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Abstract

Experimentation with interference poses a sig-
nificant challenge in contemporary online plat-
forms. Prior research on experimentation with
interference has concentrated on the final out-
put of a policy. Cumulative performance, while
equally important, is less well understood. To
address this gap, we introduce the problem of
Multi-armed Bandits with Interference (MABI),
where the learner assigns an arm to each of N
experimental units over T rounds. The reward of
each unit depends on the treatments of all units,
and this dependence decays in distance. The re-
ward functions, chosen by an adversary, may vary
arbitrarily over space and time. We first show that
a switchback policy achieves an optimal expected
regret of Õ(

√
T ) against the best fixed-arm pol-

icy; however, the regret as a random variable suf-
fers high variance. We propose a policy based on
a novel clustered randomization scheme, whose
regret (i) is optimal in expectation and (ii) admits
a high-probability bound that vanishes in N .

1. Introduction
A/B tests have become a standard practice to evaluate the
impact of a new product or service change before wide-scale
release. A naive A/B test may fail in the presence of inter-
ference, i.e., the Stable Unit Treatment Values Assumption
(SUTVA, Rubin 1978) is violated, where the treatment of
one unit affects the outcome of another. For example, if a
ride-sharing firm assigns half of the drivers to a new pricing
algorithm, these drivers will alter their behaviors, which
impacts the common pool of passengers, and consequently
the drivers not assigned the new algorithm.
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Most previous work on experimentation with interference
focused on the quality of the final output, such as the mean-
squared error of the estimator (e.g., Ugander et al. 2013)
or p-value (e.g., Athey et al. 2018). On the other hand,
the cumulative performance is also important in practice,
considering the scale of experiments on modern platforms,
but this perspective is often overlooked.

This motivates us to study cumulative reward maximization
in A/B testing with interference. We employ a batched
adversarial bandits framework. Given a set U ⊆ R2 of N
units representing, for example, users in an online platform,
each with a known, fixed location. We are also given a set
[k] := {1, . . . , k} of arms and a time horizon with T rounds.
In each round, the learner assigns one arm to each unit
and collects an observable reward, governed by a reward
function secretly chosen by an adversary beforehand.

To capture interference, the mean reward of each unit de-
pends on the treatments of all units. Formally, this means
that each reward function is defined on [k]U instead of on
[k] (as in ordinary bandits). Similarly to causal inference
with interference, efficient learning is impossible without ad-
ditional structures. In this work, we employ a rather general
assumption from Leung 2022 that the unit-to-unit interfer-
ence decreases in their distance. Specifically, for any two
treatment assignments z, z′ ∈ [k]N , if they are identical on
a neighborhood of u ∈ U , then their rewards on u are close;
Moreover, the larger this neighborhood, the closer they are.

On the technical level, we build upon the EXP3 framework
for adversarial bandits, integrating with a novel Horvitz-
Thompson estimator with Implicit eXploration (HT-IX). By
choosing different hyperparameters, this estimator “inter-
polates” between the estimator for the average treatment
effect (ATE) under spatial interference (Leung, 2022) and
for the unobserved rewards in adversarial bandits (Kocák
et al., 2014; Neu, 2015).

From a practical standpoint, a “pure” switchback policy —
where the entire system switches between treatment and
control — is rarely used in practice. Instead, platforms typ-
ically partition the space into clusters and independently
assign treatment or control to each cluster in each period;
see, e.g., DoorDash’s “clustered” switchback experiments
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(Sneider and Tang, 2019). This is precisely the class of
policies that we analyze in this work. Thus, a key contribu-
tion of our work is to provide theoretical justification for a
policy class widely used in industry.

1.1. Our Contributions

We contribute to the literature in the following ways.
1. Bridging Adversarial Bandits and Causal Inference.
We incorporate interference into MAB by formulating the
problem of Multi-Armed Bandits with Interference (MABI).
The ordinary MAB can therefore be seen as a special case
of MABI under SUTVA. Our formulation is fairly general,
imposing no constraints on the non-stationarity or hetero-
geneity in reward functions between units. At the heart of
our policy is an estimator that generalizes the estimators
of (1) Kocák et al. (2014) for deriving high-probability re-
gret bound in adversarial bandits and (2) Leung (2022) for
estimating treatment effects under spatial interference.

2. Optimal Expected Regret. We show that a switchback
policy has an optimal (up to log terms) Õ(

√
kT ) expected

regret. Moreover, we also show that for any (possibly non-
switchback) policy, there is a MABI instance on which it
suffers an Ω(

√
kT ) expected regret. Notably, this suggests

that a large N does not help reduce the expected regret.

3. High-probability Bound. Although the regret (as a
random variable) of a switchback policy may be optimal in
expectation, it can suffer high variance. To address this, we
propose a policy that integrates the following components.
a) Randomized Clustered Randomization. We introduce
the Robust Random Partition (RRP) where we perturb the
cluster boundaries randomly. This increases the exposure
probability from pO(1) to Ω(p). This reduces the variance
caused by the specific clustering chosen for cluster random-
ization.
b) Estimator. Our HT-IX estimator adds an implicit explo-
ration (IX) parameter (Kocák et al., 2014) into the propen-
sity score of the Horvitz-Thompson (HT) estimator. This
reduces the variance caused by unbalanced weights over the
treatment arms.

We show that the EXP3 policy based on (1) the RRP design
and (2) the HT-IX estimator has an optimal expected regret.
Moreover, the tail mass of the regret vanishes asN →∞. In
stark contrast, this result is not possible for any switchback
policy, as the tail mass of the regret does not depend on N .
This result is crucial for practical applications, as market
size N is typically orders of magnitude larger than T .

1.2. Related Work

Experimentation is a widely deployed learning tool in on-
line commerce that is easy to execute (Kohavi and Thomke,
2017; Thomke, 2020; Larsen et al., 2023). As a key chal-

lenge, the violation of the SUTVA has been viewed as prob-
lematic for online platforms (Blake and Coey, 2014). This
problem has been extensively studied in statistics (e.g., Hud-
gens and Halloran 2008; Aronow and Samii 2017; Eckles
et al. 2017; Basse and Feller 2018; Basse et al. 2019; Li and
Wager 2022; Hu et al. 2022; Leung 2023; Hu and Wager
2022), operations research (e.g., Johari et al. 2022; Bojinov
et al. 2023; Farias et al. 2022; Holtz et al. 2024; Cando-
gan et al. 2024; Jia et al. 2023a), computer science (e.g.,
Ugander et al. 2013; Saveski et al. 2017; Ugander and Yin
2023; Yuan et al. 2021) and medical research (Tchetgen and
VanderWeele, 2012). Some recent surveys include Bajari
et al. 2023; Larsen et al. 2023.

Many works tackle this problem by assuming that interfer-
ence is summarized by a low-dimensional exposure map-
ping and that units are individually randomized to treatment
or control by Bernoulli or complete randomization (Man-
ski, 2013; Toulis and Kao, 2013; Aronow and Samii, 2017;
Basse et al., 2019; Forastiere et al., 2021). To improve es-
timator precision, some work departed from unit-level ran-
domization and introduced cluster correlation in treatment
assignments. This is usually done by either (i) grouping
the units in a network into clusters (Ugander et al., 2013;
Jagadeesan et al., 2020; Leung, 2022; 2023) or (ii) group-
ing time periods into blocks (“switchback”) (Bojinov et al.,
2023; Hu and Wager, 2022; Jia et al., 2023a). However,
these works usually focus on the quality of the final output,
such as the bias and variance of the estimator (Ugander
et al., 2013; Leung, 2022) and p-values for hypothesis test-
ing (Athey et al., 2018).

While existing literature has primarily focused on the final
output, the cumulative performance remains less well under-
stood. A natural framework is multi-armed bandits (MAB)
(Lai et al., 1985). These works focus on the cumulative per-
formance but often overlook the interference element. There
are three lines of work in MAB that are most related to this
work: (i) adversarial bandits, (ii) multiple-play bandits and
(iii) combinatorial bandits.

Particularly related is the adversarial bandit problem. Many
policies for adversarial bandits are built on the idea of weight
update (Vovk, 1990; Littlestone and Warmuth, 1994), first
introduced for the full-information setting (i.e., the best
expert problem). Auer et al. (1995) considered the bandit
feedback version and proposed a forced exploration version
of the EXP3 policy. Stoltz (2005) observed that the policy
achieves the optimal expected regret even without additional
exploration.

High-probability bounds for adversarial bandits were first
provided by Auer et al. (2002) and explored in a more
generic way by Abernethy and Rakhlin (2009). In particu-
lar, the idea to reduce the variance of importance-weighted
estimators has been applied in various forms (Ionides, 2008;
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Bottou et al., 2013) and was first introduced to bandits by
Kocák et al. (2014). Subsequently, Neu (2015) showed that
this algorithm admits high-probability bounds.

Another closely related line is multiple-play bandits (Anan-
tharam et al., 1987), where the learner plays multiple arms
per round and observes each of their feedback. The number
of arms played in each round can be viewed as the “N” in
our problem (Chen et al., 2013; Komiyama et al., 2015;
Lagrée et al., 2016; Jia et al., 2023b). Another related line
of work is multi-agent RL (Kanade et al., 2012; Busoniu
et al., 2008; Zhang et al., 2021). Our problem differs in that
each “agent” behaves completely passively.

Finally, since the reward function is defined on the hyper-
cube [k]N , our work is also related to combinatorial bandits
(Cesa-Bianchi and Lugosi, 2012) where the action set is
a subset of a binary hypercube. While most work in this
area considers linear reward functions, in our work the re-
ward functions are only assumed to satisfy the decaying
interference assumption. A recent line of work focuses
on combinatorial bandits with non-linear reward functions.
However, most of these works either assume a stochastic
setting (Agrawal et al., 2017; Kveton et al., 2015) or an ad-
versarial setting with a restrictive class of reward functions,
such as polynomial link functions (Han et al., 2021).

Most closely related is the concurrent work of Agarwal
et al. (2024); Zhang and Wang (2024); Xu et al. (2024)
on stochastic bandits with interference. Specifically, the
reward at each unit is determined by a stationary reward
function. With stationarity, they can adopt a stronger bench-
mark, e.g., Agarwal et al. (2024) chose the best “personal-
ized” treatment assignment, as opposed to the best uniform
treatment assignment in our work. However, our framework
is more general in two ways: (1) the reward functions can
be non-stationary heterogeneous arbitrarily, and (2) we do
not impose much structural assumptions (such as linear-
ity) on the interference pattern; we only assume that the
interference level decays in distance.

2. Formulation and Assumptions
We consider a multiple-play (i.e., multiple arms are played
in each round) adversarial bandit setting. Consider a set
of N units, T rounds and k treatment arms (or arms). For
each round t ∈ [T ] and unit u ∈ [N ] there is an unknown
reward function Yut : [k]N → [0, 1] that can depend on the
treatment assignment z ∈ [k]N (not just zu).

In each round t, the learner selects a treatment assignment
Zt ∈ [k]N and observes a reward Yut(Zt) for each u ∈ [N ]
(i.e., bandit feedback). Specifically, the distributions we use
to draw (Zt) form a policy which is, formally, a sequence
πt : ([k]

N × [0, 1]N )t−1 → ∆([k]N ) where t = 1, . . . , T .

As in adversarial bandits, we aim to control the loss com-
pared to the best fixed arm. When N = 1, our notion of
regret is the same as in adversarial bandits.
Definition 2.1 (Regret). The regret of a policy Z is defined
as Reg(Z) := maxa∈[k] {Reg(Z, a)} where for each a ∈
[k], we define

Reg(Z, a) :=

T∑
t=1

1

N

∑
u∈[N ]

(Yut(a · 1N )− Yut(Zt))

We focus on bounding the regret in expectation or, prefer-
ably, in high probability. The reward functions are chosen
“secretly” in advance in that our bounds on regret will hold
for any reward functions (possibly subject to some con-
straints we discuss next). Thus, the bounds hold even for
the worst-case reward functions chosen by an adversary.

Thus far, the model allows for unrestricted interference
in that Yut(z) may vary arbitrarily in any coordinate of
z. As in the literature of experimentation under interfer-
ence, to derive meaningful performance guarantees, it is
necessary to assume certain structures on interference. The
existing literature focuses on the restrictions captured by
κ-neighborhood exposure mappings, which imply that the
arm assigned to v (i.e., zv) can only interfere with Yut if the
distance between u, v is at most κ, which is quite restrictive.

In many applications, the effect of a treatment diffuses pri-
marily through physical interaction, such as a promotion
on a ride-sharing platform or a discount on a food deliv-
ery platform. Leung (2022) addressed this by proposing a
model that allows for interference between any two units,
with an intensity that decays in the distance. The following
is identical to that in their §2.1 (up to re-scaling).
Assumption 2.2 (Scaling of the Bounding Box, Leung
2022). There is bN = O(

√
N) s.t. U ⊆ [−bN , bN ] and

d(u, v) ≥ 1 for any u, v ∈ [N ] where d is the sup norm.

Leung (2022) posits that if two assignments z, z′ are iden-
tical on a ball-neighborhood of u, then the mean rewards
of u under z, z′ are close. To formalize, denote the radius-
r (open) ball as B(u, r) := {v ∈ [N ] | d(u, v) < r}.
For clarity, B(u, r) does not contain units that are ex-
actly distance r away. In particular, B(u, 0) = ∅ and
B(u, 1) = {u}.
Definition 2.3 (Decaying Interference Property). Let ψ :
[0,∞) → [0,∞) be non-increasing. A MABI instance
satisfies the ψ-decaying interference property (or ψ-DIP)
if for any r ≥ 0, u ∈ [N ], t ∈ [T ] and z, z′ ∈ [k]N with
zB(u,r) = z′B(u,r), we have

|Yut(z)− Yut(z′)| ≤ ψ(r).

Remark 2.4 (Recovering SUTVA). Consider ψ(r) = 1(r =
0). Then, for any z, z′ identical on B(u, 1) = {u} and r >
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0 in Definition 2.3, we have |Yut(z)−Yut(z′)| ≤ ψ(1) = 0.
Thus, Yut(z) only depends on zu, which recovers SUTVA.

3. Expected Regret

We show that the minimax expected regret is Õ(
√
T ). This

holds for all N (not fixed as constant!), although N does
not show up explicitly. This is not surprising due to the
normalization factor 1/N in the definition of regret.

3.1. Upper Bound

We begin by observing that MABI is equivalent to adversar-
ial bandits when we restrict ourselves to switchback policies,
which selects the same arm for all units in each round. These
policies are widely applied in practice (Sneider and Tang,
2019; Cooprider and Nassiri, 2023) and have been exten-
sively studied (Bojinov et al., 2023; Hu and Wager, 2022;
Xiong et al., 2023). Note that any adversarial bandit policy
(At) induces a switchback policy (Zt) where Zt = At · 1N .
Moreover, this reduction preserves the regret:

Proposition 3.1 (Reduction to Adversarial Bandits). Let
(At) be an adversarial bandits policy with expected regret
r(T ). Then, the induced switchback policy (Zt) satisfies
Reg(Z) = r(T ).

For adversarial bandits, the EXP3 (“EXPlore and EXPloit
with EXPonential weights”) policy has an Õ(

√
kT ) ex-

pected regret (Auer et al., 1995), so:

Corollary 3.2. The EXP3-based switchback policy has ex-
pected regret Õ(

√
kT ).

3.2. Lower Bound on the Expected Regret

The meticulous reader may have noticed that Corollary 3.2
does not involve the market size N . This is because switch-
back policies treat the entire system as a whole, and do not
involve N . Can we improve the bound by leveraging N
using more complicated policies? The answer is no:

Theorem 3.3 (Lower Bound on the Expected Regret).
Fix any non-increasing function ψ with ψ(0) = 1 and
limx→∞ ψ(x) = 0. Then for any MABI policy Z, there
exists a MABI instance I satisfying the ψ-DIP and Assump-
tion 2.2 s.t. Reg(Z, I) = Ω(

√
kT ).

We will choose the units to be integer grid points U =
{−2
√
N, 2
√
N} × {−2

√
N, 2
√
N}, which obviously sat-

isfies Assumption 2.2. To highlight key ideas, let us assume
k = 2. The extension to general k is straightforward.

High Level Idea. We will choose the k × T reward table
as a random matrix with i.i.d. Bernoulli entries with means
1/2. We then argue that
(a) the expected (over the randomness of the rewards and

policy) regret of any policy is T/2, and
(b) by a standard anti-concentration bound, w.h.p. there is a
fixed-arm policy with total reward T/2 + Ω(

√
T ).

Challenge. At first sight, the proof seems to follow triv-
ially from the lower bound of the best-expert problem (see,
e.g., Section 4 of Arora et al. 2012), by assigning all units
the same arm in each round. However, by doing so, the
reward functions are defined only for 1N and 0N , but we
need to specify their values on the entire {0, 1}N , subject to
the ψ-DIP. As a key step, we show that such an extension
is always possible:

Lemma 3.4 (Hypercube Extension). Let G = (V,E) the
grid graph where V = {−m, . . . ,m} × {−m, . . . ,m} for
some integer m. Then, for any non-increasing ψ : R+ →
R+, there is a function f : {0, 1}V → [0, 1] satisfying
i) the boundary condition: f(0V ) = 0, and f(1V ) =
ψ(0)− ψ(m), and
ii) the ψ-DIP: for any z, z′ ∈ {0, 1}V , if zB(O,r) = z′B(O,r)

for some r > 0 (where O = (0, 0)), then |f(z)− f(z′)| ≤
ψ(r).

Proof. We construct f as follows.
Step 1: Define f on Basis Vectors. For each r = 0, . . . ,m,
we define the basis vector σr ∈ {0, 1}V with entries

σr
v = 1(∥O − v∥∞ < r),∀v ∈ V.

In particular, σ0 = 0N and σm = 1N . Define

f (σr) := ψ(0)− ψ(r), r = 0, . . . ,m.

Step 2: Extend f to {0, 1}V . For each z ∈ {0, 1}V , define
f(z) = f(σr⋆(z)) where

r⋆(z) = max{r ≥ 0 : zB(O,r) = 1B(O,r)}.

Note that f(σ0) = ψ(0)−ψ(0) = 0 and f(σm) = ψ(0)−
ψ(m), and so (i) holds. To show (ii), fix any z, z′ ∈ {0, 1}V .
For simplicity, we write r⋆ := r⋆(z) and r′⋆ = r⋆(z

′).
W.l.o.g. we assume that r⋆ ≤ r′⋆. Consider the largest ball
B(O, ρ) on which z and z′ are identical, that is,

ρ := max{r ≥ 0 : zB(O,r) = z′B(O,r)}.

Claim 3.5. ρ ≥ r⋆.

Assuming the claim (whose proof is deferred to Ap-
pendix B), we conclude that

|f(z)− f(z′)| = |(ψ(0)− ψ(r⋆))− (ψ(0)− ψ(r′⋆))|
= ψ(r⋆)− ψ(r′⋆)
≤ ψ(r⋆) ≤ ψ(ρ),

where the last inequality is because ψ is non-increasing.
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Proof Sketch of Theorem 3.3. Recall that U =
{−2
√
N, 2
√
N} × {−2

√
N, 2
√
N}.

Step 1: Hypercube Extension. W.l.o,g, we assume ψ(0) =
1 and ψ(

√
N) = 0. Consider the interior units

Uint := {−
√
N,
√
N} × {−

√
N,
√
N}.

For each u ∈ N\Uint, we set Yut ≡ 0. For each u =
(ux, uy) ∈ Nint, apply Lemma 3.4 with m =

√
N and

V = {ux −m,ux +m} × {uy −m,uy +m}.

Denote by f̃u : {0, 1}V → R+ the function constructed.
Extend f̃u to {0, 1}N so that the function value is solely
determined by its restriction on V .

Step 3: Construct the reward function. Consider i.i.d.
ξt ∼ Ber(1/2) for t ∈ [T ]. Define the reward func-
tion Yut(z) := 1

2 +
(
ξt − 1

2

)
fu(z) where z ∈ {0, 1}N .

By Lemma 3.4, Yut(·) satisfies the ψ-DIP. Moreover,
Eξ[Yut(z)] =

1
2 for any z ∈ {0, 1}N , and so the expected

reward of any policy is T/2.

Step 4: Applying anti-concentration bound. By a stan-
dard anti-concentration bound, the best fixed arm has a total
expected reward of T/2 + Ω(

√
T ). It then follows that

E
[
max {R0, R1} −

T

2

]
= Ω

(√
T
)
.

4. High Probability Regret Bound
Although switchback policies can achieve optimal expected
regret, their disregard forN prevents them from capitalizing
on the market size. Consequently, the variance of regret
(as a random variable) does not vanish as N grows, making
these policies less appealing to practitioners. To address this,
we propose a policy that (i) has a Õ(

√
T ) expected regret

and (ii) admits a h.p.-bound that vanishes in N . Specifi-
cally, for any T and confidence level δ > 0, the tail mass
above Θ̃(

√
T ) vanishes N → ∞. Our policy integrates

EXP3-IX from adversarial bandits and the idea of clustered
randomization from causal inference.

4.1. Background and Technical Challenges

The first key idea is implicit exploration in adversarial ban-
dits. Policies for adversarial bandits often rely on weights
update (Vovk, 1990; Littlestone and Warmuth, 1994). In
each round, an arm is selected with a probability propor-
tional to its weight, updated to incentivize choosing arms
with historically high rewards.

However, with bandit feedback, we only observe the re-
ward of the selected arm. EXP3 addresses this using an
importance-weighted estimator for the rewards of all arms
(Auer et al., 1995). In round t, let Pta be the probability of

selecting a, At be the (random) arm selected, and Yt be its
observed reward, then the estimate is

Ŷta :=
1(At = a)

Pta
Yt.

EXP3 combines this estimator with the multiplicative
weights algorithm, and achieves an optimal Õ(

√
kT ) ex-

pected regret against the best fixed arm.

However, the regret has a high variance, potentially being
linear in T w.p. Ω(1);1 see Note 1 in Chapter 11 of Latti-
more and Szepesvári 2020. This is because the estimator
in EXP3 can have a high variance. To address this, Kocák
et al. (2014) introduced an implicit exploration (“IX”) term
β > 0 in the propensity weight, which truncates the value
of the estimator and reduces its variance. Formally,

Ŷta :=
1(At = a)

Pta + β
Yt.

Despite the extra bias, Neu (2015) showed that judicious
selection of β leads to a good h.p. bound: The regret is
≲
√

log 1/δ times the minimax regret, Õ(
√
kT ), w.p. 1−δ.

The other key idea is clustered randomization. Leung
(2022) considered a uniform partition of the plane into
square clusters, and independently assigned arms to each
cluster. Under this design, the truncated HT estimator
achieves a favorable bias-variance tradeoff, both vanishing
in N .

There are two main challenges in integrating the truncated
HT estimator into the EXP3-IX framework. First, the uni-
form spatial clustering in Leung 2022 is not “robust” since
some arms may have very low probabilities due to weight
updates, leading to high variance in the estimator. Further-
more, it is unclear how to select the IX parameter in the
batched setting due to heterogeneity across units. For exam-
ple, units lying close to the boundary of a cluster should have
different IX parameters compared to those in the “interior”.

The rest of this section focuses on addressing these chal-
lenges. The key component of the HT estimator in Leung
2022 is the exposure mapping, which measures the “relia-
bility” of the data observed from a unit.

Definition 4.1 (Exposure Mapping). We define the radius-r
exposure mapping as Xr

uta(z) := 1(zB(u,r) = a · 1B(u,r)).
For a random vector Z ∈ [k]N , the exposure probability is
Qr

uta(Z) := P [Xr
uta(Z) = 1].

To control the variance, we prefer a high exposure probabil-
ity. However, the exposure probabilities in a naive clustered
randomization can be very low. We address this next.

1This does not contradict the (expected) regret bound, since the
regret against the best fixed arm can be negative.
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Figure 1. Illustration of the RRP. The black lines are the cluster
boundary in the uniform clustering. We color the strips and quads
green and red. We assign each strip to one of the two neighboring
clusters; see Sver

ij (dark green). Finally, assign each quad (red) to
one of the four nearby clusters with equal probabilities.

4.2. Robust Random Partition

If T = 1 and we aim to estimate the ATE, uniform clustering
works well. For example, in Leung 2022, by choosing
r < ℓ/2 where ℓ is the side length of the square clusters,
each r-ball can intersect only 4 squares. Therefore, if we
independently assign each cluster an arm a w.p. p = Ω(1)
(and some other arm w.p. 1− p), the exposure probability
is p4 = Ω(1), which is favorable for estimation.

However, with weight updates, p4 can be tiny. When this
occurs, we almost remove all the data from units close to the
cluster boundary, resulting in a high bias. For example, if
the rewards are zero everywhere except near the boundaries,
then our estimate is 0 while the true reward is Ω(1).

We address this by introducing randomness into the parti-
tion. We start with uniform clustering and then randomly
assign units close to the boundary to nearby clusters. To for-
malize, recall from Assumption 2.2 that U ⊆ [0, bN ]2 where
bN = O(

√
N). For any ℓ and r < ℓ/2, an (ℓ, r)-robust ran-

dom partition (RRP) Π = {Cij : 1 ≤ i, j ≤ bN/ℓ} is
defined as follows:

1. Assign the Interiors: Define the (i, j)-interior as

Iij = [(i− 1)ℓ+ r, iℓ− r]× [(j − 1)ℓ+ r, jℓ− r] .

We assign Iij to Cij w.p. 1.
2. Assign the Strips: Define the vertical (i, j)-strip

Sver
ij = [iℓ− r, iℓ+ r]× [(j − 1)ℓ+ r, jℓ− r] ,

and the horizontal (i, j)-strip

Shor
ij = [(i− 1)ℓ+ r, iℓ− r]× [jℓ− r, jℓ+ r] .

Assign Sver
ij independently to Cij , Ci+1,j uniformly. Simi-

larly, assign Shor
ij to independently toCij , Ci,j+1 uniformly.

3. Assign the Quads: Define the (i, j)-quad

Qij = [iℓ− r, iℓ+ r]× [jℓ− r, jℓ+ r] .

Assign it to Cij , Ci+1,j , Ci,j+1, Ci+1,j+1 uniformly.

Our clustering is obtained by partitioning U using an RRP.
Formally, let {Cij} be an (ℓ, r)-RRP of [0,

√
N ]2. By abuse

of notation, write [N ] ∩ Cij as Cij . We will use the cluster-
ing {Cij | 1 ≤ i, j ≤ bN/ℓ}. For each u ∈ [N ], denote by
C[u] ⊆ U the unique cluster that contains u. From now on,
let us fix a pair of ℓ, r ≥ 0 with 1 ≤ ℓ ≤ bN and 2r < ℓ.
The RRP enjoys the following nice robustness.

Proposition 4.2 (Robustness). P[B(u, r) ⊆ C[u]] = Ω(1).

To see this, observe that since r < ℓ/2, the ball B(u, r)
intersects at most 4 “regions” (i.e., interiors, strips or quads).
Since each strip or quad is assigned to a cluster indepen-
dently, w.p. Ω(1) these regions are all assigned to the same
cluster C. When this occurs, we have B(u, r) ⊆ C[u].

The robustness boosts the exposure probability. In fact, our
policy (to be defined soon) maintains a weight for each arm
and assigns a random arm to each cluster independently
according to the weights. Crucially, when Pta is small, the
exposure probability under our RRP is Ω(Pta), which is
much greater than the exposure probability (Pta)

4 under the
uniform design (Leung, 2022). We will soon see how this
helps reduce the variance of our estimator.

Remark 4.3. Our approach may resemble that of (Ugan-
der and Yin, 2023). Their randomized graph clustered
randomization (RGCR). While their randomized partition-
ing works for an arbitrary graph, our approach explicitly
requires embedding the units into a Euclidean space. How-
ever, this structure makes it easier to exploit the decay of
interference with distance.

4.3. HT-IX Estimator and Our Policy

In adversarial bandits, the key to designing a good pol-
icy is estimating the unobserved reward. More explic-
itly, we need to find a good estimator for the mean re-
wards {Ȳt(a · 1N )}a∈[k], where we recall that Ȳt(Z) =
1
N

∑
u∈[N ] Yut(Z). Ideally, a good estimator enjoys both

low bias and low variance. Neu (2015) showed that in-
corporating an additional IX parameter into the propensity
weight leads to a favorable h.p. regret bound. In our MABI
problem, the propensity weights Qr

uta can vary across units.
However, a uniform IX parameter suffices for our result.

Definition 4.4 (Horvitz-Thompson-IX Estimator). Fix
an IX parameter β ∈ [0, 12 ). Suppose the design

6
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Algorithm 1 EXP3-HT-IX Policy

1: Input:
η ∈ (0, 1): learning rate,
β ∈ [0, 12 ): IX parameter for the HT-IX estimator,
(ℓ, r): parameters for the RRP.

2: Wta ← 1 for each a ∈ [k]
3: for t = 1, . . . , T do
4: Wt ←

∑
a∈[k]Wta // Total weights

5: For each arm a ∈ [k], let Pta ←Wta/Wt

6: Randomly generate Πt, an (ℓ, r)-RRP
7: for cluster C ∈ Πt do
8: Draw an arm ZCt using (Pta)a∈[k]

9: for u ∈ C do
10: Zut ← ZCt // Assign arm At to all units in C
11: end for
12: end for
13: Observe the rewards {Yut(Zt)}u∈[N ]

14: for a ∈ [k] do
15: Ŷt(a)← 1

N

∑
u∈[N ]

1(Xr
uta(Zt)=1)
Qr

uta+β Yut(Zt)

16: Wt+1,a ← eηŶt(a)Wta // Weight update
17: end for
18: end for

Zt ∈ [k]N is drawn from a distribution D.2 Denote
Qr

uta := PZt∼D(X
r
uta(Zt) = 1). For any t, a, the Horvitz-

Thompson-IX (HT-IX) estimator is

Ŷt(a) :=
1

N

∑
u∈[N ]

1(Xr
uta(Zt) = 1)

Qr
uta + β

Yut(Zt).

Remark 4.5 (Unifying Known Estimators). When β = 0,
HT-IX becomes the HT estimator in Leung 2022; When
N = 1, it becomes the estimator in EXP3-IX of Neu 2015.

We now informally describe our policy (Algorithm 1). It in-
volves two parameters: The learning rate η ∈ (0, 1), which
controls how quickly we discount past data, and the IX
parameter β ∈ [0, 12 ) which truncates the HT-IX estima-
tor by 1/β. In each round, we independently generate an
(ℓ, r)-RRP. Then, we randomly assign an arm to each clus-
ter independently, using the distribution determined by the
weights. Finally, for each arm, we use the HT-IX estimator
to estimate the counterfactual reward that we could have
earned if we assigned it to all units in this round. We update
the arm weights using the estimated rewards.

2More concretely, we will later choose D to be a clustered-level
randomization, that is, assign a random arm to each cluster drawn
with a probability proportional to its weight.

4.4. A High-probability Regret Bound

Denote by R =
∑T

t=1
1
N

∑
u∈[N ] Yut(Zt) the reward of a

policy (Zt). To compare against a fixed arm, also define

Ra :=

T∑
t=1

Ȳt(a)

where

Ȳt(a) :=
1

N

∑
u∈[N ]

Yut(a · 1N ).

Theorem 4.6 (High-probability Bound). Fix any IX pa-
rameter β ∈ (0, 12 ) and learning rate η ∈ (0, 1) in Algo-
rithm 1. Then, for any a∗ ∈ [k] and δ ∈ (0, 1), we have
R−Ra∗ = A+B + C w.p. 1− δ where

A ≲
log k

η
+ ηkT, B ≲

(
1

β
+ ηkT

)
ℓ2

N
log

1

δ

and

C ≲ βkT +
rT

ℓ
+ ηT

k

β
ψ(r)2 +

T

βℓ2
ψ(r).

We will soon see that with suitable parameters:

• A becomes the minimax expected regret Õ(
√
kT ),

• B bounds the tail mass of the regret which vanishes as
N →∞, and

• C bounds the lower order terms.

We illustrate the importance of Theorem 4.6 via several
corollaries. To minimize A, choose η =

√
log k/kT . The

choice for β is more involved. With some foresight, let us

choose β =
√

ℓ2

kNT log 1
δ . To highlight the excess beyond

the “necessary” regret, we denote RegOPT :=
√
kT log k

as the order-optimal expected regret.

We first consider the no-interference setting. In this case, our
problem is equivalent to the multi-play (i.e., play N arms
in each round) variant of adversarial bandits. Since there is
no interference, we will choose the singleton clustering (i.e.,
where each unit alone is a cluster).

This clustering can be realized as an (ℓ, r)-RRP for suitable
ℓ and r. In fact, recall from Assumption 2.2 that d(u, v) ≥ 1
for any u, v ∈ [N ]. Therefore, if we partition the bounding
box [0, b]2 uniformly into squares of sufficiently small side
lengths ℓ, then each square contains at most one unit in
U . Thus, the (ℓ, r)-RRP is just the singleton clustering
(whenever r < ℓ/2). Finally, noting that ψ(r) = 0 for any
r > 0 and hence C ≲ βkT + o(1) as r → 0+, we obtain:

7
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Corollary 4.7 (No Interference). Suppose ψ(x) = 1(x =
0). Then, there exists ℓ, r s.t. the regret R of the EXP3-IX-
HT with the (ℓ, r)-RRP satisfies

R−Ra∗ ≲

(
1 +

√
1

N
log

1

δ

)
RegOPT (1)

w.p. 1− δ for every a∗ ∈ [k] and δ ∈ (0, 12 ).

To better understand, recall that for adversarial bandits, the
regret of EXP3-IX is (1+

√
log 1/δ) ·RegOPT; see Chapter

12 in Lattimore and Szepesvári 2020. To see the difference,
take N = T and δ = N−Ω(1), this bound is O(logN ·
RegOPT), while (1) is O(RegOPT) for any T .

Another basic setting is κ-neighborhood interference (Le-
ung 2022; Bojinov et al. 2023) where the reward (“potential
outcome”) of a unit depends only on the treatments of the
units within distance κ > 0, i.e., ψ(x) = 1(κ > x). In this
case, by selecting r = κ, the ψ terms become 0.

Corollary 4.8 (κ-Neighborhood Interference). Suppose
ψ(x) := 1(κ > x) for some κ > 0. Then, with r = κ
and ℓ = κ

√
T , for any a∗ ∈ [k] and δ ∈ (0, 12 ), we have

R−Ra∗ ≲

(
1 + κ

√
T

N
log

1

δ

)
RegOPT w.p. 1− δ.

Finally, consider the power law ψ(r). This setting encom-
passes many fundamental settings, including the celebrated
Cliff-Ord spatial autoregressive model (Cliff and Ord, 1973),
where each unit’s outcome is linear in its neighbors’ treat-
ments.

Corollary 4.9 (Power-law Interference). Suppose ψ(r) =
O(r−c) for a constant c ≥ 1. Consider an (ℓ, r)-RRP with
m = min{(N/T )

2+c
3+c , N

2c
2c+1T− 2c−1

2c+1 } clusters (and hence
ℓ =

√
N/m) and r = ℓ/

√
T . Then, for any a∗ ∈ [k] and

0 < δ ≤ 1
2 , w.p. 1− δ we have

R−Ra∗ ≲

(
1 +

√
ℓ2

N
log

1

δ

)
RegOPT. (2)

For example, when c = 2, we have m = (N/T )4/5, and

(2) = Õ(
√
kT ) + k

T 9/10

N2/5

√
log

1

δ
.

4.5. Discussion: Interpretation in VaR

Figure 2. VaR of Regret: We visualize the δ-VaR of regret for
δ = e−T and δ = e−T2/3

respectively. Here we set c = 1/2. Our
cluster-randomization based policy has a much lower VaR.

Figure 3. VaR of Excess Regret: The figure visualizes the excess
regret Reg − RegOPT that we can guarantee w.p. 1− δ.

By taking η ∼
√

1/kT in Theorem 4.6, our EXP3-IX-HT
policy also achieves the optimal Õ(

√
kT ) expected regret.

However, our policy has a substantially lower tail risk com-
pared to any switchback policy. To better illustrate, for
concreteness, let us take N = T . Denote by RegSB and
RegCR the regret (as random variables) of any SwitchBack
policy and our EXP3-IX-HT policy (where “CR” means
“Clustered Randomization”). Then, by Theorem 4.6,

P
(
RegSB > RegOPT + log

1

δ

)
≤ δ (3)

and

P
(
RegCR > RegOPT +N−c log

1

δ

)
≤ δ (4)

for any δ > 0, where c > 0 is a constant depending on ψ.
To highlight the tail mass, we rewrite Equation (3) as

P (RegSB − RegOPT > τ) ≤ e−τ (5)

8
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and

P (RegCR − RegOPT > τ) ≤ e−Ncτ (6)

for any τ > 0.

To see why RegCR is more “robust”, take τ = T 2/3 and
let T range from 10 to 50. Then, the first probability in
Equation (5) ranges from 2.7% to 0.01%, while the second
is astronomically small. For example, if N = T and
c = 1/2, it ranges from 10−14 to 10−39.

More generally, consider δ = e−αT where α > 0. Then,

VSB = RegOPT+Tα and VCR = RegOPT+
Tα

√
N
∼
√
T ,

where “≈” holds if N ≫ T (as in the real world). When
α > 1/2, the first bound is asymptotically larger.
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Impact Statement
We introduce the Multi-Armed Bandits with Interference
(MABI) framework and focus on cumulative reward maxi-
mization under spatial interference. Our work bridges ad-
versarial bandits and causal inference, making it applicable
to real-world systems such as online platforms and net-
worked environments. Our cluster randomization-based
policy achieves near-optimal expected regret with high-
probability bounds that improve as the number of units
increases. Unlike prior work, we do not rely on stationarity
or sparse interference.
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agent reinforcement learning: A selective overview of the-
ories and algorithms. Handbook of reinforcement learn-
ing and control, pages 321–384, 2021.

Zhiheng Zhang and Zichen Wang. Online experimental
design with estimation-regret trade-off under network
interference. arXiv preprint arXiv:2412.03727, 2024.

11

https://careersatdoordash.com/blog/experiment-rigor-for-switchback-experiment-analysis
https://careersatdoordash.com/blog/experiment-rigor-for-switchback-experiment-analysis


Multi-Armed Bandits with Interference

A. Detailed Proof of Theorem 3.3
Recall that in the construction we chose U = {−2

√
N, 2
√
N} × {−2

√
N, 2
√
N}. By re-scaling, w.l.o.g, let us assume

that ψ(0) = 1 and ψ(
√
N) = 0. Consider the interior units

Uint := {−
√
N,
√
N} × {−

√
N,
√
N}.

For each u ∈ [N ]\Uint, we define Yut ≡ 0 for all t ∈ [T ].

To define the reward function for the interior units, for each u ∈ [N ]int we apply Lemma 3.4 with m =
√
N and

V = {ux −m,ux +m} × {uy −m,uy +m},

where u = (ux, uy). Denote by f̃u : {0, 1}V → R+ the function constructed in Lemma 3.4, and extend fu to {0, 1}N so
that the function value of u′ is solely determined by its restriction on V , formally,

fu(u
′) = f̃u(u

′|V ), ∀u′ ∈ {0, 1}N .

By Lemma 3.4, f̃u satisfies the ψ-DIP, and so fu also satisfies the ψ-DIP.

Now, construct the reward function Yut. Consider i.i.d. variables ξt ∼ Ber(1/2) where t ∈ [T ]. Define

Yut(z) =
1

2
+

(
ξt −

1

2

)
fu(z), ∀z ∈ {0, 1}N .

Then, by Lemma 3.4, Yut(·) satisfies the ψ-DIP. Moreover, for any fixed z ∈ {0, 1}N , we have Eξ[Yut(z)] =
1
2 . Therefore,

the expected reward of any policy is T/2.

Next, to show that the best fixed-arm policy has total expected reward T/2 + Ω(
√
T ), we need:

Lemma A.1 (Bernoulli Anti-concentration Bound). Let (ξt)t∈[T ] be i.i.d. Bernoulli variables with mean 1
2 , and write

ξ =
∑T

t=1 ξt. Then, for any s ∈ [0, T8 ], we have

P
[
ξ ≥ T

2
+ s

]
≥ 1

15
exp

(
−16s2

T

)

To conclude, let Ra be the total reward of arm a. Consider the event E = {R1 ≥ T
2 +

√
T
4 }. Since R1 is the sum of T i.i.d.

Bernoulli’s, by taking s = 1
4

√
T in Lemma A.1, we have P [E ] ≥ 1

15 . Therefore,

E
[
max {R0, R1} −

T

2

]
≥ E

[
max {R0, R1} −

T

2

∣∣∣∣ Ē] · P [Ē]
≥ 1

15
·
√
T

4
=

√
T

60
,

where the first inequality follows since max{R0, R1} ≥ T
2 a.s.

B. Proof of Claim 3.5
Consider two cases. If r⋆ = r′⋆, then the claim trivially follows from the definition of ρ. Now suppose that r′⋆ > r⋆. Note
that r⋆, r′⋆ are both integers, so r′⋆ ≥ r⋆ + 1. By the definition of r⋆, there exists v ∈ B(O, r⋆ + 1)\B(O, r⋆) s.t. zv = 0
and z′v = 1. Therefore, z and z′ do not “agree” on B(O, r⋆ + 1), so

ρ < r⋆ + 1. (7)

On the other hand, since we assumed r⋆ < r′⋆, we have zB(O,r⋆) = z′B(O,r⋆)
, and thus

ρ ≥ r⋆. (8)

Combining Equations (7) and (8), we have ρ = r⋆. The claim follows by combining the two cases.

12
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C. Proof of Theorem 4.6
Recall that the HT-IX estimator is

Ŷt(a) :=
1

N

∑
u∈[N ]

1(Xr
uta(Zt) = 1)

Qr
uta + β

Yut(Zt).

We first decompose the regret using the following fake reward.

Definition C.1 (Fake Reward). For each arm a ∈ [k], we define

R̂a =
∑
t∈[T ]

Ŷt(a) and R̂ =
∑
t,a

PtaŶt(a).

In words, R̂a is approximately the total reward of always choosing arm a, where the true reward Ȳt(a) = 1
N

∑
u∈[N ] Yut(a ·

1N ) is replaced with the HT-IX estimator Ŷt(a). Similarly, R̂ is a approximately the total reward of our policy. This is
because the expected reward of our policy in round t is approximately

∑
a PtaȲt(a), and Ŷt(a) is close to Ȳt(a) since it is a

good estimator.

Let us decompose the regret using the fake rewards. Recall that R is the total reward of our EXP3-IX-HT policy, and that
for any a∗ ∈ [k], Ra∗ is the reward of the fixed-arm policy at a∗. Then,

R−Ra∗ = (R− R̂) + (R̂− R̂a∗) + (R̂a∗ −Ra∗). (9)

Next, we bound each of these three terms in a subsection separately.

C.1. Bounding the First Term R− R̂

Lemma C.2 (Bounding R− R̂). It holds that R− R̂ ≤ 4rT
ℓ + β

∑
a∈[k] R̂a.

Proof. We begin by further decomposingR and R̂, allowing us to compare each term individually in the subsequent analysis.
Let us write

R =

T∑
t=1

Rt where Rt =
1

N

∑
u∈[N ]

Yut(Zt), and R̂ =

T∑
t=1

R̂t where R̂t =
∑
a∈[k]

PtaŶt(a).

Now, fix any t ∈ [T ]. Then,

N(Rt − R̂t)

=
∑
u

Yut(Zt)−
∑
u

∑
a

Pta1(X
r
uta = 1)

Qr
uta + β

Yut(Zt)

=
∑
u

(
1(Xr

uta = 0 ∀a ∈ [k]) +
∑
a

1(Xr
uta = 1)

)
Yut(Zt)−

∑
u

∑
a

Pta1(X
r
uta = 1)

Qr
uta + β

Yut(Zt)

≤
∑
u

1 (Xr
uta = 0 ∀a ∈ [k]) +

∑
u,a

1(Xr
uta = 1)Yut(Zt)−

∑
u,a

Pta1(X
r
uta = 1)Yut(Zt)

Qr
uta + β

, (10)

where the inequality is because Yut(·) ≤ 1. To proceeds, we make two observations. First, for any u ∈ [N ], the exposure
mappings Xr

uta can be all 0 only when u lies close to ∂C[u], the boundary of the cluster that contains u. Formally,

1 (Xr
uta = 0 ∀a ∈ [k]) ≤ 1(d(u, ∂C[u]) ≤ r).

Second, we note that
Qr

uta ≤ P
[
ZC[u],t = a

]
= Pta.

13
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Combining, we obtain

(10) ≤ 1 (d(u, ∂C[u]) ≤ r) +
∑
u,a

1(Xr
uta = 1)Yut(Zt)−

∑
u,a

Pta · 1(Xr
uta = 1)

Pta + β
Yut(Zt). (11)

Note that in each cluster, there are at most 4rℓ units within a distance of r to ∂C[u]. Since there are N/ℓ2 clusters, we have∑
u∈[N ]

1(d(v, ∂C[u]) ≤ r) ≤ 4rℓ · N
ℓ2

=
4rN

ℓ
.

It follows that

(11) ≤ 4rN

ℓ
+
∑
u,a

β

Pta + β
1(Xr

uta = 1)Yut(Zt)

≤ 4rN

ℓ
+ βN

∑
a∈[k]

 1

N

∑
u∈[N ]

1(Xr
uta = 1)

Qr
uta + β

Yut(Zt)


=

4rN

ℓ
+ βN

∑
a∈[k]

Ŷt(a),

where inequalities follows again from Qr
uta ≤ Pta. Therefore,

N
(
R− R̂

)
= N

T∑
t=1

(
Rt − R̂t

)
≤ 4rNT

ℓ
+Nβ

∑
a∈[k]

R̂a,

and the lemma follows by dividing both sides by N .

C.2. Bounding the Second Term R̂− R̂a∗

We first derive an upper bound on R̂− R̂a∗ by following the analysis of the EXP3 policy. The proof of the following can be
found in the analysis of the EXP3 policy; see Equation (11.13) of (Lattimore and Szepesvári, 2020).

Lemma C.3 (EXP3-style analysis). Fix any η ∈ (0, 1). Then, for any a∗ ∈ [k],

R̂− R̂a∗ ≤ log k

η
+ η

∑
t,a

PtaŶt(a)
2 a.s.

We next show that Ŷt(a) is highly concentrated around Ȳt(a), with a tail mass that vanishes in N . This is done by a careful
analysis based on the Chernoff and Bernstein inequalities. We first introduce some basic tools.

Theorem C.4 (Bernstein Inequality for i.i.d. Sum). Let {Xi}i=1,...,n be independent mean-zero random variables with
|Xi| ≤M a.s. where M > 0 is a constant. Then, for any t > 0,

P

[
n∑

i=1

Xi ≥ t

]
≤ exp

(
− t2∑n

i=1 E[X2
i ] +

1
3Mt

)
.

Theorem C.5 (Chernoff Inequality for i.i.d. Sum of Bernoulli’s). Suppose X1, . . . , Xn ∼ Ber(p) are i.i.d. random
variables and ξ̄ = 1

n

∑n
i=1Xi. Then, for any ε > 0, we have

P
[
ξ ≥ (1 + ε)

]
≤ exp

(
−1

3
ε2np

)
.

Lemma C.6 (Deviation of Bernoulli Sum). Suppose δ, p ∈ (0, 1) and X1, . . . , Xn are i.i.d. Ber(p) random variables.
(1) Suppose p ≥ 1

n . Then with probability 1− δ, we have

1

n

n∑
i=1

Xi ≤ p+

√
p log 1

δ

n
.

14
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(2) Suppose p < 1
n , then w.p. 1− δ,

1

n

n∑
i=1

Xi ≲

√
log

1

δ
· 1
n
.

Proof. Part 1: Suppose p ≥ 1
n . We will apply Bernstein’s inequality on (Xi−p). SinceXi ∈ [0, 1] a.s. and E[(Xi−p)2] =

p(1− p) ≤ p, by taking M = 1 in Theorem C.4, we have

P

[
n∑

i=1

Xi ≥ np+ t

]
≤ exp

(
− t2∑n

i=1 E[(Xi − p)2] + 1
3 t

)
≤ exp

(
− t2

np+ t
3

)
. (12)

for any t > 0. Let us choose t =
√
2np log 1

δ . Since p ≥ 1
n , we have np > t. It follows that

(12) ≤ exp

(
− t2

2np

)
≤ δ.

Part 2: Suppose p < 1
n . It suffices to consider i.i.d. X̃i ∼ Ber(1/n) since Xi stochastically dominates Xi. By the Chernoff

bound (Theorem C.5), for any ε > 0,

P

[
1

n

n∑
i=1

X̃i ≥ (1 + ε) · 1
n

]
≤ exp

(
−1

3
ε2n · 1

n

)
.

In particular, for ε =
√

3 log 1
δ , the above bound becomes δ.

Next, we combine the above and bound
∑

t,a PtaŶt(a)
2.

Lemma C.7 (Bounding the Squared Terms). For any δ ∈ (0, 1), we have

∑
t,a

PtaŶt(a)
2 ≤ 512

(
1 +

kℓ2

N
log

1

δ
+
k

β
ψ(r)2

)
T w.p. 1− δ.

Proof. Denote by m = N/ℓ2 the number of clusters. By the definition of Ŷt(a), for any t ∈ [T ], a ∈ [k],

Ŷt(a) =
1

N

∑
u∈[N ]

1(Xr
uta = 1)

Qr
uta + β

Yut(Zt) =
1

m

∑
C∈Π

(
1

ℓ2

∑
u∈C

1(Xr
uta = 1)Yut(Zt)

Qr
uta + β

)
. (13)

By the ψ-DIP, if Xr
uta = 1, all units in B(u, r) are assigned a, so |Yut(Zt)− Yut(a · 1N )| ≤ ψ(r). Thus,

1(Xr
uta = 1) · Yut(Zt) ≤ 1(Xr

uta(Zt) = 1) ·
(
Yut(a · 1N ) + ψ(r)

)
.

It follows that

(13) ≤ 1

m

∑
C∈Π

(
1

ℓ2

∑
u∈C

1(Xr
uta = 1)(Yut(a · 1N ) + ψ(r))

Qr
uta + β

)
. (14)

Moreover, by Proposition 4.2, we have Qr
uta ≥ 1

8Pta, so

(14) ≤ 1

m

∑
C∈Π

(
1

ℓ2

∑
u∈C

1(Xr
uta = 1)(Yut(a · 1N ) + ψ(r))

1
8 (Pta + β)

)

≤ 8

Pta + β

(
1

m

∑
C∈Π

1

ℓ2

∑
u∈C

1(Xr
uta = 1)

(
Yut(a · 1N ) + ψ(r)

))
(15)
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Note that the cardinality of each cluster satisfies |C| ≤ 2ℓ2, assuming that r ≤ ℓ/2. So, writing

ȲCt(a · 1N ) :=
1

|C|
∑
u∈C

Yut(a · 1N ),

we obtain

(15) ≤ 8

Pta + β

(
1

m

∑
C∈Π

2

|C|
∑
u∈C

1(Xr
uta = 1)

(
Yut(a · 1N ) + ψ(r)

))

≤ 16

Pta + β

ψ(r) + ∑
κ∈{0,1,2}2

1

m

∑
C:χ(C)=κ

1(ZCt = a) · ȲCt(a · 1N )

 . (16)

Note that for each color κ, the above sum involves 1
9m independent random variables. So by Lemma C.6, w.p. 1 − δ it

holds that

1
1
9m

∑
C:χ(C)=κ

1(ZCt = a) · ȲCt(a · 1) ≤ PtaȲt(a) +

√
PtaȲt(a) + log 1

δ
1
9m

Combined with Equation (16), we conclude that

∑
t,a

PtaŶt(a)
2 ≤

∑
t,a

Pta

(
16

Pta + β

(
PtaȲt(a) +

√
PtaȲt(a) + log 1

δ
1
9m

+ ψ(r)

))2

≤ 256
∑
t,a

Pta

(Pta + β)2
· 2
(
P 2
taȲt(a)

2 +
PtaȲt(a) + log 1

δ
1
9m

+ ψ(r)2
)

≤ 512

(∑
t,a

Pta + 9
∑
t,a

log 1
δ

m
+
∑
t,a

ψ(r)2

Pta + β

)

≤ 512

(
T + 9

kℓ2T

N
log

1

δ
+
kT

β
ψ(r)2

)
,

where the second inequality follows since for any a, b, c ∈ R, we have (a+ b+ c)2 ≤ 2(a2 + b2 + c2).

C.3. Bounding the Third Term R̂a −Ra

We need the following tool, which is stated as Lemma 12.2 in Lattimore and Szepesvári 2020.

Proposition C.8 (One-sided Cramer-Chernoff Bound). Let β > 0 and F = (Ft)t∈[T ] be a filtration. Let {ytα}t∈[T ],α∈A be
real numbers, where A is a finite set. Let (δtα) be an F-predictable process and (Ytα) be an F-adapted process. Suppose
for each t ∈ [T ], Ytα is
(i) unbiased: E[Ytα|Ft−1] = ytα for each α ∈ A,
(ii) negative correlated: for any S ⊆ A with |S| ≥> 1, we have

E

[∏
α∈S

Ytα

∣∣∣∣∣ Ft−1

]
≤ 0, and

(iii) reasonably bounded: 0 ≤ βYtα ≤ 2δtα a.s. for any α ∈ A.
Then, for any δ ∈ (0, 1), we have

P

∑
t∈[T ]

∑
α∈A

β

(
Ytα

1 + δtα
− ytα

)
≥ log

1

δ

 ≤ δ.
16
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Proof. It suffices to show that Mn :=
∏n

t=1 ξt is a super-martingale (indexed by n) where

ξt = exp

(∑
α∈A

β

(
Ytα

1 + δtα
− ytα

))
.

In fact, if this is true, then by Markov’s inequality,

P

[
n∏

t=1

ξt ≥
1

δ

]
≤ P

[
Mn ≥

1

δ
E[Mn]

]
≤ δ,

which completes the proof.

Now we show that (Mn) is a super-martingale. We first use the Cramer-Chernoff method to prove that Et−1[ξt] ≤ 1 for any
t ∈ [T ]. We will use the following fact: for any x > 0, we have

exp

(
x

1 + λ

)
≤ 1 + x ≤ ex. (17)

Write Et[·] := E[·|Ft] for each t ∈ [T ]. Then,

Et−1

[
exp

(∑
α∈A

βYtα
1 + δtα

)]
= E

[∏
α∈A

exp

(
βYtα
1 + δtα

)]

= E

[∏
α∈A

(1 + βYtα)

]
by the first inequality in Equation (17)

≤ E

[
1 + β

∑
α∈A

Ytα

]
negative correlation

= 1 + β
∑
α∈A

ytα by unbiasedness

≤ exp

(
β
∑
α∈A

ytα

)
by the second inequality in Equation (17).

Rearranging, we deduce that

Et−1[ξt] ≤ 1 (18)

Thus, by the tower rule, for any n ≥ 1 we have

E

[
n∏

t=1

ξt

]
= E

[
En−1

[
n∏

t=1

ξt

]]
= E

[
n∏

t=1

ξn · En−1[ξt]

]
≤ E

[
n−1∏
t=1

ξt

]
.

By induction, we deduce that E [
∏n

t=1 ξt] ≤ 1, and hence (Mn) is a super-martingale.

To proceed, let us apply the above with clusters as the index “α”. Specifically, for a fixed RRP Π, let us decompose Ŷt(a) as
a sum over the clusters by writing

Ŷt(a) =
1

N

∑
u∈[N ]

1(Xr
uta = 1)

Qr
uta + β

Yut(Zt) =
1

N

∑
C∈Π

YCta

where

YCta :=
∑
u∈C

1(Xr
uta = 1)

Qr
uta + β

Yut(Zt).

However, the negative correlation condition (ii) does not hold in general. In fact, consider two neighboring clusters
C,C ′ ∈ Π and units u ∈ C and u′ ∈ C ′ with B(u, r) ∩B(u′, r) ̸= ∅. Then, for any a ∈ [k], the exposure mappings Xr

uta

and Xr
u′ta are positively correlated and therefore YCta and YC′ta are dependent.

We avoid this obstacle by coloring the clusters so that YCta’s with the same color are independent.

17
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Definition C.9 (Nine-Coloring). Fix an (ℓ, r)-RRP Π of [0,
√
N ]2. A mapping χ : Π→ {0, 1, 2}2 is a valid 9-coloring if

for any (i, j), (i′, j′),
χ(Cij) = χ(Ci′j′) ⇐⇒ i ≡ i′and j ≡ j′ (mod 3).

We show that two clusters of the same color have independent contributions to Ŷt(a).

Lemma C.10 (Independence within Color Class). Let χ be a valid 9-coloring of Π, an (ℓ, r)-RRP. Then, for any C,C ′ ∈ Π
with χ(c) = χ(c′), and u ∈ C, u′ ∈ C ′, we have YCta ⊥ YC′ta for all a ∈ [k].

To see this, note that each YCta is determined by the arm assigned to the clusters. Formally, conditional on the history up
to the (t− 1)st round, YCta only depends on {ZC′,t | C ′ ∈ Γ(C)} where Γ(C) = {C ′ ∩ B(u, r) ̸= ∅ for some u ∈ C ′}.
Lemma C.10 then follows by noting that YCta and YC′ta are determined by two entirely different sets of random variables,
i.e., Γ(C)′ ∩ Γ(C) = ∅.

We use Lemma C.10 and Proposition C.8 to bound the deviation of R̂a from Ra. Recall that the number m of clusters in an
(ℓ, r)-RRP for [0,

√
N ]2 satisfies mℓ2 = N .

Proposition C.11 (Bounding R̂a −Ra). It holds that

max
a∈[k]

{
R̂a −Ra

}
≤ 8

βm
log

1

δ
+

T

βℓ2
ψ(r) and

∑
a∈[k]

(
R̂a −Ra

)
≤ 8

βm
log

1

δ
+

T

βℓ2
ψ(r).

Proof. Denote by Nc the (random) number of units in each cluster c, then Nc ≤ 2ℓ2 since r ≤ ℓ/2. Then,

m
(
R̂a −Ra

)
=

T∑
t=1

∑
C∈Π

1

ℓ2

∑
u∈C

(
1(Xr

uta = 1)Yut(At)

Qr
uta + β

− Yut(a · 1)
)

≤
T∑

t=1

∑
C∈Π

1

ℓ2

∑
u∈C

(
1(Xr

uta = 1) · (Yut(a · 1) + ψ(r))

Qr
uta + β

− Yut(a · 1)
)

=

T∑
t=1

∑
C∈Π

1

ℓ2

∑
u∈C

(
1(Xr

uta = 1)Yut(a · 1)
Qr

uta + β
− Yut(a · 1)

)
+

T∑
t=1

∑
C∈Π

1

ℓ2

∑
C∈Π

ψ(r)

Qr
uta + β

≤
T∑

t=1

∑
C∈Π

2

Nc

∑
u∈C

(
1(Xr

uta = 1)

1 + β
Qr

uta

Yut(a · 1)− Yut(a · 1)

)
+
mT

βℓ2
ψ(r), (19)

where the first equality follows since mℓ2 = N , and the final inequality is because Qr
uta ≥ 0 and Nc ≤ 2ℓ2 a.s. To apply

Proposition C.8, consider an unbiased estimate

Ỹut(a) :=
1(Xr

uta = 1)

Qr
uta

Yut(a · 1),

for Yut(a · 1). Then,

(19) = 2

T∑
t=1

∑
C∈Π

1

Nc

∑
u∈C

(
1

1 + β
Qr

uta

Ỹut(a)− Yut(a · 1)

)
+
mT

βℓ2
ψ(r)

≤ 2
∑
κ∈[4]

T∑
t=1

∑
C:χ(C)=κ

(
1

1 + β
Pta

1

ℓ2

(∑
u∈C

Ỹut(a)

)
− ȲCt(a · 1)

)
+
mT

βℓ2
ψ(r),

where the inequality is because Qr
uta ≤ Pta.

We conclude by applying the Cramer-Chernoff inequality to the above. In Proposition C.8, take

Ytα :=
1

Nc

∑
u∈C

Ỹut(a) and δtα :=
β

Pta
.
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Then, condition (i) in Proposition C.8 is satisfied since

E[Ytα] = E

[
1

Nc

∑
u∈C

Ỹut(a)

]
= Ȳct(a · 1).

Moreover, for each color κ, each term in the summation
∑

c:χ(c)=κ are independent, so (ii) is satisfied. Finally, note that for
each t, a we have

βYtα = β
1

Nc

∑
u∈C

Ỹut(a) = β
1

Nc

∑
u∈C

1(Xr
uta = 1)

Qr
uta

Yut(a · 1) ≤
8β

Pta
,

where the last inequality follows since Qr
uta ≥ Pta/8 and 0 ≤ Yut(·) ≤ 1. Therefore, by Proposition C.8, we conclude that

βm
(
R̂a −Ra

)
≤ 2β

∑
κ∈[4]

T∑
t=1

∑
c:χ(c)=κ

(
1

1 + β
Pta

1

Nc

(∑
u∈C

Ỹut(a)

)
− Ȳct(a · 1)

)
+
mT

ℓ2
ψ(r)

≤ 8 log
1

δ
+
mT

ℓ2
ψ(r),

i.e.,

R̂a −Ra ≤
8

βm
log

1

δ
+

T

βℓ2
ψ(r).

The proof of (2) is identical by replacing every “
∑

u,t” with “
∑

u,t,a”.

C.4. Proof of Theorem 4.6

We begin by recalling the regret (w.r.t. a fixed arm a∗) decomposition:

R−Ra∗ = (R− R̂) + (R̂− R̂a∗) + (R̂a∗ −Ra∗).

Let us bound each term separately using the lemmas we have shown so far. By Lemma C.2,

R− R̂ ≲
rT

ℓ
+ β

∑
a∈[k]

R̂a

=
rT

ℓ
+ β

∑
a∈[k]

Ra + β
∑
a∈[k]

(R̂a −Ra)

≤ rT

ℓ
+ βkT + β

∑
a∈[k]

(R̂a −Ra). (20)

By Lemmas C.3 and C.7, w.p. 1− δ we have

R̂− R̂a∗ ≤ log k

η
+ η

∑
t,a

PtaŶt(a)
2

≲
log k

η
+ ηT

(
1 +

k

m
log

1

δ
+
k

β
ψ(r)2

)
. (21)

Combining Equations (20) and (21),

R−Ra∗ = (R− R̂) + (R̂− R̂a∗) + (R̂a∗ −Ra∗)

≲

rT
ℓ

+ βkT + β
∑
a∈[k]

(R̂a −Ra)

+

(
log k

η
+ ηT

(
1 +

k

m
log

1

δ
+
k

β
ψ(r)2

))
+ (R̂a∗ −Ra∗)

≲ βkT +
rT

ℓ
+

log k

η
+ ηT

(
1 +

k

m
log

1

δ
+
k

β
ψ(r)2

)
+

1

βm
log

1

δ
+

T

βℓ2
ψ(r), (22)

where the last inequality follows from Proposition C.11 and that β ≤ 1. The statement follows by rearranging the terms into
three categories: (i) those that involve log 1

δ , (ii) those that do not involve log 1
δ but involve η, and (iii) others.
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D. Proof of Proposition 4.2
Consider two cases.
Case 1. Suppose B(u, r) intersects some interior, say Iij . Then, B(r, r) intersects at most 2 strips and 1 quad. The
probability that these 3 regions are assigned to Cij is

1

2
× 1

2
× 1

4
=

1

16
.

Case 2. Suppose B(u, r) intersects no interior or strips. Then, B(u, r) ⊆ Q for some quad Q and hence P[B(u, r) ⊆
C[u]] = 1.
Case 3. Suppose B(u, r) intersects no interior and exactly 1 strip S. Then, it must also intersect some quad Q. Denote by
Iα1

, Iα2
the two interiors that S neighbors where α1, α2 ∈ {1, . . . , B/ℓ}2. Then,

P [B(u, r) ⊆ C[u]] =
∑
i=1,2

P[S ⊆ Cαi ] · P [Q ⊆ Cαi | S ⊆ Cαi ]

=
1

2
· 1
4
+

1

2
· 1
4
=

1

4
.

Case 4. Suppose B(u, r) does not intersect any interior, and intersects 2 strips, denoted S, S′, and 1 quad, denoted Q. Then,
S, S′ are neighboring the same interior, say Cij . Then,

P[B(u, r) ⊆ Cij ] = P[S ⊆ Cij ] · P[S′ ⊆ Cij ] · P[Q ⊆ Cij ] =
1

16
.

The statement follows by combining the above four cases.

E. Experiments
We consider a 2-armed setting with N units lying on a

√
N ×

√
N lattice. We generate unit-level interference as follows.

Each unit u ∈ [N ] is assigned a random reward Rut. Let ρut be the proportion of the five immediate neighbors (counting u
itself) assigned arm 1 at time t. Then, the reward at u is (2ρut − 1)cut.

In two sets of experiments, we assume that N = T 2 and N = T 3 respectively, and let T range from 10, 20, . . . , 50. For
each fixed N,T , we randomly generate 100 instances. To necessitate exploration, we add large-scale non-stationarity by
randomly generating drifts. Each drift is an 8-piecewise constant function, where the value on each piece is independently
drawn from U(0, 1). To align with the theoretical analysis, we partition the lattice into square-shaped clusters of side length
N−1/4. For simplicity, we perform a simplified version of the clustering without randomly assigning the boundary units to
nearby clusters.

We compare the switchback version of EXP3-IX (denoted SB) and our clustered randomization-based policy, dubbed
EXP3-IX-HT, and denoted “CR” in the figures. We evaluated the performance of the two policies by running each of them
200 times for each instance. We then compute the mean and the 95 percentile of the regret for each instance, and average
these numbers over the 100 random instances.

We visualize the results in Figures 4 and 5. Consistent with the theoretical analysis, CR outperforms SB in terms of 95%
percentile regret, without sacrificing mean regret. Moreover, we observe that when N = T 3, the regret exhibits a smaller
deviation. Finally, we observe that when N = T 3, the 95 regret percentile of CR is lower compared to the N = T 2 case.
This is reasonable since a larger N helps reduce the variance in the reward estimation.
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Figure 4. N = T 2 case Figure 5. N = T 3 case
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