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ABSTRACT

The progressive scaling of large language models (LLMs) has consistently en-
hanced multimodal understanding and advanced reasoning capabilities, but has
substantially increased computational and hardware execution overhead. In this
paper, we present DC-LLM, a novel post-method that compresses only model
weights. We partition each weight tensor into fixed-size blocks and assign a sin-
gle seed to each block. The seed drives a hardware-friendly Linear Feedback
Shift Register (LFSR) generator that dynamically produces multiple basis matri-
ces. Each block is then reconstructed as a linear combination of these basis ma-
trices, with block-specific coefficients, which substantially reduces the amount of
stored data, increases the data-transfer efficiency between memory and compute
units, and consequently speeds up memory-bound inference for large language
models. Experimental results on different LLM models ranging from 7B—70B
parameters show that DC-LLM attains state-of-the-art performance when weights
are compressed to approximately 3-bit or 4-bit. We also design a dedicated ASIC
accelerator that achieves a 4x speed-up for memory-bound LLM inference.

1 INTRODUCTION
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Figure 1: DC-LLM Framework.

Large language models (LLMs) deliver state-of-the-art results across a wide range of natural lan-
guage processing tasks, and their strong language understanding has been extended successfully to
multimodal problems [Touvron et al.| (2023); Zhang et al.| (2022). However, their large computa-
tional and memory footprints remain a major barrier to practical use. For example, GPT-3
(2020), with roughly 175 billion parameters, requires on the order of 350 GB of memory
when stored in FP16, which effectively translates into the need for at least five NVIDIA A100 80GB
GPUs to perform inference. The resulting computation and inter-GPU communication overheads
make real-world deployment costly and technically challenging.

Autoregressive large language model (LLM) inference is primarily constrained by memory band-
width, as the retrieval of weight and activations dominates execution time. Off-chip DRAM accesses
entail orders-of-magnitude greater latency and energy consumption compared to on-chip multi-



ply—accumulate (MAC) operations. Consequently, reducing the memory footprint through model
compression represents the most effective strategy for mitigating inference latency, lowering power
consumption, and reducing deployment costs. Quantization [X1ao et al.| (2023) represents model
weights and activations using lower-precision formats to decrease storage and bandwidth demands.
Pruning Ma et al.| (2023)); |Sun et al.| (2023) removes parameters judged to be redundant, reducing
model size and computational cost. However, most post-training compression methods rely on cali-
bration data and suffer severe accuracy degradation under extreme compression. So, we explore one
question whether a calibration-free compression method can be designed that maintains acceptable
accuracy at extreme compression?

We present DC-LLM, a weight-only compression method that achieves extreme compres-
sion—approximately 3-bit effective precision—while maintaining acceptable accuracy. DC-LLM
partitions each weight matrix into fixed-size blocks and approximates each block with a small set of
basis tensors that we deterministically generate from a seed. We reconstruct a block by linearly com-
bining the generated basis tensors and multiplying each basis by an optimal coefficient. As a result,
we represent and transmit a block’s parameters by a single seed and its coefficient vector, which
substantially reduces storage and communication bandwidth compared with storing raw weights.
In contrast to a previous work SeedLM |Shafipour et al.| (2024), which reconstructs each block us-
ing floating-point matrix multiplications and incurs significant hardware overhead, DC-LLM avoids
expensive matrix operations. As a result, DC-LLM achieves higher accuracy while substantially
reducing hardware cost.

DC-LLM has two practical challenges. First, weight blocks exhibit large numerical variability, so
we must determine how many basis tensors to generate for each block. Second, design parameters
such as block size and seed length trade off against post-compression accuracy and average bits per
weight, so we must find a Pareto balance among these objectives. To address the first challenge, we
define the explained energy ratio to measure the fraction of a block’s energy retained by a given basis
set, and we use this metric to adaptively select the number of basis tensors per block. To tackle the
second challenge, we formulate the selection of block size, seed length, and associated hyperparam-
eters as a multi-objective design-space exploration problem. We then employ Bayesian optimization
to identify operating points that achieve a desirable trade-off among accuracy, compression rate.

DC-LLM increases on-chip computation within bounded limits to reduce off-chip memory accesses
and to improve effective chip-to-chip bandwidth, enabling extreme compression in multi-chip de-
ployments. The tensor generator uses a linear-feedback shift register (LFSR), a communications-
domain primitive Win & Kyaw| (2008) that relies primarily on hardware-friendly shift and XOR
operations. This choice yields a compact, deterministic, and easily pipelined hardware implementa-
tion.

We make the following contributions in this paper:

* We propose a novel weight-only compression method, DC-LLM, which dynamically reconstructs
each weight block from a seed using a Linear-Feedback Shift Register (LFSR) generator, substan-
tially reducing stored information and increasing effective memory bandwidth.

* We adapt the number of basis tensors per block based on each block’s explained energy and
reconstruction error to balance compression and accuracy.

* We introduce an offline search strategy that employs Bayesian optimization to find optimal con-
figuration parameters such as block size and seed length.

* We designed a custom hardware accelerator, implemented in SystemVerilog, and demonstrated in
simulation that for memory-bound LLM inference it achieves up to a 4x speedup.

» Extensive experiments on LLaMA 2 and LLaMA 3 models ranging from 7B—70B parameters
show that DC-LLM attains state-of-the-art performance with weights compressed to approxi-
mately 3-bit or 4-bit.

2 RELATED WORK

2.1 LLM WEIGHT COMPRESSION METHODS

Weight-only quantization targets representing model weights at reduced bit widths to lower storage
and compute requirements. For example, GPTQ [Frantar et al.| (2022) uses block-wise reconstruction



to attain 3—4 bit quantization. SpQR |[Dettmers et al.|(2023b), OWQ Lee et al.|(2024), and AWQ Lin
et al.| (2024) prioritize weights associated with large-magnitude activations. Consequently, SpQR
and OWQ adopt mixed-precision schemes to preserve those critical weights, while AWQ applies
channel-wise scaling to avoid the hardware inefficiencies of mixed precision. Qlora Dettmers et al.
(2023a) recovers performance by performing parameter-efficient fine-tuning on the quantized model.
In QulP# Tseng et al.| (2024), Hessian analysis of calibration data helps make rounding decisions
during quantization.

LLM pruning has emerged as a critical challenge as large language models continue to scale in size.
Conventional pruning techniques, which typically involve retraining the entire model, are computa-
tionally expensive and increasingly infeasible for models of this magnitude. Recent work has shifted
toward post-training pruning approaches [Frantar & Alistarh| (2023); |Sun et al.| (2023); |Das et al.
(2023), where specialized scoring functions are employed to assess the significance of weights and
prune less influential components without requiring costly retraining. In addition, SliceGPT |Ashk-
boos et al.| (2024) advances structured pruning by eliminating rows or columns of weight matrices
according to eigenvectors and eigenvalues derived from the input, thereby offering a more principled
strategy for reducing model complexity.

2.2 COMPRESSION WITH PSEUDO-RANDOM GENERATOR

Recent work shows that network weights can be compactly represented by a pseudo-random gen-
erator seed together with compact coefficient vectors. PRANC Nooralinejad et al.| (2023) com-
presses entire networks by orders of magnitude to reduce storage and improve transmission effi-
ciency. LoRA |Hu et al.| (2022) lowers weight storage by injecting trainable low-rank decomposition
matrices into each layer. NOLA Koohpayegani et al.|(2023) builds on LoRA by expressing low-rank
factors as linear combinations of random basis vectors, further reducing memory footprint and com-
putational overhead. SeedLLM [Shafipour et al.[(2024) is first use pseudo-random generator in LLM
weight compression, but block reconstruction relies on floating-point multiplications between basis
tensors and their coefficients, significantly increasing power consumption and silicon area.

3 METHODOLOGY

3.1 WEIGHT COMPRESSION USING LINEAR FEEDBACK SHIFT REGISTER GENERATOR

A Linear Feedback Shift Register (LFSR) is a compact and efficient type of shift register that is
widely used to produce pseudo-random binary sequences. Its hardware implementation is highly
attractive due to its low cost, minimal power consumption, and reliance solely on shift registers
combined with XOR logic. These properties make LFSRs suitable for scenarios that require efficient
pseudo-random sequence generation, such as signal processing and data compression.

The behavior of an LFSR is determined by two key elements: the register length K and its associated
feedback polynomial. During each update cycle, all bits in the register are shifted one position to the
right, and the most significant bit is replaced with a new bit computed from a linear combination of
selected register bits. This new bit is derived according to the feedback polynomial through modulo-
2 arithmetic, which corresponds to XOR operations. Mathematically, the next bit can be expressed
as

K-—1
Tpy1 = Z Qi Tpgi—k+1  (mod 2), (D
1=0

where «; € {0, 1} represents the feedback coefficients that determine which register bits participate
in the XOR computation.

Since the register contains only a finite number of states (2¥ in total), the sequence generated by
an LFSR will inevitably enter a repeating cycle. A special case is a maximal-length LFSR, which
can traverse 25 — 1 nonzero states before repeating. This property is achieved when the feedback
polynomial is primitive over the Galois field GF(2), which guarantees that every nonzero state is
visited exactly once before the sequence cycles.

In practical applications, precomputing all possible LFSR states for a fixed K and its feedback
coefficients {«; } can significantly improve efficiency. By storing the full sequence of 2K _ 1 states,
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Figure 2: Fixed vs. Adaptive Bases. Figure 3: Design Space Exploration.

one can generate pseudo-random numbers or populate random matrices without recalculating the
shift register at every step. This caching approach provides a highly scalable and memory-efficient
mechanism for large-scale pseudo-random sequence generation, as the storage requirement grows
linearly with the number of states and remains negligible for moderate register lengths.

We represent each model weight block as a linear combination of normalized sub-blocks generated
from a pseudo-random seed using an LFSR-based sequence generator. Let V' (s) denote the raw
integer sequence of length L generated from a seed s. To facilitate stable weight reconstruction, we
first center and normalize this sequence into [—1, 1] as

ﬁ (V) 25 11), 2)

where 1 is an all-one vector of the same shape as V' (s), and K is the register length of the LFSR.
This step ensures that each generated block has zero-centered and normalized values.

U(s) =

The original weight tensor W is partitioned into g blocks. Given a normalized sequence, the n-th
weight block w,, is synthesized by linearly combining M consecutive normalized sub-blocks:

M
Uy =Y aniUi(sn), n=12,..4 3)
=1

where a,, ; are the corresponding scaling coefficients, and U;(s,,) denotes the i-th normalized sub-
block generated from seed s,,.

The complete weight tensor is reconstructed by stacking all synthesized blocks:

W = [y, b2, ..., W], 4)

where W serves as a compact approximation of the original model weights, parameterized by the
seeds and their associated coefficients.

3.2 EXPLAINED ENERGY AND RECONSTRUCTION ERROR

When a weight tensor is approximated using a limited set of basis tensors, a reconstruction error
inevitably arises due to the projection onto a low-dimensional subspace. Let T" denote the original

weight tensor (or a flattened block), and let T®) denote its approximation using k selected bases.
The reconstruction error is naturally measured by the squared Frobenius norm

~ (k) 112
& = ||T—TW]|,, ®)
which captures the energy of the residual orthogonal to the selected subspace.

To quantitatively assess how much of the original weight energy is preserved after compression, we

define the explained energy ratio as

o IBTIE 1T =79
IT1% IT1%

where Py, denotes the orthogonal projection operator onto the k-dimensional subspace spanned by

the selected bases. A higher Ry, indicates that most of the tensor energy is captured, corresponding
to a lower reconstruction error.

(6)



Algorithm 1: Adaptive Basis Selection and Quantization

Input: Weight blocks {w; }, energy threshold Ry, blocks per quantization G
Output: Seeds {s*}, basis counts {k*}, quantized coefficients {a}
foreach block w; do
k<« 2;
repeat
foreach seed s do
a; = Ug(s)Tw;;
Compute Ry(s) using Eq. @;
$* + arg maxg Ri(s);
if max, Ry (s) < Ry, then
L k—k+1;

until max; Ry (s) > Rin;
| Record s*, k, and a;;

Group every G blocks and quantize {a;} to int8 with a shared scale;
return {s*}, {k*}, {a};

This formulation is grounded in the orthogonal projection theorem in linear algebra, which guaran-
tees that the best low-dimensional approximation is achieved via orthogonal projection and that the
residual energy is orthogonal to the selected subspace [Strang| (2016); Trefethen & Bau III| (1997).
Moreover, Ry, is conceptually analogous to the explained variance ratio commonly used in Principal
Component Analysis (PCA) to evaluate how much of the original data variance is preserved in a
low-dimensional embedding Jolliffe| (2002); Golub & Van Loan| (2013).

3.3 ADAPTIVE BASIS SELECTION AND QUANTIZATION

As shown in Fig. [2|(left), using a fixed number of bases for all weight blocks leads to inefficient and
uneven reconstruction quality. Some blocks are over-allocated, achieving energy ratios far above
the target threshold Ry;, and wasting bases, while other blocks fail to reach the threshold, resulting
in poor reconstruction. To overcome this limitation, we adopt an adaptive strategy that dynamically
selects the number of bases for each block to reach the target explained energy ratio.

Algorithm Overview. For each weight block w, we start with a small number of bases (k = 2) and
enumerate all LFSR seeds s. For each candidate seed, we construct the basis matrix Uy (s) € RExk,
whose columns are the k& normalized sub-blocks generated from seed s according to Eq. We
compute the projection coefficients

a = Ug(s)tw, (7)

where T denotes the Moore—Penrose pseudo-inverse, and evaluate the explained energy ratio using
Eq. @ If the best Ry/(s) is below the threshold Ry, we increment k and repeat the search process.
Once the threshold is reached, we record the selected seed, basis count, and coefficients. Finally,
coefficients of multiple blocks are grouped and quantized to int8 with a shared scaling factor. The
detailed procedure is summarized in Algorithm 1]

Using this algorithm, as illustrated in Fig. [] (right), blocks that are easier to approximate automati-
cally use fewer bases, while harder blocks receive more bases. This ensures that all blocks reach the
target Ry, without redundant basis allocation.

3.4 MULTI-OBJECTIVE DESIGN SPACE EXPLORATION

Algorithm compresses the original weights W into W under a given configuration by performing
adaptive basis selection and coefficient quantization. Each iteration of the algorithm inherently
yields two optimization objectives:



1. Reconstruction loss (MSE)
1 N A2
CMSE:N;HWi_WiHF, (®)

where W; and W; denote the original and reconstructed weight blocks.

2. Quantization bitwidth
16
Bitwidth = S + 8k + ek )
where S is the LFSR seed length, k is the number of adaptive bases for this block, and G is the
number of blocks sharing one FP16 scaling factor.

These two metrics inherently form a trade-off: reducing the bitwidth typically increases the MSE
loss, while allocating more bases reduces the error but consumes more storage. Crucially, this trade-
off is fully determined by a four-dimensional configuration:

T = (B, S, G, Ru), (10)

where

* B (block size): number of weights per block;
* S (seed length): bit length of the LFSR seed;
* G (blocks per quantization): number of blocks sharing one FP16 scaling factor;

* R:n (energy ratio threshold): target explained energy ratio for adaptive basis selection.

Therefore, the problem of finding a good compression strategy naturally transforms into a
multi-objective design space exploration (DSE) problem: each configuration 7' produces a pair
(Lmse(T), Bitwidth(T)), and our goal is to search for configurations that achieve a favorable
trade-off between accuracy and storage efficiency. To efficiently explore this discrete-continuous
search space, we adopt a Bayesian Optimization (BO) framework(as shown in Fig.[3)) with a Gaus-
sian Process (GP) surrogate model using a Matérn kernel. At each iteration, the next configuration
T* is selected by maximizing the Expected Incremental Predictive Volume (EIPV) |Shah & Ghahra-
mani| (2016):

T = arg max EIPV(T | D), (11

where D denotes the design space, which contains all possible candidate configurations. A configu-
ration T € D corresponds to a specific design point and EIPV function is:

EIPV(T | D) = Eg(ry [AHV (£(T),P)], (12)

AHYV denotes the hypervolume improvement achieved by augmenting the current Pareto set P with
the candidate solution f (7).

3.5 HARDWARE ANALYSIS

We propose a seed-compression-
aware accelerator because conven-
tional GPUs, which are highly
optimized for dense  matrix-
multiplication  kernels, cannot
efficiently reconstruct weights from Generator
compact seeds. We implement the
Weight Generator and the Systolic
Array in SystemVerilog and syn-
thesize the designs with Synopsys
Design Compiler [Ultra (2017) tar-
geting a 7nm FinFET |Clark et al.

Weight

Figure 4: Weight Generator and Systolic Array.



(2016) standard-cell library to obtain

area, timing, and power estimates for the hardware implementations. A cycle-accurate simulator is
developed to evaluate end-to-end system performance, and CACTI Muralimanohar et al.| (2009) is
employed to model on-chip memory latency and power. The Weight Generator comprises a lookup
table (LUT) that stores all LFSR states together with the multipliers required to reconstruct weights
from seeds. The Systolic Array consists of processing elements (PEs), each integrating a multiplier,
an adder, and a partial-sum buffer to accumulate intermediate results.

4 EXPERIMENTS
4.1 PERFORMANCE ANALYSIS

We evaluate DC-LLM by measur-

ing perplexity on the WikiText- Method Bits 2-7B  2-13B  2-70B 3-8B 3-70B
2 benchmark Merity et al| (2016)  pygefine 16 55 49 33 61 29
and running a suite of zero-shot

tasks with the LM Evaluation Har- ]S)C;i]ili\ilw (Ours) 348 g ; g (1) gg 3(8) ;g
ness|Gao et al.|(2021). We compare OerflniQuant 4 6‘1 5’2 3'7 il"lf iﬁf
DC-LLM to SeedLM |Shafipour AWQ 4 58 51 35 71 47
ct_al| (2024), AWQ Lin et al| o,py 4 65 53 OOM 76 OOM
(2024), OmniQuant |Shao et al.

(TS, and QuiP Mang car| PCLANOn 27 os 3 T e s
(2024), using the official GitHub OmniQuant 3 iﬁf 10'7 7'5 iﬁf iﬁf
releases for each project. SeedLM AWQ 3 15.6 65 44 118 11.6
serves as a calibration-free refer- QUIP# 3 108 57 OOM 101 OOM

ence, while several other base-
lines require per-layer calibration
on held-out examples. DC-LLM
likewise operates without calibra-
tion and, as our results show,
achieves lower perplexity across
multiple model scales and aggres-
sive bitwidths. For AWQ and
OmniQuant we apply 4-bit inte-
ger quantization with channel-wise
scaling to prevent the effective bits
per parameter from increasing (a
group size of 128 adds roughly 0.25 extra bits per parameter). We avoid fine-tuning the quan-
tized checkpoints for QuIP# and OmniQuant to preserve a fair comparison with the calibration-free
workflows used by SeedLM and DC-LLM. To quantify overall language-model fidelity we compute
perplexity on the WikiText-2 test. Table [I|reports these measurements and highlights the trade-off
between compression aggressiveness and model quality.

Table 1: We report WikiText-2 perplexities for Llama 2 and
Llama 3 using 3- and 4-bit weight representations evaluated
on 2048-token contexts. We write model identifiers as x—yB
to indicate Llama version x with y billion parameters (for
example, 2-7B denotes Llama 2 with 7B parameters). We
record any perplexity value above 100 as inf to signal numer-
ical divergence. We emphasize the smallest perplexity per col-
umn to call out the best-performing configuration. We mark
runs that exceed the memory capacity of four A100 80GB
GPUs with OOM.

We evaluated zero-shot accuracy on a suite of benchmark tasks and summarize the outcomes in
Table 2] where DC-LLM matches or surpasses contemporary quantization methods at the same bit
budgets. DC-LLM achieves these results without relying on any calibration examples, demonstrat-
ing a calibration-free advantage. Collectively, these findings demonstrate that DC-LLM sustains
strong multi-task robustness even when applied to models of substantial expressive capacity.

4.2 HARDWARE ANALYSIS

In this work we perform hardware-level experiments to compare three weight-handling strate-
gies—weights without compression, 4-bit weight quantization, and DC-LLM—across Llama2 and
Llama3 model families ranging from 7B to 70B parameters. We present a systematic comparison of
the three methods with respect to latency, energy efficiency, and silicon area.

Area. We analyzed the area of the weight generator, which comprises several multipliers and a
cache-backed look-up table (LUT) that stores all linear-feedback shift register (LFSR) states. Next,
we evaluated the area of the systolic array: each processing element (PE) contains a multiplier, an



Model Method Bits ARC-Easy ARC-Challenge HellaSwag WinoGrande BoolQ Mean
Baseline 16 74.58 46.33 75.98 69.06 7774 68.74

" DC-LLM(Ours) ©~ 3.8 7~ T 71336 " T T~ J35 T T T 4517 T T T 68471 T TIB4 T6165

| SeedLM L4 73.23 ! 4454 | 7445 | 6843 | 77.19 | 67.57

| AWQ L4 70.58 | 43.94 74.96 | 68.75 | 7829 | 67.30

| QuIP# L4 68.35 | 39.85 | 72.40 | 65.59 1 75.14 1| 64.27

Llama27p | OmniQuant ! 4 | 70.71 ! 4352 74.20 | 68.27 | 73.64 | 66.07
" DC-LLM(Ours) | 27 |~ 70011~~~ "~ 4139 77 770737 T T T 66387 7429 6436

| SeedLM L3 69.87 | 4121 70.72 | 66.30 | 7428 | 64.48

I AWQ L3 53.37 33.62 | 56.66 | 61.09 | 57.58 1| 52.46

| QulP# b3 59.51 | 3422 59.23 | 61.09 ' 6520 ' 55.85

| OmniQuant L3 35.69 | 25.77 | 3548 | 52.88 | 4248 | 38.46

| Baseline | 16 | 7744 | 4898 | 7938 | 7222 | 8055 | 7171

| DC-LLM{(Ours) |, 3.8 | 7702, 9793 | 78,55 72.817, 77933 | 7133

| SeedLM P4 76.98 | 49.83 | 78.54 | 7277 1 7920 | 71.46

I AWQ lo4 77.44 | 4932 1 78.57 | 7190 1 7847 1 71.14

} QulP# } 4 } 74.24 ! 45.48 } 77.17 } 7127 ' 79.51 } 69.53

OmniQuant 4 76.18 47.95 78.10 7214 | 81.77 | 71.23
Llama2 13B L Zonbdant S 4 s Al e B N T
| DC-LLM(Oursy (2.7 | 72.96 | I543 | 7462 71517 " 7831 1 6867

I SeedLM 13 72.85 | 4539 1 74.50 | 7135 1 78.81 1| 68.58

} AWQ } 3 } 70.58 ! 45.14 } 72.72 } 64.96 } 72.45 } 65.17

| QuIP# L3 73.48 | 45.14 | 74.92 | 69.06 , 79.60 |, 68.44

i OmniQuant | 3 | 55.85 | 34.47 | 59.54 | 53.04 | 63.39 | 53.26

| Baseline L 16, 80.98 | 57.25 | 83.81 | 7798 | 8370 | 76.74

i DC-LLM(Oursy 3.8 + ~ ~ 81301~~~ ~ 5634« T~ T 830477 T T 767571 T 82345 1 76102

I SeedLM log o 81.14 ! 56.40 | 82.97 ! 7672 1 82.26 | 75.90

| AWQ L4 8098 56.66 | 83.24 | 77.19 | 8327 | 76.27

| QuIP# L4 OOM , OOM , OOM , OOM , OOM , OOM

Llama 2 70B ' OmniQuant 4 79.59 1 55.97 1 82.67 1 76.80 1 83.43 1 75.69
rDC-LLMOurs) " 2.7 T -~ 79077~~~ ~~ 386 T T 80537 T T 716977 7914 T30

| SeedLM L3 T79.00 53.84 | 8051 | 76.80 | 79.02 | 73.83

| AWQ L3 80.26 55.80 | 80.50 | 73.01 | 80.00 , 73.91

I QuIP# L3 OOM | OOM | OOM | OOM | OOM | OOM

| OmniQuant ' 3 ! 63.59 39.51 68.24 | 62.04 | 6523 | 59.72

| Baseline 116 76.81 | 5273 | 76.97 | 7293 1 81.87 1| 72.26

" DC-LLM(Ours) 3.8 I~ " 76687~~~ "~ 4989777767277 T T U327 78084 7145

| SeedLM L4 76.52 | 49.74 | 76.61 | 72.93 | 80.76 |, 7131

| AWQ L4 74.49 | 51.54 | 78.03 | 73.09 | 80.40 | 71.51

I QulP# lo4 72.39 | 46.93 1 75.93 | 71.82 1 7924 1 69.26

' OmniQuant g ! 73.95 ! 47.78 73.42 ! 69.69 ' 71.99 ' 67.37

Llama 388+ 5e FiMOursy 27 & T T 67320 T T T T 77776846 T T T 6939 6773 6292
| SeedLM I3 67.21 | 4155 | 68.34 | 69.22 | 67.61 | 62.79

I AWQ 13 64.90 | 40.19 1 68.40 | 65.04 | 74.62 | 62.63

| QuipH# L3 65.07 4036 | 67.79 | 68.82 | 7214 | 62.84

, OmniQuant |, 3 30.26 2253 28.96 | 49.33 | 4847 | 3591

| Baseline |16 | 8523 | 64.33 | 8407 | 77.66 | 86.27 | 79.51

| DC-LLM(Oursy |38 |~ ~ 83947~~~ ~ 5930~ 83897 T~ 77.807, 8562 | T8Il

| SeedLM L4 83.80 | 59.30 | 83.84 1| 7774 1 85.60 1 78.06

I AWQ lo4 80.98 ! 57.94 | 82.84 | 60.54 | 7939 | 72.34

| QuIP# L4, OOM OOM |  OOM | OOM | OOM | OOM

, OmniQuant | 4 25.13 26.54 | 26.36 | 51.38 | 37.83 | 33.45
Llama370B - s s r S o m v —a A - = = B oA~ — = = = = EM A = = = BB T — = = 5 Ao — O B = 54 B
I DC-LLM(Ours) I~ 2.7 | 7850 7 2024 | 80.83 774871 T 8466 1 T4TI4

I SeedLM b3 78.45 | 5222 80.77 ! 7735 1 84.59 | 74.68

| AWQ L3 65.87 | 45.14 | 70.76 | 55.88 | 69.08 | 61.35

| QuIP# L3 OOM , OOM , OOM , OOM , OOM , OOM

| OmniQuant | 3 | 2521 | 25.94 | 26.15 | 49.64 1 37.83 1 32.95

Table 2: Performance comparison across different models and zero-shot tasks for around 4-bit and
3-bit configurations. Entries that ran out of memory in our setup are marked with OOM.

adder, and a local buffer. As shown in Table[3] for a 16 x 16 systolic array accelerator, the weight
generator occupies only a small fraction of the overall area—approximately 3%. This indicates that
the area overhead introduced by the generator in DC-LLM is negligible.

Latency and Energy. During latency and energy measurements, we compared DC-LLM (the
average 3.8-bit case) against two baselines: an uncompressed weight design and a 4-bit weight-



Module Number | Area (mm?) | Ratio (%)
PE (121.53 um?) 256 0.0311 97.2%
Generator (912.23 pm?) 1 0.0009 2.8%

Table 3: Area breakdown.

quantization design. To ensure an area-fair comparison among the three configurations, we reduced
the number of PEs in DC-LLM so that the combined area of the generator plus the diminished
PE array matches the total area of the other two cases. As shown in Figure [5a] relative to the un-
compressed baseline DC-LLM achieves an approximately 4x reduction in latency across multiple
benchmarks and also outperforms the 4-bit quantized design in execution time. Figure [5b| reports
energy consumption: weight compression substantially reduces memory-access power, producing
large savings in DRAM and SRAM energy; the figure also presents a breakdown of power into
static, DRAM, SRAM, and core components.
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Figure 5: Comparisons in different benchmarks.

CONCLUSION

We present DC-LLM, a novel weight-only compression method that reconstructs each weight block
from a compact LFSR seed and a small set of basis tensors, substantially reducing stored weights
and chip-to-chip bandwidth. We adapt the number of basis tensors per block with an explained-
energy metric to trade off reconstruction error and compression, and we treat block size, seed length,
and related hyperparameters as a multi-objective design-space exploration solved via Bayesian op-
timization. We implement a SystemVerilog RTL accelerator and demonstrate in simulation up to a
4x speedup for memory-bound LLM inference. Extensive experiments on LLM models (7B-70B)
show state-of-the-art accuracy at roughly 3—4 bit effective precision. DC-LLM paves the way for
new hardware-friendly compression techniques for LLM.
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