
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SCALING WITH COLLAPSE: EFFICIENT AND PRE-
DICTABLE TRAINING OF LLM FAMILIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective LLM training relies on consistency, meaning that key quantities—such
as final losses and optimal hyperparameters—scale predictably across model
sizes. Qiu et al. (2025) recently showed that this consistency extends beyond
scalars: whole training loss curves can collapse onto a universal trajectory after
a simple normalization. What remains unclear is whether this phenomenon holds
for LLM families trained under practical scaling recipes, where width, depth,
learning rate, batch size, and weight decay are scaled jointly. We show that it does:
loss curves collapse across scales precisely when optimization hyperparameters
are set optimally for the given data budget, in accordance with recent empirical
scaling laws. Collapse thus emerges as a signature of compute-efficient training.
We demonstrate two applications at scale: (1) deviation-from-collapse provides
a sensitive, early diagnostic of training pathologies, and (2) the predictability of
collapsed curves enables early stopping in large-scale hyperparameter tuning. Fi-
nally, we train a competitive LLM family, Celerity, using these insights, highlight-
ing collapse as an effective tool for developing efficient LLMs.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Llama-2 train loss; TPP & τ vary

Llama-2 Models
7B: 286 TPP, τ=0.07

13B: 154 TPP, τ=0.07

34B: 59 TPP, τ=0.13

70B: 29 TPP, τ=0.13

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Celerity curves collapse; TPP & τ fixed

Celerity Models
300M: 234 TPP, τ=0.05

500M: 234 TPP, τ=0.05

900M: 234 TPP, τ=0.05

1.8B: 234 TPP, τ=0.05

3.9B: 234 TPP, τ=0.05

0.2 0.4 0.6 0.8 1.0

Fraction of training tokens, t̂

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
iff

.
w

it
h

no
rm

al
iz

ed
50

0M
cu

rv
e

Collapse residuals can detect issues

Celerity Models
500M

900M

1.8B (initial)

1.8B (repaired)

Figure 1: Left: Prior LLM families like Llama-2 train at varying tokens-per-parameter (TPP; D/N)
and AdamW timescale τ ; train loss curves do not collapse. Middle: Fixing TPP and setting τ
optimally for that TPP, Celerity loss curves do collapse. Right: Deviations from collapse allow
precise identification (and earlier repair) of numerics issues in large-scale training runs.

1 INTRODUCTION

Scaling up pre-training has emerged as the primary route to improving LLM performance (Brown
et al., 2020; Achiam et al., 2023). Yet once we reach frontier scales, opportunities for direct exper-
imentation disappear (Xiao, 2024). How then can we train effectively at those scales—what size
of model should we use, and how should we set hyperparameters? Encouragingly, recent work
has revealed that several quantities are remarkably predictable as we scale deep learning. These
include model performance as a function of model and dataset size (Hestness et al., 2017; Kaplan
et al., 2020), as well as hyperparameters under maximal update parameterization (µP), which en-
ables optimal base learning rates and initializations to approximately transfer across widths (Yang
et al., 2021). In this paper we build on this trajectory of predictability: we show that, at LLM scale,
training loss curves (TLCs) from different model sizes collapse onto a single universal curve after a
simple normalization—provided models are trained with a particular hyperparameter-scaling recipe.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Qiu et al. (2025) only recently demonstrated this striking regularity in TLCs, showing collapse when
training with µP on small-scale autoregressive tasks. As their validation was limited to small models
trained with vanilla Adam (Kingma & Ba, 2014), without weight decay, they explicitly call for tests
at larger scales with practical scaling ladders that co-scale width, depth, batch size, and weight
decay. Our work addresses this gap, showing that collapse persists in full-scale LLM families.

While modeling LLM loss is an active research topic (Sec. 6), the ability to predict TLCs has great
practical value. For example, human judgment is now required to decide whether training has
recovered from a loss spike—or whether rewinding/restarting is needed (Chowdhery et al., 2022;
Zhang et al., 2022a). Other subjective signals, such as a gradual upward trend (Zhang et al., 2022b),
can also trigger interventions. Yet criteria remain vague: Touvron et al. (2023b) report Llama-
2 TLCs “did not show any sign of saturation,” but how to recognize saturation is unclear. If TLCs
collapse across sizes, practitioners can compare in-progress training to a universal reference, monitor
residuals, and extrapolate final loss from partial trajectories. Teams already rely on TLCs in this way,
often without a principled account of what governs TLC shape; for example, Falcon’s final LR was
chosen by simply continuing the run performing best after warmup (Almazrouei et al., 2023).

In this paper we show that the essential condition for collapse under µP is that the LR schedule,
tokens-per-parameter ratio (TPP), and AdamW timescale τ (Wang & Aitchison, 2024) are held fixed
across model sizes. This reflects a deeper regularity: prior work showed that optimal τ depends only
on TPP (Bergsma et al., 2025a). Thus, scaling across fixed TPP with τ chosen optimally guarantees
collapse, and collapse emerges as a robust marker of compute-efficient and stable pre-training. When
τ is mis-scaled—as in the Llama-2 family (Fig. 1, left)—normalized curves fail to align.

1021 1022 1023

Training Compute FLOPs (C)
52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Celerity-900M

Celerity-1.8B

Celerity-3.9B

OLMo-1B

OLMo-7B

OLMo2-1B

Gemma3-1B

Gemma2-2B

Zamba2-1.2B

Llama-7B
Llama2-7B

CerebrasGPT-6.7B
CerebrasGPT-13B

BTLM-3B

SmolLM2-360M

SmolLM2-1.7B

SmolLM-360M

SmolLM-1.7B

Celerity Fit: 100 (C
2.154E38) 0.097

better

Figure 2: Celerity is at compute-efficiency frontier

We introduce Celerity as the first LLM fam-
ily trained with both optimal τ scaling and
demonstrable TLC collapse (Fig. 1, middle).
Effective parameterization, including tun-
ing and transferring τ , helped Celerity land
on the compute-efficiency frontier for open
models of its scale (Fig. 2). Meanwhile, de-
viations from collapse provided a sensitive
diagnostic of training issues: in our 1.8B
run, a numerical instability became evident
from collapse residuals (Fig. 1, right) well
before the raw TLC showed an upward trend
(Fig. 6, right). Celerity exemplifies scaling
with collapse: efficient, predictable training,
across scales and throughout the run.

In summary, our main contributions are:

• Identifying the key factors influencing TLC shape under µP: the LR schedule, the TPP ratio, and
the AdamW timescale τ , and explaining TLC dependence on these quantities (Sec. 3).

• Demonstrating that when τ is set optimally for a given TPP, TLCs collapse across model scales,
providing a signature of compute-efficient training (Sec. 3).

• Introducing the Celerity family, the first large-scale LLMs trained in a collapse regime (Sec. 4).

• Proposing a simple functional form for normalized TLCs, and showing that fitting this form on
small-scale training runs enables early stopping in large-scale hyperparameter tuning (Sec. 5).

2 BACKGROUND

TPP. The TPP ratio is equal to number of training tokens D divided by the model size N . This sim-
ple quantity plays a surprisingly profound role in compute-efficient LLM training and TLC shape.
Hoffmann et al. (2022) investigated, for a given compute budget C, how to allocate D and N in
order to minimize loss. They found optimal D and N scale roughly equally as C increases, with
the optimal D/N ratio relatively constant at around 20 TPP (Appendix C.1). Replication studies
have found similar results (Besiroglu et al., 2024; Porian et al., 2024), and 20 TPP has emerged as a
rule-of-thumb for compute-optimal training (Dey et al., 2023a; Zhang et al., 2024b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

µP. µP (Yang & Hu, 2020) and related parameterizations for depth (Bordelon et al., 2023; Yang
et al., 2023; Dey et al., 2025) seek to achieve consistent, stable training dynamics as networks
scale up. Moreover, with µP, base hyperparameters can be tuned on a small proxy model and then
transferred to larger scales. Given the width of the proxy model, dp, and target, dt, µP prescribes
scaling factors to apply to the base LR, initial weight variance, and other base HPs.

µP is increasingly used in LLM training (Dey et al., 2023a;b; Sengupta et al., 2023; Shen et al.,
2024; Hu et al., 2024). Moreover, recent work has shown that, when using µP, other important
aspects of training may decouple from model size, including optimal batch size (scaling primarily
in the total number of tokens (Zhang et al., 2024b; Bergsma et al., 2025a)), and optimal AdamW
timescale (scaling primarily in TPP (Bergsma et al., 2025a)).

Supercollapse. Using µP, Qiu et al. (2025) observed that TLCs for different model sizes, despite
varying widely over compute and absolute loss, appear to follow a consistent shape. This motivated
them to affinely rescale the curves to the normalized loss ℓ given by:

ℓ(t̂, N, ω) = (L(t̂ · T ⋆(N), N, ω)− L̂)/(L(T ⋆(N), N, ω)− L̂) (1)

where ω is the random seed, t̂ is the fraction of training completed (what Qiu et al. (2025) refer to
as normalized compute), N is the number of model parameters, and T ⋆(N) is the corresponding
compute-optimal number of training steps, estimated from a power law fit. L̂ is an offset, which
they subsequently set to the estimated irreducible loss of their power law.

Training compute-optimally under µP (on small-scale autoregressive tasks, e.g., predicting chess
moves), Qiu et al. (2025) showed TLCs collapse under this normalization—indeed, they su-
percollapse, meaning they differ by less than the noise from inter-run variation. They further show
that collapse arises naturally in constant-learning-rate models where loss obeys typical neural power
laws, while extending the theory to arbitrary LR schedules via a theoretical model of quadratic loss.

The AdamW EMA and its timescale. AdamW updates at step t can be expressed in terms of
learning rate η and weight decay λ as: θt = (1 − ηλ)θt−1 − η m̂t√

v̂t+ϵ
, where m̂t and v̂t are bias-

corrected EMAs of gradients and squared gradients, respectively (Kingma & Ba, 2014). Wang &
Aitchison (2024) observed that AdamW parameters θt can also be viewed as an EMA—of weight
updates. That is, the standard EMA form yt = (1− α)yt−1 + αxt matches AdamW when yt = θt,
α = ηλ, and xt = − 1

λ
m̂t√
v̂t+ϵ

. The timescale 1/α = 1/ηλ represents the approximate number of
iterations over which updates are averaged. When expressed in epochs as τepoch = 1/(αM), where
M is the number of iterations per epoch, Wang & Aitchison (2024) found the optimal τepoch (swept
by varying λ) remains stable under model and dataset scaling on image tasks.

Since LLM pre-training typically uses a single epoch, we follow Bergsma et al. (2025a) in defining a
normalized timescale τ = τiter/T , where T is the total number of optimization steps. As T = D/B
(total tokens/batch size):

τ = 1/(ηλT) = B/(ηλD). (2)
In contrast with the results in Wang & Aitchison (2024), Bergsma et al. (2025a) did not find optimal
τ to remain stable in LLM training, but instead to decrease as a (scale-invariant) power law in TPP.

3 WHAT FACTORS MODULATE TRAINING CURVE SHAPE?

Experimental setup. We use a GPT2-like LLM (Radford et al., 2019), with ALiBi embed-
dings (Press et al., 2022) and SwiGLU (Shazeer, 2020). We train on SlimPajama (Soboleva et al.,
2023). Models are trained with AdamW and µP. We use a linear decay-to-zero LR schedule (with
warmup over the first 10% of steps), context length of 2048, and the GPT2 vocabulary. Full archi-
tecture and tuning details are in Appendix B.1.

We plot ℓ vs. training fraction t̂ = t/T = tB/D, with step count t, total steps T , batch size B,
and dataset size D. To reduce noise in small-B settings, we post hoc aggregate losses ℓ(t̂) using a
moving-average filter over a window of 100 steps, smoothing curves without altering the underlying
trajectory. We also consistently found simply dividing by the final training loss (i.e., L̂ = 0 in
Eq. (1)) resulted in optimal alignment across scales, so use this for all curves.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

B varies η=1.62e-02 λ=0.1

B (τ)

126 (0.026)

252 (0.053)

504 (0.105)

1008 (0.210)

2016 (0.421)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

B=504 η varies λ=0.1

η (τ)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

6.48e-02 (0.026)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

B=504 η=1.62e-02 λ varies

λ (τ)

0.025 (0.421)

0.05 (0.210)

0.1 (0.105)

0.2 (0.053)

0.4 (0.026)

Figure 3: Timescale τ modulates TLC shape (610M, 80TPP): Sweeping η (left), λ (middle), or B
(right) produces matching variations in normalized TLCs when τ varies identically.

Finding: τ modulates TLC shape. Fig. 3 shows normalized TLCs for 610M models trained to
80 TPP, sweeping either learning rate η, weight decay λ, or batch size B in each subplot. Across
hyperparameters, TLCs with matching τ exhibit very similar shapes, reflecting consistent timescale
control. Similar patterns hold across other scales and dataset sizes. Generally, as τ increases, TLCs
drop more early and less later. This is also a function of the LR schedule: when we switch to using
a Constant LR, there is no final drop, lower-τ TLCs are lower throughout (appendix Fig. 10).

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Effect of TPP: 111M, τ=0.021

TPP
20

80

320

1280

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Effect of TPP: 610M, τ=0.105

TPP
20

80

320

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Curves align when {TPP, τ} ≈ const.

N
111M, τ=0.33

266M, τ=0.27

610M, τ=0.21

1.7B, τ=0.30

3.3B, τ=0.31

Figure 4: TPP modulates TLC shape. Fixing τ for 111M (left) & 610M (middle) while increasing
TPP, curves shift down. When τ ≈ const. and TPP also fixed (at 20), curves roughly collapse (right).

Finding: TPP modulates TLC shape. We now fix τ and test increasing TPP, finding TLCs drop
earlier and flatten for longer (Fig. 4, left, middle; see also Llama-2 for τ = 0.07 and τ = 0.13 in
Fig. 1, left). Intuitively, relative to length of training, higher TPP drops loss more at the beginning
and then obtains diminishing returns later on. In Fig. 4, right, TLC shape is quite similar across
model scales at the same TPP (when τ is roughly equal), showing TPP’s shaping effect is scale-
invariant (scaling from 111M to 3.3B represents a 1000× increase in training FLOPs).

Explaining effect of τ . In Appendix B.3, we model local training dynamics with a noisy quadratic
model: loss is locally quadratic in θ, and the update signal is zero-mean white noise passed through
AdamW, which acts as an EMA with smoothing α = ηλ and normalized timescale τ = 1/(αT).
Intuitively, τ controls an implicit batching over time: EMA coefficients effectively average over
∼ τT recent updates—small τ gives a short memory (emphasizing recent gradients), large τ a long
memory. Under a constant LR, the expected loss at training fraction t̂ is (appendix Eq. (15)):

E[L(t̂)] =
hσ2

x

4 τ

(
1− e−2t̂/τ

)
+

h

2
e−2t̂/τ E[θ(0)2], (3)

The first term is a variance floor ∝ 1/τ approached as 1−e−2t̂/τ ; the second is a bias term decaying
e−2t̂/τ . Thus smaller τ averages fewer steps (fast bias reduction, higher variance floor), larger τ av-
erages more (slower start, lower floor), matching the fast-then-flatten shape under constant LR. With
LR decay, however, αt = ηtλ decreases over training, so instantaneous timescale τt = 1/(ηtλT)
increases. Small-τ runs still descend quickly early, then gain extra late variance suppression as τt
grows, producing a steeper end-of-training drop (e.g., Fig. 10: drop grows with LR decay).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Scale invariance. Normalizing by final loss removes the curvature factor h (Appendix B.3). Pro-
vided the residual bias at end-of-training is negligible relative to the noise floor, the normalized TLC
depends only on τ and t̂. Thus, at matched τ , normalized TLCs collapse across scales.

Explaining effect of TPP. TPP affects TLCs via power laws. With a constant LR, every step is the
endpoint of a shorter run, trained to t̂ · TPP. Qiu et al. (2025) note L(t̂) therefore follows the same
power law as final loss of a run fully trained to that effective budget. In Appendix B.2, we show
that when such power laws are normalized by the projected loss at total TPP, model and dataset size
cancel out, and ℓ(t̂) depends only on t̂ and total TPP. Higher-TPP curves analytically decay faster
and level off sooner. LR schedules deform the TLCs, but deformation is also scale invariant given
consistent curvature of the loss landscape across model sizes under µP (Noci et al., 2024).

Key takeaway 1: TLC shapes are governed by three normalized controls: AdamW timescale τ
(bias–variance trade-off), TPP ratio (sets power-law decay rate), and LR schedule (phases bias
vs. variance reduction). When these align, TLCs collapse across scales.

4 CELERITY: A COMPUTE-EFFICIENT MODEL FAMILY WITH COLLAPSE

We have established that collapse arises when τ and TPP are held fixed across model sizes. Mean-
while, prior work has shown optimal τ to depend only on TPP (Bergsma et al., 2025a). Here, we
introduce a model family, Celerity, trained at fixed TPP and with τ chosen optimally for that TPP,
i.e., a regime where collapse emerges naturally as a consequence of good training.

Compute vs. parameter efficiency. A key question for Celerity is which TPP to use: ≈ 20 is
compute-optimal (Sec. 2), while higher TPP means greater parameter efficiency (fewer parameters
to obtain same loss). For small inference-ready models, parameter efficiency is paramount, but such
models are usually distilled (Tunstall et al., 2023; Wang et al., 2025) rather than high-TPP pre-
trained. Our main interest is developing pre-training strategies for very large models. As models
scale, the relative importance of compute-efficiency increases—indeed, public families often have
declining TPP as size increases (Touvron et al., 2023a; Biderman et al., 2023).

0 1 2 3

Compression: Fraction of Nopt (kN)

0

2

4

6

8

C
os

t:
E

xt
ra

co
m

pu
te

(C
/C

o
p

t)

TPP=234
(kN=0.38, C/Copt=1.67)

TPP=20
(kN=1.0, C/Copt=1.0)

234 TPP: high compression/low cost

101

102

103

TPP:
D/N

better

Figure 5: Expected iso-loss compute
vs. compress trade-off.

Yet even for the largest models, parameter efficiency re-
mains valuable, e.g., when generating distillation logits or
synthetic data. To choose Celerity’s TPP, we analyze this
trade-off: Appendix C.1 derives an expression for the extra
compute required to compress a model to a fraction of the
compute-optimal size, assuming power law fits from prior
work. Fig. 5 plots the trade-off, where a TPP ratio of 234
is estimated to achieve a 62% reduction in parameters with
only a 67% increase in total FLOPs (relative to 20 TPP).
This is a responsible balance point, near what has been
called the critical model size—the point where further in-
creasing compute obtains massively-diminishing returns in
parameter efficiency (De Vries, 2023) (e.g., doubling our
FLOPs, to 3.34× compute-optimal, reduces N by only a
further ≈ 11%).

Even if the ultimate goal is a “herd” of models at varying TPP, such as Llama-2 in Fig. 1, left, there
are advantages to training different “bands” within the herd, e.g., 7B, 13B, 34B, 70B all at 29 TPP:

• Tuning: you can fine-tune τ at a smaller scale and zero-shot transfer to larger models.

• Diagnostics: Because TLCs collapse, deviations provide an early warning of training issues.

• Cost: Fixed-TPP bands are cheap (e.g., 10× lower N → 10× smaller D → 100× less compute).

Philosophy. Celerity aims to advance general LLM capabilities using public pre-training corpora
and fully-open, consistent methods—rather than targeting specific benchmarks. In contrast, the
majority of LLMs now anneal on training subsets of downstream benchmarks (Dubey et al., 2024;
Achiam et al., 2023), or inject special high-quality math (OLMo et al., 2024), code (Zhang et al.,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

2024a), or instruction (Hu et al., 2024) data during a late-stage mid-training process. Since these
practices make evaluation problematic (Dominguez-Olmedo et al., 2024), Celerity can serve as a
comparison for models trained without (or prior to) applying such techniques.

Table 1: Architecture of Celerity

Celerity: 300M 500M 900M 1.8B 3.9B

Hidden Dim 640 896 1152 1536 2048
Num Heads 10 14 9 12 16
Head Size 64 64 128 128 128
Layers 13 17 23 30 40

Batch Size 176 240 336 464 672

Vocabulary Llama-3 (size 128256)
Embeddings ALiBi, Untied
Seq Length 8192

Non-linearity Squared ReLU
FFN Mult 8×
Norm Type Pre-Layer Normalization, ϵ = 10−5

LR Schedule Peak: 0.15, linear decay-to-zero
LR warmup min(10% of total tokens, 375M tokens)

Experimental details. Celerity pre-
trains in bands of 20, 80, and 234 TPP,
each spanning 300M–3.9B models (Ta-
ble 1); see Appendix C.2 for further de-
tails. Key enablers of Celerity’s reliable,
efficient training include:

• Data: emphasizing (open) educa-
tional, math, and coding data through-
out training (appendix Table 5); this
outperformed training on the general
SlimPajama dataset (Table 6).

• Parameterization: Using CompleteP,
which enables hyperparameter trans-
fer over width and depth, was more
efficient/reliable than µP (Fig. 15).

• Optimization: LR, τ , batch size tuned
small, transferred via scaling rules.

Evaluation results. Appendix Table 9 provides full downstream evaluation results for Celerity and
other public models tested on seven common downstream tasks. Fig. 2 shows that Celerity models
form the accuracy/compute Pareto frontier up to our largest training budget. Against BTLM (Dey
et al., 2023b)—trained before task-specific data annealing became standard—Celerity achieves com-
parable accuracy with 75% fewer training FLOPs. Extrapolation via a fitted power law in compute
(dashed line in plot) suggests smooth scaling and continued competitiveness. For comparison with
distilled models, we count only student FLOPs in Fig. 2. Including teacher FLOPs (forward passes),
or the cost of teacher training, strengthens Celerity further (appendix Fig. 16).

In terms of parameter efficiency, Celerity is weaker than high-TPP families (Figs. 19 and 20), mean-
ing such models save FLOPs at inference. However, beyond the importance of studying compute
efficiency for hyper-scale training, there is strong motivation to train and study compute-efficient
smaller models: growing evidence suggests some models may be counter-productively (even catas-
trophically) overtrained, making them harder to fine-tune (Springer et al., 2025) and quantize (Ku-
mar et al., 2024). Compute-efficient alternatives therefore serve both as a principled baseline for
understanding scaling and as a practical fallback when high-TPP models prove brittle.

Collapse results. In Sec. 3, we normalized training loss curves by dividing by the final loss value,
L(T) (Eq. (1)). To use collapse as a diagnostic during training, we need a way to normalize when
L(T) is still unknown. We explored two strategies and use early-align in our experiments:

• Estimate: extrapolate L(T) from a power law fit at lower scales.

• Early-align: choose L(T) so ℓ(t) best aligns with the smallest-scale curve over 25-50% portion.

Fig. 6 shows normalized curves. Collapse is tight at 80 TPP (middle). At 20 TPP (left), we see small
early deviations, which we attribute to differing LR warmup proportions (Table 1). At 234 TPP,
divergences appear late in training for larger models (Fig. 1, middle). Investigating, we find loss
improves disproportionately on training data, while held-out data remains aligned with projections.

Collapse for monitoring. Fig. 6 (right) shows the unnormalized TLC for our original 1.8B, 234
TPP run. Smoothing helps reveal a sudden rise in training loss, but only after 90% of training.
Without a collapse reference, it would be impossible to see that problems began much earlier. By
comparing against the 500M TLC reference (Fig. 1, right), we pinpoint divergence starting near
60%. Knowing this timing was crucial: we did not waste effort investigating late-stage data redun-
dancy, and instead realized the problem coincided with a job restart under a new compute allocation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Celerity train loss collapse: 20 TPP

N (τ=0.175)

300M

500M

900M

1.8B

3.9B

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Celerity train loss collapse: 80 TPP

N (τ=0.087)

300M

500M

900M

1.8B

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.0

2.2

2.4

2.6

2.8

3.0

T
ra

in
in

g
lo

ss
(u

nn
or

m
al

iz
ed

)

1.8B (initial) curve with apparent blip

N (234 TPP, τ=0.051)

1.8B (initial)

1.8B (initial, unsmoothed)

1.8B (repaired)

Figure 6: Collapse in Celerity models. Celerity 20 TPP (left) and 80 TPP (middle) models exhibit
collapse. Right: smoothing helps detect blip in loss near the end, but divergence can be detected
much earlier using collapse residuals (Fig. 1, right).

The collapse reference was also essential for debugging: by running ablations with different batch
sizes and measuring divergence from the reference, we confirmed the anomaly arose from a numer-
ical issue in a loss kernel triggered only at specific microbatch sizes. After fixing the kernel and
restarting from before the divergence, training tracked the reference TLC closely (Fig. 1).

Key takeaway 2: Celerity trains models in fixed-TPP bands with common optimal τ . This yields
collapse across scales, enables principled tuning & diagnostics, and places the 234-TPP band at
the compute-accuracy frontier, while saving ≈ 62% of parameters vs. iso-loss compute-optimal.

5 COLLAPSE ENABLES EARLY STOPPING IN HYPERPARAMETER TUNING

Training to completion is expensive. If normalized TLCs behave predictably, can we stop earlier
and still recover the final loss? We show collapse enables principled early stopping in tuning, and
introduce a predictive model—fit at small scales, and re-used to extrapolate large-scale TLCs.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.4

2.6

2.8

3.0

3.2

3.4

3.6

T
ra

in
in

g
lo

ss
(u

nn
or

m
al

iz
ed

)

1.7B, 20 TPP: sweeping B, λ = 0.1

B
126

252

504

1008

2016

4032

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

2.4

2.6

2.8

3.0

3.2

3.4

3.6

T
ra

in
in

g
lo

ss
(u

nn
or

m
al

iz
ed

)

1.7B, 20 TPP: sweeping B, τ=0.15

B
126

252

504

1008

2016

4032

Figure 7: Predictability of batch size sweeps. Left: Fixing weight decay λ in B sweeps (standard
practice) makes final loss hard to predict. Right: Fixing τ instead (by adjusting λ), normalized TLCs
maintain ordering, enabling early stopping.

Role of τ in tuning. Recent work tunes learning rate η and batch size B at smaller scales and
extrapolates via power laws (Hu et al., 2024; Bi et al., 2024; Porian et al., 2024). These studies
typically fix weight decay λ, which unintentionally varies τ—and hence TLC shape. As Fig. 7 (left)
shows, when τ varies, mid-training loss is a poor predictor of final outcomes. In contrast, when τ is
fixed during tuning (by adjusting λ), the ordering of curves is preserved throughout training (right);
runs can be stopped early (e.g., at 25%) while still reliably identifying the best batch size.

There are, however, cases where τ must vary. For example, Bergsma et al. (2025a) found optimal τ
was no longer constant once B > Bcrit, potentially requiring retuning of λ. And beyond identifying

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

which setting wins, practitioners often want actual L(T) estimates in order to weigh trade-offs, e.g.,
greater throughput vs. higher final loss. This motivates a method to predict L(T) from partial runs.

Predicting normalized TLCs. To extrapolate an in-progress TLC L(t), we first predict its nor-
malized loss ℓ(t̂). We then normalize the in-progress-run by choosing the divisor L(T) such that the
observed L(t) best aligns with the prediction; in this way, L(T) emerges as the fitted normalizer.

Due to collapse, one could predict by reusing ℓ̂ from a smaller (fully trained) model with the same τ ,
TPP, and LR schedule (Sec. 3). However, this limits us to cases with matched settings. A parametric
predictive model instead allows interpolation and extrapolation to arbitrary τ and TPP, leverages our
broader TLC dataset, and projects beyond trained regimes (see Appendix D.3 for an example).

We experimented with several functional forms and ablations on our 111M-scale data, focusing on:

ℓ̂(t̂) = ((1 + ϵ1)/(t̂+ ϵ1))
m + b · (η(t̂) + ϵ2)

q (4)

The first term captures power-law improvement in training fraction (Appendix B.2) while the second
term modulates this by the LR schedule η(t̂), reflecting how variance suppression is phased over
training (Appendix B.3). m, b, q, ϵ1 and ϵ2 are fit parameters. We divide ℓ̂(t̂) by its final value so
that ℓ̂(1) = 1.0. Fixing ϵ1 = 0.001 and ϵ2 = 0.1 avoids large swings at ℓ̂(0) and ℓ̂(1).

In practice, we find m can be fixed (we use 0.05). Parameters b and q then vary systematically with
τ and TPP, respectively, which we capture with power laws:

b = bconst · (τ)bexp , q = qconst · (TPP)qexp (5)

Because b and q interact, jointly fitting their parameters would require a O(g4) grid search (with
g the grid resolution). Instead, we alternate: fit (bconst, bexp) with fixed q, then fit (qconst, qexp) with
fixed b, iterating to convergence. This reduces cost to O(g2) while yielding stable fits.

Results: prediction. We fit the b and q power laws on 111M-scale data and evaluate using mean
absolute error (MAE) between ℓ̂ and true ℓ, computed over t̂ ∈ [0.2, 1] (ignoring error around LR
warmup, when initial curves are noisy). We report unweighted mean MAE across all curves.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

T
ra

in
in

g
lo

ss
(u

nn
or

m
al

iz
ed

)

3.3B, 30 TPP: sweeping λ, B = 2016

λ
0.05 0.1 0.2 0.4

≈ 1

t̂m
+ b · η(t̂)q

Figure 8: 3.3B-scale predictions
and true normalized TLCs.

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

pr
ed

ic
te

d
vs

.
tr

ue
b

es
t

(%
)

1.7B, 20 TPP: sweeping λ, B = 8064

Choose randomly

Choose current best

Choose predicted best

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

pr
ed

ic
te

d
vs

.
tr

ue
b

es
t

(%
)

3.3B, 30 TPP: sweeping λ, B = 2016

Choose randomly

Choose current best

Choose predicted best

Figure 9: Early stopping works best with predicted loss:
Tuning λ in 1.7B (left) and 3.3B (right) models.

Results show that predictions are good: MAE is low and actually improves with scale (appendix
Table 10), likely because (1) larger datasets yield smoother TLCs, and (2) fewer extreme hyperpa-
rameter tests at larger scales. Fig. 8 (left) shows an example: predictions trained on 111M-scale
TLCs (1000× fewer FLOPs) closely match observed curves for a 3.3B model.

Estimating b and q as power laws reduces MAE by two-thirds compared to using fixed values (Ta-
ble 11), though error remains ≈2× higher than an oracle fit of b and q per curve. Adjusting for both
τ and TPP is vital; however, fitting b and q jointly on both did not improve further.

Results: tuning. We now test whether optimal LLM settings can be predicted from partial training
runs. At different stopping points in training, we choose a setting as the best, and evaluate the gap
between the chosen setting’s final loss and the true best setting. We compare the following choices:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

1. Random baseline: randomly choose one setting as the best.
2. Current best: choose the setting giving the best result at the stop point.

3. Predicted best: Align partial TLCs with predicted ℓ̂, choose lowest fitted normalizer L(T).

Fig. 9 shows results for λ sweeps at 1.7B/20TPP (left) and 3.3B/30TPP (right). Predicted best
achieves negligible loss gaps when stopping after just 30% and 10% of training, respectively. In
contrast, current best—used in Almazrouei et al. (2023) for LR tuning—succeeds initially at 3.3B
but fails at 1.7B, showing it is not a general solution. Further experiments are in Appendix D.2.

Key takeaway 3: Collapse makes early stops reliable: align each TLC to a small-scale predictor,
infer L(T), and choose the best hyperparameters by 10-30% of training—saving tuning compute.

6 RELATED WORK

Scaling laws and scale-stable dynamics. Neural scaling laws relate loss (generally obtained from
separate training runs) to growth in model, data, and compute sizes, via power laws (Hestness et al.,
2017; Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al., 2022; Caballero et al., 2022;
Alabdulmohsin et al., 2022). To ensure stable training as models scale, parameterizations such as
µP transfer base hyperparameters across sizes, and yield early dynamics that are scale-stable (Yang
et al., 2021; Vyas et al., 2023; Kalra et al., 2023), even super-consistent (in curvature) (Noci et al.,
2024). Observing suboptimal LRs under µP as data scales, recent work has proposed decreasing
the LR as a function of D (Shen et al., 2024; Bjorck et al., 2024); Bergsma et al. (2025a) unify
these techniques as forms of τ adjustment. Qiu et al. (2025) show that, for compute-optimal ladders,
TLCs collapse after normalization. We build on these threads at LLM scale while co-scaling width,
depth, batch size, and weight decay, identifying new controls that govern TLC collapse.

LLM loss-curve prediction. While Kaplan et al. (2020) fit a simple power law to TLCs, recent
papers make loss prediction explicitly LR-dependent (Tissue et al., 2024; Luo et al., 2025; Schaipp
et al., 2025; Qiu et al., 2025; Hong & Wang, 2025). Complementary to these, we take a timescale-
centric view: AdamW implements an EMA over updates, and the normalized timescale τ (jointly set
by LR, weight decay, and batch size) acts to control an implicit batch size, one that trades bias reduc-
tion vs. variance suppression and thereby shapes TLCs. In a noisy-quadratic model (Appendix B.3),
we derive an expression for training loss under a constant LR, and explain why decaying schedules
invert the ordering of TLCs across τ , with deformations remaining scale-invariant once normalized.

Early stopping, HPO, and monitoring. Early-termination and HPO methods extrapolate TLCs
or prune trials (Swersky et al., 2014; Domhan et al., 2015; Jaderberg et al., 2017; Zela et al., 2018;
Li et al., 2018; Choi et al., 2018; Akiba et al., 2019), but typically require many short runs and are
not tailored to LLM pre-training regimes. Our approach leverages collapse itself : fit a small-scale
predictor of normalized TLCs, align in-progress curves to infer L(T), and select winners by 10-30%
of training. Operationally, large-scale reports document spikes and divergences (Chowdhery et al.,
2022; Zhang et al., 2022a; Wortsman et al., 2023; Molybog et al., 2023); we show collapse residuals
provide a quantitative, scale-normalized early-warning signal and a practical aid for debugging.

7 CONCLUSION

At LLM scale, normalized training loss curves collapse across model sizes when three controls
align: the AdamW timescale τ , the tokens-per-parameter ratio (TPP), and the learning-rate schedule.
Empirically, τ (bias–variance smoothing) and TPP (power-law improvement rate) set TLC shape,
while the schedule phases these effects. Fixing TPP and setting τ optimally for that TPP yields
alignment across ∼100M–3.9B in our experiments.

We instantiate this in Celerity: fixed TPP with optimal τ produces tight collapse and competitive
accuracy. Collapse residuals surface issues early, localize their onset, and enable safer restarts. A
simple predictor for normalized TLCs (fit at small scale) supports early stopping in HPO: by 10–
30% of training we can select winners and estimate L(T), saving tuning compute. For $1B runs,
collapse provides a valuable reference trajectory: keeping training on track, every step of the way.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Gre-
gory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. TensorFlow: Large-scale
machine learning on heterogeneous distributed systems, 2016.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Ibrahim M Alabdulmohsin, Behnam Neyshabur, and Xiaohua Zhai. Revisiting neural scaling laws
in language and vision. Advances in Neural Information Processing Systems, 35:22300–22312,
2022.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Leandro von Werra, and Thomas Wolf. SmolLM-
blazingly fast and remarkably powerful. Hugging Face Blog, 16, 2024.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martı́n Blázquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlı́ček, Agustı́n Piqueres Lajarı́n, Vaibhav Srivastav,
et al. SmolLM2: When Smol goes big–data-centric training of a small language model. arXiv
preprint arXiv:2502.02737, 2025.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
et al. The Falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia. Hugging Face, 2024.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Power lines: Scaling laws for weight decay and batch size in LLM pre-training. arXiv preprint
arXiv:2505.13738, 2025a.

Shane Bergsma, Nolan Dey, Gurpreet Gosal, Gavia Gray, Daria Soboleva, and Joel Hestness.
Straight to zero: Why linearly decaying the learning rate to zero works best for LLMs. arXiv
preprint arXiv:2502.15938, 2025b.

Tamay Besiroglu, Ege Erdil, Matthew Barnett, and Josh You. Chinchilla scaling: A replication
attempt. arXiv preprint arXiv:2404.10102, 2024.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. DeepSeek LLM: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language
models across training and scaling, 2023.

Johan Bjorck, Alon Benhaim, Vishrav Chaudhary, Furu Wei, and Xia Song. Scaling optimal LR
across token horizons. arXiv preprint arXiv:2409.19913, 2024.

Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. Depthwise
hyperparameter transfer in residual networks: Dynamics and scaling limit. arXiv preprint
arXiv:2309.16620, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

10

https://huggingface.co/datasets/HuggingFaceTB/cosmopedia

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dan Busbridge, Amitis Shidani, Floris Weers, Jason Ramapuram, Etai Littwin, and Russ Webb.
Distillation scaling laws. arXiv preprint arXiv:2502.08606, 2025.

Ethan Caballero, Kshitij Gupta, Irina Rish, and David Krueger. Broken neural scaling laws. arXiv
preprint arXiv:2210.14891, 2022.

Daeyoung Choi, Hyunghun Cho, and Wonjong Rhee. On the difficulty of DNN hyperparameter op-
timization using learning curve prediction. In TENCON 2018-2018 IEEE Region 10 Conference,
pp. 0651–0656. IEEE, 2018.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
Scaling language modeling with pathways, 2022.

Francesco D’Angelo, Maksym Andriushchenko, Aditya Vardhan Varre, and Nicolas Flammarion.
Why do we need weight decay in modern deep learning? Advances in Neural Information Pro-
cessing Systems, 37:23191–23223, 2024.

Harm De Vries. Go smol or go home. Blog post, 2023.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. Optimal linear decay
learning rate schedules and further refinements. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Xingyu (Alice) Yang, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, and
Ashok Cutkosky. The road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin Tom, and
Joel Hestness. Cerebras-GPT: Open compute-optimal language models trained on the Cerebras
wafer-scale cluster. arXiv preprint arXiv:2304.03208, 2023a.

Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria, Hemant Khachane,
Shaheer Muhammad, Zhiming, Chen, Robert Myers, Jacob Robert Steeves, Natalia Vassilieva,
Marvin Tom, and Joel Hestness. BTLM-3B-8K: 7B parameter performance in a 3B parameter
model, 2023b.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma, Cengiz
Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: CompleteP enables compute-efficient
deep transformers. arXiv preprint arXiv:2505.01618, 2025.

Tobias Domhan, Jost Tobias Springenberg, Frank Hutter, et al. Speeding up automatic hyperparame-
ter optimization of deep neural networks by extrapolation of learning curves. In IJCAI, volume 15,
pp. 3460–8, 2015.

Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task con-
founds evaluation and emergence. arXiv preprint arXiv:2407.07890, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1–39,
2022.

Steven Feng, Shrimai Prabhumoye, Kezhi Kong, Dan Su, Mostofa Patwary, Mohammad Shoeybi,
and Bryan Catanzaro. Maximize your data’s potential: Enhancing LLM accuracy with two-phase
pretraining. arXiv preprint arXiv:2412.15285, 2024.

Sebastian Gabarain. Ultratextbooks-2.0. Hugging Face, 2024.

11

https://www.harmdevries.com/post/model-size-vs-compute-overhead/
https://huggingface.co/datasets/Locutusque/UltraTextbooks-2.0

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation. Zenodo, 2021.

Paolo Glorioso, Quentin Anthony, Yury Tokpanov, Anna Golubeva, Vasudev Shyam, James Whit-
tington, Jonathan Pilault, and Beren Millidge. The Zamba2 suite: Technical report. arXiv preprint
arXiv:2411.15242, 2024.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35, 2022.

Letong Hong and Zhangyang Wang. On the provable separation of scales in maximal update param-
eterization. In Forty-second International Conference on Machine Learning, 2025.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. MiniCPM: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based train-
ing of neural networks. arXiv preprint arXiv:1711.09846, 2017.

Dayal Singh Kalra, Tianyu He, and Maissam Barkeshli. Universal sharpness dynamics in neural
network training: Fixed point analysis, edge of stability, and route to chaos. arXiv preprint
arXiv:2311.02076, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & reducing the need for learning rate
warmup in GPT training. arXiv preprint arXiv:2410.23922, 2024.

Jakub Krajewski, Jan Ludziejewski, Kamil Adamczewski, Maciej Pióro, Michał Krutul, Szymon
Antoniak, Kamil Ciebiera, Krystian Król, Tomasz Odrzygóźdź, Piotr Sankowski, Marek Cy-
gan, and Sebastian Jaszczur. Scaling laws for fine-grained mixture of experts. arXiv preprint
arXiv:2402.07871, 2024.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in Neural Information
Processing Systems, 2, 1989.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband:
A novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research, 18(185):1–52, 2018.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, et al. StarCoder:
may the source be with you!, 2023.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. FineWeb-Edu: the finest
collection of educational content. Hugging Face, 2024.

Jan Ludziejewski, Maciej Pióro, Jakub Krajewski, Maciej Stefaniak, Michał Krutul, Jan Małaśnicki,
Marek Cygan, Piotr Sankowski, Kamil Adamczewski, Piotr Miłoś, et al. Joint MoE scaling laws:
Mixture of experts can be memory efficient. arXiv preprint arXiv:2502.05172, 2025.

Kairong Luo, Haodong Wen, Shengding Hu, Zhenbo Sun, Zhiyuan Liu, Maosong Sun, Kaifeng Lyu,
and Wenguang Chen. A multi-power law for loss curve prediction across learning rate schedules.
arXiv preprint arXiv:2503.12811, 2025.

Sam McCandlish, Jared Kaplan, Dario Amodei, et al. An empirical model of large-batch training.
arXiv preprint arXiv:1812.06162, 2018.

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, et al. A theory on Adam instability in large-
scale machine learning. arXiv preprint arXiv:2304.09871, 2023.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2023.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. OLMoE: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Super consistency of
neural network landscapes and learning rate transfer. Advances in Neural Information Processing
Systems, 37:102696–102743, 2024.

Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bha-
gia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 OLMo 2 Furious. arXiv preprint
arXiv:2501.00656, 2024.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. OpenWebMath: An open
dataset of high-quality mathematical web text, 2023.

Tomer Porian, Mitchell Wortsman, Jenia Jitsev, Ludwig Schmidt, and Yair Carmon. Resolving
discrepancies in compute-optimal scaling of language models. arXiv preprint arXiv:2406.19146,
2024.

Ofir Press, Noah Smith, and Mike Lewis. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022.

13

https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Shikai Qiu, Lechao Xiao, Andrew Gordon Wilson, Jeffrey Pennington, and Atish Agarwala. Scaling
collapse reveals universal dynamics in compute-optimally trained neural networks. arXiv preprint
arXiv:2507.02119, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners, 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training Gopher, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 2020.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse
models. Advances in Neural Information Processing Systems, 34:17555–17566, 2021.

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surpris-
ing agreement between convex optimization theory and learning-rate scheduling for large model
training. arXiv preprint arXiv:2501.18965, 2025.

David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison. Hidden technical debt in
machine learning systems. Advances in neural information processing systems, 28, 2015.

Neha Sengupta, Sunil Kumar Sahu, Bokang Jia, Satheesh Katipomu, Haonan Li, Fajri Koto, William
Marshall, Gurpreet Gosal, Cynthia Liu, Zhiming Chen, et al. Jais and Jais-chat: Arabic-
centric foundation and instruction-tuned open generative large language models. arXiv preprint
arXiv:2308.16149, 2023.

Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adri-
ana Meza Soria, David D Cox, and Rameswar Panda. Power scheduler: A batch size and token
number agnostic learning rate scheduler. arXiv preprint arXiv:2408.13359, 2024.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. Web page, 2023.

Minhak Song, Beomhan Baek, Kwangjun Ahn, and Chulhee Yun. Through the river: Under-
standing the benefit of schedule-free methods for language model training. arXiv preprint
arXiv:2507.09846, 2025.

Jacob Mitchell Springer, Sachin Goyal, Kaiyue Wen, Tanishq Kumar, Xiang Yue, Sadhika Malladi,
Graham Neubig, and Aditi Raghunathan. Overtrained language models are harder to fine-tune.
arXiv preprint arXiv:2503.19206, 2025.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw Bayesian optimization. arXiv
preprint arXiv:1406.3896, 2014.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786, 2025.

14

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Kimi Team. Kimi K2: Open agentic intelligence, 2025. URL https://github.com/
MoonshotAI/Kimi-K2/blob/main/tech_report.pdf.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation
language models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. LLaMA 2: Open foun-
dation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada,
Shengyi Huang, Leandro Von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct
distillation of LM alignment. arXiv preprint arXiv:2310.16944, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, 2017.

Nikhil Vyas, Alexander Atanasov, Blake Bordelon, Depen Morwani, Sabarish Sainathan, and Cen-
giz Pehlevan. Feature-learning networks are consistent across widths at realistic scales. Advances
in Neural Information Processing Systems, 36:1036–1060, 2023.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Mujin Kwun, Itai Shapira, David Brandfonbrener, Lucas
Janson, and Sham Kakade. SOAP: Improving and stabilizing shampoo using adam. arXiv preprint
arXiv:2409.11321, 2024.

Chengyu Wang, Junbing Yan, Yuanhao Yue, and Jun Huang. DistilQwen2.5: Industrial practices of
training distilled open lightweight language models. arXiv preprint arXiv:2504.15027, 2025.

Xi Wang and Laurence Aitchison. How to set AdamW’s weight decay as you scale model and
dataset size. arXiv preprint arXiv:2405.13698, 2024.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall, Percy Liang, and Tengyu Ma. Understanding
warmup-stable-decay learning rates: A river valley loss landscape perspective. arXiv preprint
arXiv:2410.05192, 2024.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

Lechao Xiao. Rethinking conventional wisdom in machine learning: From generalization to scaling.
arXiv preprint arXiv:2409.15156, 2024.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via zero-shot
hyperparameter transfer. In Advances in Neural Information Processing Systems, 2021.

15

https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf
https://github.com/MoonshotAI/Kimi-K2/blob/main/tech_report.pdf

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs VI: Feature learning in
infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023.

Arber Zela, Aaron Klein, Stefan Falkner, and Frank Hutter. Towards automated deep learning:
Efficient joint neural architecture and hyperparameter search. arXiv preprint arXiv:1807.06906,
2018.

Ge Zhang, Scott Qu, Jiaheng Liu, Chenchen Zhang, Chenghua Lin, Chou Leuang Yu, Danny Pan,
Esther Cheng, Jie Liu, Qunshu Lin, et al. MAP-Neo: Highly capable and transparent bilingual
large language model series. arXiv preprint arXiv:2405.19327, 2024a.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl, Chris
Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes? insights
from a noisy quadratic model. Advances in neural information processing systems, 32, 2019.

Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean Fos-
ter, and Sham Kakade. How does critical batch size scale in pre-training? arXiv preprint
arXiv:2410.21676, 2024b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: Open pre-trained transformer language models, 2022a.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, et al. Opt-175 logbook. PDF, 2022b.

16

https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/chronicles/OPT175B_Logbook.pdf

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A LIMITATIONS AND FUTURE DIRECTIONS

Across our initial (Secs. 3 and 5) and Celerity (Sec. 4) setups, we have tested collapse across two
distinct settings of architecture (and context length), dataset (and vocabulary size), and parameteri-
zation. We directly compare TLCs from these two settings in Appendix B.4, while also describing
further experiments in learning-rate schedule (Constant vs. 10× vs. D2Z), Adam β1/β2 parameters,
and dense vs. sparse mixture-of-expert (MoE) architectures. However, in all cases our results are
established under single-epoch pre-training with AdamW. The observed patterns may change un-
der extreme TPP, multi-epoch training, alternate optimizers/schedules, or heavy mid-training data
annealing/curricula.

Optimizers. We hypothesize the optimizer timescale will remain a primary control of TLC shape
for other optimizers with decoupled weight decay (e.g., Sophia (Liu et al., 2023), MuonClip (Team,
2025)) whose update rules can be expressed in EMA form analogous to AdamW (Sec. 2). Likewise,
the τ perspective should also hold when AdamW is applied in alternate weight bases, e.g., as in
SOAP (Vyas et al., 2024), where AdamW is applied in Shampoo’s eigenbasis (Gupta et al., 2018).
Extending a timescale analysis to optimizers without a natural EMA form (e.g., Adagrad (Duchi
et al., 2011), Adafactor (Shazeer & Stern, 2018), SGD variants) is an important direction.

Data curricula. Given the growing use of data curricula and late-stage data annealing in LLM
pre-training, it is valuable to study how shifts in data affect TLC shape across scales. Collapse
may also inform curriculum design by serving as a transfer marker. For example, observing limited
opportunities for experimentation at large scale, Feng et al. (2024) experiment at smaller scales with
downsampled datasets that simulate the repetition occurring at larger sizes (due to limited high-
quality tokens). Consistency in TLC shape could serve as an indicator of whether the downsample
proportions reflect a consistent overfitting/generalization trade-off across scales. Collapse can thus
serve to confirm smaller-scale settings provide suitable proxies for optimizing data mixes and other
settings.

Celerity extensions. Beyond choosing TPP (controlling placement on the cost/compression curve;
Fig. 5), we aim to understand which factors or training strategies shift the curve itself. For faster
inference, we are especially interested in the location of the parameter wall—the minimal capacity
achieving a target loss—and how architecture (dense vs. MoE), routing, and depth/width changes
affect collapse and efficiency.

We intentionally chose dense models for our initial Celerity series because dense models have fewer
confounding factors (e.g., routing strategy, number of experts), making them simpler to study and
build upon. In our own practice, algorithmic innovations are typically validated on dense models
first. However, we are interested in scaling MoE-variants of our Celerity series due to their docu-
mented savings in training compute (Krajewski et al., 2024; Ludziejewski et al., 2025).

Train loss vs. generalization. We focus on training loss because (i) it is FLOPs-free to monitor,
(ii) in LLM pre-training it typically tracks validation under stationary data, and (iii) it surfaces issues
earlier (e.g., duplicated segments), enabling targeted intervention before held-out degradation. Late-
stage annealing and domain shift can decouple train-loss collapse from downstream behavior. Future
work will define validation-collapse and downstream-collapse analogues, and measure train↔val
residual correlations across schedules and data mixtures.

Predictive model and schedules. Both collapse itself, and our predictive model’s ability to accu-
rately forecast normalized TLCs, is impaired by loss spikes and divergences, which move the nor-
malized curve away from the universal trajectory (sometimes temporarily, sometimes for extended
periods). From one perspective, this is a feature not a bug, as the resulting collapse anomalies
provide a useful mechanism for detecting training issues (discussed further below).

Empirically, dividing by the final training loss (L̂=0) aligned curves best; future work will study
why irreducible-loss offsets, as in Qiu et al. (2025), were not beneficial. In terms of our predictive
model, next steps include factoring LR envelope vs. anneal-phase effects (cf. (Tissue et al., 2024;
Luo et al., 2025)), adding uncertainty (e.g., seed bootstraps) and uncertainty-aware early-stopping
policies. Given that in our experiments, the parametric predictor was fit for one specific LR schedule

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Model architectures used in Sec. 3 and Sec. 5.

Model dmodel nlayers dffn dhead

111M 768 10 2048 64
266M 768 32 2048 64
610M 2048 10 5461 64
1.7B 2048 32 5461 64
3.3B 2048 64 5461 64

Table 3: Models, tokens-per-parameter (TPP) and corresponding dataset sizes (in tokens), number
of model variants trained (over LR schedule type, η, λ, B) for models used in Sec. 3 and Sec. 5. In
total, ≈600 TLCs were analyzed.

Model TPP D Variants trained

111M 20 2.19B 74
111M 80 8.76B 50
111M 200 21.9B 28
111M 320 35.0B 40
111M 1280 140.1B 11
266M 20 5.31B 25
266M 80 21.2B 19
266M 320 85.0B 19
266M 1280 339.8B 3
610M 20 12.1B 205
610M 80 48.5B 53
610M 200 121.3B 14
610M 320 194.1B 5
1.7B 20 34.3B 31
1.7B 80 137.2B 11
1.7B 160 274.3B 1
1.7B 320 548.6B 1
3.3B 20 66.5B 2
3.3B 23 76.5B 1
3.3B 30 76.5B 5

(D2Z), we should also revisit whether b(τ), q(TPP), and possibly m vary systematically across
cosine (Loshchilov & Hutter, 2016), inverse square-root (Vaswani et al., 2017; Raffel et al., 2020;
Shen et al., 2024), and warmup-stable-decay (WSD) (Hu et al., 2024; Hägele et al., 2024; Wen et al.,
2024; Song et al., 2025) schedules, and schedule-free schemes (Defazio et al., 2024).

Systems effects and making collapse a practice. Collapse residuals are sensitive to systems
effects—microbatching/accumulation, precision, kernel changes, restarts—which can create arti-
facts or reveal true pathologies. To pay down “hidden technical debt” (Sculley et al., 2015), we
advocate a lightweight collapse monitor: log fraction-of-data in addition to raw step count (easy to
add in TensorBoard (Abadi et al., 2016)), as well as microbatch statistics and restart boundaries; nor-
malize online and alert when residuals exceed policy thresholds. Treating collapse as an operational
invariant reduces configuration fragility and surfaces data/numerics issues early.

B EXPLAINING TLC SHAPE: FURTHER DETAILS

B.1 FULL EXPERIMENTAL DETAILS

In this section, we provide details on the model architecture (Table 2) and training data (Table 3) for
models used in experiments in Sec. 3, Sec. 5, and elsewhere in the appendix. Experimental details
for the Celerity model series are in Appendix C.2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 4: Tuned hyperparameters for µP proxy model for models used in Sec. 3 and Sec. 5.

σW,base 8.67e-02
η̃ 1.62e-02

αinput 9.17
αoutput 1.095

In total, ≈600 TLCs were analyzed for these experiments. All such models were GPT2-style
LLMs (Radford et al., 2019) with ALiBi (Press et al., 2022) embeddings and SwiGLU (Shazeer,
2020) non-linearity. We use the AdamW optimizer. Following standard practice, we do not apply
weight decay or bias to LayerNorm layers. Default AdamW settings are β1 = 0.9, β2 = 0.95, and
ϵ = 1e−8. We report cross-entropy loss. We parameterize with maximal update parameterization,
µP (Yang et al., 2021), with hyperparameters set via proxy tuning, as described below. For a given
TPP, all models have the exact same warmup phase: a linear warmup of the learning rate from 0 to
the maximum value. In all runs, warmup was 10% of the total steps. Learning rate warmup is stan-
dard practice in LLM training (Brown et al., 2020; Rae et al., 2022; Biderman et al., 2023; Dubey
et al., 2024; Kosson et al., 2024).

All models in the main experiments were trained on a Cerebras CS-3 system. 610M-parameter
20TPP models take roughly 6 hours each to train on a single CS-3.

Proxy model hyperparameter tuning. To find optimal µP hyperparameters (HPs), we trained a
39M proxy model using a width dproxy of 256, with 24 layers and head size of 64. We trained this
model on 800M tokens with B=256 sequences and a context length 2048. We randomly sampled
350 configurations of base learning rates, base initialization standard deviation, and embedding and
output logits scaling factors, and used the top-performing values as our tuned HPs (Table 4).

It is worth noting that the LR values reported in this paper and shown in figures are base µP LRs
before µP-adjustment. Calculation of τ (Sec. 2) requires the adjusted LR (i.e., multiplying by
dproxy/dmodel). Also, when LR decay is used, reported LR values always refer to the peak/max
LR of the LR schedule.

B.2 EXPLAINING TLC DEPENDENCE ON TPP

Schedules with decaying LR reach their minimum value only at the final step (after D tokens).
However, for a constant LR schedule, every step of training is equivalent to a complete training run
ending at that step. Qiu et al. (2025) make the observation that therefore the loss at every training
fraction t̂ = t/T ∈ [0, 1] should respect the same fitted scaling law, but for a training budget of t̂ ·D
tokens.

Starting from the Chinchilla functional form L(N,D) = E+AN−α+BD−β , assume that we train
with a constant LR schedule, training until a certain final tokens-per-parameter ratio k = D/N . At
every fraction of training t̂, we will have trained for an intermediate TPP of t̂·k, i.e., using t̂·k·N total
tokens. To arrive at scale invariance, we note that Hoffmann et al. (2022) found their fitted model
and dataset exponents α and β were roughly equal; this rough equality has also been repeatedly
validated in replication studies (Besiroglu et al., 2024; Porian et al., 2024). Using a = α = β, and
focusing on the reducible loss, we obtain a final training loss of:

L(N, k ·N) = AN−a +B(k ·N)−a

= AN−a +Bk−aN−a (6)

Meanwhile, training for training fraction t̂, the predicted loss is
L(N, t̂ · k ·N) = AN−a +Bt̂−ak−aN−a (7)

We now normalize by the final loss to expose the shape of the training loss curve. The resulting
normalized loss L(N, t̂ · k ·N)/L(N, k ·N) is independent of model (and dataset) size, depending
only on the training fraction t̂ and the target TPP ratio k:

ℓ(t̂, k) =
A+Bt̂−ak−a

A+Bk−a
(8)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

In other words, for TLCs using a constant LR schedule, collapse approximately holds under this
normalization. Scaling of ℓ in t̂−a also motivates our own TLC predictive form (Eq. (4)).

As shown in Appendix C.1, a = α = β implies there is a single optimal TPP ratio r, and moreover,
that the Chinchilla coefficients obey B = Ara. For a given training run, suppose that the TPP
at which we train is a multiple of the optimal TPP by the ratio v, e.g., k = v · r. Thus, v = 1
corresponds to optimal TPP, while v > 1 corresponds to overtraining. We can reparameterize the ℓ
equation in terms of v as:

ℓ(t̂, v) =
1 + v−at̂−a

1 + v−a
(9)

This simple equation clarifies how the overtraining factor v influences the shape of the TLCs. When
v is small (undertraining), the power law term dominates, and the TLC gradually decays in t̂. When
v is large (overtraining), the power law only plays a role for smaller t̂, the curve drops quickly and
then flattens to ℓ = 1. Intuitively, for overtrained models, we make gains quickly at the beginning
of training and then obtain diminishing returns as training progresses.

Qiu et al. (2025) further show that for non-uniform LR schedules, the loss curve is deformed by
η(t̂), but, given consistent curvature of the loss landscape across model scales under µP (Noci et al.,
2024), the noise-induced deformation is invariant to model size, and thus collapse still holds.

B.3 EXPLAINING TLC DEPENDENCE ON τ

As noted in Sec. 3, the AdamW timescale τ = 1/(ηλT) controls the effective memory length of the
parameter updates: smaller τ emphasizes recent updates (bias reduction), while larger τ averages
more broadly (variance reduction). In this sense, τ acts as an implicit batch size.

To provide further insight into the role of τ in shaping TLCs, we now derive an analytical expression
for training loss under a constant learning rate, using a simple noisy quadratic model (NQM). While
LLM training minimizes cross-entropy loss, it is common to perform a local quadratic approxima-
tion, i.e., a second-order Taylor expansion in the parameters, with the constant Hessian replaced
by the instantaneous Hessian along the training trajectory (LeCun et al., 1989). Thus conclusions
drawn from quadratic models often generalize to large, realistic networks (Zhang et al., 2019).

Setup. Following Zhang et al. (2019), we assume the optimizer dynamics are invariant to rotation
and translation, allowing us to model, without loss of generality, a locally quadratic loss, separable
across dimensions, and having an optimum at zero. Specifically, we consider a single quadratic
mode with curvature h > 0, optimum at θ⋆ = 0, and parameters θt, where t is the step index:

L(t) = 1
2 h θ

2
t . (10)

With AdamW optimization, θt evolves as an exponential moving average (EMA) of stochastic up-
dates xt with constant smoothing α = ηλ (Sec. 3):

θt = (1− α) θt−1 + αxt−1. (11)

Unrolling the recurrence gives the general form

θt = (1− α)t θ0 +

t−1∑
i=0

(1− α)t−1−i αxi. (12)

The first term is the (decaying) contribution of the initialization, while the second term reflects the
accumulation of stochastic updates.

Continuous (training-fraction) limit. We now switch to fractional time t̂ = t/T and define the
AdamW timescale τ = 1/(αT). Approximating (1 − α)t−1−i ≈ e−α(t−1−i) and interpreting the
sum as a Riemann approximation as T → ∞, we obtain

θ(t̂) ≈ e−t̂/τ θ(0) +
1

τ

∫ t̂

0

e−(t̂−s)/τ x(s) ds. (13)

That is, θ consists of two contributions: a decaying memory of the initialization, and a convolution
of the update signal x(s) with an exponential kernel of timescale τ (an EMA filter over updates).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Noise model. Following Zhang et al. (2019), we model the update signal x(t̂) as preconditioned
white noise: a zero-mean process with constant variance σ2

x and no temporal correlation,

E[x(t̂)] = 0, E
[
x(t̂)x(s)

]
= σ2

x δ(t̂− s).

This idealized assumption isolates the effect of τ by removing structure in gradient noise beyond its
overall scale.

Mean and variance. The EMA filter preserves initialization, which decays exponentially:

E[θ(t̂)] = e−t̂/τ θ(0).

The variance from stochastic updates is

Var[θ(t̂)] =
σ2
x

2τ

(
1− e−2t̂/τ

)
. (14)

Thus the total second moment is

E[θ(t̂)2] = e−2t̂/τ θ(0)2 +
σ2
x

2τ

(
1− e−2t̂/τ

)
.

In words, the initialization bias decays away on timescale τ , while variance from noisy updates
accumulates toward a floor proportional to 1/τ .

Expected loss. The per-mode loss is

L(t̂) = 1
2h θ(t̂)

2.

Taking expectation, and using the decomposition into bias and variance,

E[L(t̂)] = 1
2h

(
e−2t̂/τ θ(0)2 +

σ2
x

2τ

(
1− e−2t̂/τ

))
. (15)

The first term reflects exponentially decaying initialization bias, while the second reflects variance
accumulation to a floor proportional to 1/τ .

If initialization is zero-mean in expectation (E[θ(0)2] = 0), the bias term vanishes and the expression
simplifies to

E[L(t̂)] =
hσ2

x

4τ

(
1− e−2t̂/τ

)
(16)

which captures the characteristic fast-then-flatten TLC shape under a constant learning rate.

Interpretation. Equation 15 decomposes the expected loss into an exponentially decaying bias
term (∝ e−2t̂/τθ(0)2) and a variance term that rises to a floor (∝ 1/τ). This yields two opposing
effects of τ on TLCs:

• Smaller τ suppresses initialization bias more rapidly (via the e−2t̂/τ decay), but accumulates
higher variance, yielding a higher asymptotic loss floor (∝ 1/τ).

• Larger τ reduces variance more effectively, lowering the final loss, but is slower to eliminate bias
from initialization.

When initialization is zero-mean in expectation, the bias term vanishes and the expression reduces
to Eq. 16.

This interpretation matches our empirical findings for normalized Constant-LR TLCs (Fig. 10, left).
The situation is different, however, for LR decay schedules, which we discuss next.

Finally, τ is a normalized timescale and thus invariant to the absolute number of steps. In the NQM,
after normalizing by the final loss L(1) the curvature factor h cancels exactly. The normalized curve
takes the form

L(t̂)

L(1)
=

(
1− e−2t̂/τ

)
+ κ e−2t̂/τ(

1− e−2/τ
)
+ κ e−2/τ

, κ =
2τ E[θ(0)2]

σ2
x

.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

T
ra

in
in

g
lo

ss

Constant LR: ↑ τ → slower drop

η (τ)

1.01e-03 (1.682)

2.02e-03 (0.841)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

10x LR decay: ↑ τ → faster drop

η (τ)

2.02e-03 (0.841)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

LR decay-to-zero: ↑ τ → faster drop

η (τ)

2.02e-03 (0.841)

4.05e-03 (0.421)

8.09e-03 (0.210)

1.62e-02 (0.105)

3.24e-02 (0.053)

6.48e-02 (0.026)

Figure 10: Effect of LR schedule on TLC shape (610M, 80TPP). Left: Constant LR, Middle:
Linear 10× decay, Right: Linear decay-to-zero. Different schedules deform the TLCs in distinct
ways, yet in all cases the AdamW timescale τ governs the bias-variance trade-off. With a Constant
LR, smaller τ accelerates early loss reduction. With D2Z, the effect inverts: smaller τ yields a larger
late-stage drop. Although here τ is varied by changing LR, equivalent effects arise when varying
weight decay or batch size (Fig. 3), confirming τ as a unifying control knob for TLC shape.

Thus, when the initialization contribution is negligible by the end of training (or when the ratio κ is
approximately scale-invariant), the normalized TLC depends only on (τ, t̂), and curves at matched
τ collapse across model sizes. If κ varies across scales, small early deviations can appear (bias-
dominated regime) but typically diminish as e−2t̂/τ decays.

Remark. Qiu et al. (2025) observed collapse without AdamW. Empirically, as λ→0, TLCs approach a limiting
shape—vanilla Adam behaves like AdamW with λ=0 (effectively τ=∞).

Extension to decaying LR schedules. The constant-LR analysis in Eq. 16 shows that τ sets the
trade-off: smaller τ accelerates early bias reduction but saturates at a higher variance-driven floor,
while larger τ reduces variance more slowly but to a lower asymptote. With a decaying LR schedule,
the smoothing αt = ηtλ decreases after warmup, so the instantaneous timescale τt = 1/(ηtλT) in-
creases as training progresses. In this setting, small-τ runs still make rapid early progress (fast bias
reduction), but during the decay phase they gain additional variance suppression as τt lengthens,
often producing a noticeable late-stage drop in loss. By contrast, large-τ runs emphasize variance
reduction throughout, yielding steadier curves without the same end-of-training acceleration. Equiv-
alently, in the EMA view, decay flattens the contribution coefficients ct,i, averaging over more (ear-
lier) updates near the end. Thus LR decay effectively combines the early bias-reducing dynamics of
small τ with the late variance-reducing dynamics of large τ , inverting the TLC ordering observed
under constant LR (Fig. 10).

This analysis aligns with Bergsma et al. (2025b), who attribute the effectiveness of D2Z sched-
ules to balancing early bias reduction with later variance suppression (building on D’Angelo et al.,
2024). Their treatment is primarily conceptual; here we show how the same bias–variance dynamics
manifest directly in TLC shapes and provide a simple analytical form under the NQM.

B.4 ADDITIONAL TLC EXPERIMENTS

Collapse under alternative LR schedules. Fig. 11 shows that normalized TLCs also collapse
under a Constant schedule, a 10× decay schedule, and our decay-to-zero schedule (all with 10%
warmup). At corresponding model sizes, we use the same batch size, peak LR, and weight decay,
so same-size results across schedules differ only in their final LR. Collapse is slightly looser than
in the Celerity runs because the resulting τ is not matched exactly across schedules (see plot an-
notations), but the qualitative agreement is strong. These results are consistent with our analysis in
Appendix B.3 and echo the cross-schedule findings of Qiu et al. (2025).

Collapse across datasets and architectures. TLC shape can in principle depend on task, data,
and architecture (e.g., multi-epoch training on a small corpus can yield faster apparent improvement

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Constant LR: {TPP, τ} ≈ const.

N
111M, τ=0.33

610M, τ=0.42

1.7B, τ=0.30

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

10×-Decay LR: {TPP, τ} ≈ const.

N
111M, τ=0.33

610M, τ=0.42

1.7B, τ=0.30

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Decay-to-zero LR: {TPP, τ} ≈ const.

N
111M, τ=0.33

610M, τ=0.42

1.7B, τ=0.30

Figure 11: Collapse in different LR schedules. Left: Constant LR, Middle: Linear 10× decay,
Right: Linear decay-to-zero. In contrast to Fig. 10, where τ varies, here TPP=20 and τ ≈ 0.3:
curves collapse across scales.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

ni
ng

lo
ss

Collapse across dataset/architecture

Model

111M†, τ=0.166

610M†, τ=0.210

1.7B†, τ=0.149

900M?, τ=0.175

Figure 12: Collapse across
†original, ⋆Celerity setups.
20 TPP.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

tr
ai

ni
ng

lo
ss

Sparse mixture-of-experts (MoE)

Num. experts
1

2

4

8

16

32

Figure 13: Collapse as E
varies in a sparse MoE.
111M, τ = 0.33, 20 TPP.

0.00 0.25 0.50 0.75 1.00

Fraction of training tokens, t̂

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

tr
ai

ni
ng

lo
ss

Varying Adam β1 and β2

β1(β2)

0.0 (0.95)

0.5 (0.95)

0.9 (0.95)

0.9 (0.99)

0.95 (0.99)

0.99 (0.9999)

0.999 (0.9999)

Figure 14: Collapse as
Adam β1 and β2 vary.
610M, τ = 0.21, 20 TPP.

than single-epoch pre-training). We therefore ask: how much does normalized TLC shape change
as we vary parameterization, vocabulary size, architecture, context length, and dataset mix?

As a first probe, we compare Celerity TLCs to our earlier non-Celerity runs, at the same TPP (20)
and similar τ ≈ 0.2, while varying all items above: Celerity uses CompleteP (vs. vanilla µP), a
larger vocabulary, different nonlinearity and FFN multiplier, 4× longer context, and a different data
mixture (Appendices B.1 and C.2). Despite these differences, the TLCs loosely collapse (Fig. 12).
The Celerity 900M model tracks closer to the 610M model than to the 1.7B model, although its τ is
intermediate between these two. Overall, we view this as evidence that the normalized TLC shape
is surprisingly robust when LR schedule, TPP, and τ are held (approximately) fixed.

Collapse in sparse mixture-of-experts (MoE). We next analyze sparse MoE architectures, where
only a subset of parameters are active per token (Lepikhin et al., 2020; Fedus et al., 2022). Starting
from our 111M dense model (Appendix B.1), we replace each FFN with a sparse MoE layer and
vary the number of experts E∈{1, 2, 4, 8, 16, 32}. Tokens are routed to one expert via hash routing
(Roller et al., 2021) so each expert processes a similar token count. Global training tokens and
datasets are identical across E, hence the effective TPP per expert decreases from 20 (dense) to
20/E as E grows. Note also that as the number of experts E increases, and the effective tokens
per expert decrease proportionally, both the expert’s effective batch size B and effective dataset size
D are reduced by a factor of E. Since τ = B/(ηλD), these reductions cancel, leaving the overall
timescale unchanged (for fixed η, λ).

Fig. 13 shows that lower E (higher effective TPP per expert) yields slightly earlier drops and slightly
flatter tails, broadly obeying the TPP effect characterized in Sec. 3. Thus, the observed deformation
is explained by effective TPP rather than differing training dynamics per se.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Collapse across Adam β1 and β2. Finally, we vary (β1, β2) at fixed LR, batch size, and weight
decay (τ = 0.21, 610M model, 20 TPP). The default (0.9, 0.95) gives the lowest absolute loss in this
experiment, but several “standard” settings—(0.9, 0.95), (0.95, 0.99), and even (0.99, 0.9999)—
produce normalized TLCs that collapse (Fig. 14). In contrast, runs with (0.0, 0.95), (0.5, 0.95), and
a noisy instance of (0.9, 0.99) exhibit early loss spikes; when the loss fails to recover promptly,
the curves remain elevated and do not rejoin the main trajectory, breaking collapse (early loss
spikes also distort early collapse for noisy, large-batch-size runs, e.g., Fig. 7). We also observe that
(0.999, 0.9999), which aggregates gradients over a much longer horizon, follows a systematically
slower (but eventually convergent) trajectory—consistent with an enlarged momentum timescale
prioritizing variance reduction over bias, akin to increasing τ .

Overall, aside from extreme momentum settings or instability-induced spikes, setting of (β1, β2)
has limited effect on the shape of normalized TLCs. The AdamW timescale τ remains the dominant
optimization-based control for TLC trajectories.

Key takeaway 4: Normalized TLCs are strikingly robust: they largely collapse across diverse
datasets and architectures, remain predictable under sparse MoE routing (scaling in effective TPP
as theory suggests), and are insensitive to typical Adam β1, β2 settings. Apart from pathological
loss spikes, the dominant factor shaping TLCs is still the AdamW timescale τ .

C CELERITY MODELS: FURTHER DETAILS

C.1 COMPUTE COST AS A FUNCTION OF MODEL COMPRESSION

Starting from a compute-optimal model size, we now derive an expression for the extra compute
required (C/Copt) to compress a model to a smaller (less efficient) size, while maintaining the same
loss. We use the resulting equation to plot the compression vs. cost trade-off in Fig. 5. This analysis
motivated the selection of max TPP in the Celerity model series.

We begin again with the Chinchilla functional form from Hoffmann et al. (2022), giving loss L as a
function of model size N and data size D:

L(N,D) = E +AN−α +BD−β (17)

where E, A, α, B, and β are parameters to be fit on observed training runs.

Hoffmann et al. (2022) asked, for a fixed training compute budget C (in FLOPs), how should we
allocate model size N versus number of training tokens D in order to minimize loss? From Eq. (17),
they derived functions for loss-optimal Nopt(C) and Dopt(C) (constraining L(N,D) by the com-
mon approximation C ≈ 6ND):

Nopt(C) = G

(
C

6

) β
α+β

and Dopt(C) = G−1

(
C

6

) α
α+β

, (18)

where G =
(

αA
βB

) 1
α+β

. Results indicated that Nopt and Dopt scale roughly equally as C increases.
This analysis agreed with their other methods for estimating compute-optimal scaling, and guided
their N and D allocation for training their large-scale Chinchilla model.

Let r be the optimal Dopt(C)/Nopt(C) ratio. If r is roughly independent of C, this implies α ≈ β.
Using a = α = β, we obtain:

r =

(
B

A

) 1
a

, (19)

or equivalently B = Ara.

Replication studies have found α ≈ β ≈ 0.35, and an optimal TPP of around r = 20 (Besiroglu
et al., 2024; Porian et al., 2024) (as noted in Sec. 2).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Now, suppose a = α = β and we obtain a loss of L̂ at the optimal TPP ratio (where Dopt = rNopt):

L̂ = E +AN−α
opt +BD−β

opt

= E +AN−a
opt + (Ara)(rNopt)

−a

= E + 2AN−a
opt (20)

We now wish to train a compressed model with fraction kN of parameters compared to Nopt, but
obtaining the same loss. Let N = kNNopt. If N < Nopt, we will need kD extra tokens compared
to Dopt in order to reach the loss target. Let D = kDDopt. Rather than training at r TPP, we will
train at a higher ratio (kDDopt)/(kNNopt) = (kD/kN)r. From Eq. (17), and following a similar
derivation to De Vries (2023), the estimated loss will be:

L(N,D) = E +A(kNNopt)
−α +B(kDDopt)

−β (21)

Again substituting a = α = β and B = Ara, to obtain the target loss L̂, we set the loss in Eq. (21)
to equal L̂ in Eq. (20), and solve for kD, finding:

kD = (2− kN
−a)

−1
a (22)

The compute cost C of the compressed training will be 6(kNNopt)(kDDopt), from which we can
derive the extra compute ratio compared to Copt = 6NoptDopt:

C/Copt = kNkD

= kN (2− kN
−a)

−1
a (23)

Eq. (23) allows us to vary kN and obtain the corresponding compute overhead. When planning
the Celerity training runs, we assumed r = 20 corresponded to the compute-optimal model size
(following the Chinchilla rule-of-thumb) and we tested different values of a reported in prior work,
using a = 0.35 in Fig. 5.

C.2 CELERITY RECIPE DETAILS

In this section, we provide further details for the techniques that most impacted Celerity’s perfor-
mance and compute efficiency, including parameterization, learning rate and weight decay schedul-
ing, architecture, and dataset construction.

1020 1021 1022

Compute FLOPs (C)

2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

Va
lid

at
io

n
Lo

ss
 (L

)

Celerity L(C)=(C
5.105E29) 0.049

P L(C)=(C
1.729E31) 0.043

CompleteP L(C)=(C
2.069E29) 0.051

Figure 15: Scaling law comparison between CompleteP and µP. µP shows de-tuning. CompleteP
provides compute efficiency and better HP transfer across both model width and depth.

Parameterization. We compare the effect of different parameterizations and their influence on
compute efficiency in Fig. 15. Specifically, we compare µP (Yang et al., 2021), which accounts
for scaling in width, and CompleteP (Dey et al., 2025), which accounts for scaling in both width
and depth. For each parameterization, the hyperparameters (HP), such as learning rate, weight

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

initialization, and multipliers, are tuned at depth 32 and then directly applied to the target model
training. Here we note two observations. One is µP points do not align well on a standard scaling
law. We attribute this to HP de-tuning when transferring HPs from proxy model depth to target
model depth. Such de-tuning is not seen in the scaling laws for CompleteP and Celerity (which uses
CompleteP but a different dataset), where the points align with minimal error on the scaling law.
The second observation is that CompleteP is more compute efficient than µP, which prior work has
explained through the lens of feature learning (Dey et al., 2025). Based on these observations, we
used CompleteP for training the Celerity series, using the proxy model’s tuned HPs across all scales.

Learning Rate and Weight Decay. We chose the linear decay-to-zero (D2Z) learning rate sched-
ule based on its empirical success and conceptual motivations in Bergsma et al. (2025b). In par-
ticular, Bergsma et al. (2025b) showed that as TPP increases beyond compute-optimal 20 TPP, the
relative benefit of D2Z also increases, in a scale-invariant manner. This makes D2Z particularly
appropriate for parameter-efficient training (e.g., Celerity’s 234 TPP model band). All models also
train with linear warmup to the peak LR, over the minimum of 10% of total or 375M tokens.

We tuned τ at a smaller scale and TPP and transferred across TPP using the power law fit from
(Bergsma et al., 2025a). Given learning rate is determined by CompleteP, and batch size is optimized
according to a separate scaling rule (described below), we tuned weight decay in order to obtain the
desired τ setting at each scale.

Batch Size. In early experimentation, the batch sizes were chosen such that they were around the
critical batch size (McCandlish et al., 2018). Later we used the insights from (Bergsma et al., 2025a)
and started following the rule Bopt ∝ D0.5, tuning B at a small scale and then inferring optimal
batch sizes on larger datasets via the power law.

Table 5: Composition of the Celerity pre-training dataset.

Data Subset Percentage (%)

FineWeb-Edu (Lozhkov et al., 2024) 64.75
StarCoder (Li et al., 2023) 10.8
Cosmopedia (Ben Allal et al., 2024) 4.66
SlimPJ Arxiv (Soboleva et al., 2023) 4.21
SlimPJ Book (Soboleva et al., 2023) 3.62
SlimPJ Github (Soboleva et al., 2023) 3.83
SlimPJ StackExchange (Soboleva et al., 2023) 2.67
SlimPJ Wikipedia (Soboleva et al., 2023) 3.16
OpenWebMath (Paster et al., 2023) 1.88
UltraTextBooks-2.0 (Gabarain, 2024) 0.42

Data Selection. Over the course of experiments, we found that adding more refined data, partic-
ularly educational, math, and coding datasets, generally helps the models score higher on common
benchmarks. In Table 5, we break down the datasets used for Celerity model training, including
the proportion assigned to each subset. A large portion of the datasets are focused on educational
materials, math, and coding, while subsets of SlimPajama, a general text dataset, are also used. As
noted in Sec. 4, we do not schedule the data sources, i.e., we do not employ a data curriculum in the
training of Celerity, nor do we include (benchmark) task-specific data in Celerity training.

Comparison in Table 6 shows that the same model configurations trained on a general dataset like
SlimPajama result in worse downstream performance compared to the Celerity data mix. While
dataset optimization was not a focus of Celerity, these results do underscore the importance of
dataset composition in pre-training. This also makes clear why hyperscalers invest a tremendous
amount of work into data preparation, synthesis, filtering, and refinement.

Table 7 summarizes the dataset sizes for all models in the Celerity model series.

Model Architecture. Celerity models use a decoder-only GPT2-style transformer architecture.
Table 1 summarizes the architecture dimensions, hyperparameters, and other details of the Celerity

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 6: Comparison of Celerity models trained on different datasets.

Name Downstream Accuracy (Num Shots)
arc-c arc-e boolq hellaswag piqa siqa winogrande Avg.
(25) (0) (0) (10) (0) (0) (5)

Celerity 300M 27.82 50.63 52.75 37.57 66.21 37.77 52.25 46.43
Celerity 300M SlimPJ 24.32 42.17 61.53 36.04 65.56 37.97 50.99 45.51

Celerity 900M 39.68 64.52 47.92 55.02 72.03 41.97 58.48 54.23
Celerity 900M SlimPJ 30.89 54.67 55.47 53.74 71.00 40.89 57.46 52.02

Table 7: Models, tokens-per-parameter and corresponding dataset sizes (in tokens) for Celerity.

Model TPP D

300M 20 5.4B
300M 80 21.7B
300M 234 63.4B
500M 20 10.1B
500M 80 40.2B
500M 234 117.8B
900M 20 18.1B
900M 80 72.5B
900M 234 212.3B
1.8B 20 36.2B
1.8B 80 144.8B
1.8B 234 424.0B
3.9B 20 77.6B
3.9B 80 310.4B
3.9B 234 909.2B

model family. We trained five Celerity model sizes from scratch with parameter counts roughly
300M, 500M, 900M, 1.8B, and 3.9B. All models are trained under consistent data and optimization
methods, on public datasets, in order to foster open science and fair comparison.

C.3 CELERITY FURTHER RESULTS

In our empirical evaluation of Celerity, we necessarily only compare to model families with open
training details, in particular the total training tokens. For example, we are able to compare to Llama
and Llama-2, but not Llama-3 (Dubey et al., 2024), which did not specify the dataset sizes.

Compute efficiency. Fig. 16 provides further downstream results for Celerity models (and their
fitted extrapolation), in comparison to larger Gemma-2 and Gemma-3 models. The plot shows
how the accuracy vs. FLOPs comparison depends on whether we account for teaching FLOPs (e.g.,
generating logits for student training), or the initial cost of educating the teacher.

Token efficiency. Fig. 17 compares the token efficiency of Celerity to other model families. Given
Celerity was trained in a fixed 234 TPP band, we can fit a power law in D and extrapolate token
efficiency to larger scales.

Generally, larger models should be more token-efficient for the same token budget. Theoretically,
distillation should also offer greater token efficiency—at a given TPP (Busbridge et al., 2025)—but
by training small models to very-high TPP, the distilled models in Fig. 18 train mainly in a regime
of diminishing returns, and so ultimately end up without an advantage over Celerity’s standard next-
token-prediction training.

There are many interesting questions around token efficiency at scale, and indeed token efficiency
may become more critical as frontier models reach the limits of high-quality data (Muennighoff
et al., 2023).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Celerity-900M

Celerity-1.8B

Celerity-3.9B

Celerity Fit
Cst = Cstudent, train

Cst, tf = Cst + Cteacher, forward

Cst, tf, tt = Cst, tf + Cteacher, train

Gemma2-2B

Gemma2-9B
Gemma2-27B

1021 1022 1023 1024

Compute FLOPs (C)

55

60

65

70

75

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Gemma3-1B

Gemma3-4B

Gemma3-12B

Gemma3-27B

Figure 16: Celerity compute efficiency vs. distilled models: Downstream accuracy. Celerity mod-
els perform similarly to distilled Gemma-2/Gemma-3 models, when generously only accounting for
distillation student FLOPs. When considering teacher forward pass FLOPs, Gemma curves shift
away from Pareto frontier (worse), with a further shift if we account for FLOPs to train teacher.

1011 1012 1013

Training Tokens (D)
52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Celerity-900M

Celerity-1.8B

Celerity-3.9B

OLMo-1B

OLMo-7B

OLMo2-1B

Gemma3-1B

Gemma2-2B
Llama-7B Llama2-7B

CerebrasGPT-6.7B
CerebrasGPT-13B

BTLM-3B

SmolLM2-360M

SmolLM2-1.7B

SmolLM-360M

SmolLM-1.7B
Zamba2-1.2B

Celerity Fit: 100 (D
1.188E20) 0.189

Figure 17: Celerity token efficiency: Downstream accuracy. Celerity models are at the Pareto
frontier compared to other model families.

Parameter efficiency. Finally, Figs. 19 and 20 provide the parameter efficiency comparisons for
Celerity. Celerity models are less parameter efficient than models specifically designed for parame-
ter efficiency.

C.4 OPEN MODEL EVALUATION AND FLOP CALCULATION METHODS

All models are obtained from the HuggingFace and evaluated using the Eleuther Eval Harness frame-
work (Gao et al., 2021). The downstream tasks with number of shots are arc-challenge (25), arc-easy
(0), boolq (0), hellaswag (10), piqa (0), siqa (0) and winogrande (5). These tasks are chosen as they
are the most commonly reported downstream benchmarks for pre-trained base models, and are ap-
propriate for Celerity models of the scale that we compare (i.e., tasks where small models perform
above random chance).

For full transparency, our method for counting FLOPs across the different models families is given
in Table 8, while a table of all the raw downstream evaluation scores are in Table 9.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Celerity-900M

Celerity-1.8B

Celerity-3.9B

Gemma2-2B

Gemma2-9B
Gemma2-27B

1011 1012 1013

Tokens (D)

55

60

65

70

75

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Gemma3-1B

Gemma3-4B

Gemma3-12B

Gemma3-27BCelerity Fit
Dstudent, train

Dstudent, train + Dteacher, train

Figure 18: Celerity token efficiency vs. distilled models: Downstream accuracy. Celerity models
are on par with distilled models.

109 1010

Parameters (N)
52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Celerity-900M

Celerity-1.8B

Celerity-3.9B

OLMo-1B

OLMo-7B

OLMo2-1B

Gemma3-1B

Gemma2-2B

CerebrasGPT-6.7B

CerebrasGPT-13B

BTLM-3B

SmolLM2-360M

SmolLM2-1.7B

SmolLM-360M

SmolLM-1.7B

Celerity: 100 (N
5.081E17) 0.189

Figure 19: Celerity parameter efficiency: Downstream accuracy. Celerity models are less param-
eter efficient than models trained at much higher TPP, while better than prior models also aiming for
compute efficiency (Cerebras GPT).

D COLLAPSE ENABLES EARLY STOPPING: FURTHER DETAILS

D.1 PREDICTING NORMALIZED TRAINING LOSS CURVES

This section provides further details regarding the development of the functional form in Eq. (4),
which we use to predict normalized TLCs and, through these, extrapolate in-progress TLCs. Based
on Sec. 3, we know that TLC shape is modulated by LR schedule, TPP, and τ . Prior theoretical
and empirical work has mostly focused on how loss proceeds as a function of training steps and LR
schedule (Defazio et al., 2023; Tissue et al., 2024; Schaipp et al., 2025; Luo et al., 2025; Qiu et al.,
2025). To incorporate these factors into a single functional form, we take the following approach:

• Use a functional form that accounts for training fraction and LR schedule

• Make the parameters of this functional form depend on TPP and τ

This led to Eq. (4). Our initial aim here is not to develop the best possible TLC predictor, but to
obtain a simple, effective, and interpretable method for extrapolating TLCs, allowing us to test the
value of this extrapolation for early stopping in hyperparameter tuning.

We conducted a variety of preliminary experiments at 111M-scale, using the same data as in Sec. 3
(with details in Appendix B.1). As an input to Eq. (4), the LR schedule is normalized to be at 1.0 at
its peak. It’s also interpreted over training fraction, so from 0.0 to 1.0. Experiments in this data only
use fits for linear decay-to-zero schedules. To get an initial sense of how the parameters in Eq. (4)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Celerity: 100 (N
5.081E17) 0.189

SmolLM2: 100 (N
1.739E19) 0.153

SmolLM: 100 (N
6.197E21) 0.125

Gemma2: 100 (N
2.674E18) 0.164

Gemma3: 100 (N
1.039E17) 0.199

109 1010 1011

Parameters (N)
50

55

60

65

70

75

80

Av
er

ag
e

Ac
cu

ra
cy

 (%
)

Celerity-900M

Celerity-1.8B

Celerity-3.9B

Gemma3-1B

Gemma3-4B

Gemma3-12B
Gemma3-27B

Gemma2-2B

Gemma2-9B
Gemma2-27B

SmolLM2-360M

SmolLM2-1.7B

SmolLM-360M

SmolLM-1.7B

Figure 20: Celerity parameter efficiency scaling comparison: Downstream accuracy. Preliminary
accuracy vs. model size power law comparison between Gemma (distillation), SmolLM (refined
data), and Celerity models (standard pre-training). Distilled model families have the largest scaling
exponent, suggesting distillation may scale better in parameters.

Table 8: Forward FLOPs calculation for self-attention block and Mamba-2 block. This table only
lists operations that are not covered 6 ∗ nparams ∗ ntokens, which should take care of all operations
that involves a matmul with a weight matrix. For Zamba2, the training FLOPs can be calculated as
6∗nparams ∗ntokens−2∗V ∗Dattn ∗ntokens+3∗Lattn ∗(L∗Cmamba2+Cattn), while the rest of
the models analyzed are variations of decoder-transformers whose training FLOPs can be estimated
as 6 ∗ nparams ∗ ntokens − 2 ∗ V ∗Dattn ∗ ntokens +3 ∗Lattn ∗Cattn. Here 3 represents 1 flop per
forward op and 2 flops per backward op.

Operation FLOPs, given input:
B × S ×D (or Dattn)

Self-Attention
Attention: QKT 2BS2Dattn

Attention: softmax, scaling, mask 3BS2

Cattn
Attention: V matmul 2BS2Dattn

Attention: O projection 2BSD2
attn

Feedforward: activation BSDattn

Mamba-2

dt softplus 3BSH
xBC conv1d, silu BS(ED + 2N)K + 5BS(ED + 2N)

Cmamba2

sampling x, A BSED +BSH
SSD, A prefix sum BHS
SSD, compute output for each intra-chunk 4BHSC +BSEDNC
SSD, compute state for each intra-chunk 2BHS +BSEDN
SSD, compute inter-chunk recurrence 4BH(Z + 1)2 +BN(Z + 1)2ED
SSD, compute output from state per chunk BHS +BSEDN +BSED
y+x*D 2BSED
z silu, y norm 6BSED

Params B: batch size, S: sequence length, V : vocabulary size
Dattn: attention hidden dim, Lattn: num attention layers
D: mamba2 hidden dim, L: num mamba2 layers, E: expansion factor
N : mamba2 state dim, H: mamba2 num heads, P : mamba2 head dim
C: mamba2 chunk size, Z: mamba2 num chunks, K: mamba2 conv dim

vary, we did a multi-dimensional grid search to determine optimal parameters for each individual
curve, measuring total macroaveraged MAE loss over all 111M-scale TLCs. Over the course of
these experiments, we found total MAE did not change substantially when we fixed m = 0.05,
and we subsequently tuned ϵ1 and ϵ2 to small constants in order to avoid boundary effects at t̂ = 0
and t̂ = 1 (when η(t̂) goes to zero). Prior to fitting, training curves were smoothed using a moving
average filter covering 12288 sequences (equal to the largest batch size in the dataset), and we ignore
error on the first 20% of each curve (around LR warmup when curves are noisy).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 9: Evaluations, params, tokens, and FLOPs for all models evaluated.

Name Params Tokens FLOPs Downstream Accuracy (Num Shots)
arc-c arc-e boolq hellaswag piqa siqa winogrande Avg.
(25) (0) (0) (10) (0) (0) (5)

btlm-3b-8k-base (Dey et al., 2023b) 2.60E+09 6.27E+11 1.55E+22 40.70 66.79 69.72 70.92 77.20 43.50 65.90 62.10

Cerebras-GPT-1.3B (Dey et al., 2023a) 1.30E+09 2.60E+10 2.45E+20 26.79 45.83 59.33 38.55 66.76 38.59 51.70 46.79
Cerebras-GPT-2.7B 2.70E+09 5.40E+10 1.04E+21 29.52 52.57 59.24 49.74 70.78 40.23 54.85 50.99
Cerebras-GPT-6.7B 6.70E+09 1.33E+11 6.16E+21 36.01 57.91 62.81 59.45 73.99 41.50 59.98 55.95

gemma-2-2b (Team et al., 2024) 2.61E+09 2.00E+12 4.25E+22 53.41 80.22 73.58 74.62 79.11 51.23 71.51 69.10
gemma-2-9b 9.24E+09 8.00E+12 5.73E+23 68.34 87.88 84.22 82.76 82.97 55.48 80.35 77.43
gemma-2-27b 2.72E+10 1.30E+13 2.44E+24 69.62 88.30 84.83 87.00 84.44 54.55 83.03 78.82
gemma-2-2b+forward 2.61E+09 2.00E+12 8.66E+23 53.41 80.22 73.58 74.62 79.11 51.23 71.51 69.10
gemma-2-2b+forward+teacher 2.61E+09 1.50E+13 3.31E+24 53.41 80.22 73.58 74.62 79.11 51.23 71.51 69.10
gemma-2-9b+forward 9.24E+09 8.00E+12 1.40E+24 68.34 87.88 84.22 82.76 82.97 55.48 80.35 77.43
gemma-2-9b+forward+teacher 9.24E+09 2.10E+13 3.84E+24 68.34 87.88 84.22 82.76 82.97 55.48 80.35 77.43

gemma-3-1b-pt (Team et al., 2025) 1.00E+09 2.00E+12 3.48E+22 39.16 71.93 66.67 62.98 74.54 42.78 62.19 60.04
gemma-3-4b-pt 4.30E+09 4.00E+12 1.72E+23 58.28 81.69 78.96 77.78 79.87 49.13 72.22 71.13
gemma-3-12b-pt 1.22E+10 1.20E+13 1.34E+24 67.49 87.75 85.41 84.12 81.88 52.15 80.03 76.98
gemma-3-27b-pt 2.74E+10 1.40E+13 3.33E+24 70.31 88.17 87.25 86.14 83.95 53.99 82.95 78.97
gemma-3-1b-pt+forward 1.00E+09 2.00E+12 1.16E+24 39.16 71.93 66.67 62.98 74.54 42.78 62.19 60.04
gemma-3-1b-pt+forward+teacher 1.00E+09 1.60E+13 4.49E+24 39.16 71.93 66.67 62.98 74.54 42.78 62.19 60.04
gemma-3-4b-pt+forward 4.00E+09 4.00E+12 1.30E+24 58.28 81.69 78.96 77.78 79.87 49.13 72.22 71.13
gemma-3-4b-pt+forward+teacher 4.00E+09 1.80E+13 4.63E+24 58.28 81.69 78.96 77.78 79.87 49.13 72.22 71.13
gemma-3-12b-pt+forward 1.20E+10 1.20E+13 2.46E+24 67.49 87.75 85.41 84.12 81.88 52.15 80.03 76.98
gemma-3-12b-pt+forward+teacher 1.20E+10 2.60E+13 5.80E+24 67.49 87.75 85.41 84.12 81.88 52.15 80.03 76.98

llama-7b (Touvron et al., 2023a) 7.00E+09 1.00E+12 4.82E+22 50.77 72.90 75.05 77.84 79.00 45.91 71.11 67.51
llama-13b 1.30E+10 1.00E+12 8.90E+22 55.55 74.54 77.98 81.18 80.36 46.62 76.95 70.45

Llama-2-7b-hf (Touvron et al., 2023b) 7.00E+09 2.00E+12 1.03E+23 52.65 74.54 77.71 78.98 79.11 46.11 74.19 69.04
Llama-2-13b-hf 1.30E+10 2.00E+12 1.88E+23 59.47 77.53 80.58 82.23 80.52 47.34 76.16 71.98

Meta-Llama-3-8B (Dubey et al., 2024) 8.00E+09 1.50E+13 9.46E+23 58.19 77.61 80.95 82.10 80.69 47.08 77.51 72.02
Llama-3.1-8B 8.00E+09 1.50E+13 3.85E+24 57.85 81.19 82.05 81.91 81.01 46.98 77.19 72.60
Llama-3.2-1B 1.23E+09 9.00E+12 5.29E+23 39.59 60.61 63.91 65.51 74.27 42.99 62.27 58.45
Llama-3.2-3B 3.21E+09 9.00E+12 1.40E+24 50.68 71.84 72.75 76.42 77.37 47.39 71.82 66.90

OLMo-1B-hf (Muennighoff et al., 2024) 1.00E+09 2.00E+12 1.56E+22 34.47 57.28 61.74 63.81 75.14 42.12 60.46 56.43
OLMo-7B-hf 7.00E+09 2.46E+12 1.26E+23 45.14 68.77 72.45 77.13 79.43 44.52 70.96 65.49

OLMo-2-0425-1B (OLMo et al., 2024) 1.00E+09 4.00E+12 3.04E+22 45.39 73.36 63.03 68.71 75.63 43.76 65.90 62.25
OLMo-2-1124-7B 7.00E+09 4.00E+12 2.03E+23 64.51 82.87 80.00 81.93 81.01 51.33 77.03 74.10
OLMo-2-1124-13B 1.30E+10 5.00E+12 4.67E+23 66.13 81.31 73.91 84.99 82.15 52.05 83.03 74.80
OLMo-2-0325-32B 3.20E+10 6.00E+12 1.30E+24 69.45 85.94 82.81 87.33 82.97 54.25 83.90 78.09

Qwen3-0.6B-Base (Yang et al., 2025) 6.00E+08 3.60E+13 5.31E+23 44.80 58.00 69.82 53.46 69.80 43.30 60.46 57.09
Qwen3-1.7B-Base 1.70E+09 3.60E+13 1.18E+24 55.20 68.60 79.24 67.19 75.52 48.62 65.27 65.66
Qwen3-4B-Base 4.00E+09 3.60E+13 2.19E+24 64.42 75.93 82.91 75.64 77.86 50.00 72.61 71.34
Qwen3-8B-Base 8.00E+09 3.60E+13 3.90E+24 67.24 79.88 83.09 79.55 79.54 54.76 77.19 74.46
Qwen3-14B-Base 1.40E+10 3.60E+13 6.09E+24 69.97 81.86 86.76 82.69 82.10 55.89 79.48 76.96

Qwen2.5-0.5B (Yang et al., 2024) 5.00E+08 1.80E+13 2.04E+23 35.24 58.54 61.47 51.83 69.80 44.17 56.59 53.95
Qwen2.5-1.5B 1.50E+09 1.80E+13 1.38E+24 54.86 72.10 72.48 67.86 75.90 49.08 65.27 65.36
Qwen2.5-3B 3.00E+09 1.80E+13 8.51E+23 56.31 73.02 77.43 74.54 78.67 49.80 71.67 68.78
Qwen2.5-7B 7.00E+09 1.80E+13 3.62E+24 63.65 77.48 84.65 80.19 79.82 54.61 76.40 73.83
Qwen2.5-14B 1.40E+10 1.80E+13 8.58E+24 67.58 79.25 85.35 84.21 82.43 55.48 81.06 76.48
Qwen2.5-32B 3.20E+10 1.80E+13 1.29E+25 70.65 77.99 87.49 85.16 82.43 56.29 82.08 77.44

SmolLM-135M (Allal et al., 2024) 1.35E+08 6.00E+11 1.51E+21 32.00 56.14 60.09 42.92 68.01 39.56 52.25 50.14
SmolLM-360M 3.60E+08 6.00E+11 3.16E+21 38.65 63.59 55.05 54.24 71.44 40.99 57.14 54.44
SmolLM-1.7B 1.70E+09 1.00E+12 1.54E+22 49.40 73.57 66.15 67.33 75.95 43.35 61.72 62.50

SmolLM2-135M (Allal et al., 2025) 1.35E+08 2.00E+12 2.48E+21 33.02 58.38 60.06 43.64 68.12 39.25 53.12 50.80
SmolLM2-360M 3.60E+08 4.00E+12 1.20E+22 40.78 68.22 61.56 57.46 71.76 40.89 58.41 57.01
SmolLM2-1.7B 1.70E+09 1.10E+13 1.21E+23 53.50 73.27 72.32 73.16 77.53 44.52 68.35 66.09

SmolLM3-3B-Base 3.00E+09 1.12E+13 8.56E+23 59.81 76.85 80.49 77.18 79.11 46.78 73.40 70.52

Zamba2-1.2B (Glorioso et al., 2024) 1.20E+09 3.00E+12 3.86E+23 53.92 66.71 70.18 72.21 77.20 46.42 68.98 65.09
Zamba2-2.7B 2.70E+09 3.00E+12 4.77E+23 60.67 73.82 78.07 77.72 79.49 45.50 76.01 70.18
Zamba2-7B 7.40E+09 2.00E+12 7.68E+23 68.34 80.39 83.70 83.53 80.69 49.90 79.72 75.18

Celerity-300M 2.71E+08 6.34E+10 1.47E+20 27.82 50.63 52.75 37.57 66.21 37.77 52.25 46.43
Celerity-500M 5.03E+08 1.18E+11 5.15E+20 34.39 56.06 61.22 45.96 69.31 40.23 52.64 51.40
Celerity-900M 9.06E+08 2.12E+11 1.68E+21 39.68 64.52 47.92 55.02 72.03 41.97 58.48 54.23
Celerity-1.8B 1.81E+09 4.24E+11 6.54E+21 48.55 70.29 65.17 64.34 75.46 42.99 60.22 61.00
Celerity-3.9B 3.88E+09 9.08E+11 2.89E+22 54.01 75.55 66.61 72.19 77.97 44.73 65.90 65.28

Fig. 21 shows the optimal fits for b and q when each curve is fit independently. For optimal b,
we found that correlation in τ was much stronger than correlation in TPP (Pearson’s r = -0.59 for
τ , r = 0.17 for TPP). On the other hand, while optimal q seems to increase with τ for TPP =
20, the relationship with τ at other TPP appears random. Furthermore, note larger TPP values do
correspond to lower optimal q (r = -0.30). Based on these fits, we hypothesize we could obtain
reasonable predictions by fitting b as a power law in τ , and q as a power law in TPP:

b = bconst · τ bexp , q = qconst · TPPqexp (24)

As noted in Sec. 5. Also, as reported in that section, we developed an alternating greedy optimization
procedure to fit these four parameters, exponentially reducing the cost of the grid search space.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

10−2 10−1

τ

10−1

100

O
pt

im
al
b

Optimal b ∼ τ , not TPP

TPP
20

80

200

320

1280

10−2 10−1

τ

10−1

100

O
pt

im
al
q

Optimal q ∼ TPP, not τ

TPP
20

80

200

320

1280

Figure 21: Trends in fits for training curve prediction. Optimal per-curve fits (from per-curve
grid searches) for Eq. (4): ℓ̂(t̂) ≈ 1/m0.05 + b · η(t̂)q: b and q parameters. Left: Optimal b varies
strongly in τ (Pearson’s r = -0.59), weakly in TPP (r = 0.17). Right: Optimal q varies somewhat in
TPP (r = -0.30), while overall stronger in τ (r = 0.55), but τ trends reverse at higher TPP.

Results. We first note that the fits improve over the iterations of our alternating grid search pro-
cedure, demonstrating that optimal parameters of the power laws do depend on each other, and can
reach stable fits through iterative alternating fitting.

Table 10: Predictions improve with scale: fit at 111M scale, evaluated at larger scales.

Evaluation scale MAE Number of evaluation curves

111M* (fitting points) 1.37% 112
266M 0.75% 40
610M 1.07% 102
1.7B 0.66% 21
3.3B 0.54% 7

Table 11: Separate power laws for b and q work well: fit at 111M scale (112 TLCs), evaluation at
610M (102 TLCs).

Method for estimating b Method for estimating q MAE

Global fixed optimum Global fixed optimum 3.03%
Global fixed optimum q = PowerLaw(TPP) 3.35%
b = PowerLaw(τ) Global fixed optimum 2.08%
b = PowerLaw(τ) q = PowerLaw(TPP) 1.07%

b = PowerLaw(τ,TPP) q = PowerLaw(τ,TPP) 1.07%

Table 10 and Table 11 provide the tables discussed in the main paper, showing how fits obtained at
111M perform at other scales (Table 10), and how different fitting procedures perform on the 610M-
scale evaluation data (Table 11). Fitting b and q with the optimum values per-curve (i.e., oracle fits)
achieves an MAE of 0.504%, roughly half that of the dual power law extrapolations.

D.2 EARLY STOPPING IN TUNING: FURTHER RESULTS

In this section we describe some further early stopping experiments, and present additional evalua-
tion metrics.

Fig. 22 evaluates early stopping strategies in batch-size sweeps at a fixed λ value. Fig. 22, left, uses
the same data as in Fig. 7, left. While we do not advocate keeping λ fixed during B sweeps in

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

pr
ed

ic
te

d
vs

.
tr

ue
b

es
t

(%
)

1.7B, 20 TPP: sweeping B, λ = 0.1

Choose randomly

Choose current best

Choose predicted best

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

pr
ed

ic
te

d
vs

.
tr

ue
b

es
t

(%
)

617M, 20 TPP: sweeping B, λ = 0.1

Choose randomly

Choose current best

Choose predicted best

Figure 22: Early stopping comparison: further setups. Companion to Fig. 9, now comparing
early stopping accuracy (final loss of predicted vs. actual best) for B sweeps at 1.7B (left) and 617M
(right) (both 20 TPP). Current best works well very early, but is worse for most of training.

practice, this data can nevertheless serve to evaluate prediction of early winners in tuning. Both of
these plots exhibit the phenomenon also observed in Fig. 9, right: choosing the current best setting
after LR warmup, as was done in Falcon (Almazrouei et al., 2023), is better than selecting the best
during the middle of training. However, as seen in Fig. 9, left, this method is not always successful.
In Fig. 22, left, choosing the extrapolated best setting outperforms choosing the current best from
40% of training, while it picks the correct winner from the beginning in Fig. 22, right.

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

al
l

pr
ed

s
vs

.
tr

ue
lo

ss
es

(%
)

1.7B, 20 TPP: sweeping λ, B = 8064

Output current loss

Predict final loss

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

al
l

pr
ed

s
vs

.
tr

ue
lo

ss
es

(%
)

3.3B, 30 TPP: sweeping λ, B = 2016

Output current loss

Predict final loss

Figure 23: Early stopping comparison: MAE at 1.7B, 3.3B: λ sweeps. Mean absolute error of all
predicted final losses, comparing taking current loss vs. extrapolating final loss.

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

al
l

pr
ed

s
vs

.
tr

ue
lo

ss
es

(%
)

1.7B, 20 TPP: sweeping B, λ = 0.1

Output current loss

Predict final loss

0.2 0.4 0.6 0.8 1.0

Stop point in training

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

L
os

s
di

ff
.

al
l

pr
ed

s
vs

.
tr

ue
lo

ss
es

(%
)

617M, 20 TPP: sweeping B, λ = 0.1

Output current loss

Predict final loss

Figure 24: Early stopping comparison: MAE at 1.7B, 617M: B sweeps. Mean absolute error of
all predicted final losses, comparing taking current loss vs. extrapolating final loss.

In many cases, rather than caring purely about which setting is best, we care about the actual pro-
jected final loss. This may be useful for fitting scaling laws, or for helping practitioners reason about
the trade-offs of, for example, greater throughput from larger B vs. suffering higher final loss. We

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

therefore evaluated the same four hyperparameter sweeps above, but now evaluating the average
loss difference between the predicted final loss and the true final loss for all curves. The baseline
chooses the current loss for each curve at the given training fraction, which will overestimate the
final loss. Results in Figs. 23 and 24 show that in three of four cases, extrapolating the final loss
using our predictive form results in much smaller average error than using the current value.

The only instance where predicting the final loss incurred significant error was the 1.7B, 20 TPP
model with B = 8064. We note that the TLCs are very noisy at this high batch size across al-
most all λ settings and therefore it is evidently challenging to align the in-progress training runs
to the predicted TLC. Increasing smoothing reduces the predicted error somewhat, but the primary
issue is that the noise affects the TLC mainly in the first 60% of training, thus distorting even the
smoothed loss from the universal trajectory. Accurate prediction in the presence of loss spikes is an
acknowledged limitation of our methodology (Appendix A).

D.3 OPTIMAL AND SUBOPTIMAL TLCS AS TPP SCALES

0.0 0.5 1.0

Training fraction

1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Suboptimal curves: fixed η, λ, B

102

103

104

T
P

P

0.0 0.5 1.0

Training fraction

1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Suboptimal curves: τ=0.22

102

103

104

T
P

P
0.0 0.5 1.0

Training fraction

1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

tr
ai

n
lo

ss

Optimal curves: τ ∼ TPP

102

103

104

T
P

P

Figure 25: Evolution of train curve shape. Left: When TPP is scaled but η, λ and B are held con-
stant, curve shape varies significantly. Middle: When τ is instead held constant, shape evolves more
gradually. Right: When τ scales with TPP according to established power laws, curves maintain
their concave structure.

Given a fitted predictive form (Eq. (4)), it is natural to ask how TLC shape varies as TPP increases,
under various hyperparameter (HP) scaling strategies. In this section, we consider three scenarios:

1. No adjustment: basically standard practice under µP until very recently.
2. Maintain constant τ : i.e., following the prescription of Wang & Aitchison (2024).
3. Optimize τ : adjust τ for each TPP setting following the τ power law of Bergsma et al. (2025a).

Results in Fig. 25 demonstrate that, with no HP adjustments, curve shape changes substantially
across TPP (left). Fixing τ results in more consistent shapes (middle), but only when τ is scaled
for TPP do curves maintain their characteristic concave shape, with a noticeable drop near the end
of training (right). One may view this final period as the annealing phase of training, or the phase
where variance is reduced and we descend the valley into the river (Wen et al., 2024). As TPP
increases, we must reduce τ correspondingly to prioritize exploration for the majority of training,
enabling this final descent only in the final phases.

34

	Introduction
	Background
	What factors modulate training curve shape?
	Celerity: A compute-efficient model family with collapse
	Collapse enables early stopping in hyperparameter tuning
	Related work
	Conclusion
	Limitations and future directions
	Explaining TLC shape: further details
	Full experimental details
	Explaining TLC dependence on TPP
	Explaining TLC dependence on
	Additional TLC experiments

	Celerity models: further details
	Compute cost as a function of model compression
	Celerity Recipe Details
	Celerity further results
	Open model evaluation and FLOP calculation methods

	Collapse enables early stopping: further details
	Predicting normalized training loss curves
	Early stopping in tuning: further results
	Optimal and suboptimal TLCs as TPP scales

