INSIGHT OVER SIGHT? EXPLORING THE VISION-KNOWLEDGE CONFLICTS IN MULTIMODAL LLMS

Anonymous authors

000

001

002 003 004

006 007 008

011

017

021

023

025

026 027

028

029

031

032

034

039

040

041

Figure 1: Illustration of the vision-knowledge conflict, where the visual input contradicts MLLM's inherent knowledge. The MLLM's response over-relies on its inherent commonsense knowledge.

ABSTRACT

This paper explores the problem of commonsense-level vision-knowledge conflict in Multimodal Large Language Models (MLLMs), where visual information contradicts model's internal commonsense knowledge (see Figure 1). To study this issue, we introduce an automated pipeline, augmented with human-in-the-loop quality control, to establish a benchmark aimed at simulating and assessing the conflicts in MLLMs. Utilizing this pipeline, we have crafted a diagnostic benchmark comprising 374 original images and 1,122 high-quality question-answer (QA) pairs. This benchmark covers two types of conflict targets and three question difficulty levels, providing a thorough assessment tool. Through this benchmark, we evaluate the conflict-resolution capabilities of nine representative MLLMs across various model families and find a noticeable over-reliance on textual queries. Drawing on these findings, we propose a novel prompting strategy, "Focus-on-Vision" (FoV), which markedly enhances MLLMs' ability to favor visual data over conflicting textual knowledge. Our detailed analysis and the newly proposed strategy significantly advance the understanding and mitigating of vision-knowledge conflicts in MLLMs. The data and code will be released.

042 043

045

044 INTRODUCTION 1

046 Large Language Models (LLMs) (Brown et al., 2020; OpenAI, 2022; Touvron et al., 2023; OpenAI, 047 2023a; Meta AI, 2024) have reshaped the landscape of deep learning for their comprehensive 048 capabilities in language understanding, reasoning, and generation (Wei et al., 2022a;b; Chen et al., 2023). This evolution has paved the way for the emergence of Multimodal Large Language Models (MLLMs) (Li et al., 2022a; 2023b; Lyu et al., 2023; Dai et al., 2023; Liu et al., 2024d; Zhu et al., 2023; 051 Bai et al., 2023; Liu et al., 2024b; Wang et al., 2024; OpenAI, 2023b; Liu et al., 2024c; Tong et al., 2024; Gemini Team, 2024; OpenAI, 2024b), which integrate a vision model with the LLM to process 052 and respond to visual information. MLLMs like GPT-40 (OpenAI, 2024b) and LLaVA-NeXT (Liu et al., 2024c) have exhibited remarkable proficiency across various vision-language tasks such as

image captioning (Chen et al., 2015), visual question answering (VQA) (Antol et al., 2015), and visual reasoning (Johnson et al., 2017; Yue et al., 2024).

However, the persistence of knowledge conflicts in LLMs remains a significant challenge for MLLMs, often cited as a primary cause of hallucinations in these systems (Liu et al., 2023a; Guan et al., 2024). Introducing visual information into MLLMs generates a novel form of discrepancy termed "vision-knowledge conflict", where the visual data contradicts the model's pre-existing parametric knowledge. Prior research has mainly focused on assessing and comprehending these conflicts through the lens of factual knowledge by generating counterfactual images via image editing techniques (Guan et al., 2024). Nonetheless, the aspect of vision-knowledge conflict related to commonsense knowledge,¹ which proves more challenging for LLMs and MLLMs due to its implicit and nuanced nature (Li et al., 2022b), remains under-investigated.

- 065 To address this gap, we propose an automated pipeline with human-in-the-loop to develop a bench-066 mark for simulating and analyzing commonsense-level vision-knowledge conflicts in MLLMs. 067 Illustrated in Figure 2, our pipeline consists of four key modules: knowledge component extraction, 068 counter-commonsense query construction, image generation, and question-and-answer (QA) genera-069 tion. This framework streamlines the generation of counter-commonsense inputs from scratch and is modularly designed to facilitate the addition of further conflict categories and QA formats in the 071 future. We demonstrate the application of our framework by developing the CONFLICTVIS benchmark built on the Open Mind Common Sense dataset (Singh et al., 2002). The benchmark focuses on 072 the critical aspects of commonsense knowledge in the visual scene: Subject, Action, and Place. It 073 consists of **374** original images with **1,122** high-quality QA pairs spanning two conflict targets and 074 three question difficulty levels, all verified by human annotators. 075
- 076 Using the crafted benchmark, we evaluate nine representative MLLMs from five model families, 077 providing insights into model behaviors, the causes of conflicts, and effective methods designs to mitigate the negative effects of conflicts. Notably, when facing knowledge conflicts, MLLMs tend to over-rely on their parametric knowledge for simpler questions. For instance, the top commercial 079 model, Claude-3.5-Sonnet, exhibits a memorization ratio (MR) on parametric knowledge of 43.6% on Yes-No questions, substantially higher than results on more complex subjective questions; the 081 largest open-source model evaluated, LLaVA-NeXT-34B, shows a MR of 26.7% on Yes-No questions, three times more than that on subjective questions. Our detailed analysis of the failure cases reveals 083 that MLLMs generally focus more on the textual query than on the visual context. Drawing on these 084 observations, we revisit several existing training-free methods (Leng et al., 2024; Liu et al., 2024f; 085 Wei et al., 2022b) to enhance the impact of visual context in answer generation. Interestingly, although Chain-of-Thought prompting (Wei et al., 2022b) improves model's reasoning abilities, it directs 087 MLLMs to over-utilize the parametric knowledge in the reasoning process, leading to inaccurate 880 conclusions or refusals. From this understanding, we propose **Focus-on-Vision** (FoV) prompting to instruct MLLMs to prioritize visual information, which markedly improves the performance. 089
- Our main contributions are summarized as follows:
 - We introduce an innovative framework to automatically construct counter-commonsense benchmarks from the ground up. This platform allows the flexible definition of conflict categories and QA formats, facilitating the large-scale creation of conflict samples with minimal human effort.
 - We present CONFLICTVIS, a pioneering diagnostic benchmark specifically designed to evaluate vision-knowledge conflicts at the commonsense level in MLLMs. The benchmark is meticulously validated by human experts to guarantee the quality of data.
 - We perform extensive experiments on nine representative MLLMs, uncovering critical insights into model performance and the underlying mechanisms of the conflict. Leveraging these insights, we propose a novel Focus-on-Vision (FoV) prompting as an effective solution to significantly minimize vision-knowledge conflicts in MLLMs.
- 102 103 104

092

094

096

098

099

100

101

2 CONFLICTVIS BENCHMARK

This section outlines the pipeline and the data utilized to construct the CONFLICTVIS benchmark.

105 106 107

¹To illustrate, a factual knowledge example is "The Eiffel Tower is 330 meters tall", while a commonsense knowledge example is "Babies cry when they are hungry".

Figure 2: An automated pipeline with human quality control to construct images and question-answer pairs that conflict with commonsense knowledge.

128

2.1 AUTOMATED PIPELINE

Commonsense knowledge refers to the information generally accepted by the majority of people 129 about everyday life, encompassing practical principles on how the world functions (Singh et al., 2002). 130 Inspired by the widely-used image captioning dataset (Chen et al., 2015), we explore a specific type of 131 commonsense knowledge encapsulated as a triplet $\langle s, a, p \rangle$, where s is the Subject, a is the Action, 132 and p is the Place of the action or subject. For example, the statement "a baby (Subject) drinking 133 water (Action) on the bed (Place)" illustrates this format. In this structure, the Subject outlines 134 the main object's appearance, the Action describes the primary activity and its interactions with 135 other relevant objects, and the Place highlights the background objects and setting. This three-part 136 framework efficiently captures the vital details that are accurately reflected in an image.

We then describe the strategies for creating images and corresponding QA pairs that contradict the commonsense knowledge based on an input corpus. In general, we construct triplets containing low co-occurring concepts to serve as the counter-commonsense queries for image generation and fill pre-defined templates to generate the QA pairs. The pipeline contains the following four steps:

1. Extract Knowledge Components from Input Corpus. The process commences with the extraction of knowledge components from the corpus, which contains human commonsense knowledge in natural language. Drawing inspiration from Li et al. (2021) on the creation of a compositional generalization test set, we identify frequently occurring components in the corpus and enumerate all possible combinations to generate knowledge triplets. To this end, we employ a transformer model pipeline to extensively annotate the syntactic labels, including dependency (DEP), Part-of-Speech (POS), and Named Entity (NE). Table 3 in Appendix lists the linguistic rules to identify each component:

- **Subject Phrases**: Our framework examines noun chunks, selecting those where the head noun functions as the nominal subject, indicated by dependency labels "nsubj" or "nsubjpass".
- Action Phrases: The process starts by identifying the verb token ("VERB") and then examines its dependents for direct objects marked as "dobj". Upon finding such objects, our framework includes any determiners or compound modifiers present to form the complete action phrase. In addition, verbs are converted to the "VBG" form to align with the common practice in image captions.
- Place Phrases: Distinguishing place phrases from other prepositional phrases relies on more than just syntactic labels. Accordingly, the framework employs semantic role labeling techniques by utilizing a BERT-based model (Gardner et al., 2017) to annotate each word's semantic role. It then extracts the phrase with a location tag ("ARGM-LOC") that contains 3 to 4 words.
- 160

149

150

151 152

153

154

To develop a high-quality benchmark, our framework filters the top subject (N_S) , action (N_A) , and place (N_P) phrases, respectively, based on the occurrence. It also removes named entities from the

subject and place phrases and merges similar phrases (e.g., "a doctor" and "the doctor") by keeping
 the most frequently occurring variant.

165
2. Construct Counter-commonsense Query. We aim to construct scenes with a single anomalous concept (i.e., target) that seldom co-occurs with the other concepts (i.e., the context pair). For instance, the Action component "fixing a computer" and the context pair ("the baby", "on the bed") results in the triplet "the baby on the bed fixing a computer", which contradicts commonsense knowledge, as it is highly improbable for a baby to fix a computer in reality. Specifically,

• The context pair should exhibit a high co-occurrence level, acting as a common background.

• The target should display a low co-occurrence with the given context, representing the anomaly.

To find the high co-occurrence context pairs, our framework first groups context pairs by their target category, i.e., **Context**_{Action} consists of (Subject, Place) pairs and **Context**_{Place} comprises (Subject, Action) pairs. These groups help to develop the focus of the questions in the next section. We omit **Context**_{Subject} to avoid the ambiguity and potential ethical issues for judging a subject's identity.

We demonstrate how to construct queries with counter-commonsense **Actions**, and a similar approach can be applied to Places. For each subject, we pair it with all the Place components to establish context candidates and select the contexts based on the co-occurrence level. We use Normalized Pointwise Mutual Information (NPMI) to evaluate the co-occurrence of the context pairs $\mathbf{C} = (C_X, C_Y)$:

181 182 183

209

210

211

212

213

214

215

170

171

172

$$PMI(C_X; C_Y) \equiv \log_2 \frac{P(C_X, C_Y)}{P(C_X)P(C_Y)}, \qquad NPMI(C_X; C_Y) \equiv \frac{PMI(C_X; C_Y)}{-\log_2 P(C_X, C_Y)}.$$
(1)

184 A higher NPMI score indicates a more frequent co-occurrence of the two context components. For 185 each subject, we select Top-K places with **highest** NPMI scores to form context pairs.

For each selected context pair, we construct counter-commonsense triplets by selecting a target Action component that is not compatible with the context pair. Concretely, we also use the NPMI metric (i.e. NPMI $(T; \mathbf{C})$) to evaluate the co-occurrence of the target T and context pair C. For each context pair, we select Top-M actions with **lowest** NPMI scores to form counter-commonsense queries.

190 To better match real-world knowledge, we leverage an LLM trained on large-scale web data to 191 calculate the probability $P(\cdot)$. For example, to calculate the joint probabilities for multiple co-192 occurring components, our framework forms a concatenated expression of the concept phrases (e.g., 193 "a baby on the bed" or "a baby on the bed fixing a computer") and inputs it into a pre-trained LLM 194 to obtain the generative probability. Utilizing an LLM here offers an advantage over frequency 195 counting for addressing the issue of zero frequencies for rare concept compositions, which often 196 arises with limited dataset size. Since large language models are trained on large-scale data to learn 197 the statistical tendencies of human language, their generative probability provides an approximation of the likelihood of certain phrase appearing in reality. For the probability of each individual component, 198 we use its relative frequency within its category (Lin, 1999). Following generation, a manual review 199 is conducted here to ensure the data quality (See Appendix B for further details). 200

3. Generate Image. We leverage state-of-the-art text-to-image model DALL·E 3 (OpenAI, 2024a) to generate image based on the counter-commonsense query. Specifically, we concatenate the components of each triplet in order and prefixing them with "an image of". As shown in Figure 2, the sample prompt for image generation is "an image of the baby fixing a computer on the bed". After image generation, a human annotator is responsible for the quality control, filtering out the low-quality images that are distorted or misaligned with the input prompt. We present detailed filtering guidelines and illustrative examples in Appendix B.

4. Generate Questions. As illustrated in Figure 3, with the constructed counter-commonsense triplets, the pipeline generates questions across three difficulty levels, from easy to hard:

- Yes-No Question: For counter-commonsense Actions and Places, our framework utilizes templates "Is/are [Subject Place] [Action]?" and "Is/are [Subject Action] [Place]?", respectively. The correct response to this type of question is typically "Yes".
- **Multiple-Choice Question**: For these questions, the templates include "What is/are [Subject] doing [Place]?" and "Where is/are [Subject] [Action]?" for counter-commonsense Action and

Figure 3: Illustration of generating questions across three difficulty levels, from easy to hard based on the conflict target (*Action* in this example.)

Place, respectively. For a predetermined option count m, our framework selects (m-1) seemingly relevant but incorrect targets from the candidates. To this end, the framework partitions candidates into m-1 bins $\{B_1, ..., B_{m-1}\}$ based on their NPMI scores relative to the context pair. We randomly sample one candidate from each bin, together with the counter-commonsense target, to formulate the question's multiple-choice options.

• **Subjective Question**: The question text in the multiple-choice question is reused, but no list of options is included. To guide the model toward generating a brief and specific response, we add the constraints like "Answer with a single phrase", with slight adjustment according to the specific prompt for different MLLMs.

2.2 CONFLICT VIS BENCHMARK CONSTRUCTION

We introduce how to use the automated pipeline to construct the CONFLICTVIS benchmark. We utilize top 100K sentences from the Open Mind Common Sense (OMCS) dataset (Singh et al., 2002) as our knowledge base. Developed by the MIT Media Lab, OMCS is a rich collection of human commonsense knowledge, consisting of assertive sentences contributed by thousands of

Table 1: Statistics of the constructed benchmark.

Target	#Triplets	#Images	#QAs
Action	188	171	513
Place	156	203	609
Total		374	1122

volunteers. From this dataset, we extract the 100 most frequent Subject phrases ($N_S = 100$), along with 150 most frequent phrases for Actions and Places ($N_A = N_P = 150$). Using feedback from the LLM Vicuna-1.5-13b,² we select the top 3 phrases with the highest NPMI scores to create context pairs for each subject (K = 3). In addition, we choose the top 3 targets with the lowest NPMI scores to assemble the candidate set of triplets (M = 3). After manually filtering out unexpected combinations, the remaining triplets are used for image generation. The low-quality images are again manually removed. The specific guidelines and results in the quality control process are elaborated in the Appendix B. Following this two-stage generation and filtering process, the statistics of the resulting benchmark are detailed in Table 1. In total, CONFLICTVIS consists of 374 original images with 1,122 QA pairs spanning two conflict targets and three difficulty levels, all verified by human experts. Figure 10 in Appendix shows the instances for the subject "a musician".

EXPERIMENT

 3.1 Setup

Models To explore the behavior of MLLMs when encountering commonsense knowledge conflicts, we perform a comprehensive evaluation on 9 MLLMs with 7 representative open-source MLLMs ranging from 8B to 34B, and 2 state-of-the-art commercial MLLMs. This evaluation covers the following five model series: LLaVA (8B, 13B, 34B) (Liu et al., 2024b;c), BLIP-2 (12.1B,

²https://huggingface.co/lmsys/vicuna-13b-v1.5

13B) (Li et al., 2023b; Dai et al., 2023), Qwen-VL (9.6B) (Bai et al., 2023), GPT-40 (OpenAI, 2024b) and Claude-3.5-Sonnet (Anthropic, 2024).

Evaluation We use Accuracy and Memorization Ratio (MR) (Longpre et al., 2021) as the main
evaluation metrics in our experiment. Both metrics require classifying the model's responses into
different categories. For Yes-No and Multiple Choice questions, where there is a unique answer, we
use exact matching for classification. For Subjective questions, due to the open-ended nature and the
complexity of the task (i.e., evaluating both textual and visual relevance and correctness), we rely on
human annotators to perform the classification (Guidelines and details are included in Appendix C).

3.2 SANITY TEST

281 Do the instances in CONFLICTVIS really conflict 282 with MLLMs' commonsense knowledge? Before 283 evaluating MLLMs' performance on CONFLICTVIS, 284 we first verify whether the counter-commonsense cases 285 in CONFLICTVIS genuinely create conflicts with the 286 models' commonsense knowledge. To this end, we 287 use the textual inputs in CONFLICTVIS and query the model with the following prompt format: 289

Based on common sense, is it possible for [context] [target]?

where the context and target are filled with the specific
phrases from the input. For example, the query for the
instance in Figure 3 is "*Based on common sense, is it*

Figure 4: Responses to textual inputs.

possible for the baby on the bed fixing a computer?" The model's responses are categorized as
"negate" (indicating a conflict), "accept" (indicating no conflict), and "other" (where the model does
not give a direct answer). The results, shown in Figure 4, demonstrate that the vast majority of cases
in CONFLICTVIS indeed present valid knowledge conflicts that can be identified by MLLMs, with
conflict rates ranging from 80.5% for GPT-40 to 99.2% for LLaVA-1.5-13B.

300

290

291

279 280

Is CONFLICTVIS a more challenging benchmark 301 for MLLMs? Unlike the traditional VQA bench-302 marks, where visual information typically aligns with 303 the model knowledge, our CONFLICTVIS presents con-304 flicts between these two sources of knowledge, mak-305 ing it a more challenging benchmark for MLLMs. To 306 empirically validate our claim, we conduct a compar-307 ative analysis of model uncertainty between our CON-308 FLICTVIS and the conventional VQA benchmark (Antol et al., 2015). A higher degree of uncertainty in 309 model predictions on a particular benchmark indicates 310 that the benchmark poses a greater challenge for the 311

Figure 5: Model uncertainty on traditional VQA dataset and on our benchmark.

model to navigate. Figure 5 shows the results, where higher entropy value denotes more uncertainty.
 It is evident that the model's predictions are more uncertain on CONFLICTVIS than the standard VQA
 benchmark, highlighting the increased challenge posed by our CONFLICTVIS benchmark.

315

3.3 BENCHMARKING MLLMS

In this section, we assess how well the MLLMs handle conflicts between vision information and parametric knowledge using our CONFLICTVIS benchmark. Following Longpre et al. (2021), we compare model predictions (i.e., responses) with and without the inclusion of the image and then quantify the instances where model's predictions are influenced by the provided image:

- 321 322 323
- Align with its predictions without the given image (**Knowledge**, P_K): This outcome suggests that the model generates its answer based on its pre-existing parametric knowledge rather than the visual information presented.

Figure 6: MLLMs' response distributions on different question types. (Responses in Vision category are considered correct.)

Figure 7: Memorization ratio (MR) of MLLMs, where higher MR values indicate greater model overstability on parametric knowledge.

- Yield a correct answer that aligns with the visual information (Vision, P_V): This indicates that the model is capable of adapting to new information, adjusting its output to match the visual input.
- Result in a different answer altogether (**Other**): This demonstrates that the model can modify its output based on visual input, though the result does not perfectly align with the visual information.

Figure 6 presents the results. Ideally, the model should output the Vision answer, supported by visual information, rather than the Knowledge answer derived from textual training, or any Other answers. However, both open-source and commercial MLLMs often revert to producing the Knowledge answer, ignoring the visual information, to varying degrees. In general, commercial MLLMs perform better than the open-source counterparts, particularly in handling subjective questions. Among the open-source MLLMs, LLaVA-NeXT-34B, being the largest model, delivers the best overall performance, achieving an average prediction accuracy of 84.6%. The top commercial model, GPT-40, reaches an average prediction accuracy of 89.9%.

MLLMs are more likely to overly rely on parametric knowledge for simpler questions. One
 interesting observation from Figure 6 reveals that MLLMs exhibit poorer performance on straightfor ward Yes-No questions. Notably, the open-source BLIP-2-12B achieved a low accuracy of 39.3%,
 while the commercial Claude-3.5-Sonnet managed only 56.4%.

We leverage Memorization Ratio (MR) as a metric to empirically estimate the model's *overstability* — it's brittleness to changing information (Longpre et al., 2021):

$$MR = \frac{P_K}{P_K + P_V}.$$
(2)

Figure 7 illustrates the MR across different question types. Notably, the MR values for Yes-No questions are significantly higher than for the other two question types across all MLLMs, indicating that MLLMs tend to overly rely on parametric knowledge when answering simpler questions.

Figure 8: MLLMs' response distributions on two distinct categories of conflict targets.

Counter-commonsense actions are more challenging for MLLMs. Our CONFLICTVIS evaluates two distinct types of conflict targets: counter-commonsense actions and places. As shown in Figure 8, the results show that counter-commonsense actions pose more of a challenge than places do. Specifically, the average prediction accuracy for counter-commonsense actions stands at 73.9%, significantly lower than the 85.2% recorded for places. Similarly, the MR for actions is markedly higher at 23.9%, compared to 13.4% for places. This discrepancy could be attributed to the richer visual context available for identifying places (e.g., "in a studio") as opposed to the sparse cues for actions (e.g., "paddling the boat").

403 3.4 STEERING MLLMS TOWARDS VISION

Underutilization of visual information. Our pri-mary experiment demonstrates that when MLLMs encounter visual inputs that contradict their preexisting knowledge, around 18% of the responses generated are not aligned with the visual context but rather reflect the model's prior knowledge. To further understand this discrepancy, we analyze the overall input-output relevancy inside MLLMs (Stan et al., 2024), seeking insights that could guide im-provement strategies. Figure 9 illustrates a common case in which the model LLaVA-1.5-13B failed to accurately respond to a subjective question, high-

Figure 9: Input-output relevance in a failure case where visual information is underutilized.

lighting the challenge. The model pays more attention to the textual query than to the visual context.
Accordingly, the attended tokens {"musician", "doing", "studio"} guide the model to generate the answer "playing guitar" based on the parametric knowledge.

Effectiveness of Existing Methods. Based on the above observation, one straightforward improvement strategy is to enhance the impact of visual context when generating answers. We consider several training-free approaches along this direction and propose a novel prompting method:

- *Visual Contrastive Decoding* (Leng et al., 2024) contrasts the output distributions derived from original and distorted visuals to ensure the generated content closely adheres to the visual inputs.
- *Pay Attention to Image* (Liu et al., 2024f) adaptively adjusts and amplifies the attention weights assigned to image tokens, thereby giving greater prominence to visual elements.
- *Chain-of-Thought (CoT)* prompting (Wei et al., 2022b) enables complex reasoning capabilities through intermediate reasoning steps.
- 431 While Wei et al. (2022b) demonstrates that CoT can enhance the commonsense reasoning capabilities of LLMs, its applicability to MLLMs in leveraging visual elements under conflict scenarios may not

Model	Y-N	MC	Subj.	Avg.
Qwen-VL-Chat-9.6B	69.8	80.5	89.3	79.9
+ Visual Contrastive Decoding (Leng et al., 2024)	⁻ 82.4 ⁻	79.9	85.6	82.6
+ CoT Prompting (Wei et al., 2022b)	$^{-}\bar{7}9.7^{-}$	65.8	77.8	74.4
+ FoV Prompting (this work)	82.4	83.2	87.4	84.3
LLaVA-1.5-13B	70.6	88.0	82.9	80.5
+ Visual Contrastive Decoding (Leng et al., 2024)	$^{-}\bar{7}2.7^{-}$	89.3		82.1
+ Pay Attention to Image (Liu et al., 2024f)	85.6	88.8	86.1	86.8
+ CoT Prompting (Wei et al., 2022b)	- 38.0	89.8	76.7	$\overline{68.2}$
+ FoV Prompting (this work)	82.9	89.0	81.8	84.6
LLaVA-NeXT-34B	73.3	92.5	88.0	84.6
+ CoT Prompting (Wei et al., 2022b)	43.6	87.2	72.5	67.7
+ FoV Prompting (this work)	85.8	92.5	89.8	89.4
GPT-4o	74.9	97.1	97.9	89.9
+ CoT Prompting (Wei et al., 2022b)	$-\overline{66.0}^{-}$	98.7	93.6	86.1
+ FoV Prompting (this work)	75.9	96.5	98.9	90.5

Table 2: MLLMs' accuracy under different improvement methods.

be directly transferable. In response to this problem, we propose a simple and effective prompting technique named **Focus-on-Vision** (FoV) prompting to explicitly instruct MLLMs to prioritize visual information, which can be seamlessly incorporated into current MLLMs:

[textual query] Please focus on the visual information.

Table 2 shows the results. We adhere to the methodologies outlined in the original papers by implementing Visual Contrastive Decoding (VCD) and Pay Attention to Image (PAI) techniques on the Qwen-VL-Chat-9.6B and LLaVA-1.5-13B models. Both approaches significantly improve the models' performance, aligning with the outcomes reported in the literature for enhancing MLLMs trustworthiness. Interestingly, we notice that CoT prompting diminishes the performance of the models. Upon examining the failure cases, we find that though CoT envokes the commonsense reasoning abilities of MLLMs, these models can over-rely on their parametric knowledge to draw the conclusion, which results in an increased number of inaccurate response or refusals. We present the corresponding failure cases in Appendix E.2. In contrast, our Focus on Vision (FoV) prompting technique addresses this issue by guiding MLLMs to prioritize visual information, which boosts performances across models.

RELATED WORK

Knowledge Conflicts. Knowledge conflicts in LLMs can be divided into three categories (Xu et al., 2024b): within the retrieved context (Chen et al., 2022), within model's parametric knowledge (Huang et al., 2023), and between the context and the model's parametric knowledge (Xie et al., 2024; Wu et al., 2024a). These conflicts can lead to incorrect or inconsistent responses, undermining the model's trustworthiness (Xu et al., 2024b; Xie et al., 2024). In MLLMs, these conflict types expand to multimodal inputs, where conflicts can occur between the input image and the text instruction (Liu et al., 2024e; Han et al., 2024), or when the image contains counterfactual information that contradicts the model's parametric knowledge (Liu et al., 2024e; Guan et al., 2024).

To evaluate the conflicts between visual information and the parametric knowledge in MLLMs, HallusionBench (Guan et al., 2024) manually edits collected informational graphics to create normalcounterfactual image pairs, and verifies model consistency with simple Yes-No questions. AutoHallu-sion (Wu et al., 2024b) introduces an automated approach to generate counterfactual scenarios by altering correlated objects in images, utilizing Yes-No questions to probe object existence and spatial relationships. In the context of commonsense knowledge, PhD (Liu et al., 2024e) generates countercommonsense images through manual collection and synthesis, employing Subjective questions for assessment. Our proposed CONFLICTVIS distinguishes itself by:

- Incorporating a wider range of question types and conflict targets, including Yes-No, Multiple-Choice, Subjective questions and counter-commonsense actions and places. This approach allows for a more thorough evaluation of MLLMs. Our findings indicate that MLLMs tend to disregard visual information more frequently when responding to simpler questions and conflicting action is more challenging for MLLMs to resolve.
- Automatically generating counter-commonsense images based on the co-occurrence of knowledge components and crafting questions around these counter-commonsense aspects, ensuring better image-question alignment. With the aid of advanced text-to-image models, our framework can generate instances tailored to specific needs.

Hallucination in MLLMs. Hallucination in MLLMs refers to cases where the model generates descriptions that conflict with the given visual context. MLLMs' hallucinations are typically categorized based on the type of incorrect information, such as non-existent objects, incorrect object attributes, and inaccurate object relations (Liu et al., 2024a). Relevant research has mainly focused on two key areas: developing benchmarks and metrics to detect hallucinations (Rohrbach et al., 2018; Li et al., 2023c; Liu et al., 2023a; Wang et al., 2024; Liu et al., 2024f).

In the context of knowledge conflicts, hallucination occurs when the model gives precedence to its
intrinsic knowledge rather than the visual context (Liu et al., 2023a; Guan et al., 2024; Liu et al., 2024e;a). Our study explores this issue by simulating knowledge conflicts that MLLMs may face
during inference, and evaluates the effectiveness of different strategies to mitigate hallucinations (Leng
et al., 2024; Liu et al., 2024f) by enhancing the model's fidelity to visual inputs. Furthermore, we
introduce a novel prompting technique that explicitly instructs MLLMs to prioritize visual information,
thereby significantly and consistently reducing the occurrence of hallucinations.

513 Benchmarks for MLLMs. Traditional vision-language benchmarks are designed to assess indepen-514 dent skills, including image captioning (Chen et al., 2015), visual grounding Rohrbach et al. (2016), 515 and visual question answering (Antol et al., 2015; Hudson & Manning, 2019). However, with the 516 emergence of MLLMs, there is a growing need for more comprehensive and tailored benchmarks. The strong zero-shot abilities and advanced language generation skills exhibited by MLLMs can 517 render traditional benchmarks insufficient, as they may not account for the diversity of responses or 518 the full range of MLLM capabilities. To address these limitations, researchers have developed more 519 complex and comprehensive benchmarks to assess MLLMs across a wider range of capabilities (Yue 520 et al., 2024; Fu et al., 2023; Li et al., 2023a; Liu et al., 2023c). Meanwhile, diagnostic benchmarks 521 have also been proposed to evaluate specific challenges or traits in MLLMs, such as hallucination 522 (Li et al., 2023c; Liu et al., 2023a), social bias (Howard et al., 2024), and model safety (Liu et al., 523 2023b). CONFLICTVIS is a pioneering analytical benchmark to introduce conflicting visual contexts 524 against the model's commonsense knowledge, allowing us to investigate model performance in the 525 face of vision-knowledge conflicts.

526 527

489

490

491

492

493 494

495

496

497

498

5 CONCLUSION

528 529 530

This paper introduces an innovative approach to understand and mitigate the significant challenge 531 of vision-knowledge conflicts in MLLMs, with a particular focus on commonsense knowledge. By 532 developing an automated pipeline and the CONFLICTVIS benchmark, we offer a tool for systematically 533 evaluating and understanding the nuances of these conflicts. Our extensive experiments across nine 534 representative MLLMs reveal a tendency toward over-reliance on parametric knowledge, especially in simpler queries, which underscores the importance of the visual context in these models' decision-536 making processes. Building on these insights, we evaluate three improvement methods and design a 537 new Focus-on-Vision prompting to reinforce the significance of visual input, thereby reducing the impact of conflicts. Our work paves the way for future research aimed at improving the robustness 538 and reliability of MLLMs. Our goal is to ensure these models can effectively integrate and interpret multimodal data, mitigating internal knowledge inconsistencies.

540 REFERENCES 541

547

569

571

572

577

578

579

580

- Anthropic. claude-3-5-sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024. 542 Accessed: 2024-08-01. 543
- 544 Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international 546 conference on computer vision, pp. 2425–2433, 2015.
- Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, 548 and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, localization, 549 text reading, and beyond, 2023. 550

551 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, 552 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, 553 Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, 554 Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, 556 R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips. 558 cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. 559

- 560 Hung-Ting Chen, Michael Zhang, and Eunsol Choi. Rich knowledge sources bring complex knowledge conflicts: Recalibrating models to reflect conflicting evidence. In Proceedings of the 2022 561 Conference on Empirical Methods in Natural Language Processing, pp. 2292–2307, 2022. 562
- 563 Liang Chen, Yang Deng, Yatao Bian, Zeyu Oin, Bingzhe Wu, Tat-Seng Chua, and Kam-Fai Wong. Beyond factuality: A comprehensive evaluation of large language models as knowledge generators. 565 In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Proceedings of the 2023 Conference 566 on Empirical Methods in Natural Language Processing, pp. 6325–6341, Singapore, December 567 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.390. URL 568 https://aclanthology.org/2023.emnlp-main.390.
- Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and 570 C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint arXiv:1504.00325, 2015.
- 573 Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, 574 Pascale Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models with instruction tuning. In Thirty-seventh Conference on Neural Information Processing Systems, 575 2023. URL https://openreview.net/forum?id=vvoWPYqZJA. 576
 - Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal large language models. arXiv preprint arXiv:2306.13394, 2023.
- Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew 581 Peters, Michael Schmitz, and Luke S. Zettlemoyer. Allennlp: A deep semantic natural language 582 processing platform. 2017. 583
- 584 Gemini Team. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of 585 context, 2024. URL https://storage.googleapis.com/deepmind-media/gemini/gemini_ v1_5_report.pdf. Accessed: 2024-06-15. 586
- Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang 588 Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entan-589 gled language hallucination and visual illusion in large vision-language models. In Proceedings of 590 the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14375–14385, 2024. 591
- Tianyang Han, Qing Lian, Rui Pan, Renjie Pi, Jipeng Zhang, Shizhe Diao, Yong Lin, and Tong 592 Zhang. The instinctive bias: Spurious images lead to hallucination in mllms. arXiv preprint arXiv:2402.03757, 2024.

- Phillip Howard, Anahita Bhiwandiwalla, Kathleen C Fraser, and Svetlana Kiritchenko. Uncovering bias in large vision-language models with counterfactuals. *arXiv preprint arXiv:2404.00166*, 2024.
- Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 models: Principles, taxonomy, challenges, and open questions. *arXiv preprint arXiv:2311.05232*, 2023.
- Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13418–13427, 2024.
- Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
 and compositional question answering. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 6700–6709, 2019.
- Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 2901–2910, 2017.
- Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
 Mitigating object hallucinations in large vision-language models through visual contrastive decoding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13872–13882, 2024.
- Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-marking multimodal Ilms with generative comprehension. *arXiv preprint arXiv:2307.16125*, 2023a.
- Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre training for unified vision-language understanding and generation. In *International conference on machine learning*, pp. 12888–12900. PMLR, 2022a.
- Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image encoders and large language models. In *International conference on machine learning*, pp. 19730–19742. PMLR, 2023b.
- Kiang Lorraine Li, Adhiguna Kuncoro, Jordan Hoffmann, Cyprien de Masson d'Autume, Phil
 Blunsom, and Aida Nematzadeh. A systematic investigation of commonsense knowledge in
 large language models. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pp. 11838–11855, 2022b.
- Yafu Li, Yongjing Yin, Yulong Chen, and Yue Zhang. On compositional generalization of neural machine translation. In *ACL*, 2021.
- Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
 object hallucination in large vision-language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 292–305, 2023c.
- Dekang Lin. Automatic identification of non-compositional phrases. In *Proceedings of the 37th annual meeting of the Association for Computational Linguistics*, pp. 317–324, 1999.
- Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating
 hallucination in large multi-modal models via robust instruction tuning. In *The Twelfth International Conference on Learning Representations*, 2023a.
- Hanchao Liu, Wenyuan Xue, Yifei Chen, Dapeng Chen, Xiutian Zhao, Ke Wang, Liping Hou,
 Rongjun Li, and Wei Peng. A survey on hallucination in large vision-language models. *arXiv* preprint arXiv:2402.00253, 2024a.

648 649 650	Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> , pp. 26296–26306, 2024b.
652 653	Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, 2024c.
654 655	Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. <i>Advances in neural information processing systems</i> , 36, 2024d.
656 657 658 659	Jiazhen Liu, Yuhan Fu, Ruobing Xie, Runquan Xie, Xingwu Sun, Fengzong Lian, Zhanhui Kang, and Xirong Li. Phd: A prompted visual hallucination evaluation dataset. <i>arXiv preprint arXiv:2403.11116</i> , 2024e.
660 661	Shi Liu, Kecheng Zheng, and Wei Chen. Paying more attention to image: A training-free method for alleviating hallucination in lvlms. <i>arXiv preprint arXiv:2407.21771</i> , 2024f.
662 663	X Liu, Y Zhu, J Gu, Y Lan, C Yang, and Y Qiao. Mm-safetybench: A benchmark for safety evaluation of multimodal large language models. <i>arXiv preprint arXiv:2311.17600</i> , 2023b.
665 666 667	Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? <i>arXiv preprint arXiv:2307.06281</i> , 2023c.
668 669	Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer Singh. Entity-based knowledge conflicts in question answering. In <i>EMNLP</i> , November 2021.
671 672 673	Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting Huang, Bingshuai Liu, Zefeng Du, Shuming Shi, and Zhaopeng Tu. Macaw-llm: Multi-modal language modeling with image, audio, video, and text integration, 2023. URL https://arxiv.org/abs/2306.09093.
674 675	Meta AI. Introducing meta llama 3, 2024. URL https://ai.meta.com/blog/meta-llama-3/. Accessed: 2024-09-18.
676 677 678	<pre>OpenAI. Introducing chatgpt, 2022. URL https://openai.com/index/chatgpt/. Accessed: 2024-09-18.</pre>
679	OpenAI. Gpt-4 technical report, 2023a.
680 681 682	OpenAI. Gpt-4v(ision), 2023b. URL https://openai.com/contributions/gpt-4v/. Accessed: 2024-09-18.
683	OpenAI. Dall-e 3, 2024a. URL https://openai.com/dall-e-3. Accessed: 2024-04-30.
684 685 686	OpenAI. Gpt-4o, 2024b. URL https://openai.com/index/hello-gpt-4o/. Accessed: 2024-06-15.
687 688 689 690	Anna Rohrbach, Marcus Rohrbach, Ronghang Hu, Trevor Darrell, and Bernt Schiele. Grounding of textual phrases in images by reconstruction. In <i>Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14</i> , pp. 817–834. Springer, 2016.
691 692 693	Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination in image captioning. In <i>Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing</i> , pp. 4035–4045, 2018.
694 695 696 697 698	Push Singh, Thomas Lin, Erik T Mueller, Grace Lim, Travell Perkins, and Wan Li Zhu. Open mind common sense: Knowledge acquisition from the general public. In <i>On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE: Confederated International Conferences CoopIS, DOA, and ODBASE 2002 Proceedings</i> , pp. 1223–1237. Springer, 2002.
699 700 701	Gabriela Ben Melech Stan, Raanan Yehezkel Rohekar, Yaniv Gurwicz, Matthew Lyle Olson, Anahita Bhiwandiwalla, Estelle Aflalo, Chenfei Wu, Nan Duan, Shao-Yen Tseng, and Vasudev Lal. Lvlm-intrepret: An interpretability tool for large vision-language models. <i>arXiv preprint arXiv:2404.03118</i> , 2024.

730

731

732

Shengbang Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Manoj Middepogu, Sai Charitha Akula, Jihan Yang, Shusheng Yang, Adithya Iyer, Xichen Pan, et al. Cambrian-1: A fully open, vision-centric exploration of multimodal llms. *arXiv preprint arXiv:2406.16860*, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amiad Almahairi, Yasmine Babaei, Nikolav 706 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, 708 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, 709 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel 710 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, 711 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, 712 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, 713 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh 714 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, 715 716 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https://arxiv.org/abs/2307.09288. 717

- Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang, Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and Jitao Sang. An Ilm-free multi-dimensional benchmark for mllms hallucination evaluation. *arXiv preprint arXiv:2311.07397*, 2023.
- Zhanyu Wang, Longyue Wang, Zhen Zhao, Minghao Wu, Chenyang Lyu, Huayang Li, Deng Cai, Luping Zhou, Shuming Shi, and Zhaopeng Tu. GPT4Video: A Unified Multimodal Large Language Model for Instruction-Followed Understanding and Safety-Aware Generation. In ACM MM, 2024.
- Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International Conference on Learning Representations*, 2022a. URL https://openreview.net/forum?id= gEZrGCozdqR.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022b.
- Kevin Wu, Eric Wu, and James Zou. How faithful are rag models? quantifying the tug-of-war
 between rag and llms' internal prior. *arXiv preprint arXiv:2404.10198*, 2024a.
- Xiyang Wu, Tianrui Guan, Dianqi Li, Shuaiyi Huang, Xiaoyu Liu, Xijun Wang, Ruiqi Xian, Abhinav Shrivastava, Furong Huang, Jordan Lee Boyd-Graber, et al. Autohallusion: Automatic generation of hallucination benchmarks for vision-language models. *arXiv preprint arXiv:2406.10900*, 2024b.
- Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and Yu Su. Adaptive chameleon or stubborn sloth: Revealing the behavior of large language models in knowledge conflicts. In *The Twelfth International Conference on Learning Representations*, 2024.
- Dexuan Xu, Yanyuan Chen, Jieyi Wang, Yue Huang, Hanpin Wang, Zhi Jin, Hongxing Wang, Weihua
 Yue, Jing He, Hang Li, et al. Mlevlm: Improve multi-level progressive capabilities based on multimodal large language model for medical visual question answering. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 4977–4997, 2024a.
- Rongwu Xu, Zehan Qi, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu. Knowledge conflicts for llms: A survey. *arXiv preprint arXiv:2403.08319*, 2024b.
- Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.
- Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models, 2023.

BENCHMARK DETAILS А

756

757 758

759 760

780

781 782

783 784 785

786

791

793

796

797

803

804

805

A.1 LINGUISTIC RULES TO EXTRACT KNOWLEDGE COMPONENTS

Table 3: Linguistic rules to identify different components in the knowledge triplet.

Category	Main Requirement	Example
Subject	<pre>p in noun_chunks && p.root.dep in ["nsubj", "nsubjpass"]</pre>	a baby, a chef
Action Place	p[0].pos == "VERB" && p[-1].dep == "dobj" p.srl = "ARGM-LOC" && 3 <= p.length <= 4	fixing a computer at the bookstore

A.2 EXAMPLES IN CONFLICTVIS

(a) a musician paddling the boat in a studio

(b) a musician chopping some onions in a studio

(c) a musician playing the piano on a freeway

(d) a musician playing the piano in an ambulance

Figure 10: Some examples for the subject "a musician" in the CONFLICTVIS Benchmark.

В HUMAN QUALITY CONTROL FOR CONSTRUCTING CONFLICTVIS

787 This section outlines the quality control procedures within our automated pipeline. As shown in the 788 previous Figure 2, there are two required quality control points: (1) after generating knowledge 789 triplets, and (2) after generating images. In practice, to reduce the workload for annotators at the 790 first point, we subdivide it into three steps: (i) after extracting knowledge components, (ii) after generating context pairs, and (iii) after generating knowledge triplets. Below, we detail the guidelines applied at each stage. 792

B.1 HUMAN ANNOTATORS 794

> Our annotation team consists of four Ph.D. students majored in computer science. All annotators are compensated for their contributions.

798 **B.2** FILTERING KNOWLEDGE TRIPLETS 799

800 Filtering knowledge components. This step removes semantically abstract phrases in the Subject, 801 Action, and Place categories, which are difficult to visualize. Annotators classify each phrase based 802 on its concreteness:

- Concrete (1). The phrase represents tangible objects or actions.
- Abstract (0). The Phrase represents abstract ideas or concepts.
- 806 Table 4 provides some labeling examples at this step: 807
- In this step, the annotators perform labeling starting from the top 1000 most frequent phrases from 808 each category in descending order, and keep the first 100 Subject phrases and the first 150 Action and 809 Place phrases that meet the requirements.

812	Category	Label	Phrases
813	0.1.	0	
814	Subject	0	the statement, the story, the stock market, words
015	Subject	1	a patient, kids, politicians, whales, a sailor
C10	Action	0	understand the event, lose weight, take care
816	Action	1	take a shower, use a computer, play chess
817	Place	0	in the event, in the newspaper, in your life
818	Place	1	on the ground, on the sidewalk, by the fire
819			

Table 4: Labeling examples for knowledge components.

> **Filtering context pairs.** The target of this step is to remove the unsatisfying phrases that remain in the candidate list after the automatic pre-filtering. To this end, our annotators conduct a binary classification on the context pairs based on their commonness in the real world. Specifically, the annotators are asked to examine the context tuples without the knowledge of their co-occurrence scores and label them as:

• Common (1). The context tuple depicts a typical scene in the real world.

• Uncommon (0). The context tuple depicts an unusual scene in the real world.

To better illustrate, we provide some labeling examples from our human annotators in Table 5 below:

Table 5: Labeling examples for context pairs.

Category	Label	Phrases
(Subject, Action)	0	(the cat, walking the dog), (a butcher, playing cards)
(Subject, Action)	1	(the cat, climbing a tree), (a butcher, slaughtering a pig)
(Subject, Place)	0	(cows, on the beach), (a gardener, in the desert)
(Subject, Place)	1	(cows, on a farm), (a gardener, in a greenhouse)

In this step, our annotators thoroughly label candidate context pairs within the Top K range provided by the pipeline. Context pairs labeled as 1 are retained for the next stage of generation.

Filtering knowledge triplets. Following the preliminary filtering steps, the workload for this phase is significantly reduced. The goal here is to eliminate any unexpected triplets that are not captured in earlier filtering. Without access to the exact co-occurrence score between the context and target phrases, annotators perform a binary classification based on the commonness of the triplet's expression. Specifically, the annotators are asked to label each triplet in the candidate list as:

• Common (0). The context tuple depicts a typical scene in the real world.

• Uncommon (1). The context tuple depicts an unusual scene in the real world.

Again, we provide some labeling examples from our human annotators in Table 6 for a better illustration:

Table 6:	Labeling	examples	for know	ledge	triplets.
14010 01	Bacenng	en an pres	101 1010 00		in proto.

Category	Label	Phrases
((Subject, Place), Action)	0	((the waitress, at the bar), using a vcr)
((Subject, Place), Action)	1	((the waitress, at the bar), hitting a deer)
((Subject, Action), Place)	0	((politicians, drinking alcohol), at the theater)
((Subject, Action), Place)	1	((politicians, drinking alcohol), in the oven)

In this step, our annotators label all the candidate context-target triplets in the Top M range provided by the pipeline, and triplets with label **1** are used for subsequent image generation.

864 B.3 FILTERING IMAGES

The objective of this step is to select high-quality images that align closely with the text prompt. Each annotator is provided with an image and its corresponding text query, and evaluates the image based on two criteria:

- Alignment with text prompt (0 or 1). The image should contain the key objects, actions, and background described in the text. The main focus should clearly represent the scene without ambiguity or misinterpretation.
- Image quality (0 or 1). The image should be clear, free from significant distortions, artifacts, or unnatural effects like warping, blurring, or pixelation.

With these two guidelines, the annotators extensively label all the generated images, and the images with a total score of **2** are kept in the final dataset.

Below, we demonstrate some sample images that are below our quality standard:

(a) Cows in a field chopping carrots. Labels: A(0), Q(1)

(b) The teacher in a classroom paddling the boat. Labels: A(1), Q(0)

(c) The farmer pouring milk in an ambulance. Labels: A(0), Q(1)

(d) The pharmacist serving customers on a tree. Labels: A(1), Q(0)

Figure 11: Examples of rejected images and their labels. A: Alignment with text prompt, Q: Quality of the image.

In this stage, we generate about 830 images in total and only keep 374 images, resulting in an average filter rate around 55%.

C GUIDELINES FOR MANUAL LABELING OPEN-END RESPONSES

To label the correctness of MLLMs responses for the open-ended questions, we design our evaluation criteria following Xu et al. (2024a). Specifically, the annotators are asked to determine the correctness of MLLM's responses based on two criteria:

- **Relevancy** (0 or 1): The content of the response is reflected in the image and addresses the focus of the question.
- Responsiveness (0 or 1): The response directly answers the question as instructed.

Responses with a total score of 2 are considered correct for accuracy calculation.

To classify responses as either knowledge-based or vision-based, annotators grade the semantic closeness between the current response and the reference responses on a scale from 0 to 2:

- 0: The answers are entirely unrelated.
- 1: The answers share similar concepts but are not identical or synonymous.
- 2: The answers are identical or synonymous.
- 917 The candidate response is assigned to the category with a higher score (e.g., Vision or Knowledge). If both scores are 0, the response is categorized as "Other".

918 D ADDITIONAL EXPERIMENT RESULTS

D.1 SUMMARY OF MLLMS PERFORMANCE ON CONFLICTVIS AND GENERAL BENCHMARKS

Table 7: Accuracy of MLLMs on general multimodal benchmarks and our CONFLICTVIS . "Text": number of text tokens, "Image": number of image-text pairs. MMB denotes MMBench developed by Liu et al. (2023c), M³U denotes MMMU by Yue et al. (2024).

MLLMs		Pretra	in Data	Gen	eral	(Our Be	nchmar	k
Name	Size	Text	Image	MMB	M^3U	Y-N	MC	Subj.	Avg.
		Op	en-Sour	ce MLLI	Ms				
Qwen-VL	0.60	- 2.4T	2 (D	32.2	_	52.9	82.4	85.3	73.5
Qwen-VL-Chat	9.0D	2.41	3.0D	61.8	35.9	69.8	80.5	89.3	79.9
<u> </u>	$\overline{12B}$	0.2T			35.4	39.3	⁻ 82.9 ⁻	- 88.8	70.3
InstructBLIP	13B	0.21	0.0B	-	35.7	68.2	88.8	81.8	79.6
	- 13B	$\bar{2.0T}$	- 0.4Ē	69.2	36.4	$7\bar{0}.\bar{6}$	$\bar{88.0}$	82.9	80.5
LL AVA NAVT	8B	15.0T	0.4D	71.7	41.7	70.3	86.6	85.0	80.7
LLavA-Nex I	34B	-	0.4B	81.1	51.1	73.3	92.5	88.0	84.6
		Cl	ose-Sour	ce MLL	Ms				
Claude-3.5-Sonnet	_	_	-	79.7	68.3	56.4	90.6	96.8	81.3
				83.4	- <u>69.</u> 1	74.9	⁻ 97.1	- <u>9</u> 7.9	- 8 9.9

E FAILURE CASES

E.1 CONFLICTVIS FAILURE CASES

Failure Case - Yes-No
Triplet: (the pharmacist, in a pharmacy, digging a hole)
Question: Is the pharmacist in a pharmacy digging a hole?
Claude-3.5-Sonnet: No. The pharmacist is not digging a hole in the pharmacy.

Figure 12: Failure case on yes-no question.

1026 E.2 COT FAILURE CASES

CoT Failure Case - Den	al
Triplet: (the hunter, riding a horse Question: Where is the hunter rid	e, in a bathtub) ing a horse?
Original (zero-shot):	CoT:
LLaVA-NeXT-34B: Bathtub.	LLaVA-NeXT-34B: Let's think step by step. The image shows a man dressed in camouflage clothing, which is often associated with hunters. He is holding a rifle, which is a common hunting tool. However, instead of riding a horse, he is sitting in a bathtub. This is an unusual and humorous juxtaposition, as one would typically expect to see a horse in a natural setting rather than a bathtub. Therefore, the answer is: Not possible in this image.

