
DC-LLM: HARDWARE-FRIENDLY LLM WEIGHT COMPRESSION VIA DYNAMIC LINEAR COMBINATION

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
19

ply-accumulate (MAC) operations. Consequently, reducing the memory footprint through model compression represents the most effective strategy for mitigating inference latency, lowering power consumption, and reducing deployment costs. Quantization Xiao et al. (2023) represents model weights and activations using lower-precision formats to decrease storage and bandwidth demands. Pruning Ma et al. (2023); Sun et al. (2023) removes parameters judged to be redundant, reducing model size and computational cost. However, most post-training compression methods rely on calibration data and suffer severe accuracy degradation under extreme compression. So, we explore one question whether a calibration-free compression method can be designed that maintains acceptable accuracy at extreme compression?

We present DC-LLM, a weight-only compression method that achieves extreme compression—approximately 3-bit effective precision—while maintaining acceptable accuracy. DC-LLM partitions each weight matrix into fixed-size blocks and approximates each block with a small set of basis tensors that we deterministically generate from a seed. We reconstruct a block by linearly combining the generated basis tensors and multiplying each basis by an optimal coefficient. As a result, we represent and transmit a block’s parameters by a single seed and its coefficient vector, which substantially reduces storage and communication bandwidth compared with storing raw weights. In contrast to a previous work SeedLM Shafipour et al. (2024), which reconstructs each block using floating-point matrix multiplications and incurs significant hardware overhead, DC-LLM avoids expensive matrix operations. As a result, DC-LLM achieves higher accuracy while substantially reducing hardware cost.

DC-LLM has two practical challenges. First, weight blocks exhibit large numerical variability, so we must determine how many basis tensors to generate for each block. Second, design parameters such as block size and seed length trade off against post-compression accuracy and average bits per weight, so we must find a Pareto balance among these objectives. To address the first challenge, we define the explained energy ratio to measure the fraction of a block’s energy retained by a given basis set, and we use this metric to adaptively select the number of basis tensors per block. To tackle the second challenge, we formulate the selection of block size, seed length, and associated hyperparameters as a multi-objective design-space exploration problem. We then employ Bayesian optimization to identify operating points that achieve a desirable trade-off among accuracy, compression rate.

DC-LLM increases on-chip computation within bounded limits to reduce off-chip memory accesses and to improve effective chip-to-chip bandwidth, enabling extreme compression in multi-chip deployments. The tensor generator uses a linear-feedback shift register (LFSR), a communications-domain primitive Win & Kyaw (2008) that relies primarily on hardware-friendly shift and XOR operations. This choice yields a compact, deterministic, and easily pipelined hardware implementation.

We make the following contributions in this paper:

- We propose a novel weight-only compression method, DC-LLM, which dynamically reconstructs each weight block from a seed using a Linear-Feedback Shift Register (LFSR) generator, substantially reducing stored information and increasing effective memory bandwidth.
- We adapt the number of basis tensors per block based on each block’s explained energy and reconstruction error to balance compression and accuracy.
- We introduce an offline search strategy that employs Bayesian optimization to find optimal configuration parameters such as block size and seed length.
- We designed a custom hardware accelerator, implemented in SystemVerilog, and demonstrated in simulation that for memory-bound LLM inference it achieves up to a $4\times$ speedup.
- Extensive experiments on LLaMA 2 and LLaMA 3 models ranging from 7B–70B parameters show that DC-LLM attains state-of-the-art performance with weights compressed to approximately 3-bit or 4-bit.

2 RELATED WORK

2.1 LLM WEIGHT COMPRESSION METHODS

Weight-only quantization targets representing model weights at reduced bit widths to lower storage and compute requirements. For example, GPTQ Frantar et al. (2022) uses block-wise reconstruction

108 to attain 3–4 bit quantization. SpQR Dettmers et al. (2023b), OWQ Lee et al. (2024), and AWQ Lin
109 et al. (2024) prioritize weights associated with large-magnitude activations. Consequently, SpQR
110 and OWQ adopt mixed-precision schemes to preserve those critical weights, while AWQ applies
111 channel-wise scaling to avoid the hardware inefficiencies of mixed precision. Qlora Dettmers et al.
112 (2023a) recovers performance by performing parameter-efficient fine-tuning on the quantized model.
113 In QuIP# Tseng et al. (2024), Hessian analysis of calibration data helps make rounding decisions
114 during quantization.

115 LLM pruning has emerged as a critical challenge as large language models continue to scale in size.
116 Conventional pruning techniques, which typically involve retraining the entire model, are computa-
117 tionally expensive and increasingly infeasible for models of this magnitude. Recent work has shifted
118 toward post-training pruning approaches Frantar & Alistarh (2023); Sun et al. (2023); Das et al.
119 (2023), where specialized scoring functions are employed to assess the significance of weights and
120 prune less influential components without requiring costly retraining. In addition, SliceGPT Ashk-
121 boos et al. (2024) advances structured pruning by eliminating rows or columns of weight matrices
122 according to eigenvectors and eigenvalues derived from the input, thereby offering a more principled
123 strategy for reducing model complexity.

124 **2.2 COMPRESSION WITH PSEUDO-RANDOM GENERATOR**

126 Recent work shows that network weights can be compactly represented by a pseudo-random gen-
127 erator seed together with compact coefficient vectors. PRANC Nooralinejad et al. (2023) com-
128 presses entire networks by orders of magnitude to reduce storage and improve transmission effi-
129 ciency. LoRA Hu et al. (2022) lowers weight storage by injecting trainable low-rank decomposi-
130 tion matrices into each layer. NOLA Koohpayegani et al. (2023) builds on LoRA by expressing low-rank
131 factors as linear combinations of random basis vectors, further reducing memory footprint and com-
132 putational overhead. SeedLM Shafipour et al. (2024) is first use pseudo-random generator in LLM
133 weight compression, but block reconstruction relies on floating-point multiplications between basis
134 tensors and their coefficients, significantly increasing power consumption and silicon area.

135 **3 METHODOLOGY**

138 **3.1 WEIGHT COMPRESSION USING LINEAR FEEDBACK SHIFT REGISTER GENERATOR**

140 A Linear Feedback Shift Register (LFSR) is a compact and efficient type of shift register that is
141 widely used to produce pseudo-random binary sequences. Its hardware implementation is highly
142 attractive due to its low cost, minimal power consumption, and reliance solely on shift registers
143 combined with XOR logic. These properties make LFSRs suitable for scenarios that require efficient
144 pseudo-random sequence generation, such as signal processing and data compression.

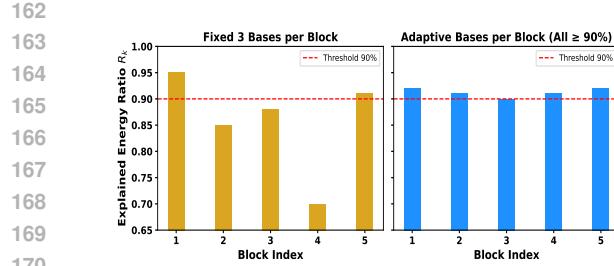
145 The behavior of an LFSR is determined by two key elements: the register length K and its associated
146 feedback polynomial. During each update cycle, all bits in the register are shifted one position to the
147 right, and the most significant bit is replaced with a new bit computed from a linear combination of
148 selected register bits. This new bit is derived according to the feedback polynomial through modulo-
149 2 arithmetic, which corresponds to XOR operations. Mathematically, the next bit can be expressed
150 as

$$151 x_{n+1} = \sum_{i=0}^{K-1} \alpha_i \cdot x_{n+i-K+1} \pmod{2}, \quad (1)$$

153 where $\alpha_i \in \{0, 1\}$ represents the feedback coefficients that determine which register bits participate
154 in the XOR computation.

155 Since the register contains only a finite number of states (2^K in total), the sequence generated by
156 an LFSR will inevitably enter a repeating cycle. A special case is a maximal-length LFSR, which
157 can traverse $2^K - 1$ nonzero states before repeating. This property is achieved when the feedback
158 polynomial is primitive over the Galois field GF(2), which guarantees that every nonzero state is
159 visited exactly once before the sequence cycles.

161 In practical applications, precomputing all possible LFSR states for a fixed K and its feedback
coefficients $\{\alpha_j\}$ can significantly improve efficiency. By storing the full sequence of $2^K - 1$ states,



171 Figure 2: Fixed vs. Adaptive Bases.

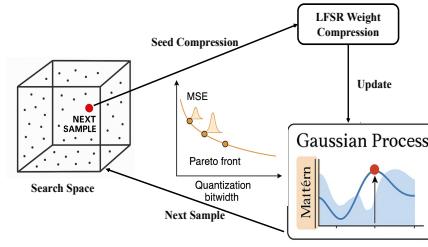


Figure 3: Design Space Exploration.

one can generate pseudo-random numbers or populate random matrices without recalculating the shift register at every step. This caching approach provides a highly scalable and memory-efficient mechanism for large-scale pseudo-random sequence generation, as the storage requirement grows linearly with the number of states and remains negligible for moderate register lengths.

We represent each model weight block as a linear combination of normalized sub-blocks generated from a pseudo-random seed using an LFSR-based sequence generator. Let $V(s)$ denote the raw integer sequence of length L generated from a seed s . To facilitate stable weight reconstruction, we first center and normalize this sequence into $[-1, 1]$ as

$$U(s) = \frac{1}{2^{K-1} - 1} (V(s) - 2^{K-1} \mathbf{1}), \quad (2)$$

where $\mathbf{1}$ is an all-one vector of the same shape as $V(s)$, and K is the register length of the LFSR. This step ensures that each generated block has zero-centered and normalized values.

The original weight tensor W is partitioned into q blocks. Given a normalized sequence, the n -th weight block \hat{w}_n is synthesized by linearly combining M consecutive normalized sub-blocks:

$$\hat{w}_n = \sum_{i=1}^M a_{n,i} U_i(s_n), \quad n = 1, 2, \dots, q, \quad (3)$$

where $a_{n,i}$ are the corresponding scaling coefficients, and $U_i(s_n)$ denotes the i -th normalized sub-block generated from seed s_n .

The complete weight tensor is reconstructed by stacking all synthesized blocks:

$$\hat{W} = [\hat{w}_1, \hat{w}_2, \dots, \hat{w}_q], \quad (4)$$

where \hat{W} serves as a compact approximation of the original model weights, parameterized by the seeds and their associated coefficients.

3.2 EXPLAINED ENERGY AND RECONSTRUCTION ERROR

When a weight tensor is approximated using a limited set of basis tensors, a reconstruction error inevitably arises due to the projection onto a low-dimensional subspace. Let T denote the original weight tensor (or a flattened block), and let $\hat{T}^{(k)}$ denote its approximation using k selected bases. The reconstruction error is naturally measured by the squared Frobenius norm

$$\mathcal{E}_k = \|T - \hat{T}^{(k)}\|_F^2, \quad (5)$$

which captures the energy of the residual orthogonal to the selected subspace.

To quantitatively assess how much of the original weight energy is preserved after compression, we define the explained energy ratio as

$$R_k = \frac{\|P_k T\|_F^2}{\|T\|_F^2} = 1 - \frac{\|T - \hat{T}^{(k)}\|_F^2}{\|T\|_F^2}, \quad (6)$$

where P_k denotes the orthogonal projection operator onto the k -dimensional subspace spanned by the selected bases. A higher R_k indicates that most of the tensor energy is captured, corresponding to a lower reconstruction error.

270 **1. Reconstruction loss (MSE)**

272
$$\mathcal{L}_{\text{MSE}} = \frac{1}{N} \sum_{i=1}^N \|W_i - \hat{W}_i\|_F^2, \quad (8)$$

275 where W_i and \hat{W}_i denote the original and reconstructed weight blocks.

277 **2. Quantization bitwidth**

278
$$\text{Bitwidth} = S + 8k + \frac{16}{G}, \quad (9)$$

280 where S is the LFSR seed length, k is the number of adaptive bases for this block, and G is the
281 number of blocks sharing one FP16 scaling factor.

282 These two metrics inherently form a trade-off: reducing the bitwidth typically increases the MSE
283 loss, while allocating more bases reduces the error but consumes more storage. Crucially, this trade-
284 off is fully determined by a four-dimensional configuration:

285
$$T = \langle B, S, G, R_{\text{th}} \rangle, \quad (10)$$

286 where

288 • **B (block size):** number of weights per block;
289 • **S (seed length):** bit length of the LFSR seed;
290 • **G (blocks per quantization):** number of blocks sharing one FP16 scaling factor;
291 • **R_{th} (energy ratio threshold):** target explained energy ratio for adaptive basis selection.

294 Therefore, the problem of finding a good compression strategy naturally transforms into a
295 multi-objective design space exploration (DSE) problem: each configuration T produces a pair
296 $(\mathcal{L}_{\text{MSE}}(T), \text{Bitwidth}(T))$, and our goal is to search for configurations that achieve a favorable
297 trade-off between accuracy and storage efficiency. To efficiently explore this discrete-continuous
298 search space, we adopt a Bayesian Optimization (BO) framework (as shown in Fig. 3) with a Gaus-
299 sian Process (GP) surrogate model using a Matérn kernel. At each iteration, the next configuration
300 T^* is selected by maximizing the Expected Incremental Predictive Volume (EIPV) Shah & Ghahra-
301 mani (2016):

302
$$T^* = \arg \max_{T \in \mathcal{D}} \text{EIPV}(T \mid \mathcal{D}), \quad (11)$$

304 where \mathcal{D} denotes the design space, which contains all possible candidate configurations. A configu-
305 ration $T \in \mathcal{D}$ corresponds to a specific design point and EIPV function is:

307
$$\text{EIPV}(T \mid \mathcal{D}) = \mathbb{E}_{\mathbf{f}(T)} [\Delta \text{HV}(\mathbf{f}(T), \mathcal{P})], \quad (12)$$

309 ΔHV denotes the hypervolume improvement achieved by augmenting the current Pareto set \mathcal{P} with
310 the candidate solution $\mathbf{f}(T)$.

312 **3.5 HARDWARE ANALYSIS**

314 We propose a seed-compression-
315 aware accelerator because conven-
316 tional GPUs, which are highly
317 optimized for dense matrix-
318 multiplication kernels, cannot
319 efficiently reconstruct weights from
320 compact seeds. We implement the
321 Weight Generator and the Systolic
322 Array in SystemVerilog and syn-
323 thesize the designs with Synopsys
Design Compiler Ultra (2017) tar-
324 geting a 7 nm FinFET Clark et al.

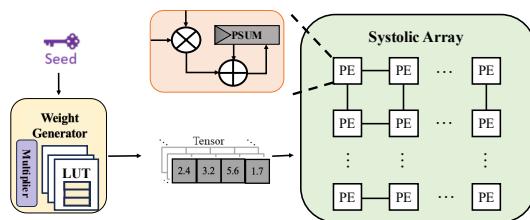


Figure 4: Weight Generator and Systolic Array.

(2016) standard-cell library to obtain area, timing, and power estimates for the hardware implementations. A cycle-accurate simulator is developed to evaluate end-to-end system performance, and CACTI Muralimanohar et al. (2009) is employed to model on-chip memory latency and power. The Weight Generator comprises a lookup table (LUT) that stores all LFSR states together with the multipliers required to reconstruct weights from seeds. The Systolic Array consists of processing elements (PEs), each integrating a multiplier, an adder, and a partial-sum buffer to accumulate intermediate results.

4 EXPERIMENTS

4.1 PERFORMANCE ANALYSIS

We evaluate DC-LLM by measuring perplexity on the WikiText-2 benchmark Merity et al. (2016) and running a suite of zero-shot tasks with the LM Evaluation Harness Gao et al. (2021). We compare DC-LLM to SeedLM Shafipour et al. (2024), AWQ Lin et al. (2024), OmniQuant Shao et al. (2023), and QuIP# Tseng et al. (2024), using the official GitHub releases for each project. SeedLM serves as a calibration-free reference, while several other baselines require per-layer calibration on held-out examples. DC-LLM likewise operates without calibration and, as our results show, achieves lower perplexity across multiple model scales and aggressive bitwidths. For AWQ and OmniQuant we apply 4-bit integer quantization with channel-wise scaling to prevent the effective bits per parameter from increasing (a group size of 128 adds roughly 0.25 extra bits per parameter). We avoid fine-tuning the quantized checkpoints for QuIP# and OmniQuant to preserve a fair comparison with the calibration-free workflows used by SeedLM and DC-LLM. To quantify overall language-model fidelity we compute perplexity on the WikiText-2 test. Table 1 reports these measurements and highlights the trade-off between compression aggressiveness and model quality.

We evaluated zero-shot accuracy on a suite of benchmark tasks and summarize the outcomes in Table 2, where DC-LLM matches or surpasses contemporary quantization methods at the same bit budgets. DC-LLM achieves these results without relying on any calibration examples, demonstrating a calibration-free advantage. Collectively, these findings demonstrate that DC-LLM sustains strong multi-task robustness even when applied to models of substantial expressive capacity.

4.2 HARDWARE ANALYSIS

In this work we perform hardware-level experiments to compare three weight-handling strategies—weights without compression, 4-bit weight quantization, and DC-LLM—across Llama2 and Llama3 model families ranging from 7B to 70B parameters. We present a systematic comparison of the three methods with respect to latency, energy efficiency, and silicon area.

Area. We analyzed the area of the weight generator, which comprises several multipliers and a cache-backed look-up table (LUT) that stores all linear-feedback shift register (LFSR) states. Next, we evaluated the area of the systolic array: each processing element (PE) contains a multiplier, an

Method	Bits	2-7B	2-13B	2-70B	3-8B	3-70B
Baseline	16	5.5	4.9	3.3	6.1	2.9
DC-LLM (Ours)	3.8	5.7	5.0	3.5	6.8	3.6
SeedLM	4	5.7	5.1	3.5	7.0	3.8
OmniQuant	4	6.1	5.2	3.7	inf	inf
AWQ	4	5.8	5.1	3.5	7.1	4.7
QuIP#	4	6.5	5.3	OOM	7.6	OOM
DC-LLM (Ours)	2.7	6.5	5.8	3.8	9.7	5.4
SeedLM	3	6.6	5.8	4.0	10.1	5.7
OmniQuant	3	inf	10.7	7.5	inf	inf
AWQ	3	15.6	6.5	4.4	11.8	11.6
QuIP#	3	10.8	5.7	OOM	10.1	OOM

Table 1: We report WikiText-2 perplexities for Llama 2 and Llama 3 using 3- and 4-bit weight representations evaluated on 2048-token contexts. We write model identifiers as $x-yB$ to indicate Llama version x with y billion parameters (for example, 2-7B denotes Llama 2 with 7B parameters). We record any perplexity value above 100 as inf to signal numerical divergence. We emphasize the smallest perplexity per column to call out the best-performing configuration. We mark runs that exceed the memory capacity of four A100 80GB GPUs with OOM .

Model	Method	Bits	ARC-Easy	ARC-Challenge	HellaSwag	WinoGrande	BoolQ	Mean
Llama 2 7B	Baseline	16	74.58	46.33	75.98	69.06	77.74	68.74
	DC-LLM(Ours)	3.8	73.36	44.55	74.51	68.47	77.34	67.65
	SeedLM	4	73.23	44.54	74.45	68.43	77.19	67.57
	AWQ	4	70.58	43.94	74.96	68.75	78.29	67.30
	QuIP#	4	68.35	39.85	72.40	65.59	75.14	64.27
	OmniQuant	4	70.71	43.52	74.20	68.27	73.64	66.07
	DC-LLM(Ours)	2.7	70.01	41.39	70.74	66.38	74.29	64.56
	SeedLM	3	69.87	41.21	70.72	66.30	74.28	64.48
	AWQ	3	53.37	33.62	56.66	61.09	57.58	52.46
	QuIP#	3	59.51	34.22	59.23	61.09	65.20	55.85
	OmniQuant	3	35.69	25.77	35.48	52.88	42.48	38.46
Llama 2 13B	Baseline	16	77.44	48.98	79.38	72.22	80.55	71.71
	DC-LLM(Ours)	3.8	77.02	49.93	78.55	72.81	79.33	71.53
	SeedLM	4	76.98	49.83	78.54	72.77	79.20	71.46
	AWQ	4	77.44	49.32	78.57	71.90	78.47	71.14
	QuIP#	4	74.24	45.48	77.17	71.27	79.51	69.53
	OmniQuant	4	76.18	47.95	78.10	72.14	81.77	71.23
	DC-LLM(Ours)	2.7	72.96	45.43	74.62	71.51	78.81	68.67
	SeedLM	3	72.85	45.39	74.50	71.35	78.81	68.58
	AWQ	3	70.58	45.14	72.72	64.96	72.45	65.17
	QuIP#	3	73.48	45.14	74.92	69.06	79.60	68.44
	OmniQuant	3	55.85	34.47	59.54	53.04	63.39	53.26
Llama 2 70B	Baseline	16	80.98	57.25	83.81	77.98	83.70	76.74
	DC-LLM(Ours)	3.8	81.30	56.54	83.04	76.75	82.45	76.02
	SeedLM	4	81.14	56.40	82.97	76.72	82.26	75.90
	AWQ	4	80.98	56.66	83.24	77.19	83.27	76.27
	QuIP#	4	OOM	OOM	OOM	OOM	OOM	OOM
	OmniQuant	4	79.59	55.97	82.67	76.80	83.43	75.69
	DC-LLM(Ours)	2.7	79.07	53.86	80.53	76.97	79.14	73.91
	SeedLM	3	79.00	53.84	80.51	76.80	79.02	73.83
	AWQ	3	80.26	55.80	80.50	73.01	80.00	73.91
	QuIP#	3	OOM	OOM	OOM	OOM	OOM	OOM
	OmniQuant	3	63.59	39.51	68.24	62.04	65.23	59.72
Llama 3 8B	Baseline	16	76.81	52.73	76.97	72.93	81.87	72.26
	DC-LLM(Ours)	3.8	76.68	49.89	76.72	73.12	80.84	71.45
	SeedLM	4	76.52	49.74	76.61	72.93	80.76	71.31
	AWQ	4	74.49	51.54	78.03	73.09	80.40	71.51
	QuIP#	4	72.39	46.93	75.93	71.82	79.24	69.26
	OmniQuant	4	73.95	47.78	73.42	69.69	71.99	67.37
	DC-LLM(Ours)	2.7	67.32	41.72	68.46	69.39	67.73	62.92
	SeedLM	3	67.21	41.55	68.34	69.22	67.61	62.79
	AWQ	3	64.90	40.19	68.40	65.04	74.62	62.63
	QuIP#	3	65.07	40.36	67.79	68.82	72.14	62.84
	OmniQuant	3	30.26	22.53	28.96	49.33	48.47	35.91
Llama 3 70B	Baseline	16	85.23	64.33	84.07	77.66	86.27	79.51
	DC-LLM(Ours)	3.8	83.94	59.31	83.89	77.80	85.62	78.11
	SeedLM	4	83.80	59.30	83.84	77.74	85.60	78.06
	AWQ	4	80.98	57.94	82.84	60.54	79.39	72.34
	QuIP#	4	OOM	OOM	OOM	OOM	OOM	OOM
	OmniQuant	4	25.13	26.54	26.36	51.38	37.83	33.45
	DC-LLM(Ours)	2.7	78.50	52.24	80.83	77.48	84.66	74.74
	SeedLM	3	78.45	52.22	80.77	77.35	84.59	74.68
	AWQ	3	65.87	45.14	70.76	55.88	69.08	61.35
	QuIP#	3	OOM	OOM	OOM	OOM	OOM	OOM
	OmniQuant	3	25.21	25.94	26.15	49.64	37.83	32.95

Table 2: Performance comparison across different models and zero-shot tasks for around 4-bit and 3-bit configurations. Entries that ran out of memory in our setup are marked with OOM.

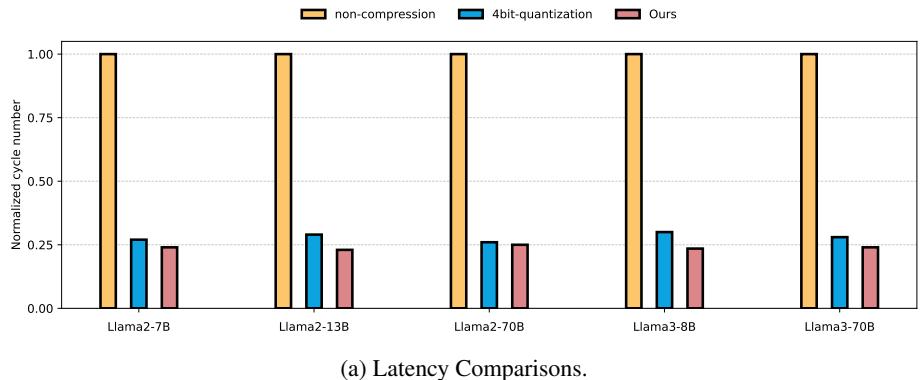
adder, and a local buffer. As shown in Table 3, for a 16×16 systolic array accelerator, the weight generator occupies only a small fraction of the overall area—approximately 3%. This indicates that the area overhead introduced by the generator in DC-LLM is negligible.

Latency and Energy. During latency and energy measurements, we compared DC-LLM (the average 3.8-bit case) against two baselines: an uncompressed weight design and a 4-bit weight-

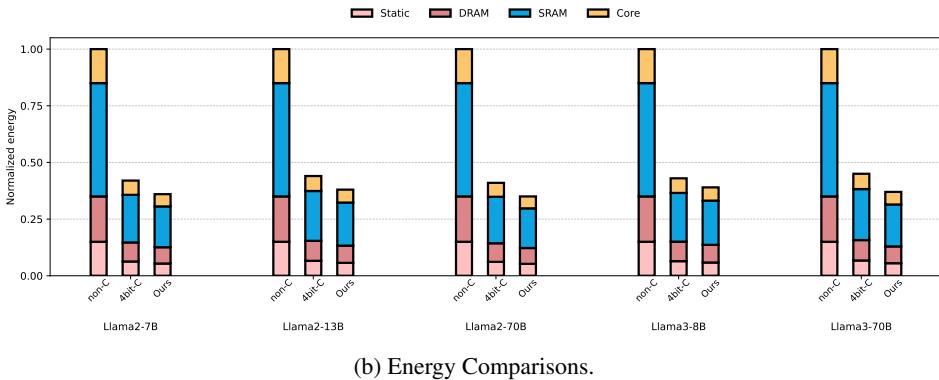
Module	Number	Area (mm ²)	Ratio (%)
PE (121.53 μm^2)	256	0.0311	97.2%
Generator (912.23 μm^2)	1	0.0009	2.8%

Table 3: Area breakdown.

quantization design. To ensure an area-fair comparison among the three configurations, we reduced the number of PEs in DC-LLM so that the combined area of the generator plus the diminished PE array matches the total area of the other two cases. As shown in Figure 5a, relative to the un-compressed baseline DC-LLM achieves an approximately 4 \times reduction in latency across multiple benchmarks and also outperforms the 4-bit quantized design in execution time. Figure 5b reports energy consumption: weight compression substantially reduces memory-access power, producing large savings in DRAM and SRAM energy; the figure also presents a breakdown of power into static, DRAM, SRAM, and core components.



(a) Latency Comparisons.



(b) Energy Comparisons.

Figure 5: Comparisons in different benchmarks.

CONCLUSION

We present DC-LLM, a novel weight-only compression method that reconstructs each weight block from a compact LFSR seed and a small set of basis tensors, substantially reducing stored weights and chip-to-chip bandwidth. We adapt the number of basis tensors per block with an explained-energy metric to trade off reconstruction error and compression, and we treat block size, seed length, and related hyperparameters as a multi-objective design-space exploration solved via Bayesian optimization. We implement a SystemVerilog RTL accelerator and demonstrate in simulation up to a 4 \times speedup for memory-bound LLM inference. Extensive experiments on LLM models (7B–70B) show state-of-the-art accuracy at roughly 3–4 bit effective precision. DC-LLM paves the way for new hardware-friendly compression techniques for LLM.

486 REFERENCES

487

488 Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefer, and James
489 Hensman. Sliceopt: Compress large language models by deleting rows and columns. *arXiv*
490 *preprint arXiv:2401.15024*, 2024.

491 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
492 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
493 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

495 Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh Sinha, Brian Cline,
496 Chandarasekaran Ramamurthy, and Greg Yeric. Asap7: A 7-nm finfet predictive process design
497 kit. *Microelectronics Journal*, 53:105–115, 2016.

498 Rocktim Jyoti Das, Mingjie Sun, Liqun Ma, and Zhiqiang Shen. Beyond size: How gradients shape
499 pruning decisions in large language models. *arXiv preprint arXiv:2311.04902*, 2023.

501 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
502 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023a.

504 Tim Dettmers, Ruslan Svirchevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
505 boos, Alexander Borzunov, Torsten Hoefer, and Dan Alistarh. Spqr: A sparse-quantized repre-
506 sentation for near-lossless llm weight compression. *arXiv preprint arXiv:2306.03078*, 2023b.

507 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
508 one-shot. In *International conference on machine learning*, pp. 10323–10337. PMLR, 2023.

510 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
511 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

512 Leo Gao, Jonathan Tow, Stella Biderman, Shawn Black, Anthony DiPofi, Charles Foster, Laurence
513 Golding, Jasmine Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
514 language model evaluation. *Version v0. 0.1. Sept*, 10:8–9, 2021.

515 Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. Johns Hopkins University Press,
516 4th edition, 2013.

518 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
519 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

521 Ian T. Jolliffe. *Principal Component Analysis*. Springer, 2nd edition, 2002.

522 Soroush Abbasi Koohpayegani, KL Navaneet, Parsa Nooralinejad, Soheil Kolouri, and Hamed Pir-
523 siavash. Nola: Compressing lora using linear combination of random basis. *arXiv preprint*
524 *arXiv:2310.02556*, 2023.

526 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
527 weight quantization for efficient fine-tuning and inference of large language models. In *Proceed-
528 ings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13355–13364, 2024.

529 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
530 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
531 for on-device llm compression and acceleration. *Proceedings of machine learning and systems*,
532 6:87–100, 2024.

534 Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
535 language models. *Advances in neural information processing systems*, 36:21702–21720, 2023.

536 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
537 models. *arXiv preprint arXiv:1609.07843*, 2016.

538 Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. Cacti 6.0: A tool to model
539 large caches. *HP laboratories*, 27:28, 2009.

540 Parsa Nooralinejad, Ali Abbasi, Soroush Abbasi Koohpayegani, Kossar Pourahmadi Meibodi, Rana
541 Muhammad Shahroz Khan, Soheil Kolouri, and Hamed Pirsiavash. Pranc: Pseudo random net-
542 works for compacting deep models. In *Proceedings of the IEEE/CVF International Conference*
543 *on Computer Vision*, pp. 17021–17031, 2023.

544 Rasoul Shafipour, David Harrison, Maxwell Horton, Jeffrey Marker, Houman Bedayat, Sachin
545 Mehta, Mohammad Rastegari, Mahyar Najibi, and Saman Naderiparizi. Seedlm: Compressing
546 llm weights into seeds of pseudo-random generators. *arXiv preprint arXiv:2410.10714*, 2024.

547 Amar Shah and Zoubin Ghahramani. Pareto frontier learning with expensive correlated objectives.
548 In *International conference on machine learning*, pp. 1919–1927. PMLR, 2016.

549 Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
550 Peng Gao, Yu Qiao, and Ping Luo. Omnipoint: Omnidirectionally calibrated quantization for
551 large language models. *arXiv preprint arXiv:2308.13137*, 2023.

552 Gilbert Strang. *Introduction to Linear Algebra*. Wellesley-Cambridge Press, 5th edition, 2016.

553 Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
554 for large language models. *arXiv preprint arXiv:2306.11695*, 2023.

555 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
556 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
557 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

558 Lloyd N. Trefethen and David Bau III. *Numerical Linear Algebra*. SIAM, 1997.

559 Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
560 Even better llm quantization with hadamard incoherence and lattice codebooks. *arXiv preprint*
561 *arXiv:2402.04396*, 2024.

562 DC Ultra. Concurrent timing, area, power, and test optimization, 2017.

563 Tin Lai Win and Nant Christina Kyaw. Speech encryption and decryption using linear feedback shift
564 register (lfsr). *World Academy of Science, Engineering and Technology*, 48:463–467, 2008.

565 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
566 Accurate and efficient post-training quantization for large language models. In *International*
567 *conference on machine learning*, pp. 38087–38099. PMLR, 2023.

568 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
569 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
570 language models. *arXiv preprint arXiv:2205.01068*, 2022.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593