NGti
(ui)|} ∧ {Dti ∩ Iui

̸= ∅}] =
∑
v∈C

Pr[{v ∈ NGti
(ui)} ∧ {v ∈ Dti} ∧ {v ∈ Iui

}]

⩽
∑
v∈C

Pr[{v ∈ NGti
(ui)} ∧ {v ∈ Dti} ∧ {v ∈ Ati

v }]

⩽
∑
v∈C

Pr[{v ∈ Dti} ∧Ati
v]

⩽
∑
v∈C

Pr[{v ∈ R ∪ Li} ∧ {M ti
v } ∧Ati

v]

⩽ n · (1/n104)

⩽ 1/n104−1

15

Dynamic Correlation Clustering in Sublinear Update Time

Where in the first inequality note that v ∈ Iui
implies Ati

v (since v receives a notification from ui), in the second inequality
we used that Dti ⊆ NGti

(ui), in the third inequality we used the definition of set Dti and in the fourth inequality we
used Lemma 14.

Combining the two upper bounds concludes the proof.

The next lemma argues that if Dti is small and NGti
(ui) ≃ C then ui is heavy at time ti.

Theorem 17. If {|Dti |< ϵ/105|NGti
(ui)|} ∧M ti

ui
is true then ui is ϵ/10-heavy at time ti. In addition, if ui also enters

the anchor set at time ti then it remains in it at least until time tc.

Proof. By the definition of Dti we have that ∀w ∈ NGti
(ui) ∩ (R ∪ Li) \Dti the event M ti

w is true. Thus, since M ti
ui

is
also true from Lemma 13 we can conclude that ui and w are in ϵ/10-agreement.

We now argue that ui is in ϵ/10 agreement with at least a 1 − ϵ/10 fraction of its neighborhood at time ti. For this, note
that:

|NGti
(ui) \

(
NGti

(ui) ∩ (R ∪ Li) \Dti

)
| ⩽ |NGti

(ui) \
(
NGti

(ui) ∩ (R ∪ Li)
)
|+|Dti |

= |NGti
(ui) \ (R ∪ Li)|+|Dti |

⩽ |NGti
(ui) \ C|+|C \ (R ∪ Li)|+|Dti |

⩽ |NGti
(ui) \ C|+|C \R|+|Dti |

= |NGti
(ui) \ C|+|L|+|Dti |

⩽ ϵ/103|NGti
(ui)|+ϵ/104|C|+|Dti |

⩽ ϵ/103|NGti
(ui)|+5ϵ/104|NGti

(ui)|+|Dti |
⩽ ϵ/103|NGti

(ui)|+5ϵ/104|NGti
(ui)|+ϵ/105|NGti

(ui)|
⩽ ϵ/10|NGti

(ui)|

Where in the sixth inequality we used (2) of Lemma 12 (since M ti
ui

is true), in the seventh inequality we used that |Dti |<
ϵ/105|NGti

(ui)| and the last inequality holds for ϵ small enough.

To prove the second claim of the theorem, we note that if ui enters the anchor set at time ti then to exit that set before time
tc at least an ϵ-fraction of its neighborhood at time ti needs to call the Clean(·, ϵ) procedure and consequently participate
in an “interesting event”. That is, for ϵ small enough, at least ϵ(1 − ϵ/10)|NGti

(ui)|⩾ ϵ/2|NGti
(ui)| nodes in NGti

(ui)
need to participate in an “interesting event”. However, such nodes can be at most:

|NGti
(ui) \ C|+|L \ (R ∪ Li)| ⩽ |NGti

(ui) \ C|+|L|
⩽ ϵ/103|NGti

(ui)|+ϵ/104|C|
⩽ ϵ/103|NGti

(ui)|+ϵ/103|NGti
(ui)|

⩽ 2 · ϵ/103|NGti
(ui)|

which is smaller than ϵ/2|NGti
(ui)|. In the second inequality we used the cardinality of L and in the third inequality we

used (2) of Lemma 12.

Note that Ati
ui

is always true from the definition of ui and ti. Combining Lemma 14 and Lemma 16 we deduce that
event {|Dti |< ϵ/105|NGti

(ui)|} ∧M ti
ui

happens with high probability. Thus, from Theorem 17 we conclude that ui is
ϵ/10-heavy at time ti with high probability.

The proof proceeds arguing that the following events happen with high probability:

• For every node v ∈ R there exists a node ui ∈ L1 such that: (1) ui enters the anchor set at time ti; (2) ui is in
agreement with node v at time ti; and (3) ui does not exit the anchor set before time tc. Consequently edge (ui, v) is
added to our sparse solution graph G̃ti and remains in our sparse solution at least until time tc.

16

Dynamic Correlation Clustering in Sublinear Update Time

• Similarly, we argue that for every node v ∈ L1 there exists a node ui ∈ L2 such that (1), (2) and (3) hold. So that
edge (ui, v) is added to our sparse solution graph G̃ti and remains in our sparse solution at least until time tc.

• The last part of the proof argues how the Connect(·, ϵ) procedure clusters nodes in L2 that do not enter the anchor
set with the rest of C. At time ti when ui ∈ L2 participates in an “interesting event” most nodes in R have their
neighborhood similar to their final, i.e., at time tc, neighborhood, consequently they are in agreement with ui. In
addition to that, ui is in agreement with almost all nodes in L1, therefore there are many triangles of the form ui, v, w
where v ∈ R, w ∈ Φv ∩ L1 and all three nodes are in agreement. The Connect(ui, ϵ) connects ui to the rest of the
cluster with high probability using the edge (ui, w) in one of those triangles.

To prove the aforementioned points, we define the following random set:

Definition 18. For v ∈ C we define the random set:

Tv =
{
i ∈ {1, 2, . . . , ⌊ϵ/104|C|⌋} : M ti

v ∧ {(ui, v) ∈ Eti}
}

For a node v ∈ C, Definition 18 captures which times during the last ⌊ϵ/104|C|⌋ “interesting events”, node v was connected
to ui and its neighborhood was different from its final one. We proceed by proving that for every node in v ∈ R∪L1, |Tv|
is small with high probability.

Lemma 19. Let v ∈ R ∪ L1, then
Pr[|Tv|⩾ ϵ/105|C|] < 1/n102

Proof. In this proof, for a node ui ∈ L when we write Iui
we refer to ui’s neighborhood sample constructed via the

connect procedure at time ti. For short we write
[
ϵ/104|C|

]
instead of {1, 2, . . . , ⌊ϵ/104|C|⌋}. We first argue that event⋂

i∈[ϵ/104|C|] M
ti
ui

happens with high probability.

Pr[
⋂

i∈[ϵ/104|C|]

M ti
ui
] = 1−Pr[∃i ∈

[
ϵ/104|C|

]
: M ti

ui]

⩾ 1−
∑

i∈[ϵ/104|C|]

Pr[M ti
ui]

⩾ 1−
∑

i∈[ϵ/104|C|]

Pr[M ti
ui ∧Ati

ui
]

⩾ 1− n · 1/n104

⩾ 1− 1/n103

where in the first inequality we used the union bound, in the second inequality we used that Ati
ui

is always true by definition
of ui and ti and in the third inequality we used Lemma 14. Thus using

Pr[|Tv|⩾ ϵ/105|C|] = Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
] +Pr[{|Tv|⩾ ϵ/105|C|} ∧

⋂
i∈[ϵ/104|C|]

M ti
ui]

⩽ Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
] + 1/n103

We focus on upper bounding the first term of the right hand side. Again, using the law of total probability we have that:

Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
] = Pr[{|Tv|⩾ ϵ/105|C|} ∧

⋂
i∈[ϵ/104|C|]

M ti
ui
∧ {∀i ∈ Tv v ̸∈ Iui}]

+Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
∧ {∃i ∈ Tv : v ∈ Iui}]

17

Dynamic Correlation Clustering in Sublinear Update Time

For the first term note that for ϵ small enough and using (1) of Lemma 12 we have that: if
⋂

i∈[ϵ/104|C|] M
ti
ui

is true then ∀i ∈[
ϵ/104|C|

]
we have that |NGti

(ui)|< 2|C|. Now consider the following random process: each time our algorithm samples
ui’s neighborhood to create Iui

we sample uniformly at random the set NGti
(ui)∪{r|NGti

(ui)|+1, r|NGti
(ui)|+2, . . . , r2|C|}

to create sets Ĩui
where rj nodes only exist for analysis purposes. Now note that:

Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
∧ {∀i ∈ Tv : v ̸∈ Iui

}] ⩽

Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
∧ {∀i ∈ Tv : v ̸∈ Ĩui

}] ⩽

(1− 1/(2|C|))(10
10 logn/ϵ)·(ϵ/105|C|) ⩽

(1− 1/(2|C|))10
5 logn|C| ⩽

(1/n)10
5/2 ⩽

1/n104

We continue by upper bounding Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|] M
ti
ui
∧ {∃i ∈ Tv : v ∈ Iui

}] as follows:

Pr[{|Tv|⩾ ϵ/105|C|} ∧
⋂

i∈[ϵ/104|C|]

M ti
ui
∧ {∃i ∈ Tv : v ∈ Iui}] ⩽

∑
i∈{1,2,...,ϵ/104|C|}

Pr[i ∈ Tv, v ∈ Iui]

⩽
∑

i∈{1,2,...,ϵ/104|C|}

Pr[M̃ ti
v ∧Ati

v]

⩽ n · (1/n104)

⩽ 1/n104−1

Where in the first inequality we used the union bound, in the second inequality we used the fact that event {v ∈ Iui
}

implies Ati
v , and in the third one we used Lemma 14.

The proof follows by noting that 1/n103 + 1/n104 + 1/n104−1 < 1/n102

We continue proving that, with high probability, every node in R is selected by a node in L1 which enters the anchor set
and remains in the anchor set until at least time tc.

Lemma 20. For every node v ∈ R let

Xv =
{
∃i ∈ [ϵ/(2 · 104)|C|] : {ui ∈ L1 enters the anchor set } ∧ {(v, ui) ∈ Eti′ ,∀i

′ ∈ [i, tc]
}

then Pr[Xv] > 1− 1/n10.

Proof. Let i ∈ {1, 2, . . . , ⌊ϵ/(2 ·104)|C|⌋} be such that {|Dti |< ϵ/105|NGti
(ui)|}∧M ti

v ∧M ti
ui
∧{(ui, v) ∈ Eti} is true,

we then know from Theorem 17 that if ui enters the anchor set at that time ti, edge (ui, v) is added to our sparse solution
and remains in it at least until time tc. Thus, it is useful to define the following set:

Yv =
{
i ∈ {1, 2, . . . , ⌊ϵ/(2 · 104)|C|⌋ : {|Dti |< ϵ/105|NGti

(ui)|} ∧M ti
v ∧M ti

ui
∧ {(ui, v) ∈ Eti}

}
We proceed by proving that with high probability |Yv| is “large”.

Note that from Observation 8 we have that:

|
{
i ∈ {1, 2, . . . , ⌊ϵ/(2 · 104)|C|⌋ : (ui, v) ∈ Eti

}
|⩾ ϵ/(2 · 104)|C|−ϵ/1013|C|> ϵ/(3 · 104)|C|

where the second inequality holds for ϵ small enough.

18

Dynamic Correlation Clustering in Sublinear Update Time

For simplicity let:

R =
⋂

i∈[ϵ/(2·104)|C|]

{
{|Dti |< ϵ/105|NGti

(ui)|} ∧M ti
ui

}
∧ {|Tv|< ϵ/105|C|}

Note thatR implies that:

|Yv|⩾ ϵ/(3 · 104)|C|−ϵ/105|C|> ϵ/(4 · 104)|C|

where the second inequality holds for ϵ small enough. We continue upper bounding the probability that R does not occur
as follows:

Pr[R] ⩽
∑

i∈[ϵ/(2·104)|C|]

Pr[{|Dti |⩾ ϵ/105|NGti
(ui)|}]

+
∑

i∈[ϵ/(2·104)|C|]

Pr[M ti
ui]

+Pr[{|Tv|⩾ ϵ/105|C|}]

⩽ n · (1/n104) + n · (1/n103) + 1/n102

⩽ 3/n102

where in the first inequality we use the union bound and in the second we use Lemma 14, Lemma 16 and Lemma 19.

Note that R also implies that ui enters the anchor set at time ti with probability at least min{107 logn/2ϵ|C|, 1} where
we used (1) in Lemma 12 for ϵ small enough. In addition, note that under any realization of the random variables
|NGt1

(u1)|, |NGt2
(u2)|, . . . the randomness of the Anchor procedure is independent from the randomness of the Con-

nect procedure. Consequently:

Pr[Xv] = Pr[Xv ∩R] +Pr[Xv ∩R]
⩽ Pr[R] +Pr[Xv ∩R]

⩽ 3/n102 +Pr[Xv ∩R]

⩽ 3/n102 +Pr[Xv ∩ {|Yv|> ϵ/(4 · 104)|C|}]

⩽ 3/n102 + (1−min{107 logn/2ϵ|C|, 1})ϵ/(4·10
4)|C|

⩽ 3/n102 + 1/n102

< 1/n10

Using the same line of arguments as Lemma 20 in Lemma 21 we argue that every node in L1 is selected by a node in L2

which enters the anchor set and remains in the anchor set until at least time tc. We state the lemma and omit the proof.
Lemma 21. For every node v ∈ L1 let

Xv =
{
∃i ∈ {ϵ/(2 · 104)|C|+1, . . . , ϵ/104|C|}] : {ui ∈ L2 enters the anchor set } ∧ {(v, ui) ∈ Eti′ ,∀i

′ ∈ [i, tc]
}

then Pr[Xv] > 1− 1/n10.

Proof. Omitted as it follows the same line of reasoning with the proof of Lemma 20.

We underline that while the essence of both Lemma 20 and Lemma 21 could be summarized in a single lemma, in the
last part of this section we use the facts that Lemma 20 refers to how nodes in R get into the cluster through nodes in L1

and Lemma 21 refers to how nodes in L1 get into the cluster through nodes in L2.

The last part of the section is devoted in arguing that through the Connect(·, ϵ) procedure, with high probability, all nodes
in L2 get connected to some node in L1 in our sparse solution.

19

Dynamic Correlation Clustering in Sublinear Update Time

Lemma 22. For every node uj ∈ L2 let

Xuj =
{
∃i ∈ [ϵ/(2 · 104)|C|] : {ui ∈ L1 enters the anchor set } ∧ {(uj , ui) ∈ Eti′ ,∀i

′ ∈ [tj , tc]
}

then

Pr[Xuj] ⩾ 1− 1/n10

Proof. The proof proceeds by arguing that:

1. uj is connected to almost all nodes R;

2. let w ∈ R, then NGtj
(uj) ∩NGtj

(w) ∩ L1 is a sufficiently large fraction of L1;

3. with high probability almost all nodes in NGtj
(uj) ∩NGtj

(w) ∩ L1 have almost their final neighborhood; and

4. with high probability one of those nodes is in the anchor set.

It is useful to define the following event:

R =
⋂

i∈[ϵ/(2·104)|C|]

{
{|Dti |< ϵ/105|NGti

(ui)|} ∧M ti
ui

}
We upper bound the probability thatR does not occur as follows:

Pr[R] ⩽
∑

i∈[ϵ/(2·104)|C|]

Pr[{|Dti |⩾ ϵ/105|NGti
(ui)|}]

+
∑

i∈[ϵ/(2·104)|C|]

Pr[M ti
ui]

⩽ n · (1/n104) + n · (1/n103)

⩽ 1/n102

where in the first inequality we use the union bound and in the second we use Lemma 14 and Lemma 16.

Let w ∈ NGtj
(uj) ∩R, from Observation 7 we have that:

|NGtj
(uj) ∩NGtj

(w) ∩ L1| ⩾ |L1|−ϵ/1013|C|−ϵ/1013|C|

⩾ ϵ/(2 · 104)|C|−ϵ/1013|C|−ϵ/1013|C|
⩾ ϵ/(4 · 104)|C|

Moreover, note that event R implies that at least (1− ϵ/105)|NGtj
(uj)| neighbors of uj at time tj have almost their final

neighborhood. Consequently,R implies the following bound for all w ∈ NGtj
(ui) ∩R:

|v ∈ NGtj
(w) ∩NGtj

(uj) ∩ L1 : M tj
v | > ϵ/(4 · 104)|C|−ϵ/105|NGtj

(uj)|

> ϵ/(4 · 104)|C|−2ϵ/105|C|
> ϵ/105|C|

where in the second inequality we used (1) in Lemma 12 for ϵ small enough.

As in the proof of Lemma 20, R implies that ui enters the anchor set at time ti with probability at least
min{107 logn/2ϵ|C|, 1} (using (1) in Lemma 12 for ϵ small enough). In addition, under any realization of
the random variables |NGt1

(u1)|, |NGt2
(u2)|, . . . the randomness of the Anchor procedure is independent from

the randomness of the other procedures of our algorithm. Consequently, ∀w ∈ NGtj
(uj) ∩ R let Hw ={

{v ∈ NGtj
(w) ∩NGtj

(uj) ∩ L1 : M
tj
v } ∩ Φ = ∅

}
, we have:

20

Dynamic Correlation Clustering in Sublinear Update Time

Pr[R∩Hw] ⩽ (1−min{107 logn/2ϵ|C|, 1})ϵ/10
5|C|

⩽ e−
107 log n/2ϵ|C|·ϵ/105|C|

⩽ 1/n50

From Observation 9 we have that |NGtj
(uj) ∩ C|> (1− 2ϵ/104)|C|, consequently:

|NGtj
(uj) ∩R| ⩾ |NGtj

(uj) ∩ C|−|C \R|

= |NGtj
(uj) ∩ C|−|L|

⩾ (1− 2ϵ/104)|C|−ϵ/104|C|
⩾ (1− 3ϵ/104)|C|

Again, using (1) in Lemma 12 for ϵ small enough,R implies that

|NGtj
(uj) ∩R|⩾ (1− 3ϵ/(2 · 104))|NGtj

(uj)|> (1− 4ϵ/104)|NGtj
(uj)|

where the second inequality holds for ϵ small enough.

We are now ready to upper bound Pr[Xuj
∩ R], note that Juj

denotes the random sample constructed via the Connect
procedure of uj’s neighborhood at time tj .

Pr[Xuj
∩R] ⩽ Pr[Xuj

∩R ∩ {Juj
∩NGtj

(uj) ∩R = ∅}]

+Pr[Xuj
∩R ∩ {Juj

∩NGtj
(uj) ∩R ̸= ∅}]

⩽ (4ϵ/104)10
5 logn/ϵ +Pr[R

⋂ ⋃
w∈Juj

∩NGtj
(uj)∩R

Hw]

⩽ (4ϵ/104)10
5 logn/ϵ + n · (1/n50)

⩽ 1/n20

We conclude again using the law of total probability:

Pr[Xuj
] = Pr[Xuj

∩R] +Pr[Xuj
∩R]

⩽ Pr[Xuj
∩R] +Pr[R]

⩽ 1/n20 + 1/n102

⩽ 1/n10

Theorem 23. With probability at least (1− 1/n8) all nodes of C are clustered together at time tc by our algorithm.

Proof. As in previous lemmas we define the following event:

R =
⋂

i∈[ϵ/104|C|]

{
{|Dti |< ϵ/105|NGti

(ui)|} ∧M ti
ui

}
for which Pr[R] ⩽ 1/n102 .

From Theorem 17 we have thatR implies that ∀ui ∈ L that joins the anchor set at time ti:

21

Dynamic Correlation Clustering in Sublinear Update Time

1. they remain there until at least time tc; and

2. all edges (v, ui) where v ∈ R added in our sparse solution are not deleted until at least time tc.

We now argue thatR also implies that any two nodes ui, uj ∈ L which joined the anchor set at times ti and tj respectively
belong to the same connected component of our sparse solution at time tc. To that end, let Wti and Wtj denote the set of
nodes that are in agreement respectively with ui and uj at times ti and tj .

|Wti | ⩾ (1− ϵ/10)|NGti
(ui)|

> (1− ϵ/10)(1− 2ϵ/104)|C|>
> (1− 2ϵ/10)|C|

where in the second inequality we used Observation 9.

In addition, from Observation 9 we have that |NGti
(ui) ∩ C|> (1− 2ϵ/104)|C|, consequently:

|NGti
(ui) ∩R| ⩾ |NGti

(ui) ∩ C|−|C \R|
= |NGti

(ui) ∩ C|−|L|
⩾ (1− 2ϵ/104)|C|−ϵ/104|C|
⩾ (1− 3ϵ/104)|C|

Consequently, combining the latter two inequalities and the fact that Wti ⊆ NGti
(ui):

|Wti ∩R| > (1− 2ϵ/10− 3ϵ/104)|C|
> (1− 3ϵ/10)|C|

where the second inequality holds for ϵ small enough.

Thus:

|Wti ∩Wtj ∩R| > (1− 6ϵ/10)|C|
⩾ 1

where the second inequality holds for ϵ small enough.

To conclude, let Ccorrect be the event that all nodes in C are clustered together by our algorithm at time tc. Then:

Pr[Ccorrect] = Pr

[
Ccorrect ∩

{
R

⋂
v∈C

Xv

}]
+Pr

Ccorrect ∩

{
R

⋂
v∈C

Xv

}
⩽ Pr

[
Ccorrect ∩

{
R

⋂
v∈C

Xv

}]
+Pr

{R ⋂
v∈C

Xv

}
⩽ 0 +Pr

{R ⋂
v∈C

Xv

}
⩽ Pr

[{
R∪

⋃
v∈C

Xv

}]
⩽ 0 + 1/n102 + n · 1/n10

< 1/n8

where in the first inequality we used the law of total probability, in the third we used thatR
⋂

v∈C Xv implies Ccorrect and
in the fifth one we used Lemma 20, Lemma 21 and Lemma 22.

22

Dynamic Correlation Clustering in Sublinear Update Time

B. All Found Clusters are Dense.
The goal of this section is to prove that all clusters found by our algorithm are dense, i.e., any node u that belongs to a
cluster C is connected to almost all nodes in C in graph Gt. We underline that a cluster C found by our algorithm is always
induced by a connected component of the sparse solution G̃t and our goal is to prove the main Theorem 39 of this section
which states that ∀u ∈ C, |NGt

(u) ∩ C|⩾ (1− 541080ϵ)|C| for a small enough ϵ.

Similarly to the notation of Appendix A we denote by tc the current time and by C a cluster found by our algorithm at that
time. For all u ∈ C we denote by tu the last time before tc + 1 that u participated in an “interesting event”, note that tu
(similarly to the definition of times ti in Appendix A) is a random variable. We denote by CΦt

the subset of nodes in C
that are in the anchor set at time t, i.e., Φt ∩ C. We avoid the subscript t in the set CΦ notation as it will always be clear
for the context at what time we are referring to. Equivalently, we denote by CΦ the rest of the nodes in C, i.e., C \ CΦ, at
time t.

Initially we prove the two crucial lemmas, these are Lemma 25 and Lemma 27. In both lemmas we use the properties of
our notification procedure and argue that with high probability for a node u after time tu (and at least until time tc):

• Lemma 25: u does not lose more than a very small fraction of its neighborhood after time tu.

• Lemma 27 u’s neighborhood does not increase with many nodes of “small” degree.

We proceed to the formal statement and proof of these two lemmas and start with Lemma 25 where we actually prove
something slightly stronger that what was mentioned in the previous paragraph. To facilitate the description of the next
lemmas, similarly to Appendix A, we define the following:

Definition 24. For a node v ∈ C and t we define the following events:

T v,t
i = {v received a Typei notification at time t}

T v,t,t′

i = {v received a Typei notification during the interval (t, t′]}

T v,t,t′ = {v participated in an “interesting event” during the interval (t, t′]}
At

v = {{v ∈ It} ∨ {v received a Type2 notification at time t}}

M t,t′

v = {|NGt(v) \NGt′ (v)|⩽ ϵ/105|NGt(v)|}

Lemma 25. Let u ∈ V and times t′, t where t < t′. Then:

Pr
[
At

v ∧ T v,t,t′

0 ∧M t,t′
v

]
< 1/n104

Proof. The proof of the current lemma follows the same line of arguments as the proof of Lemma 14 and it is omitted.

To facilitate the description of the Lemma 27 we define the following random variable.

Definition 26. For every node v ∈ V and times t, t′ where t < t′ and a positive integer d:

P v
d,t,t′ =

(
NGt′ (v) \NGt

(v)
)
∩
{
w : ∃t′′ ∈ (t, t′] : |NGt′′ (w)|< 102d

}
In other words P v

d,t,t′ contains all neighbors of v that arrived between times t and t′ whose degree at some point between
those times is “small”.

In Lemma 27 we argue that |P v
d,tv,t′

|< ϵ/102d with high probability. The intuition behind the latter statement is that if for
some t |P v

d,t,t′ |⩾ ϵ/102d then, with high probability, v participates in an “interesting event” at a time t′′ ∈ (t, t′].

Lemma 27. For every node v ∈ V , time t′ and a positive integer d:

Pr[
{
|P v

d,tv,t′ |> ϵ/102d
}
] < 3/n103

23

Dynamic Correlation Clustering in Sublinear Update Time

Proof. We define the following event:

R =
⋂

u∈V,t1,t2:t1<t2

{
At1

u ∨ Tu,t1,t2
0 ∨M t1,t2

u

}
for which, using Lemma 25 and a union bound, we get: Pr[R] ⩽ 1/n104−3. Using the law of total probability, we have:

Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}]

= Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R

]
+Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R

]
⩽ Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R

]
+Pr

[
R
]

⩽ Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R

]
+ 1/n104−3

Thus, in the rest of the proof we focus on upper bounding the term Pr
[{
|P v

d,tv,t′
|> ϵ/102d

}
∧R

]
.

To that end, for each node u ∈ V let tarrival
u be its arrival time and note that ∀u ∈ P v

d,tv,t′
we have that tarrival

u ∈ (t, t′]. We
define the following sets:

S =
{
u ∈ P v

d,tv,t′ : |NG
tarrival
v

(v)|⩽ 103d
}

L =
{
u ∈ P v

d,tv,t′ : |NG
tarrival
v

(v)|> 103d
}

The set S contains nodes of P v
d,tv,t′

whose degree when they arrived was relatively “small” and on the contrary L, which
is equal to P v

d,tv,t′
\ S, contains nodes whose degree on arrival was “large”. Since |P v

d,tv,t′
|= |L|+|S|, we have that event{

|P v
d,tv,t′

|> ϵ/102d
}
∧
{
|S|< ϵ/103d

}
implies

{
|L|> 9ϵ/103d

}
. Using the total law of probability we have:

Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R

]
= Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R ∧

{
|S|⩾ ϵ/103d

}]
+Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R ∧

{
|S|< ϵ/103d

}]
⩽ Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R ∧

{
|S|⩾ ϵ/103d

}]
+Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R ∧

{
|L|> 9ϵ/103d

}]
⩽ Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧
{
|S|⩾ ϵ/103d

}]
+Pr

[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R ∧

{
|L|> 9ϵ/103d

}]
We bound each of the two terms separately. For the first term: ∀u ∈ S let Iu be the sample constructed by u at arrival and
note that u sends a Type0 notification to all nodes in Iu. Since ∀u ∈ S tarrival

u > tv we have that {∀u ∈ S : v ̸∈ Iu}.
Thus:

Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}
∧
{
|S|⩾ ϵ/103d

}]
⩽ Pr

[
{∀u ∈ S : v ̸∈ Iu} ∧

{
|S|⩾ ϵ/103d

}]
⩽ (1− 1/103d)

(1010 log n/ϵ)·(ϵd/103)

⩽ 1/n104

Where in the second inequality we use that ∀u, u′ ∈ S events {v ̸∈ Iu} and {v ̸∈ Iu′} are independent.

We now turn our attention to the second term. Note that ∀u ∈ L event Atarrival
u
u is always true and for each node u ∈ L denote

by t̂u ∈ (tu, t
′] the last time when |NGt̂u

(u)|< 102d.

|NG
tarrival
u

(u) \NGt̂u
(u)| ⩾ |NG

tarrival
u

(u)|−|NGt̂u
(u)|

> 103d− 102d

= 9 · 102d

where in the second inequality we used the definition of set L.

Note that we just argued that event Atarrival
u
u ∧ M

tarrival
u ,t̂u

u is always true. Consequently R implies that u ∈ L will keep
getting notifications of Type0 until its degree is close enough to its degree at time t̂u, in other words, there exists a time

24

Dynamic Correlation Clustering in Sublinear Update Time

t̃u ∈ (tarrival
u , t̂u] such that Tu,t̃u

0 ∧M t̃u,t̂u
u is true. At time t̃u, u receives a Type0 notification and its degree can be upper

bounded as follows:

|NGt̃u
(u)| ⩽ |NGt̃u

(u) \NGt̂u
(v)|+|NGt̂u

(v)|

< ϵ/105|NGt̃u
(u)|+102d

where we used the fact that M t̃u,t̂u
u is true. Thus, for ϵ small enough it holds that

|NGt̃u
(u)| < 102d

1− ϵ/105
⇒

|NGt̃u
(u)| < 103d

Similarly to the arguments when we were bounding the first term of the sum, ∀u ∈ L let Iu be the sample constructed
by u at time t̃u, and note that u sends a Type1 notification to all nodes in Iu. Since ∀u ∈ S t̃u > tv we have that
{∀u ∈ L : v ̸∈ Iu}.

Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}
∧R ∧

{
|L|> 9ϵ/103d

}]
⩽ Pr

[
{{∀u ∈ L : v ̸∈ Iu}} ∧

{
|L|> 9ϵ/103d

}]
⩽ (1− 1/103d)

(1010 log n/ϵ)·(9ϵd/103)

⩽ 1/n103

Combining the previous bounds, we conclude the proof of the lemmas as follows:

Pr
[{
|P v

d,tv,t′ |> ϵ/102d
}]

< 1/n104 + 1/n103 + 1/n104−3 < 3/n103

We now define the following event which will be a crucial for our arguments in the rest of the section

Definition 28.

R =
⋂

u∈C,t>tu

M tu,t
u

⋂
u∈C,d∈[1,n]

{
|P v

d,tv,tc |⩽ ϵ/102d
}

definition From Lemma 25, Lemma 27, and using the union bound we get the following:

Observation 29.

Pr [R] > 1− 1/n102

In addition, by the definition of eventR:

Observation 30. R implies that for all v ∈ C and t ∈ (tv, tc]:

1. |NGtv
(v) \NGt

(v)|⩽ ϵ/105|NGtv
(v)|; and

2. |
(
NGt

(v) \NGtv
(v)

)
∩
{
u : |NGt

(u)|< 102|NGt
(v)|

}
|⩽ ϵ/102|NGt

(v)|

As in the previous Appendix A, we will focus on how the neighborhood of a node v ∈ CΦ can change after the last time it
participated in an “interesting event”, i.e., time tv . From Observation 30 we know that with high probability v does not lose
more than a small fraction of its neighborhood until time tc. At the same time, its neighborhood may increase drastically,
with many nodes of high degree. Thus, in an approximate sense, we have that NG̃t

(v) ⊇ NG̃tv
(v). The next Lemma 31

and Corollary 32 argue that for all t ∈ (tv, tc] such that v is in agreement with another node (a new edge adjacent to v may
be added to our sparse solution in that case) we have that NGt(v) ≃ NGtv

(v).

25

Dynamic Correlation Clustering in Sublinear Update Time

Lemma 31. Let u ∈ C and t > tu a time when u is in ϵ-agreement with v, and either u or v is ϵ-heavy. Then R implies
that:

(1 + 10ϵ)|NGtu
(u)|⩾ |NGt(u)|⩾ (1− ϵ/105)|NGtu

(u)|

Proof. The right hand side is implied immediately by (1) of Observation 30. We prove the left hand side for the case
when v is ϵ-heavy and omit the case where u is ϵ-heavy as it is proven similarly. Since v is ϵ-heavy and in ϵ-agreement
with u, from Property 2 and Property 7, we can deduce that u is 5ϵ-heavy, i.e., it is in 5ϵ-agreement with at least a
(1 − 5ϵ) fraction of its neighborhood at time t. Thus, again using Property 7, we have that at least (1 − 5ϵ)|NGt

(u)|
neighboring nodes of u have degree at most |NGt (u)|

(1−5ϵ) < 2|NG̃t
(u)| for ϵ small enough. Due to (2) of Observation 30,

from those nodes at most ϵ/102|NGt
(u)| of them could have arrived after time tv . Consequently, |NGt

(u) \ NGtv
(u)|⩽

ϵ/102|NGt(u)|+5ϵ|NGt(u)|< 6ϵ|NGt(u)|. Using that |NGt(u)|−|NGtu
(u)|⩽ |NGt(u) \NGtu

(u)| we conclude that:

|NGt
(u)|⩽

|NGtu
(u)|

1− 6ϵ
< (1 + 10ϵ)|NGtu

(u)|

where the second inequality holds for ϵ small enough.

Corollary 32. Let u ∈ C and t ⩾ tu a time when u is in ϵ-agreement with v, and either u or v is ϵ-heavy. ThenR implies
that:

1. |NGtu
(u) \NGt

(u)|⩽ ϵ/105|NGtu
(u)|< ϵ/104|NGt

(u)|; and

2. |NGt(u) \NGtu
(u)|⩽ 6ϵ|NGt(u)|< 7ϵ|NGtu

(u)|

Proof. If t = tu then the claim trivially holds. In the following we assume that t > tu.

The left hand side of the first inequality is immediate from (1) of Observation 30. For the right hand side of the first
inequality note that from Lemma 31 we have |NGtu

(u)|< 1/(1 − ϵ/105)|NGt
(u)|. Thus, for ϵ small enough we get

(ϵ/105) · (1/(1− ϵ/105)) < ϵ/104.

For the left hand side of the second inequality it suffices to repeat the arguments of Observation 30 and for the right hand
side, again using Observation 30, and the fact that 6ϵ(1 + 10ϵ) < 7ϵ for ϵ small enough.

The next Lemma 33 concentrates on how the neighborhood of a node u ∈ CΦ in our sparse solution changes after time tu.
At a high level, we argue that NG̃tu

(u) ≃ NG̃t
(u).

Lemma 33. Let u ∈ CΦ and t > tu. ThenR implies that:

1. NG̃tu
(u) ⊆ NGtu

(u)

2. |NGtu
(u) \NG̃tu

(u)|< ϵ|NGtu
(u)|

3. |NG̃tu
(u)|⩾ (1− ϵ)|NGtu

(u)|

4. |NG̃tu
(u) \NG̃t

(u)|< ϵ|NG̃tu
(u)|

5. |NG̃t
(u) \NG̃tu

(u)|< 8ϵ|NGtu
(u)|

6. |NG̃t
(u) \NG̃tu

(u)|< 12ϵ|NG̃tu
(u)|

7. |NG̃t
(u)|< (1 + 12ϵ)|NG̃tu

(u)|

8. (1− ϵ)|NG̃tu
(u)|< |NG̃t

(u)|

Proof. We prove each statement as follows:

1. The neighborhood of a node in our sparse solution is always a subset of its true neighborhood.

26

Dynamic Correlation Clustering in Sublinear Update Time

2. Since u ∈ CΦ, u is ϵ-heavy at time tu and in ϵ-agreement with at least an ϵ fraction of its neighborhood at that time.
All edges (u, v) where v ∈ NGtu

(u) is in ϵ-agreement with u are added to our sparse solution at that time.

3. Again, due to u being ϵ-heavy at time tu.

4. Due to the Clean(·, ϵ) procedure u cannot lose more than an ϵ fraction of its neighborhood in our sparse solution at
time tu and remain in the anchor set.

5. W.l.o.g. we assume that time t was the last time u’s neighborhood in the sparse solution increased, and let v be its last
new neighbor in the sparse solution. Note that since t > tu, v must be in ϵ-agreement with u at time t and either u or
v must be ϵ-heavy. We have:

|NG̃t
(u) \NG̃tu

(u)| ⩽ |NG̃t
(u) \NGtu

(u)|+|NGtu
(u) \NG̃tu

(u)|

⩽ |NGt
(u) \NGtu

(u)|+|NGtu
(u) \NG̃tu

(u)|

< 7ϵ|NGtu
(u)|+ϵ|NGtu

(u)|
⩽ 8ϵ|NGtu

(u)|

Where in the second inequality we used the fact that NG̃t
(u) ⊆ NGt

(u) is always true, and in the third we used both
(2) of the current lemma and (2) of Corollary 32.

6. It is immediate by combining (3) and (5), since for ϵ small enough it holds that 8ϵ/(1− ϵ) < 12ϵ.

7. It is immediate from (6).

8. It is immediate from (4).

The following Lemma 35, Lemma 36 and Corollary 37 pave the road to the main Theorem 39 of the current section by
arguing that for any two nodes u, v ∈ CΦ at time t ⩾ max{tu, tv} their neighborhood in the sparse solution is very similar,
i.e., NG̃t

(u) ≃ NG̃t
(v). To that end Lemma 35 proves that if NG̃t

(u) ∩NG̃t
(v) ̸= ∅ then NG̃t

(u) ≃ NG̃t
(v) , Lemma 36

continues arguing that NG̃t
(u)∩NG̃t

(v) is always non-empty and Corollary 37 concludes that indeed NG̃t
(u) ≃ NG̃t

(v).

Before proceeding to Lemma 35 we state a useful set inequality.

Inequality 34. Let A,B,C and D be four sets, then:

|A ∩B|⩾ |C ∩D|−|C \A|−|D \B|

Proof. Let s ∈ C ∩D. It is enough to prove that the latter implies: s ∈ (A ∩ B) ∪ (C \ A) ∪ (D \ B). We consider the
following cases:

1. If s is in A ∩B, the claim is satisfied.

2. If s is not in A ∩B, then either s is not in set A or s is not in set B.

(a) If s is not in A, then s must be in C \A.
(b) If s is not in B, then s must be in D \B.

Lemma 35. Let u, v ∈ CΦ and t′ ⩾ max{tu, tv} such that NG̃t′
(u) ∩ NG̃t′

(v) is non-empty. Then R implies that:
|NG̃t′

(u) ∩NG̃t′
(v)|⩾ (1− 80ϵ)max{|NG̃t′

(u)|, |NG̃t′
(v)|}.

Proof. W.l.o.g. we assume that tv ⩾ tu, i.e., v entered the anchor set after u. Let t ⩾ tv be the minimum time such that
NG̃t

(u) ∩NG̃t
(v) ̸= ∅. We distinguish between the following two scenarios

27

Dynamic Correlation Clustering in Sublinear Update Time

1. At time t a node w participates in an “interesting” event and gets connected to both nodes u and v; or

2. At time t, v participates in an “interesting event” and gets connected to a node w which was already connected to
node u. Note that in this case we have t = tv .

We prove that in both scenarios u and v have a very large neighborhood overlap in our sparse solution.

Case 1 We have that u and v are both in ϵ-agreement with w and that either w is ϵ-heavy or both u and v are ϵ-heavy.
From the latter observation and using Property 7 we have that:

|NGt
(u) ∩NGt

(v)|⩾ (1− 5ϵ)max{|NGt
(u)|, |NGt

(v)|} (3)

that is NGt
(u) ≃ NGt

(v).

We proceed arguing that NGtu
(u) ≃ NGtv

(v).

|NGtu
(u) ∩NGtv

(v)| ⩾ |NGt
(u) ∩NGt

(v)|−|NGt
(u) \NGtu

(u)|−|NGt
(v) \NGtv

(v)|
⩾ |NGt

(u) ∩NGt
(v)|−7ϵ|NGtu

(u)|−7ϵ|NGtv
(v)|

⩾ (1− 5ϵ)max{|NGt
(u)|, |NGt

(v)|} − 7ϵ|NGtu
(u)|−7ϵ|NGtv

(v)|
⩾ (1− 5ϵ)(1− ϵ/105)max{|NGtu

(u)|, |NGtv
(v)|} − 7ϵ|NGtu

(u)|−7ϵ|NGtv
(v)|

⩾ (1− 20ϵ)max{|NGtu
(u)|, |NGtv

(v)|}

Where in the first inequality we use Inequality 34, in the second we use (2) of Corollary 32, in the third we use Eq. (3) of
the current proof, in the fourth Lemma 31 and the last one holds for ϵ small enough.

In the same manner we proceed arguing that NG̃tu
(u) ≃ NG̃tv

(v) by lower bounding |NG̃tu
(u) ∩NG̃tv

(v)| as follows:

|NG̃tu
(u) ∩NG̃tv

(v)| ⩾ |NGtu
(u) ∩NGtv

(v)|−|NGtu
(u) \NG̃tu

(u)|−|NGtv
(v) \NG̃tv

(v)|

⩾ |NGtu
(u) ∩NGtv

(v)|−ϵ|NGtu
(u)|−ϵ|NGtv

(v)|
⩾ |NGtu

(u) ∩NGtv
(v)|−ϵ/(1− ϵ)|NG̃tu

(u)|−ϵ/(1− ϵ)|NG̃tv
(v)|

⩾ (1− 20ϵ)max{|NGtu
(u)|, |NGtv

(v)|} − ϵ/(1− ϵ)|NG̃tu
(u)|−ϵ/(1− ϵ)|NG̃tv

(v)|

⩾ (1− 20ϵ)max{|NGtu
(u)|, |NGtv

(v)|} − 3ϵ|NG̃tu
(u)|−3ϵ|NG̃tv

(v)|

⩾ (1− 20ϵ)(1− ϵ)max{|NG̃tu
(u)|, |NG̃tv

(v)|} − 3ϵ|NG̃tu
(u)|−3ϵ|NG̃tv

(v)|

⩾ (1− 30ϵ)max{|NG̃tu
(u)|, |NG̃tv

(v)|}

Where in the first inequality we use Inequality 34, in the second inequality we use (2) of Lemma 33, in the third inequality
we use (3) of Lemma 33, in the fourth one we used the lower bound on |NGtu

(u) ∩ NGtv
(v)| that we just proved in the

current lemma, in the fifth and the seventh holds for ϵ small enough and, in the sixth inequality we use again (3) of Lemma
33, and the fifth and seventh inequality hold for ϵ small enough.

We can now finish the first case by lower bounding the |NG̃t′
(u) ∩NG̃t′

(v)|.

|NG̃t′
(u) ∩NG̃t′

(v)| ⩾ |NG̃tu
(u) ∩NG̃tv

(v)|−|NG̃tu
(u) \NG̃t′

(u)|−|NG̃tv
(v) \NG̃t′

(v)|

⩾ |NG̃tu
(u) ∩NG̃tv

(v)|−ϵ|NG̃tu
(u)|−ϵ|NG̃tv

(v)|

⩾ (1− 30ϵ)max{|NG̃tu
(u)|, |NG̃tv

(v)|} − ϵ|NG̃tu
(u)|−ϵ|NG̃tv

(v)||

⩾
1− 30ϵ

1 + 12ϵ
max{|NG̃t′

(u)|, |NG̃t′
(v)|} − ϵ

1− ϵ
|NG̃t′

(u)|− ϵ

1− ϵ
|NG̃t′

(v)|

⩾ (1− 60ϵ)max{|NG̃t′
(u)|, |NG̃t′

(v)|}

28

Dynamic Correlation Clustering in Sublinear Update Time

Where in the first inequality we use Inequality 34, in the second we use (4) of Lemma 33, in the third we use the lower
bound on NG̃tu

(u)∩NG̃tv
(v)| that we proved in the current lemma, in the fourth inequality we use both (7) of Lemma 33

and (8) of Lemma 33, and the last inequality holds for ϵ small enough.

Case 2 We now turn our attention to the second case. In that case w.l.o.g. we assume that u was connected to w in our
sparse solution before time t and that at time t, v was inserted in the anchor set and got connected with node w with which
they are in ϵ-agreement at time t. Consequently, |NGt

(v) ∩NGt
(w)|⩾ (1− ϵ)max{|NGt

(v)|, |NGt
(w)|}.

We can also assume that w does not participate in an “interesting event” at time t since this situation is already covered by
the first case.

Let t′′ = max{tu, tw} and note that at that time u and w were in ϵ-agreement and one of them is ϵ-heavy, thus we have
that |NGt′′ (u) ∩NGt′′ (w)|⩾ (1− ϵ)max{|NGt′′ (u)|, |NGt′′ (w)|}

The goal is to argue that NG̃t
(u) ≈ NG̃t

(v), and after that use Lemma 33 to deduce that NG̃t′
(u) ≈ NG̃t′

(v).

Towards this goal, we initially prove that NGt′′ (w) ≈ NGt
(w). Note that in both times, t and t′′ node w was in ϵ-agreement

with another node and got connected to it. We distinguish between two cases:

(a) t′′ = tu > tw; and

(b) t′′ = tw

In (a) we prove that NGt′′ (w) ≃ NGtw
(w) and NGt

(w) ≃ NGtw
(w) to conclude that NGt′′ (w) ≈ NGt

(w).

|NGt′′ (w) ∩NGtw
(w)| ⩾ max{|NGt′′ (w)|, |NGtw

(w)|} − |NGtw
(w) \NGt′′ (w)|−|NGt′′ (w) \NGtw

(w)|
⩾ max{|NGt′′ (w)|, |NGtw

(w)|} − (7ϵ+ ϵ/104)max{|NGt′′ (w)|, |NGtw
(w)|}

⩾ (1− 8ϵ)max{|NGt′′ (w)|, |NGtw
(w)|}

Where in the second inequality we use (1) of Corollary 32 and (2) of Corollary 32, and the third inequality holds for ϵ
small enough.

Similarly, we have

|NGt(w) ∩NGtw
(w)| ⩾ max{|NGt(w)|, |NGtw

(w)|} − |NGtw
(w) \NGt(w)|−|NGt(w) \NGtw

(w)|
⩾ max{|NGt

(w)|, |NGtw
(w)|} − (7ϵ+ ϵ/104)max{|NGt′′ (w)|, |NGtw

(w)|}
⩾ (1− 8ϵ)max{|NGt

(w)|, |NGtw
(w)|}

We now argue that NGt′′ (w) ≃ NGt
(w) as follows:

|NGt(w) ∩NGt′′ (w)| ⩾ |NGtw
(w)|−|NGtw

(w) \NGt(w)|−|NGtw
(w) \NGt′′ (w)|

⩾ (1− 8ϵ)max{|NGt(w)|, |NGt′′ (w)|} − (8ϵ+ 8ϵ)max{|NGt(w)|, |NGt′′ (w)|}
⩾ (1− 24ϵ)max{|NGt(w)|, |NGt′′ (w)|}

Case (b) is simpler and we can immediately use (1) of Corollary 32 and (2) of Corollary 32 to argue that NGt′′ (w) ≃
NGt(w), as follows:

|NGt
(w) ∩NGt′′ (w)| ⩾ max{|NGt

(w)|, |NGt′′ (w)|} − |NGt
(w) \NGt′′ (w)|−|NGt′′ (w) \NGt

(w)|
⩾ max{|NGt(w)|, |NGt′′ (w)|} − (7ϵ+ ϵ/104)max{|NGt′′ (w)|, |NGtw

(w)|}
⩾ (1− 8ϵ)max{|NGt(w)|, |NGt′′ (w)|}

29

Dynamic Correlation Clustering in Sublinear Update Time

Where the third inequality holds for ϵ small enough.

Thus, in both cases (a) and (b) we have that:

|NGt
(w) ∩NGt′′ (w)|⩾ (1− 24ϵ)max{|NGt

(w)|, |NGt′′ (w)|}

We continue arguing that NGt′′ (u) ≈ NGt(v). Indeed we have

|NGt(v) ∩NGt′′ (u)| ⩾ |NGt(w) ∩NGt′′ (w)|−|NGt(w) \NGt(v)|−|NGt′′ (w) \NGt′′ (u)|
⩾ (1− 24ϵ)max{|NGt(w)|, |NGt′′ (w)|} − ϵ|NGt(w)|−ϵ|NGt′′ (w)|
⩾ (1− 26ϵ)max{|NGt(w)|, |NGt′′ (w)|}

⩾
1− 26ϵ

1− ϵ
max{|NGt

(v)|, |NGt′′ (u)|}

⩾ (1− 27ϵ)max{|NGt
(v)|, |NGt′′ (u)|}

Where in the second inequality we used the lower bound on |NGt
(w) ∩ NGt′′ (w)| that we proved in the current lemma

and the fact that at times t and t′′, w is in ϵ-agreement with nodes v and u respectively and got connected to them in our
sparse solution. In the fourth inequality we again used the latter fact and the last inequality holds for ϵ small enough.

We now argue why NGtu
(u) ≈ NGtv

(v). Note that t = tv and that u does not participate in an “interesting event” after
t′′.

|NGtv
(v) ∩NGtu

(u)| ⩾ |NGt
(v) ∩NGt′′ (u)|−|NGt

(v) \NGtv
(v)|−|NGt′′ (u) \NGtu

(u)|
= |NGt

(v) ∩NGt′′ (u)|−|NGt′′ (u) \NGtu
(u)|

⩾ |NGt
(v) ∩NGt′′ (u)|−6ϵ|NGt′′ (u)|

⩾ (1− 6ϵ)|NGt
(v) ∩NGt′′ (u)|

⩾ (1− 6ϵ)(1− 27ϵ)max{|NGt
(v)|, |NGt′′ (u)|}

⩾ (1− ϵ/105)(1− 6ϵ)(1− 27ϵ)max{|NGt(v)|, |NGtu
(u)|}

= (1− ϵ/105)(1− 6ϵ)(1− 27ϵ)max{|NGtv
(v)|, |NGtu

(u)|}
⩾ (1− 40ϵ)max{|NGtv

(v)|, |NGtu
(u)|}

where in the first inequality we use Eq. (3), the second inequality holds since either t′′ > tu and we use (2) of Corollary 32
or t′′ = tu and in that case |NGt′′ (u)\NGtu

(u)|= 0, in the fourth inequality we use the lower bound on |NGt
(v)∩NGt′′ (u)|

that we proved in the current lemma, in the fifth inequality we use Lemma 31, and the last inequality holds for ϵ small
enough.

Using what we just proved, i.e., |NGtv
(v) ∩ NGtu

(u)|⩾ (1 − 40ϵ)max{|NGtv
(v)|, |NGtu

(u)|}, we now lower bound
|NG̃tu

(u) ∩NG̃tv
(v)| using the same arguments as in the first case.

30

Dynamic Correlation Clustering in Sublinear Update Time

|NG̃tu
(u) ∩NG̃tv

(v)| ⩾ |NGtu
(u) ∩NGtv

(v)|−|NGtu
(u) \NG̃tu

(u)|−|NGtv
(v) \NG̃tv

(v)|

⩾ |NGtu
(u) ∩NGtv

(v)|−ϵ|NGtu
(u)|−ϵ|NGtv

(v)|
⩾ |NGtu

(u) ∩NGtv
(v)|−ϵ/(1− ϵ)|NG̃tu

(u)|−ϵ/(1− ϵ)|NG̃tv
(v)|

⩾ (1− 40ϵ)max{|NGtu
(u)|, |NGtv

(v)|} − ϵ/(1− ϵ)|NG̃tu
(u)|−ϵ/(1− ϵ)|NG̃tv

(v)|

⩾ (1− 40ϵ)max{|NGtu
(u)|, |NGtv

(v)|} − 3ϵ|NG̃tu
(u)|−3ϵ|NG̃tv

(v)|

⩾ (1− 40ϵ)(1− ϵ)max{|NG̃tu
(u)|, |NG̃tv

(v)|} − 3ϵ|NG̃tu
(u)|−3ϵ|NG̃tv

(v)|

⩾ (1− 50ϵ)max{|NG̃tu
(u)|, |NG̃tv

(v)|}

And conclude the proof of the second case, in a similar manner to the first case, that is, proving NG̃t
(u) ≈ NG̃t

(v).

|NG̃t′
(u) ∩NG̃t′

(v)| ⩾ |NG̃tu
(u) ∩NG̃tv

(v)|−|NG̃t′
(u) \NG̃tu

(u)|−|NG̃t′
(v) \NG̃tv

(v)|

⩾ |NG̃tu
(u) ∩NG̃tv

(v)|−12ϵ|NG̃tu
(u)|−12ϵ|NG̃tv

(v)|

⩾ (1− 50ϵ)max{|NG̃tu
(u)|, |NG̃tv

(v)|} − 12ϵ|NG̃tu
(u)|−12ϵ|NG̃tv

(v)|

⩾ (1− 74ϵ)/(1 + 12ϵ)max{|NG̃t′
(u)|, |NG̃t′

(v)|}

⩾ (1− 80ϵ)max{|NG̃t′
(u)|, |NG̃t′

(v)|}

Where in the second inequality we use (6) of Lemma 33, in the third inequality we use the lower bound on NG̃tu
(u) ∩

NG̃tv
(v)| that we proved in the current lemma, in the fourth inequality we use (7) of Lemma 33 and the last inequality

holds for ϵ small enough.

Lemma 36. R implies that ∀u, v ∈ CΦ: NG̃tc
(u) ∩NG̃tc

(v) ̸= ∅.

Proof. The proof follows very similar arguments to the (Cohen-Addad et al., 2021) that we repeat here for completeness.
Let d(x, y) be the distance of two nodes x, y in our sparse solution at time tc. Suppose the lemma is not true, then we have
that d(u, v) > 2. Towards a contradiction also assume u, v to be the minimum distance nodes in CΦ such that d(u, v) > 2.
Note that for any edge in our sparse solution G̃tc , one of its endpoints is in CΦ. If d(u, v) ⩾ 5, let P = ⟨u, u′, u′′, . . . , v⟩
be the shortest u-v path in G̃tc , thus either u′ or u′′ must be in CΦ, contradicting the minimality assumption regarding the
distance between u and v. If d(u, v) ⩽ 4, then either d(u, v) = 4 or d(u, v) = 3. We end up in a contradiction in both
cases:

1. If d(u, v) = 4 then ∃v′, w, u′ such that v′ ∈ NG̃tc
(v) ∩NG̃tc

(w), w ∈ CΦ and u′ ∈ NG̃tc
(w) ∩NG̃tc

(u).

2. If d(u, v) = 3 then ∃w, u′ such that w ∈ NG̃tc
(v)∩NG̃tc

(u′), u′ ∈ NG̃tc
(w)∩NG̃tc

(u) and either w or u are in CΦ.
Assume that w ∈ CΦ (and the case where u′ ∈ CΦ is similar)

In both cases, from Lemma 35 we have:

|NG̃tc
(u) ∩NG̃tc

(v)| ⩾ |NG̃tc
(w)|−|NG̃tc

(w) \NG̃tc
(u)|−|NG̃tc

(w) \NG̃tc
(v)|

⩾ |NG̃tc
(w)|−80ϵ|NG̃tc

(u)|−80ϵ|NG̃tc
(v)|

⩾ (1− 80ϵ)max{|NG̃tc
(u)|, |NG̃tc

(v)|} − 80ϵ|NG̃tc
(u)|−80ϵ|NG̃tc

(v)|

⩾ (1− 240ϵ)max{|NG̃tc
(u)|, |NG̃tc

(v)|}

> 0

31

Dynamic Correlation Clustering in Sublinear Update Time

Where the last inequality holds for ϵ small enough. Thus, we ended in a contradiction.

Corollary 37. Let u, v ∈ CΦ,R implies that |NG̃tc
(u) ∩NG̃tc

(v)|⩾ (1− 80ϵ)max{|NG̃tc
(u)|, |NG̃tc

(v)|}.

Proof. It is immediate from Lemma 35 and Lemma 36.

Before proceeding to the last theorems of this section we state some useful set inequalities.

Observation 38. For sets A,B, C and positive reals α, β:

1. If |A△B|⩽ ϵmax{|A|, |B|} then |A ∩B|⩾ (1− ϵ)max{|A|, |B|}.

2. If |A ∩B|⩾ (1− ϵ)max{|A|, |B|} then for ϵ small enough:

|A△B|⩽ 2ϵmax{|A|, |B|} ⩽ 2ϵ

1− ϵ
min{|A|, |B|} ⩽ 3ϵmin{|A|, |B|}

3. If |A△B|⩽ ϵmax{|A|, |B|} then for ϵ small enough |A△B|⩽ 3ϵmin{|A|, |B|}

4. |A△C|⩽ |A△B|+|B△C|.

5. αmin{|A|, |B|}+ βmin{|B|, |C|} ⩽ (α+ β)max{|A|, |C|}

We now proceed proving the main Theorem 39 of this section. Note that on Theorem 39 we also argue that ∀v ∈ C their
degree when they last participated in an “interesting event” is lower bounded by the |C|/2. The latter property will be
crucial in Appendix C.

Theorem 39. R implies that cluster C is dense and ∀v ∈ C:

|NGtc
(v) ∩ C|⩾ (1− 541080ϵ)|C|

and
|NGtu

(v)|⩾ |C|/2.

Proof. Note that for node v ∈ CΦ its neighborhood in G̃tc is a subset of CΦ. To relate the neighborhood of v inside C in
Gtc we construct an auxiliary graph which acts as a bridge between G̃tc and Gtc . We construct a graph Ĝtc so that:

1. ∀u ∈ C and u′ ∈ CΦ NĜtc
(u) ≃ NG̃tc

(u′);

2. Ĝtc ⊆ Gtc ;

3. C is a connected component in Ĝtc ; and

4. ∀u ∈ C |NĜtc
(v) ∩ C|⩾ (1− 541080ϵ)|C|

The existence of such a graph suffices to demonstrate the current theorem. For each v ∈ CΦ let t̂v be the last time before
tc that v was in ϵ-agreement with a node u ∈ CΦ, one of either u or v was heavy and edge (u, v) is added to the sparse
solution and remains until time tc. Note that t̂v ⩾ tv , otherwise we would have that v ̸∈ C and t̂v ⩾ tu since edge (u, v)
remains in our sparse solution until time tc.

We now prove that the neighborhood NGt̂v
(v) is almost the same to the neighborhood of NG̃tc

(u′) for any u′ ∈ CΦ. We
first derive the following inequalities:

(a) |NGt̂v
(v)△NGt̂v

(u)|⩽ ϵmax{|NGt̂v
(v)|, |NGt̂v

(u)|} ⩽ 3ϵmin{|NGt̂v
(v)|, |NGt̂v

(u)|}

(b) |NGt̂v
(u)△NGtu

(u)|⩽ 8ϵmax{|NGt̂v
(u)|, |NGtu

(u)|} ⩽ 24ϵmin{|NGt̂v
(u)|, |NGtu

(u)|}

(c) |NGtu
(u)△NG̃tu

(u)|⩽ ϵmax{|NGtu
(u)|, |NG̃tu

(u)|} ⩽ 3ϵmin{|NGtu
(u)|, |NG̃tu

(u)|}

32

Dynamic Correlation Clustering in Sublinear Update Time

(d) |NG̃tu
(u)△NG̃tc

(u)|⩽ 13ϵmax{|NG̃tu
(u)|, |NG̃tc

(u)|} ⩽ 39ϵmin{|NG̃tu
(u)|, |NG̃tc

(u)|}

(e) |NG̃tc
(u)△NG̃tc

(u′)|⩽ 160ϵmax{|NG̃tc
(u)|, |NG̃tc

(u′)|} ⩽ 240ϵmin{|NG̃tc
(u)|, |NG̃tc

(u′)|}

The right hand side of each inequality in (a), (b), (c), (d) and (e) uses Observation 38 and the left hand side of (a) uses that
u and v are in ϵ-agreement at time t̂v , (b) uses Corollary 32, (c) uses (1) of Lemma 33 and (2) of Lemma 33, (d) uses (4) of
Lemma 33 and (6) of Lemma 33 and (e) uses Corollary 37. By using the triangle inequality of Observation 38 iteratively
we can conclude that:

|NGt̂v
(v) ∩NG̃tc

(u′)|⩾ (1− 1113ϵ)max{|NGt̂v
(v)|, ||NG̃tc

(u′)|}

With the same line of reasoning for a node u ∈ CΦ we can define t̂u as the last time that an edge (u, v) where v ∈ C was
added to our sparse solution and remained until at least time tc. Inequalities (b), (c), (d) and (e) remain true and following
the same arguments we conclude that:

∀u, u′ ∈ CΦ:

|NGt̂u
(u) ∩NG̃tc

(u′)|⩾ (1− 1113ϵ)max{|NGt̂u
(u)|, ||NG̃tc

(u′)|}

Consequently, ∀u ∈ C and u′ ∈ CΦ:

|NGt̂u
(u) ∩NG̃tc

(u′)|⩾ (1− 1113ϵ)max{|NGt̂u
(u)|, |NG̃tc

(u′)|} (*)

Let d = max{|NG̃tc
(u′)|: u′ ∈ CΦ}. Using Eq. (*) we can conclude that for ϵ small enough:

d

2
⩽ (1− 1113ϵ)d ⩽ |NGt̂u

(u)|⩽ d

(1− 1113ϵ)
⩽ 2d (**)

Also note that since NG̃tc
(u′) ⊆ C we also have that ∀v ∈ CΦ and u′ ∈ CΦ:

|(NGt̂v
(v) ∩ C) ∩NG̃tc

(u′)|⩾ (1− 1113ϵ)max{|NGt̂v
(v) ∩ C|, ||NG̃tc

(u′)|} (***)

and using the same arguments as in the case of |NGt̂u
(u)| we can also lower and upper bound |NGt̂v

(v) ∩ C| as follows:

d

2
⩽ (1− 1113ϵ)d ⩽ |NGt̂v

(v) ∩ C|⩽ d

(1− 1113ϵ)
⩽ 2d (****)

To facilitate the description of the intermediate graph Ĝtc for each u ∈ C let Eu = {(u, v) : v ∈ NGt̂u
(u) ∩C} be the set

of edges between u and nodes in NGt̂u
(u)∩C. Note that all these edges also exist in Gtc . We define Ĝtc = (C,

⋃
u∈C Eu)

to be the graph with set of nodes to be C and edges
⋃

u∈C Eu. Let Nu be the neighborhood of u in that graph, then:

1. Nu ⊇ NGt̂u
(u) ∩ C

2. Ĝtc ⊆ Gtc

3. Nu = (NGt̂u
(u) ∩ C) ∪ {v ∈ C : {tarrival

v > t̂u} ∧ {(v ∈ NGtc
(u)}}

While (1) and (2) are immediate for (3) we further elaborate. Note that for node u ∈ C we can construct its neighborhood
in Ĝtc as follows: first add all edges to nodes in NGt̂u

(u) ∩ C and then for every node v ∈ NGtc
(u) ∩ (C \ NGt̂u

(u))

such that t̂v > t̂u add edge (u, v). Then (3) follows by noting that sets {v ∈ NGtc
(u) ∩ (C \ NGt̂u

(u)) : t̂v > t̂u} and
{v ∈ C : {tarrival

v > t̂u} ∧ {(v ∈ NGtc
(u)}} are equal. We now argue that Nu ≃ (NGt̂u

(u) ∩ C). For each node v ∈ C

such that tarrival
v > t̂u and v ∈ NGtc

(u) it holds that:

33

Dynamic Correlation Clustering in Sublinear Update Time

1. v ∈ NGtc
(u) \NGt̂u

(u); and

2. |NGt̂v
(v)|< 2d where t̂v > tu

For the second point note that t̂v ⩾ tarrival
v , tarrival

v > t̂u and t̂u ⩾ tu. From these two points note that R implies that
|{v ∈ C : {tarrival

v > t̂u} ∧ {(v ∈ NGtc
(u)} |< ϵ/102d and from Eq. (****) we have that |NGt̂u

(u) ∩ C|⩾ d
2 . Combining

these facts:

|Nu△(NGt̂u
(u) ∩ C)| = |Nu \ (NGt̂u

(u) ∩ C)|

= |{v ∈ C : {tarrival
v > t̂u} ∧ {(v ∈ NGtc

(u)}}|
⩽ ϵ/102d

⩽ 2ϵ/102|NGt̂u
(u) ∩ C|

⩽ 2ϵ/102 min{|Nu|, |NGt̂u
(u) ∩ C|}

Also applying Observation 38 to Eq. (***) we get that ∀u ∈ CΦ and u′ ∈ CΦ:

|(NGt̂u
(u) ∩ C)△NG̃tc

(u′)|⩽ 3339ϵmin{|NGt̂u
(u) ∩ C|, ||NG̃tc

(u′)|}

Thus, again from Observation 38 and combining:

1. |(NGt̂u
(u) ∩ C)△NG̃tc

(u′)|⩽ 3339ϵmin{|NGt̂u
(u) ∩ C|, ||NG̃tc

(u′)|}; and

2. |Nu△(NGt̂u
(u) ∩ C)|⩽ 2ϵ/102 min{|Nu|, |NGt̂u

(u) ∩ C|}

We conclude that ∀u ∈ C and u′ ∈ CΦ:

|Nu△NG̃tc
(u′)| ⩽ 3(3339 + 2ϵ/102)min{|Nu|, |NG̃tc

(u′)|}

⩽ 10020ϵmin{|Nu|, |NG̃tc
(u′)|} (*****)

Moreover, applying the latter inequality for any u,w ∈ C and u′ ∈ CΦ we conclude that:

|Nu△Nw| ⩽ 3(10020 + 10020)min{|Nu|, |Nw|}
⩽ 60120ϵmin{|Nu|, |Nw|}
⩽ 60120ϵmax{|Nu|, |Nw|}

and

|Nu ∩Nw| ⩾ 60120ϵmax{|Nu|, |Nw|}

Thus, ∀u,w ∈ C:

1. u and w are connected; and

2. If u and w are connected in Ĝtc then they are in 60120ϵ-agreement

Thus, C is a cluster in the agreement decomposition of graph Ĝtc when agreement and heaviness parameters are set to
60120ϵ. Using Property 4 we can deduce that ∀u ∈ C

|Nu ∩ C| ⩾ (1− 9 · 60120ϵ)|C|= (1− 541080ϵ)|C|

We now proceed lower bounding |NGtu
(u)|. For a node u ∈ C and u′ ∈ CΦ using (c), (d), (e) and Observation 38 we can

deduce that:

|NGtu
(u)△NG̃tc

(u′)| ⩽ 3 · (3 · (3 + 39) + 240)ϵmin{|NGtu
(u)|, |NG̃tc

(u′)|}

⩽ 1098ϵmin{|NGtu
(u)|, |NG̃tc

(u′)|}

34

Dynamic Correlation Clustering in Sublinear Update Time

Combining the latter with Eq. (*****) we get:

|NGtu
(u)△Nu| ⩽ 3 · (10020 + 1098)ϵmin{|NGtu

(u)|, |Nu|}
⩽ 33354ϵmin{|NGtu

(u)|, |Nu|}

We are now ready to deduce that:

|NGtu
(u)| ⩾ (1− 33354ϵ)|Nu|

⩾ (1− 33354ϵ)|Nu ∩ C|
⩾ (1− 33354ϵ)(1− 541080ϵ)|C|
⩾ (1− 574434ϵ)|C|
⩾ |C|/2

where in the third inequality we used that C is dense and the last inequality holds for ϵ small enough.

C. Runtime Analysis
In this section we compute the complexity of our algorithm and prove that, on expectation, the time spent per each node
insertion or deletion is O(polylog n). Note that the ϵ used in Algorithm 3 and in all proofs is a small enough constant
which gets “absorbed” in the big O(·) notation. We introduce some auxiliary random variable definitions:

1. Wt denotes the complexity of operations at time t;

2. L is the size of the largest connected component of G̃t−1; and

3. Qt is the total number of agreement and heaviness calculations at time t.

Note that edge additions are at least as many as edge deletions and each edge addition is preceded by a heaviness and
agreement calculation between its endpoints. Thus, the total complexity of Algorithm 3 is upper bounded by a constant
times the total complexity of agreement and heaviness calculations. Since from Appendix E each agreement and heaviness
calculation requires O(log n) time we have that:

E

[∑
t

Wt

]
⩽ O(log n) ·E

[∑
t

Qt

]
⩽ O(log n) ·

∑
t

E [Qt]

The focus in the rest of the section will be to prove that E [Qt] = O(polylog n). We start by arguing that the number of
nodes that participate in an “interesting event” at time t is, on expectation, at most polylog n.

Lemma 40.

E [|It|] = O(polylog n)

Proof. In the case of a node addition it is always true that |It|⩽
(
1010 logn/ϵ

)4
= O(polylog n). To argue that the same

bound holds on expectation in the case of a node deletion we introduce some auxiliary notation. For a node v ∈ Gt′ we
use Ii,t

′

v and Bi,t′

v to denote the sets Iiv and Bi
v respectively at the end of iteration t′. At time t we have that:

|It| ⩽

∣∣∣∣∣⋃
i

Bi,t−1
vt

∣∣∣∣∣ · (1010 logn/ϵ
)3

⩽
∑
i

|Bi,t−1
vt |·Θ(polylog n)

35

Dynamic Correlation Clustering in Sublinear Update Time

Also, our algorithm maintains the following invariant:∑
v∈Gt′ ,i

|Ii,t
′

v |=
∑

v∈Gt′ ,i

|Bi,t′

v |= O(npolylog n), ∀t′

Thus, at time t if we select uniformly at random a node and delete it, we have that:

E

[∑
i

|Bi,t
vt |

]
= O(polylog n)

The main Theorem 41 of this section requires a delicate coupling argument. We give a proof sketch before proceeding to
the formal proof. Similarly to Appendix B let tu denote the last time strictly before t that u participated in an “interesting
event”. We remind the reader an important event definition of Appendix B which will be used also in this section.

Definition 28.

R =
⋂
u∈C

M tu,t−1
u

⋂
u∈C,d∈[1,n]

{
|Pu

d,tu,t−1|⩽ ϵ/102d
}

Let Cu be the connected component u belongs to in G̃t−1 then from Theorem 39 we have that: R implies that ∀v ∈ Cu it
holds that |NGtu

(v)|⩾ |Cu|/2.

Since event R happens with high probability and |Cu|⩽ n, we can argue that E[NGtu
(u)|] ⩾ |Cu|/3. Consequently for a

connected component C of G̃t−1 we can upper bound, on expectation, the number of nodes in the anchor set as follows:∑
u∈C

107 logn/ϵ|NGtu
(u)| ≃

∑
u∈C

3·107 logn/ϵ|C|

= 3·107 logn/ϵ

= O(log n)

Consequently E[L] = O(log n). In the last step of our proof we argue that E[Wt] = O(log n)E[|It|]E[L] = O(polylog n)

Theorem 41.

E

[∑
t

Wt

]
= O(polylog n)

Proof. As already mentioned in the beginning of the section it is enough to argue that E [Qt] = O(polylog n). We use Φ
to denote the set of anchor set nodes at time t − 1 and by L the maximum number of anchor set nodes in any connected
component of our sparse solution at time t− 1.

For a node v ∈ G̃t, on expectation, the number of agreement and heaviness calculations for each subroutine is upper
bounded as follows:

1. Connect(v, ϵ, t): 107 log n/ϵ · L = L ·O(log n)

2. Anchor(v, ϵ, t): min
{
{|NGu(t)|·

107 logn
ϵ|NGu (t)| , |NGu(t)|}

}
= O(log n)

3. Clean(v, ϵ, t): L

Let Wt,v be the total number of agreement and heaviness calculations required by those three procedures, then:

E[Wt,v] = O(log n) ·E[L]

We continue upper bounding E[L] ⩽ O(log n).

36

Dynamic Correlation Clustering in Sublinear Update Time

From the law of total expectation we have:

E[L] = E[L | R] ·Pr[R] +E[L | R] ·Pr[R]

⩽ E[L | R] + n ·Pr[R]

⩽ E[L | R] + n · 1/n102

< E[L | R] + 1/n99

where in the first inequality we used that Pr[R] ⩽ 1 and L ⩽ n are always true and in the second inequality we used Ob-
servation 29. We now concentrate on bounding the first term of the summation. We remind the reader that ui is the i-th
node in our node stream.

From the principled of deferred decisions we can construct an instance of G̃t−1 as follows: we first run Notify(v1, ϵ),
Notify(v2, ϵ), . . . , Notify(vt−1, ϵ) sequentially and calculate I1, I2, . . . , It−1. Note that at this point for each node u in
Gt−1, the random variable tu is realized, indeed tu = max{i ∈ [1, t− 1] : u ∈ Ii}. Moreover Φ is not realized, since we
did not sample any Bernoulli variable from our Anchor procedure yet. We now run the “for loop” of our algorithm which
contains the Clean, Connect and Anchor procedures, sequentially for I1, I2, . . . , It−1. Let F denote a realization of the
first step and let Xu be the Bernoulli variables used in the Anchor(u, ϵ, tu) procedures for all u’s.

Towards a coupling argument we now describe a second stochastic procedure to construct a “sparse graph” Ĝt−1: we again
run the Notify(v1, ϵ), Notify(v2, ϵ), . . . , Notify(vt−1, ϵ) sequentially and calculate I1, I2, . . . , It−1. In the second step we
run the “for loop” of our algorithm sequentially for I1, I2, . . . , It−1 assuming that all the Bernoulli variables which were
sampled by the Anchor procedures are 1. As a final step we use the variables Xu (also used by the first procedure) and
delete from the anchor set all nodes for which Xu = 0 and also delete all edges between nodes u, v such that both Xu and
Xv are 0.

Let F be the set of possible realizations of the first step conditioned on event R. From the law of total expectation it
suffices to prove that ∀F ∈ F we have:

E[L | F ∧R] = O(log n)

Let Ĉ denote the set of connected components of the sparse graph constructed by the second stochastic procedure at the
second step. Note that given F , Ĉ is a deterministic set. Similarly let C be the random variable denoting the set of connected
components of G̃t−1. Note that the following is always true: ∀C ∈ C there exists a set C ′ ∈ Ĉ such that C ⊆ C ′. Now, for
all sets C ′ ∈ Ĉ let LC′ be the random variable denoting the number of anchor set nodes in set C ′ after the third step. We
have that maxC′∈Ĉ LC′ ⩾ L. Consequently, it is enough to bound the following quantity:

E[max
C′∈Ĉ

LC′ | F ∧R] = O(log n)

Note that Theorem 39 also applies to the clustering Ĉ. Let C ′ ∈ Ĉ then ∀u ∈ C ′:

E[Xu | F ∧R] ⩽ 2·107 logn/ϵ|C′|

E[LC′ | F ∧R] = E[
∑
u∈C′

Xu | F ∧R] ⩽ 2·107 logn/ϵ

Using Chernoff we can get that:

Pr[LC′ > 2 · 2 · 10
7 log n

ϵ
| F ∧R] ⩽ 1/n10

37

Dynamic Correlation Clustering in Sublinear Update Time

Let T = {∀C ′ ∈ Ĉ : LC′ ⩽ 2 · 2·10
7 logn
ϵ }, we can conclude that:

E[max
C′∈Ĉ

LC′ | F ∧R] = E[max
C′∈Ĉ

LC′ | T ∧ F ∧R] ·Pr[T] +E[max
C′∈Ĉ

LC′ | T ∧ F ∧R] ·Pr[T]

⩽ 2 · 2 · 10
7 log n

ϵ
+ n ·Pr[T]

⩽ 2 · 2 · 10
7 log n

ϵ
+ n · n · 1/n10

= O(polylog n)

where in the first inequality we used the definition of event T and that maxC′∈Ĉ LC′ ⩽ n and in the second inequality used
a union bound on the sets of Ĉ.

We now conclude the proof. Note that while Wt,v only depends on the random choices of our algorithm up until time t−1,
It is independent of those. Consequently:

E [Qt] = E

[∑
v∈V

1{v ∈ It}Wt,v

]
=

∑
v∈V

E [1{v ∈ It}Wt,v]

=
∑
v∈V

E [1{v ∈ It}]E [Wt,v]

⩽
∑
v∈V

E [1{v ∈ It}]O(log n)E [L]

⩽ O(log n)E [L]
∑
v∈V

E [1{v ∈ It}]

⩽ O(log n)E [L]E

[∑
v∈V

1{v ∈ It}

]
⩽ O(log n)E [L]E [|It|]
⩽ O(polylog n)

where in the last inequality we used Lemma 40.

D. Efficient Clustering Computation from Sparse Solutions

In previous sections we prove that our algorithm computes a series of sparse graphs G̃1, G̃2, . . . , G̃n such that with high
probability:

1. a total update time complexity of Θ(n polylog n) is required; and

2. ∀t, the connected components of G̃t define constant factor approximation correlation clustering for graph Gt.

This section aims to demonstrate how we can compute and output the connected components of any sparse graph G̃t in
Θ(n) time. Note that G̃t contains at most Θ(npolylog n) edges. Consequently, a naive approach of computing connected
components by traversing all edges of G̃t would result in a time complexity of Θ(npolylog n).

It is worth emphasizing that the complexity of the offline algorithm proposed in (Assadi & Wang, 2022) is also
Θ(n polylog n). Therefore, if Θ(npolylog n) time is required just to compute the connected components of G̃t, sim-
ply rerunning the algorithm from (Assadi & Wang, 2022) would be an equivalent solution our algorithm; rendering our
effort in maintaining a sequence of sparse graphs meaningless.

38

Dynamic Correlation Clustering in Sublinear Update Time

Following the notation of the previous sections, let G̃ = (V, Ẽ) be a sparse graph maintained by our algorithm, Φ the set
of anchor nodes and Φv = NG̃(v) ∩ Φ the anchor set nodes which are connected to v in our sparse solution G̃. To ease

notation, we write u ∼ v if and only if u and v belong to the same connected component of G̃.

We will describe a procedure that constructs a function f : V −→ N. f will encode our clustering solution as follows: two
nodes u, v ∈ V are in the same cluster if and only if f(u) = f(v). We then argue that: if ∀u, v ∈ Φ which are in the same
connected of G̃ it holds that NG̃(u)∩NG̃(v) ̸= ∅ then f ’s clustering coincides with the connected components of G̃. Note
that from Appendix B we can use Lemma 36 to prove that the latter property holds with high probability. To ease notation,
We write u ∼ v if and only if u and v belong to

Algorithm 7 ComputeConnectedComponents(G̃)
Initialization: ∀v ∈ V : f(v)←− −1, ID ←− 0, Q←− Φ

while Q ̸= ∅ do
Let u be any node in Q
f(u)←− ID
T ←− {u}
for all v ∈ NG̃(u) do

if f(v) = −1 then
No conflict phase
f(v)←− ID
T ←− T ∪ {v}

else
Resolving conflict phase
for all v′ ∈ T do
f(v′)←− f(v)

end for
break from for loop

end if
end for
ID ←− ID + 1
Q←− Q \ T

end while
for all v ∈ V \ Φ such that f(v) = −1 do

Let u be a node in Φv

f(v)←− f(u)
end for

Lemma 42. If for G̃ and Φ:

1. V =
⋃

v∈Φ

NG̃(v); and

2. ∀u, v ∈ Φ such that u ∼ v, NG̃(u) ∩NG̃(v) ̸= ∅

then f(u) = f(v) if and only if u ∼ v.

Proof. Note that after the while loop is terminated all nodes in Φ are assigned a value different than −1. In addition,
∀v ∈ V \ Φ there exists a node u ∈ Φv such that f(v) = f(u). Thus, it suffices to argue that for any two nodes u, v ∈ Φ:
f(u) = f(v) if and only if u ∼ v. Let ui be the node selected from Q in the beginning of the while’s loop i-th iteration, fi
the f function assignment after the termination of the i-th iteration and Φi all the nodes in u ∈ Φ such that fi(u) ̸= −1.
Note that for any node u if fi(u) ̸= −1 then ∀j > i: fj(u) ̸= −1 and fj(u) = fi(u). Consequently, Φi ⊂ Φi+1,∀i. We
prove by induction the following statements in tandem:

1. if f(ui) = i then ∀j ⩾ i and v ∈ NG̃(u) fj(v) = k; and

39

Dynamic Correlation Clustering in Sublinear Update Time

2. ∀u, v ∈ Φi: fi(u) = fi(v) if and only if u ∼ v.

For i = 1 note that the algorithm updates the f function only in the No conflict phase for all nodes in NG̃(u1) with the
same ID = 1. Thus, both statements hold. For i > 1 we consider two cases:

1. If f is updated only in the No conflict phase then all nodes in NG̃(ui) receive the same ID = i. Since ID = i is first
used in iteration i all nodes that received an ID in previous iterations maintain their previous ID (which is smaller
than i). To conclude this case, we need to argue that ∀u ∈ Φi−1 u ̸∼ ui. Towards a contradiction assume that such
a node exists. Let u ∈ Φi−1 be such that fi−1(u) = j < i and u ∼ ui. By definition, uj is the first node to receive
ID = j and since ∼ is a transitive relation uj ∼ ui. By our inductive hypothesis ∀v ∈ NG̃(uj) fi−1(v) = j and by
the conditions of the current lemma, ∃w ∈ NG̃(uj)∩NG̃(ui). However, this is a contradiction because f would have
been updated also in Resolving conflict phase.

2. If f is updated also in the Resolving conflict phase then we have that fi(ui) = j < i and it suffices to argue that
there exists a node u ∈ Φi−i such that fi−1(u) = j it holds that u ∼ ui. Let v ∈ NG̃(ui) be a node such that
fi−1(v) = j ̸= −1. Note that such a node exists since f is also updated in the Resolving conflict phase. W.l.o.g.
assume that the value of f at v was updated at time j′ ∈ [j, i − 1]. Then, either v ∈ Φi−i or v ∈ NG̃(uj′) where
for uj′ ∈ Φi−1 it holds that fi−1(uj′) = j. In both cases since ∼ is a transitive relation we conclude that a node
u ∈ Φi−i such that fi−1(u) = j and u ∼ ui always exists.

Lemma 43. Algorithm 7 has complexity O(|V |).

Proof. The final for loop has complexity at most Θ(|V |). To bound the complexity of the while loop we simply note that
for every node v its f function value changes at most twice. Consequently, operations of the form “f(·) ←−” are at most
2|V |.

E. Agreement and Heaviness Calculation with O(log n) Sampled Nodes
In this section we design the ProbabilisticAgreement(u, v, ϵ) and Heavy(u, ϵ) procedures.

These two procedure are used to test if two nodes u and v are in ϵ-agreement and if a node u is ϵ-heavy. The idea is that
if we let some slack on how much in agreement and how much heavy a node is then O(polylog n) samples of each node’s
neighborhood are enough to design a ProbabilisticAgreement(u, v, ϵ) procedure that, w.h.p. answers affirmatively if the
two nodes are indeed in 0.1ϵ-agreement and at the same time answers negatively if these two nodes are not in ϵ-agreement.
Consequently, if two nodes are in an ϵ′-agreement for ϵ′ between 0.1ϵ and ϵ then ProbabilisticAgreement(u, v, ϵ) may
answer positively or negatively. We do the same for the Heavy(u, ϵ) procedure.

We start by proving some useful inequalities regarding the neighborhood of two nodes in case they are indeed in ϵ-
agreement and in case they are not. Subsequently we analyze the properties of ProbabilisticAgreement(u, v, ϵ) and finally
we do the same for the Heavy(u, ϵ) procedure.

Algorithm 8 PROBABILISTICAGREEMENT(u, v, ϵ)
Initialization: k = 300 log n/ϵ.
for i = 1 to k do

Draw a random neighbor ri of u and a random neighbor si of v.
Let xi = 1{ri ∈ N(u) \N(v)}, yi = 1{ri ∈ N(v) \N(u)}

end for
if
∑

i xi/k < 0.4ϵ and
∑

i yi/k < 0.4ϵ then
Output “ YES”

else
Output “NO”

end if

40

Dynamic Correlation Clustering in Sublinear Update Time

Algorithm 9 HEAVY(u, ϵ)
Initialization: k = 1200 log n/ϵ.
for i = 1 to k do

Draw a random neighbor vi of u.
Let xi = 1{ProbabilisticAgreement(u, vi, ϵ) = “No”}

end for
if
∑

i xi/k < 1.2ϵ then
Output “ Yes”

else
Output “No”

end if

Proposition 44. Let u, v be two nodes which are in ϵ-agreement then |N(v)|
1−ϵ ⩾ |N(u)|⩾ (1− ϵ)|N(v)|.

Proof. Assume w.l.o.g. that |N(u)|> |N(v)|. Then |N(u)|−|N(v)|⩽ |N(u) \ N(v)|⩽ |N(u)△N(v)|⩽
ϵmax{|N(u)|, |N(v)|}

Proposition 45. Let u, v be two nodes which are in ϵ-agreement then |N(u)\N(v)|
|N(u)| ⩽ 1.1ϵ and |N(v)\N(u)|

|N(v)| ⩽ 1.1ϵ.

Proof. |N(u) \N(v)|⩽ |N(u)△N(v)|⩽ ϵmax{|N(u)|, |N(v)|} ⩽ ϵ |N(u)|
1−ϵ ⩽ 1.1|N(u)| for ϵ small enough.

Proposition 46. Let u, v be two nodes which are not in ϵ-agreement then either |N(u)\N(v)|
|N(u)| ⩾ 0.5ϵ or |N(v)\N(u)|

|N(v)| ⩾ 0.5ϵ.

Proof. Since |N(v) \ N(u)|+|N(u) \ N(v)|= |N(u)△N(v)|⩾ ϵmax{|N(u)|, |N(v)|} then either |N(v) \ N(u)|>
0.5ϵ|N(v)| or |N(u) \N(v)|> 0.5ϵ|N(u)|.

Observation 47. Let u, v be two nodes which share an edge, s, t two nodes chosen uniformly at random from N(u) and
N(v) respectively and Xs = 1{s ∈ N(u) \N(v)}, Xt = 1{s ∈ N(v) \N(u)}. We have the following:

1. If u, v are in agreement then Pr[Xs = 1] ⩽ 1.1ϵ and Pr[Xt = 1] ⩽ 1.1ϵ.

2. If u, v are not in agreement then either Pr[Xs = 1] ⩾ 0.5ϵ or Pr[Xt = 1] ⩾ 0.5ϵ.

Theorem 48. (Chernoff bound) Let X1, X2, . . . , Xk be k i.i.d. random variables in [0, 1]. Let X =
∑

i Xi/k. Then:

1. For any δ ∈ [0, 1] and U ⩾ E[X] we have

Pr[X ⩾ (1 + δ)U] ⩽ exp
(
−δ2Uk/3

)
2. For any δ > 0 and U ⩽ E[X] we have

Pr[X ⩽ (1− δ)U] ⩽ exp
(
−δ2Uk/2

)
Lemma 49. If Algorithm 8 outputs “YES” then u, v are in ϵ-agreement with probability greater than 1− 1/n3.

Proof. We proceed by upper bounding the probability that the algorithm outputs “YES” and u, v are not in agreement.
Since u, v are not in agreement by observation 47 we have that either E[

∑
i Xi/k] > 0.5ϵ or E[

∑
i Yi/k] > 0.5ϵ. W.l.o.g.

assume that E[
∑

i Xi/k] > 0.5ϵ. By using the second inequality of the Chernoff bound with U = 0.5ϵ and δ = 0.2. We
have

Pr[
∑
i

Xi/k < (1− δ)U] ⩽ exp
(
−0.22 · 0.5ϵ · 300 log n/ϵ · 0.5

)
= exp(−3 · log n) = 1

n3

Lemma 50. If u, v are in 0.1ϵ-agreement then Algorithm 8 outputs “YES” with probability greater than 1− 1/n3.

41

Dynamic Correlation Clustering in Sublinear Update Time

Proof. We will upper bound the probability that u, v are in 0.1ϵ-agreement and the algorithm outputs “NO”. Note that
since u, v are in 0.1ϵ-agreement by observation 47 we have that E[

∑
i Xi/k] < 1.1 · 0.1ϵ = 0.11ϵ and E[

∑
i Yi/k] ⩽

1.1 · 0.1ϵ = 0.11ϵ. The algorithm outputs “NO” if either
∑

i Xi/k ⩾ 0.4ϵ or
∑

i Yi/k ⩾ 0.4ϵ. We bound the probability
of the first event using the first inequality of the Chernoff bound with U = 0.4ϵ and δ = 2 (> 0.4/0.11− 1). We have

Pr[
∑
i

Xi/k ⩾ (1 + δ)U] ⩽ exp
(
−22 · 0.11ϵ · 300 log n/ϵ · 0.334

)
< exp(−44 · log n) = 1/n44

Overall the probability that the algorithm outputs “NO” by the union bound is upper bounded by 1/n44+1/n44 < 1/n3

Lemma 51. Let u be a node and v a random neighbor of u. Let Xv = 1{ProbabilisticAgreement(u, v, ϵ) = “No”}. We
have the following:

1. If u is in 0.1ϵ-agreement with a (1− ϵ)-fraction of its neighborhood then Pr[Xu = 1] ⩽ 1.1ϵ.

2. If u is not in ϵ-agreement with a ϵ-fraction of its neighborhood then Pr[Xu = 1] > 3ϵ.

Proof. Let Auv be the event that u and v are in 0.1ϵ-agreement and Buv be the event that u and v are not in ϵ-agreement.
For (1) we have:

Pr[Xu = 1] = Pr[Xu = 1 | Auv] ·Pr[Auv] +Pr[Xu = 1 | Ãuv] ·Pr[Ãuv] ⩽ 1/n3 · 1 + 1 · ϵ < 1.1ϵ

and for (2) we have that:

Pr[Xu = 1] = Pr[Xu = 1 | Buv] ·Pr[Buv] +Pr[Xu = 1 | B̃uv] ·Pr[B̃uv] ⩾ (1− 1/n3) · 1 + 1 · (1− ϵ) > 3ϵ

Lemma 52. If u is in 0.1ϵ-agreement with at least a (1− ϵ)-fraction of its neighborhood, then Algorithm 9 outputs “Yes”,
i.e., that the node is heavy, with probability greater than 1− 1/n3.

Proof. We will upper bound the probability that Algorithm 9 outputs “No”. Note that from lemma 51 E[
∑

i Xi/k] > 1.1ϵ.
By using the first inequality of the Chernoff bound with U = 1.1ϵ and δ = 1/11. We have:

Pr[
∑
i

Xi/k ⩾ (1 + δ)U] ⩽ exp
(
−1/112 · 1.1ϵ · 1200 log n/ϵ · 1/3

)
< exp(−3.63 · log n) < 1/n3

Lemma 53. If u is not in ϵ-agreement with at least a ϵ-fraction of its neighborhood, then Algorithm 9 outputs “No”, i.e.,
that the node is not heavy, with probability greater than 1− 1/n3.

Proof. We will upper bound the probability that Algorithm 9 outputs “Yes”. Note that from lemma 51 E[
∑

i Xi/k] > 3ϵ.
By using the second inequality of the Chernoff bound with U = 3ϵ and δ = 0.6. We have:

Pr[
∑
i

Xi/k ⩽ (1− δ)U] ⩽ exp
(
−0.62 · 3ϵ · 1200 log n/ϵ · 1/2

)
< exp(−648 · log n) < 1/n3

42

Dynamic Correlation Clustering in Sublinear Update Time

F. Final Theorem
We are now ready to prove that the clustering produced by our algorithm for every t is a constant factor approximation to
the optimal correlation clustering solution for graph Gt. To this end note that by Lemma 4 it is enough to argue that with
high probability:

1. all dense enough clusters found by the agreement algorithm on each graph Gt are also identified by our algorithm and
all their nodes are clustered together; and

2. all clusters that are found by our dynamic agreement algorithm are dense enough

For (1) we use Theorem 23 and for (2) we use Theorem 39.

Theorem 6. For each time t the Dynamic Agreement algorithm outputs an O(1)−approximate clustering with probability
at least 1− 5/n.

Proof. Theorem 23 assumes the following event: for all pair of nodes u, v that are in ϵ/1014-agreement and all
nodes u′ that are ϵ/1014-heavy the ProbabilisticAgreement(u, v, ϵ) and Heavy(u′, ϵ) procedures of Appendix E output
“Yes” and Theorem 39 assumes that: for all or all pair of nodes u, v that are not in ϵ-agreement and all nodes u′

that are not ϵ-heavy the ProbabilisticAgreement(u, v, ϵ) and Heavy(u′, ϵ) procedures of Appendix E output “No”. Us-
ing Lemma 49, Lemma 50, Lemma 52 and Lemma 53 we bound the probability that this event does not happen by
n2/n3 + n2/n3 + n/n3 + n/n3 < 4/n. Upper bounding over all times and possible clusters and using Theorem 23
and Theorem 39 we conclude that the probability of the dynamic algorithm to output at each time a O(1)-approximation
is at least:

1− n3/n102 − n3/n102 − 4/n > 1− 5/n

G. Structural Properties of the Agreement Decomposition
Let G be the graph and let C be the clustering produced by AGREEMENTALGORITHM(G). Let u, v be two nodes which
belong to the same non-trivial cluster C of C, then for ϵ small enough the following properties hold, which were shown in
(Cohen-Addad et al., 2022a).

Property 1 |NG(u) ∩ C| ⩾ (1− 3ϵ)|NG(u)|

Property 2 |NG(u) \ C| < 3ϵ|NG(u)|

Property 3 |C| ⩾ (1− 3ϵ)|NG(u)|

Property 4 |NG(u) ∩ C| ⩾ (1− 9ϵ)|C|

Property 5 |C \NG(u)| < 9ϵ|C|

Property 6 |NG(u)| ⩾ (1− 9ϵ)|C|

Property 7 |NG(u) ∩NG(v)| ⩾ (1− 5ϵ)max{|NG(u)|, |NG(v)|}

Property 8 |NG(v)|(1− 5ϵ) ⩽ |NG(u)| ⩽ |NG(v)|
1−5ϵ

Property 9 |C \NG(u)| < 9ϵ|C| < 9ϵ
1−9ϵ |NG(u)|

Property 10 |NG(u) \ C| < 3ϵ|NG(u)| < 3ϵ
1−3ϵ |C|

Property 11 NG(u) ∩NG(v) ̸= ∅

43

Dynamic Correlation Clustering in Sublinear Update Time

H. Additional Experiments
Here we have the experiments for the rest of the datasets presented in Section 5. Moreover, we present the performance of
each dataset/algorithm pair when we restrict the node stream to only additions and we calculate the objective after all nodes
have arrived. The correlation clustering objective value of each algorithm is divided by the performance of SINGLETONS.
Since PIVOT is (on expectation) a 3-approximation we note that the solution achieved by all other algorithms is at most a
multiplicative factor 3 away from the optimum offline solution.

Table 3. Performance on the entire graph when node stream contains only additions

Dataset AGREE-STATIC PIVOT-DYNAMIC SINGLETONS PIVOT

musae-facebook 0.97 1.13 1.00 1.19
email-Enron 0.95 1.08 1.00 1.25
cit-HepTh 1.00 1.20 1.00 1.22
ca-AstroPh 0.99 1.10 1.00 0.98

0 200 400 600 800
Node Arrivals/Deletions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

Cl
us

te
rin

g
Ob

je
ct

iv
es

Cit-HepTh

DYNAMIC-AGREEMENT
SINGLETONS
PIVOT-DYNAMIC

Figure 2. Correlation clustering objective relative to singletons

44

Dynamic Correlation Clustering in Sublinear Update Time

0 100 200 300 400 500 600 700
Node Arrivals/Deletions

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Re
la

tiv
e

Cl
us

te
rin

g
Ob

je
ct

iv
es

musae-facebook
DYNAMIC-AGREEMENT
SINGLETONS
PIVOT-DYNAMIC

Figure 3. Correlation clustering objective relative to singletons

0 200 400 600 800
Node Arrivals/Deletions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Re
la

tiv
e

Cl
us

te
rin

g
Ob

je
ct

iv
es

Email-Enron
DYNAMIC-AGREEMENT
SINGLETONS
PIVOT-DYNAMIC

Figure 4. Correlation clustering objective relative to singletons

45

	Introduction
	Problem Definition and the Database Model of Computation
	Algorithm and Techniques
	The Agreement Algorithm
	Challenges of Dynamic Agreement
	Notify Procedure
	Our Dynamic Algorithm Pseudocode

	Overview of our Analysis
	Overview of the Correctness Proof
	Overview of Running Time Bound

	Experimental Evaluation
	Baselines and Datasets
	Setup and Experimental Details

	Finding Dense Clusters
	All Found Clusters are Dense.
	Runtime Analysis
	Efficient Clustering Computation from Sparse Solutions
	Agreement and Heaviness Calculation with Sampled Nodes
	Final Theorem
	Structural Properties of the Agreement Decomposition
	Additional Experiments

