
EG-ENAS: Efficient and Generalizable Evolutionary Neural 1

Architecture Search for Image Classification 2

Anonymous1 3

1
Anonymous Institution 4

Abstract Neural Architecture Search (NAS) has become a powerful method for automating the 5

design of deep neural networks in various applications. Among the different optimization 6

techniques, evolutionary approaches stand out for their flexibility, robustness, and capacity 7

to explore diverse solutions. However, evaluating neural architectures typically requires 8

training, making NAS resource-intensive and time-consuming. Additionally, many NAS 9

methods lack generalizability, as they are often tested only on a small set of benchmark 10

datasets. To address these two challenges, we propose a new efficient NAS framework based 11

on evolutionary computation, which reuses available pretrained weights and uses proxies 12

to reduce redundant computations. We initially selected a reduced RegNetY search space 13

and incorporated architectural improvements and regularization techniques for training. 14

We developed a dataset-aware augmentation selection method to efficiently identify the 15

best transform for each dataset using zero-cost proxies. Additionally, we propose a ranking 16

regressor to filter low-potential models during initial population sampling. To reduce training 17

time, we introduce a weight-sharing strategy for RegNets that reuses pretrained stages and 18

transfers the stem from parent to child models across generations. Experimental results 19

show that our low-cost (T0) and full EG-ENAS (T6) configurations consistently achieve 20

robust performance across eleven datasets, outperforming Random Search (T1) and simple 21

Evolutionary NAS (T2) with competitive results in under a 24-hour time budget on seven 22

validation datasets. We achieve state-of-the-art accuracy on one and surpass the 2023 Unseen 23

NAS Challenge top scores on four datasets. The code is available at this link. 24

1 Introduction 25

Recent advancements in Artificial Intelligence (AI) have been driven largely by the growing 26

sophistication of neural networks. As architectural design choices rapidly diversify, manually 27

crafting neural network architectures has become increasingly complex, highlighting the need 28

for automated methods, such as neural architecture search (NAS). NAS explores a vast space of 29

potential network structures and optimizes for performance metrics such as accuracy, efficiency, 30

and computational cost to select the best architecture for a given task or dataset [1]. Besides 31

reinforcement learning [2, 3], Bayesian optimization [4, 5], and gradient-based optimization [6], 32

evolutionary algorithms (EAs) are commonly used as optimization methods in NAS [7, 8]. Inspired 33

by natural selection, EAs balance exploration and exploitation through genetic operators like 34

mutation and crossover, enabling the discovery of diverse and novel architectures. 35

Evolutionary NAS (ENAS), while powerful, often requires training multiple models, leading 36

to high computational costs. Additionally, the stochastic nature of genetic operators can result in 37

extensive exploration of suboptimal solutions [1] if not properly addressed. Many NAS methods 38

also suffer from limited generalization across datasets, as they are typically tested on similar 39

benchmarks and homogeneous datasets. Ensuring better generalizability strengths NAS robustness 40

to unseen data distributions, while improving efficiency reduces computational costs and energy 41

consumption. These advancements would support and enable the adoption of NAS in diverse fields, 42

while also opening the door for more researchers and institutions, including those with limited 43

resources, to access and benefit from NAS. 44

Submitted to AutoML 2025 © 2025 the authors, released under CC BY 4.0

https://anonymous.4open.science/r/EG-ENAS-6890/README.md
https://creativecommons.org/licenses/by/4.0/

Building on this motivation, we aim to evaluate the challenges to generalizability and efficiency 45

of each component of ENAS. We also propose an ENAS pipeline applicable to diverse image 46

classification datasets while minimizing both time and computational resource requirements. 47

Recent advances in weight-sharing methods, proxy-based approaches, and surrogate models have 48

demonstrated favorable trade-offs between accuracy and computational cost [9]. Consequently, 49

we incorporate these effective strategies into our pipeline where possible. We summarize our 50

contributions as follows: 51

1. Introduce an innovative, zero-cost proxy-based, dataset-aware augmentation selection method 52

that efficiently selects the best transform from a list of 22 options in just a few minutes. This 53

method is applicable to both image and non-image data. 54

2. Improve the architecture, training, and regularization techniques of networks within the RegNetY 55

design space, as well as its utilization as our search space. 56

3. Use of a ranking regressor to select the most promising architectures to achieve good accuracy, 57

which will serve as the initial population in ENAS. 58

4. Introduce a stage transfer and inheritance method for the RegNetY search space to reduce 59

training time during the fitness evaluation step. 60

Rather than relying only on commonly used image classification datasets like ImageNet16-120 [10] 61

or CIFAR10 [11], we test our approach on nine diverse datasets. These datasets, shown in Figure 2, 62

were used in the NAS Unseen-Data challenge 2023 and 2024 [12], and include tasks where either 63

simple algorithms outperform naive deep learning models or problems too complex for humans 64

without specialized tools. The diversity and challenging nature of these datasets provide a robust 65

framework for evaluating the generalizability of NAS methods. 66

train_x
val_x
test_x

Dataset

data-aware
augmentation

Sampling 100
Candidate Models
from Search Space

Top 20 Model
Selection Using a

Ranking Regressor
Dataset metadata

 Weight Transfer
and Inheritance

Population
training and

fitness evaluation
SelectionCrossover

Yes

Mutation
Population

initialization

 Stages
Pool update

Full training of
best model

Compute
predictions
 on test data

Gen > Total_generations?

Data Processing

Search
Trainer

train_y
val_y
test_y

No

Low cost mode (T0)Evolutionary NAS

 Search Space

Improved RegNet
design space

 Data processing and
augmentation

Zero-cost proxies for
best transform selection

Population
initialization

Ranking regressor
as Surrogate model

Fitness evaluation

Weights transfer from
pretrained pool and

inheritance from parents

 Genetic operators

Mean and one point
crossover for RegNets

Start

End

(a) (b)

Figure 1: EG-ENAS Overview - (a) Our main contributions to EG-ENAS. (b) Pipeline of our EG-

ENAS, based on the modules of the NAS Unseen Data Challenges. It begins with the data

processing module, followed by the search module, and finally the trainer model. We include

an alternative low-cost mode (T0) that uses a surrogate model to find the best architecture,

bypassing the search module.

2 Background 67

Evolutionary NAS (ENAS). ENAS is an optimization method inspired by biological evolution that 68

uses genetic algorithms to refine neural network architectures through genetic operators, such 69

as crossover or mutation. While evolutionary approaches have been used for over 30 years, their 70

popularity has surged in the last decade due to advances in technology. This progress has led 71

to impressive results, e.g. AmoebaNet [22], which was one of the first architectures developed 72

using ENAS (regularized evolution [23]) to achieve high performance in CNN-based classification 73

tasks. ENAS iteratively evolves candidate architectures, selecting the best-performing models 74

to generate new architectures via two key operators: crossover, which combines elements from 75

parent architectures, and mutation, which introduces random modifications. This approach offers 76

2

Classes 20 10 10 4 6 10 3 9 7 10 120
Shape 50000, 3, 28, 28 50000, 1, 24, 24 50000, 3, 28, 28 49260, 3, 64, 64 45000,1,27,18 50000,3,64,64 49998,12,8,8 50000,1,9,9 50000,20,20,20 50000, 3, 32, 32 148700, 3, 16,16

Benchmark 89.85 85.20 90.87 47.008 40.98 80.33 57.826 28.94 71.35 90.65 46.38

AddNIST Language MultNIST CIFARTile Gutenberg GeoClassing Chesseract Sudoku Voxel CIFAR10 ImageNet16-120

Test

Validation

Figure 2: Overview of validation/testing split at dataset-level - Validation datasets (blue) were used

to assess EG-ENAS components and were part of the NAS Unseen Data Challenge 2023

[13, 14, 15, 16, 17, 18, 19]. Test datasets (red) include two datasets from the NAS Unseen Data

Challenge 2024 [20, 21] and two standard NAS benchmarks, CIFAR10 [11] and ImageNet16-

120 [10]. Benchmark scores are available in the NAS Challenge repository [12], except for

Voxel and Sudoku, for which we used a ResNet18 model.

advantages over gradient-based methods by enabling flexible exploration of architectural variations 77

without requiring differentiability. However, its high computational cost remains a challenge, as 78

evolving networks across many generations demand significant resources. 79

Efficiency and Generalizability in NAS. Various techniques have been developed to reduce 80

the computational cost of searching for optimal architectures. Weight-sharing approaches, such 81

as Differentiable Architecture Search (DARTS) [24] and Efficient NAS [25], significantly reduce 82

search time by reusing shared parameters across candidate architectures instead of training each 83

one from scratch. Zero-cost proxies [26] and low-fidelity approximations [27] further accelerate 84

the search by providing quick performance estimates. While these methods improve efficiency, 85

ensuring that NAS-discovered architectures generalize across different datasets and tasks remains 86

an open challenge. Some works have proposed generalizability and transferability methods to 87

improve the robustness of NAS [28, 29, 30]. However, in image classification, NAS methods are 88

often evaluated on homogeneous datasets, such as CIFAR-10, ImageNet, or similar benchmarks, 89

limiting their ability to generalize to diverse real-world scenarios. 90

Surrogate models and Zero-cost proxies. Surrogate models are computationally efficient 91

approximations used to estimate the performance of complex systems without requiring full 92

evaluations. In NAS, surrogate models are often employed to predict model accuracy or efficiency 93

based on architectural features, reducing the need for costly training and evaluation [31, 32]. A 94

more recent alternative to surrogate models in NAS is zero-cost proxies, which estimate model 95

quality without training based on intrinsic properties of the architecture. These proxies are based 96

on analytical heuristics such as gradient sensitivity, parameter saliency, or Jacobian-based metrics. 97

Some of the main zero-cost proxy solutions include SynFlow [33], SNIP [34], GraSP [35], Jacov 98

[36], and Fisher information [37]. These techniques provide rapid evaluations, making NAS more 99

scalable, although their accuracy in ranking architectures remains an area of active research. 100

3 Search space and Evolutionary operators 101

Selecting an appropriate search space is crucial for the efficiency and effectiveness of NAS. A larger 102

search space offers more diverse architectures but increases search time, while a constrained space 103

may limit the discovery of optimal models. To address this, we adopt the RegNet design space [38], 104

which provides simple and efficient networks that perform well across different FLOP regimes and 105

include a high concentration of top-performing architectures. They outperform EfficientNet under 106

comparable settings, run up to five times faster on GPUs, and surpass standard ResNe(X)t models. 107

RegNetX space contains 10
7
possible architectures, with their stage widths and depths determined 108

by a quantized linear function, as illustrated in Figure 3. 109

RegNetX is parameterized by six values: 𝑑,𝑤0,𝑤𝑎,𝑤𝑚, 𝑏, 𝑔. Following the recommendations 110

of Radosavovic et al. [38], we constrain our search space by fixing b at 1 and g at 8, reducing 111

free parameters from six to four: 𝑑,𝑤0,𝑤𝑎,𝑤𝑚 . By applying the constraints shown in Figure 3, 112

3

Start End Step
16 120 8

16 64 8

2.05 2.9 0.05

8 22 1

Standard Space

Start End Step
64 240 8

32 128 8

2.05 2.9 0.05

12 25 1

Extended Space(+)

Block index

W
id

th

Quantized per-block widths:

RegNet quantized
linear parameterization

Parameter
Initial Width

 Width Growth Rate
Width Mult. Factor

 Depth

Figure 3: RegNet search space - Our two proposed search spaces, which are subsets of the RegNet

design space, along with the equations that define this design space [38]. We use only the

four main parameters that define each RegNet (𝑑,𝑤0,𝑤𝑎,𝑤𝑚) to reduce the size of space.

Table 1: Strategies used to enhance the performance of RegNet models, based on the improvements

proposed by [39].

Training methods Regularization methods Architecture improvements

✓Cosine LR decay

✓Increase training epochs

✓SWA of weights

✓Label Smoothing

✓Stochastic Depth

✓RandAugment

✓Dropout on FC layer

✓Decrease weight decay

✓Squeeze and Excitation

✓ResNet-D

we define two search spaces: a standard version focused on small models with 18,564 possible 113

architectures and an extended version (+) that supports larger models, totaling 58,344 architectures. 114

To boost model performance, we adopted some architectural, regularization, and training strategies 115

originally proposed for ResNets [39] (see Table 1). 116

3.1 Evolutionary Operators 117

Evolutionary operators guide exploration and exploitation in ENAS, ensuring the discovery of 118

high-performing architectures. Their selection depends on the encoding of architectures and the 119

desired search dynamics. We propose two crossover methods for our RegNet search space, along 120

with mutation strategies to maintain diversity. The breeding pipeline is illustrated in Appendix 121

Fig. 8 and will be used with the same parameters for the search step in our experiments. 122

4 Data augmentation selection based on Zero-cost proxies 123

To enhance data diversity and thus improve generalization, augmentations can be applied to the 124

dataset. In our case, following the nature of the NAS Unseen Data Challenge [12], we do not 125

know in advance which modality or what information a given dataset contains. However, not all 126

transformations are effective for every dataset. For example, color and intensity transformations 127

are irrelevant for the LaMelo [14] and Gutenberg [17] datasets, which consist of strings encoded 128

into images without meaningful color information. 129

We propose a novel method based on zero-cost proxies, as illustrated in Fig. 4a. We trained a 130

RegNetY_400MF model for 50 epochs with 22 candidate augmentations and without augmentation 131

to establish a ground-truth ranking. We then evaluated different zero-cost proxies (one minibatch) 132

with other augmentation methods to assess their alignment with the ground truth across datasets 133

(Fig. 4c). Our results show that the normalized sum of Fisher and Jacob_cov (fisher_jacob) as a 134

ranking metric effectively helps filter out poor augmentations. To ensure model independence, we 135

averaged rankings from 20 random models sampled from the search space in our EG-ENAS. As 136

shown in Figure 4b, our method avoids bad augmentations more effectively than other candidate 137

approaches, completing the selection process in less than 8 minutes per dataset. 138

5 Population initialization 139

An appropriately selected initial population accelerates convergence of the search process by start- 140

ing with higher performing architectures, which is especially beneficial for large datasets or search 141

4

Candidate
augmentations

No augmentation

RandAugment

AugMix

.

.

RandomCrop

RandomPixelChange

1.

2.

3.

21.

22.

.

.

Compute fisher and jacob_cov
Zero-cost proxies for each

augmentation

Fisher_norm+ Jacob_Cov_norm
(fisher_jacob metric)

get augmentations rank based on
fisher_jacob

Sum total rank for all models

Best augmentation is the one
with the lowest total score

For each of 20 Random models
sampled from search space

1 5 10 15 20
Rank

Ours(fisher_jacob)

RandomCrop

TrivialAugmentWide

RandAugment

RandomFlip

AutoAugment

AugMix

RandomErasing

RandomPixelChange

Au
gm

en
ta

tio
n

M
et

ho
d

5.82

6.82

7.00

7.18

8.55

8.56

11.89

13.36

15.64

Augmentation Position Across Datasets
20 models from Search Space

1 5 10 15 20
Rank

RandAugment

fisher_jacob

AutoAugment

nwot

fisher

jacob_cov

snip

epe_nas

grad_norm

plain

NoAugmentation

Pr
ox

y/
Au

gm
en

ta
tio

n
M

et
ho

d

7.2

8.4

8.6

8.6

9.7

9.9

10.1

10.1

10.9

12.0

16.0

Augmentation Position Across Datasets
RegNetY_400MF

(a) (b) (c)
Figure 4: Zero-cost proxy-based augmentation selection – (a) Proposed method: We evaluate 22

augmentations based on Fisher and Jacob Covariance zero-cost proxies. (b) Augmentation

rankings across 11 datasets (see Fig. 2), comparing our approach with other augmentation

methods. A rank of 1 indicates the best augmentation among the 22 candidates. (c) Augmen-

tation rankings based on zero-cost proxies from a single RegNetY_400MF. Rankings in (b)

and (c) are averaged over ten seeds.

spaces. However, excessive constraints can reduce diversity, and the optimal population diversity 142

varies by dataset. Common methods used for selecting the initial population include Random Initial- 143

ization, Search Space Reduction [40], Diversity-based Initialization [41] and Performance-guided 144

Initialization [42]. 145

Taking advantage of the simple encoding of our RegNetY models (𝑊0,𝑊𝑚,𝑊𝑎, 𝐷), dataset 146

specific metadata (num_classes, num_channels) and model metrics (#params, num_stages), we 147

propose training a surrogate model that ranks architectures by predicted test accuracy. This 148

regressor does not replace NAS search but filters out weak candidates during the first generation 149

population initialization. The process consists of sampling 100 models from the search space 150

and selecting top 20 based on surrogate model predictions. We selected RandomForest and SGD 151

regressors as surrogate models. To generate training data, we first trained 240 models for each 152

validation dataset for 50 epochs using the strategies listed in Table 1. Instead of predicting absolute 153

test accuracy, we employed pairwise comparisons, resulting in the generation of 149,498 data 154

points. 155

To validate our regressors, we employ cross-validation using the validation datasets. We rank 156

the models based on the regressors’ predictions and then compare the Spearman’s rank correlation 157

of our regressors with the correlations derived from rankings obtained after training the models 158

for 5 and 20 epochs, as well as those obtained using the Jacov_cov zero-cost proxy. As shown in 159

Figure 5, both regressors performed similarly and outperformed the ranking correlations based on 160

early training, while making predictions in seconds, with the exception of the Chester dataset. 161

6 Fitness evaluation 162

One of the main bottlenecks in ENAS is the fitness evaluation step, which involves training and 163

evaluating models to identify the top candidates for breeding the next generation. Our surrogate 164

models help filter out poor-performing models in the first generation, but are not reliable for 165

directly identifying the best ones. As a result, training and evaluation are still necessary, but we 166

aim to minimize the time spent on population training. Common acceleration methods in NAS 167

include Supernet Training [25], Low Fidelity Estimation [27], Partial Training, Meta Learning [43], 168

and Transfer Learning [44]. For our EG-ENAS we employ three key strategies: Partial Training, 169

as even training for only 10 epochs provides a strong ranking correlation; Transfer Learning and 170

Weight Inheritance, reusing pretrained model weights. Weight transferability depends on specific 171

conditions for each part of the RegNet architecture. For the Stem, it is applicable only between 172

5

Dataset AddNIST Language MultNIST CIFARTile Gutenberg GeoClassing Chesseract

Epoch 5 0.7 0.56 0.6 0.11 0.68 0.49 0.38

Epoch 20 0.87 0.78 0.77 0.75 0.87 0.51 0.62

RandomForest 0.89 0.82 0.88 0.58 0.8 0.88 0.2

SGD 0.86 0.82 0.9 0.51 0.91 0.85 0.18
Jacobian

Covariance 0.7 0.39 0.72 0.3 0.49 0.71 -0.03 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Spearman's Rank Correlation

Epoch 20

RandomForest
Regressor

SGD
Regressor

Epoch 5

Jacobian
Covariance

M
et

ho
d

0.73

0.72

0.72

0.52

0.47

Mean Correlation
Computational cost

High
Moderate
Low

Figure 5: Performance of the surrogate model for population initialization – Spearman’s rank corre-

lation of estimated rankings across 240 models per dataset with different fitness evaluation

methods. Our trained RandomForest and SGD regressors achieve correlation scores compa-

rable to training the population for 20 epochs, with significantly lower computational cost.

models with the same input dimensions. For the Body, transfer is possible between network stages 173

if both stages have identical widths. 174

This means that for all NAS generations except the first, we can inherit the Stem weights from 175

the best model found so far during evolutionary search. For the body, which holds most of the 176

network’s weights, we created a stage weights pretrained pool using the 1,528 models trained for 177

50 epochs for our ranking regressor. Based on the quantized linear functions, we developed an 178

algorithm to select the best pretrained model from the pool that maximizes block weight transfer. 179

Figure 6 compares the accuracy of 120 models trained from scratch versus those using our weight 180

transfer and inheritance approach.

0 5 10 15 20 25
15

20

25

30

35

40

45

g

Test
vanilla
stem

0 5 10 15 20 25
30

35

40

45

50

55

60

Test
vanilla
stem

0 5 10 15 20 25

30

40

50

60

70

80

90

Test
vanilla
stem

0 5 10 15 20 25
0

20

40

60

80

Test
vanilla
stem

AddNIST

Epoch Epoch

CIFARTile

A
cc
ur
ac
y

Chesseract

Epoch Epoch

Gutenberg

80

60

40

20

90

80

70

60

50

40

30
0

0 5 10 15 20 0 5 10 15 200 5 10 15 20 0 5 10 15 20 0 5 10 15 20

60

55

50

45

40

35

45

40

35

30

25

20

Figure 6: Validation Accuracy with Weight Transfer and Inheritance - Validation accuracy of 120

models without stage weight transfer (blue) and with stage weight transfer from a pretrained

pool plus stem inheritance from the parent of the last generation (red), evaluated across four

datasets. Dotted lines represent the mean population accuracy.

181

7 Experiments and results 182

7.1 Experimental setup 183

We evaluated our EG-ENAS on a NVIDIA A100 GPU using the 11 image classification datasets 184

listed in Figure 2. For comparison with other NAS methods or architectures, we used test accuracy 185

as the primary metric. To aggregate results across multiple datasets, we followed the NAS Unseen 186

Data Challenge metric [12], which uses a relative score (adj_score) based on benchmark accuracy: 187

scaling factor =
10

100 − benchmark

, adj_score =
raw_score − benchmark

scaling factor

7.2 Ablation studies 188

To assess the impact of each component of our EG-ENAS on final accuracy and total relative score, 189

we defined seven training modes, including two baseline configurations (T1 and T2), covering 190

population initialization, evolutionary computation, and weight sharing/inheritance. Our low-cost 191

mode (T0) uses a surrogate model as a search step to select the best model from 100 random models 192

6

in the search space. Additionally, we tested five augmentation strategies, naming tests as Mode + 193

AugmentationStrategy, with a "+" indicating the use of the extended search space described in 194

section 4. Each test was run with three different seeds. These modes are listed in Table 2. Modes T1 195

to T7 were tested with 3 generations, a population size of 20 individuals, and training parameters 196

defined in Table 5. 197

Table 2: EG-ENAS modes -Modes used for ablation studies, combining different components of our

pipeline (left). Available augmentation selection methods (right).

Ranking regressor
based initialization

Evolutionary
search

Weights transfer
and inheritance

Training epochs
(search)

T0: RFR based selection 0

T1: Random Search 5

T2: Baseline EvoNAS 5

T3: (RFR initialization) 5

T4: (Weights transfer) 5
T6: (Full EG-ENAS) 5

T7: (Full EG-ENAS) 10

Mode

RFR: Random Forest Ranking regressor

Augmentation Selection methods

AA: AutoAugment transform

P: Zero-cost proxies based selection

B: Basic transform
(RandomErasing + RandomCrop + RandomHFlip)

R_10: Based on ResNet18 model trained for 10

R_20: Based on ResNet18 model trained for 20

Component

7.3 Results 198

The aggregated adj_score and total time for each study, along with error bars from the test seeds, 199

are shown in Figure 7 for both validation and test datasets. Two main clusters of results were found: 200

the first includes low-cost modes (T0) that took on average less than one hour per dataset. The 201

second cluster includes modes T1-T6, which involve training populations and use same number of 202

generations, population sizes, and training parameters. On average, they require between 3 and 203

4 hours per dataset, except for T7 which takes 5. Significant improvements were observed when 204

using the expanded search space (+) in both clusters, particularly for the test datasets. On average, 205

this required just one additional hour per dataset compared to using the standard search space.

5 10 15 20 25 30 35 40
Time (hours)

20

22

24

26

28

R
el

at
iv

e
sc

or
e

T0+_B

T0+_P

T0_AA

T0_B

T0_P

T0_R10

T0_R20T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_P
Aggregated Relative Score vs. Time for Seven Validation Datasets

5 10 15 20 25
Time (hours)

4

6

8

10

12

14

16

18

20

R
el

at
iv

e
sc

or
e

T0+_B

T0+_P

T0_AA

T0_B

T0_P

T1_P
T2_P

T3_P
T4_P

T6+_B

T6+_P
T6_B

T6_P

T7_B

T7_P

Aggregated Relative Score vs. Time for Four Test Datasets

Figure 7: Relative Score vs. Total Time - Adjusted total relative score versus total time for each study

on validation datasets (left) and test datasets (right). Detailed results for individual datasets

can be found in Appendix Figures 11 and 12. Search space size and augmentation selection

method were the components that had the greatest impact on the total score for both the

Low-Cost mode (T0) and the population training modes (T1–T7).

206

7.3.1 Augmentation selection. Besides the size of the search space, the augmentation selection method 207

was the component that caused the greatest score differences between the tests. For validation 208

datasets, our zero-cost proxy method (P) outperformed the other augmentation strategies and 209

proved stable across different seeds. For test datasets, the Basic transform (B) was the most effective, 210

with the proxy method in second place. No single transform works best for all datasets. Our 211

augmentation selection method (P) effectively avoids poor augmentations, demonstrating the 212

7

potential of zero-cost proxies as a novel approach for this task. But, it still fails to consistently 213

identify the best transform that would return the highest scores, highlighting the need for further 214

research on reliable augmentation selection for unseen datasets. 215

7.3.2 Ablation studies. Our low-cost mode (T0) achieved strong scores comparable to the best competition 216

scores in the NAS Unseen Challenge 2023. This mode requires on average 1 hour per dataset and 217

achieved state-of-the-art results for the Sadie dataset, as shown in Table 3. This highlights the power 218

and potential that surrogate models and zero-cost proxies have in NAS to reduce computation time 219

while maintaining strong performance. 220

Among the T1-T6 studies, Random Search showed the worst performance(T1), followed by 221

basic ENAS(T2). Using the Regressor for population initialization (T3) and weights transfer(T4) 222

improved the total score compared to basic ENAS(T2), but not as significantly as expected. The 223

best results were achieved by combining both strategies (T6 and T7) across both dataset groups. T7 224

is the best option for cases where time is not a constraint. The performance of the evolutionary 225

search could potentially be improved by using other parameters like larger population sizes or 226

alternative crossover strategies, which could be explored in future research. 227

7.3.3 Comparison with other methods. We compare the relative aggregated score and validation dataset 228

test accuracies with scores from several CNN networks, the best score from the 2023 competition 229

(Best Competition) and other scores of NAS methods provided by [12]. See Table 3. We also include 230

the mean total time per dataset in seconds. However, since no time data was provided for the CNN 231

or NAS solutions, a direct comparison of efficiency is not possible. To facilitate visualization of 232

the ranking by dataset, Appendix Table 7 shows all methods by dataset, sorted from best to worst. 233

Our method ranks first in the Sadie dataset, achieving a state-of-the-art score. Compared to the 234

best competition scores that require similar computation time, we outperformed them in 4 out of 235

7 datasets. The Results For the test datasets are presented in Table 4. In this case, the scores for 236

the CNN and NAS models on the Volga [21] and Sokoto [20] datasets have not yet been released. 237

As a result, we are unable to directly compare the performance of our solution. Our work aims, 238

therefore, to serve as a benchmark that encourages researchers to evaluate and compare their 239

approaches on new datasets, aligning with one of the central goals of this paper. 240

Table 3: Test Accuracy and Relative Scores for Validation Datasets - The first section summarizes

eight of our studies (mean of three seeds), the second lists various CNN models, and the third

compares NAS methods with the top scores from the NAS Unseen Data Challenge 2023 [12].

Note that computation times for these scores are unavailable, limiting efficiency comparisons.

Method Mean total(↓)
time (seconds) LaMelo Gutenberg Adaline Chester Sadie Mateo Caitie Relative

Score(↑)
T0_P 2273 87.08 47.87 95.53 61.70 96.46 94.28 72.92 25.76

T0+_P 4364 88.2 46.07 96.73 60.41 97.09 95.71 79.05 30.14

T1_P 11319 86.97 44.52 95.89 59.35 96.44 93.96 71.38 24.28

T2_P 10862 87.09 45.2 96.21 61.28 95.69 94.39 73.92 25.82

T6_P 11736 86.55 47.67 96.53 61.04 95.78 95.82 80.83 29.05

T6+_P 17922 88.06 47.02 96.37 59.11 96.93 95.12 80.18 29.04

ResNext - 93.97 40.3 91.42 55.15 89.9 90.57 46.23 11.11

ResNet18 - 97.0 49.98 92.08 57.83 80.33 91.55 45.56 12.16

DenseNet - 84.57 43.28 93.52 59.6 94.21 92.81 51.28 13.98

MNASNet - 84.63 38.0 90.51 56.26 86.0 87.7 48.49 -0.92

VGG16 - 84.54 44.0 92.06 55.69 93.67 90.43 24.43 3.77

Best Competition - 89.71 50.85 95.06 62.98 96.08 95.45 73.08 29.02

Bonsai-Net - 87.65 48.57 97.91 60.76 95.66 97.17 91.47 34.66

Random Bonsai - 76.83 29.0 34.17 68.83 63.56 39.76 24.76 -37.80

PC-DARTS - 90.12 49.12 96.6 57.20 94.61 96.68 92.28 33.37

DrNAS - 88.55 46.62 97.06 58.24 96.03 98.1 81.08 32.75

Random DARTS - 90.12 47.72 97.07 59.16 95.54 96.55 90.74 34.10

8 Conclusion and Future Work 241

The findings of our research offer significant insights for the fields of NAS and AutoML. This study 242

represents the first application of the RegNet search space in NAS, demonstrating its advantages 243

8

Table 4: Test Accuracy and Relative Scores for Test Datasets - The first section presents six of our

studies (mean of three seeds), the second lists CNN models, and the third includes NAS

methods tested on the NASBENCH-201 benchmarks [45]. For NAS methods, the provided

time reflects the search time for the best network, while our methods’ time includes both

search and training time, averaged across the datasets.

Method Mean total time
(seconds)(↓) Sokoto ImageNet16-120 CIFAR10 Volga Relative

Score(↑)
T0+_B 2729 89.98 45.07 94.16 83.85 19.53

T0+_P 3118 62.57 38.93 93.70 83.90 14.40

T1_P 15671 55.58 36.77 91.91 83.57 11.10

T2_P 13836 54.78 37.27 91.66 83.78 10.86

T6+_B 15586 92.12 45.53 94.12 84.12 19.94

T6+_P 16905 75.13 44.07 93.41 83.89 16.52

ResNet-18 - 28.94 46.38 93.02 71.35 0

DenseNet - - - 95.04 - -

VGG16 - - - 92.64 - -

PC-Darts - - 41.31 93.41 - -

DrNAS - - 46.34 94.36 - -

DiNAS - - 45.41 94.37 - -

NASWOT

(N=1000)
306 - 44.44 92.96 - -

ENAS 13315 - 16.32 54.3 - -

REA 12000 - 45.54 93.92 - -

through its simple encoding and high density of effective models. The evaluation of these 9 244

novel datasets with various augmentations, alongside our zero-cost proxy-based selection method, 245

highlights the importance of dataset-specific transform selection and demonstrates how zero-cost 246

proxies can quickly indicate augmentation effectiveness. The correlation scores achieved with our 247

ranking regressor, which we employed for population initialization in our ENAS search and for 248

our low-cost method (T0), highlight the advantages of surrogate models as efficient strategies in 249

NAS. By using weight transfer through a pretrained stages pool and parent stem inheritance for 250

RegNets, we achieved a reduction in population training time by 5 to 10 epochs. After evaluating 251

our EG-ENAS with a new and diverse group of datasets, our work advances the state-of-the-art 252

in NAS, while underscoring the need for future research that prioritizes both generalization and 253

efficiency over reliance on common homogeneous image datasets. 254

We identified the following limitations: We compared final test accuracy scores across datasets 255

with NAS methods and CNN models’ scores from [12], but the lack of runtime data made efficiency 256

comparisons difficult. Limited resources in terms of compute also restricted our evaluation of 257

the extended space (+), proxy-based augmentation selection across all test modes (T1-T4), and 258

hyperparameter tuning. Future work could explore other search spaces, such as MobileNetV3, 259

for better comparison and new proxies tailored to specific architectures or search spaces. Further 260

improvements include exploring more robust surrogate models and alternative genetic operators 261

for RegNet models. Lastly, improving weight transfer methods between models, independent of 262

their architectures, could improve NAS efficiency and applicability across diverse datasets and 263

tasks. 264

9 Broader Impact Statement 265

Our research aims to improve the efficiency and generalizability of evolutionary Neural Architecture 266

Search (NAS) by using surrogate models, zero-cost proxies, and transfer learning. While our method 267

represents an advancement and reduces unnecessary calculations, it still needs a lot of computing 268

power because of its iterative search approach and training. To tackle this, we plan to develop 269

or combine metrics and surrogate models that can adapt to different architectures and datasets. 270

However, we believe that with the work presented here, we are already making a contribution to 271

finding optimized deep learning solutions with less computational effort. 272

9

References 273

[1] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. 274

The Journal of Machine Learning Research, 20(1):1997–2017, 2019. 275

[2] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, 276

and Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings 277

of the IEEE/CVF conference on computer vision and pattern recognition, pages 2820–2828, 2019. 278

[3] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv 279

preprint arXiv:1611.01578, 2016. 280

[4] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing. 281

Neural architecture search with bayesian optimisation and optimal transport. In S. Bengio, 282

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in 283

Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. 284

[5] Colin White, Willie Neiswanger, and Yash Savani. BANANAS: Bayesian optimization with 285

neural architectures for neural architecture search. Proceedings of the AAAI Conference on 286

Artificial Intelligence, 35(12):10293–10301, May 2021. 287

[6] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. 288

arXiv preprint arXiv:1806.09055, 2018. 289

[7] Dan Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013. 290

[8] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary G Yen, and Kay Chen Tan. A survey 291

on evolutionary neural architecture search. IEEE transactions on neural networks and learning 292

systems, 2021. 293

[9] Shiqing Liu, Haoyu Zhang, and Yaochu Jin. A survey on computationally efficient neural 294

architecture search, 2022. 295

[10] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as 296

an alternative to the cifar datasets, 2017. 297

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 298

2009. 299

[12] Rob Geada, David Towers, Matthew Forshaw, Amir Atapour-Abarghouei, and A. Stephen 300

McGough. Insights from the use of previously unseen neural architecture search datasets, 301

2024. 302

[13] David Towers, Rob Geada, Amir Atapour-Abarghouei, and Andrew Stephen McGough. 303

AddNIST Dataset, 11 2023. 304

[14] David Towers, Rob Geada, Amir Atapour-Abarghouei, and Andrew Stephen McGough. Lan- 305

guage Dataset, 11 2023. 306

[15] David Towers, Rob Geada, Amir Atapour Abarghouei, and Andrew Stephen McGough. Mult- 307

NIST Dataset, 11 2023. 308

[16] David Towers, Rob Geada, Andrew Stephen McGough, and Amir Atapour-Abarghouei. CI- 309

FARTile Dataset, 11 2023. 310

10

[17] David Towers, Rob Geada, Amir Atapour-Abarghouei, and Andrew Stephen McGough. Guten- 311

berg Dataset, 11 2023. 312

[18] David Towers, Rob Geada, Amir Atapour-Abarghouei, and Andrew Stephen McGough. Geo- 313

Classing Dataset, 9 2023. 314

[19] David Towers, Rob Geada, Amir Atapour-Abarghouei, and Andrew Stephen McGough. 315

Chesseract Dataset, 9 2023. 316

[20] David Towers, Linus Ericsson, Amir Atapour-Abarghouei, Andrew Stephen McGough, and 317

Elliot J Crowley. Sudoku Dataset, 9 2024. 318

[21] David Towers, Linus Ericsson, Elliot J Crowley, Amir Atapour-Abarghouei, and An- 319

drew Stephen McGough. Voxel Dataset, 9 2024. 320

[22] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for 321

image classifier architecture search, 2019. 322

[23] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image 323

classifier architecture search. In Proceedings of the aaai conference on artificial intelligence, 324

volume 33, pages 4780–4789, 2019. 325

[24] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search, 326

2019. 327

[25] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient neural 328

architecture search via parameter sharing, 2018. 329

[26] Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D. Lane. Zero-cost 330

proxies for lightweight nas, 2021. 331

[27] Junbo Zhao, Xuefei Ning, Enshu Liu, Binxin Ru, Zixuan Zhou, Tianchen Zhao, Chen Chen, Jia- 332

jin Zhang, Qingmin Liao, and Yu Wang. Dynamic ensemble of low-fidelity experts: Mitigating 333

nas "cold-start", 2023. 334

[28] Fan Wu, Jinling Gao, Lanqing Hong, Xinbing Wang, Chenghu Zhou, and Nanyang Ye. G-nas: 335

Generalizable neural architecture search for single domain generalization object detection, 336

2024. 337

[29] Xiawu Zheng, Rongrong Ji, Yuhang Chen, Qiang Wang, Baochang Zhang, Jie Chen, Qixiang 338

Ye, Feiyue Huang, and Yonghong Tian. Migo-nas: Towards fast and generalizable neural 339

architecture search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):2936– 340

2952, 2021. 341

[30] Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan Liang, Tong Zhang, and Zhenguo 342

Li. Transnas-bench-101: Improving transferability and generalizability of cross-task neural 343

architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 344

Recognition (CVPR), pages 5251–5260, June 2021. 345

[31] Wei Wen, Hanxiao Liu, Hai Li, Yiran Chen, Gabriel Bender, and Pieter-Jan Kindermans. Neural 346

predictor for neural architecture search, 2019. 347

[32] Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with 348

neural architectures for neural architecture search, 2020. 349

11

[33] Hidenori Tanaka, Daniel Kunin, Daniel L. K. Yamins, and Surya Ganguli. Pruning neural 350

networks without any data by iteratively conserving synaptic flow, 2020. 351

[34] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. Snip: Single-shot network 352

pruning based on connection sensitivity, 2019. 353

[35] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by 354

preserving gradient flow. In International Conference on Learning Representations, 2020. 355

[36] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search 356

without training, 2021. 357

[37] Jack Turner, Elliot J. Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. Blockswap: 358

Fisher-guided block substitution for network compression on a budget, 2020. 359

[38] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing 360

network design spaces, 2020. 361

[39] Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas, Tsung-Yi Lin, 362

Jonathon Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strategies, 363

2021. 364

[40] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on 365

target task and hardware. In International Conference on Learning Representations, 2019. 366

[41] Mateo Avila Pava, René Groh, and Andreas M Kist. Sequence alignment-based similarity 367

metric in evolutionary neural architecture search. In AutoML 2024 Methods Track, 2024. 368

[42] Gonglin Yuan, Bing Xue, and Mengjie Zhang. An evolutionary neural architecture search 369

method based on performance prediction and weight inheritance. Information Sciences, 370

667:120466, 2024. 371

[43] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. Meta-learning 372

of neural architectures for few-shot learning. In Proceedings of the IEEE/CVF Conference on 373

Computer Vision and Pattern Recognition (CVPR), June 2020. 374

[44] Gonglin Yuan, Bing Xue, and Mengjie Zhang. An evolutionary neural architecture search 375

method based on performance prediction and weight inheritance. Information Sciences, 376

667:120466, 2024. 377

[45] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural 378

architecture search, 2020. 379

12

Submission Checklist 380

1. For all authors. . . 381

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s 382

contributions and scope? [Yes] We validate our assertions with corresponding experiments 383

in Section 7 384

(b) Did you describe the limitations of your work? [Yes] See Section 7 and section 8 385

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Broader 386

Impact Statement 387

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them? 388

(see https://2022.automl.cc/ethics-accessibility/) [Yes] 389

2. If you ran experiments. . . 390

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same 391

benchmarks, data (sub)sets, available resources, etc.)? [Yes] Refer to section 7 392

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing, 393

search spaces, hyperparameter tuning details and results, etc.)? [Yes] Our search space is 394

described in section 3, experiments details in 7 and training parameters in Appendix 5. 395

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account 396

for the impact of randomness in your methods or data? [Yes] For section 4 we used 10 397

different seeds, while for main experiments in section 7 we used 3 seeds. 398

(d) Did you report the uncertainty of your results (e.g., the standard error across random seeds 399

or splits)? [Yes] The error bars are shown in figure 7 and the individual results for each 400

seed are in results folder in code repository 401

(e) Did you report the statistical significance of your results? [No] 402

(f) Did you use enough repetitions, datasets, and/or benchmarks to support your claims? [Yes] 403

We use 11 different datasets and compare the results with other methods 404

(g) Did you compare performance over time and describe how you selected the maximum 405

runtime? [No] 406

(h) Did you include the total amount of compute and the type of resources used (e.g., type of 407

gpus, internal cluster, or cloud provider)? [Yes] Refer to section 7 408

(i) Did you run ablation studies to assess the impact of different components of your approach? 409

[Yes] Refer to section 7 410

3. With respect to the code used to obtain your results. . . 411

(a) Did you include the code, data, and instructions needed to reproduce the main experimental 412

results, including all dependencies (e.g., requirements.txt with explicit versions), random 413

seeds, an instructive README with installation instructions, and execution commands (either 414

in the supplemental material or as a url)? [Yes] Detailed instructions can be found in the 415

README of the code 416

(b) Did you include a minimal example to replicate results on a small subset of the experiments 417

or on toy data? [Yes] We include in our code repository one of the datasets we tested and 418

can be run with our low-cost (T0) mode 419

13

https://2022.automl.cc/ethics-accessibility/

(c) Did you ensure sufficient code quality and documentation so that someone else can execute 420

and understand your code? [Yes] 421

(d) Did you include the raw results of running your experiments with the given code, data, and 422

instructions? [Yes] Folder Results in the code include the raw results 423

(e) Did you include the code, additional data, and instructions needed to generate the figures 424

and tables in your paper based on the raw results? [No] 425

4. If you used existing assets (e.g., code, data, models). . . 426

(a) Did you cite the creators of used assets? [Yes] We used RegNet search space [38] and 11 427

diverse datasets which we also cite in the paper 428

(b) Did you discuss whether and how consent was obtained from people whose data you’re 429

using/curating if the license requires it? [Yes] 430

(c) Did you discuss whether the data you are using/curating contains personally identifiable 431

information or offensive content? [No] 432

5. If you created/released new assets (e.g., code, data, models). . . 433

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [No] 434

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g., 435

GitHub or Hugging Face)? [No] 436

6. If you used crowdsourcing or conducted research with human subjects. . . 437

(a) Did you include the full text of instructions given to participants and screenshots, if appli- 438

cable? [N/A] 439

(b) Did you describe any potential participant risks, with links to institutional review board 440

(irb) approvals, if applicable? [N/A] 441

(c) Did you include the estimated hourly wage paid to participants and the total amount spent 442

on participant compensation? [N/A] 443

7. If you included theoretical results. . . 444

(a) Did you state the full set of assumptions of all theoretical results? [N/A] 445

(b) Did you include complete proofs of all theoretical results? [N/A] 446

14

A Breeding and Training parameters 447

A more detailed illustration of the Selection, Crossover, and Mutation process used for evolutionary 448

search in our EG-ENAS is shown in 8. The final step of our EG-ENAS involves fully training the 449

selected best model. The training parameters used for this step are shown in Table 5. 450

Crossover
New population from

combinations of parents
Mean One point

: Population size
Parent 1 Parent 2

Mutation
Add diversity

P1P2P3P4 ..

.

.

Mean crossover

Population

One point crossover
Random choice

Child

Selection
 best models as parents

Figure 8: Breeding process in EGE-NAS -. From a population of 20 models, the top 4 by accuracy are

selected. One-point crossover generates half of the new population, while mean crossover

creates the other half. A similarity score prevents redundancy by applying mutation if a new

individual is too similar to a previously trained one.

BATCH_SIZE: 128
EPOCHS: 100
LR: 0.001
MIN_LR: 0.0000
LR_SCHEDULER: "cosine_annealing"
SCHEDULER_EPOCHS: 100
WARMUP: True
LABEL_SMOOTHING: 0.1
WEIGHT_DECAY: 0.01
MOMENTUM: 0.9
TYPE: "Adam"
SWA_START: 90
TOPK: 2

Table 5: Training configuration parameters

B Candidate augmentations 451

We trained the 22 candidate augmentations on each validation dataset using a RegNet_400MFmodel, 452

as explained in Section 4. A value of 0 indicates no augmentation. The full list of augmentation 453

tests is shown in Table 6, and the ranking of each augmentation tested on the seven validation 454

datasets is presented in Figure 9 455

15

ID Transformations

0 []

1 RandAugment(magnitude=9) if C in [1,3] else RandAugmentMultiChannel()

2 RandAugment(magnitude=5)

3 RandAugment(magnitude=1)

4 TrivialAugmentWide(num_magnitude_bins=31)

5 TrivialAugmentWide(num_magnitude_bins=15)

6 AugMix(severity=3)

7 AugMix(severity=1)

8 RandomHorizontalFlip(), RandomVerticalFlip()

9 RandomErasing(p=0.2, scale=(0.05, 0.2), ratio=(0.3, 3.3)), RandomHorizontalFlip(), RandomVerticalFlip()

10 RandomErasing(p=0.2, scale=(0.05, 0.2), ratio=(0.3, 3.3))

11 RandomErasing(p=0.2, scale=(0.02, 0.2), ratio=(0.3, 3.3)), RandomCrop((H, W), padding=(PH, PW))

12 RandomCrop((H, W), padding=(PH, PW))

13 RandomCrop((H, W), padding=(PH, PW)), RandomHorizontalFlip(), RandomVerticalFlip()

14 RandomErasing(p=0.2, scale=(0.02, 0.2), ratio=(0.3, 3.3)), RandomCrop((H, W), padding=(PH, PW)), RandomHorizontalFlip()

15 RandomPixelChange(0.01), ToTensor()

16 RandomPixelChange(0.025), ToTensor()

17 RandomPixelChange(0.05), ToTensor()

18 RandomPixelChange(0.01), ToTensor(), RandomHorizontalFlip(), RandomVerticalFlip()

19 RandomPixelChange(0.01), ToTensor(), RandomErasing(p=0.2, scale=(0.05, 0.2), ratio=(0.3, 3.3))

20 RandomPixelChange(0.01), ToTensor(), RandomCrop((H, W), padding=(PH, PW))

21 RandomPixelChange(0.01), ToTensor(), RandomHorizontalFlip(), RandomVerticalFlip(), RandomErasing(p=0.2, scale=(0.05,

0.2), ratio=(0.3, 3.3))

22 AutoAugment()

Table 6: Augmentations tested in section 4

1 5 10 15 20 22
Rank

14
1
5
4

11
2
9

12
10
13
6
8
0
3
7

19
17
16
21
20
15
18

Au
gm

en
ta

tio
n

M
et

ho
d

Augmentation position across validation datasets

Figure 9: Ranking positions of each augmentation type across validation datasets

C Ranking Correlation of Zero-Cost Proxies 456

As an alternative to our Random Forest-based population initialization for EG-NAS, we tested how 457

well different zero-cost proxies ranked a population of models from the RegNet search space. The 458

results are shown in Figure 10. 459

16

D Test accuracies for Individual Datasets 460

The scores per dataset for our EG-ENAS models are shown in Figures 11 and 12. The position of 461

our EG-ENAS compared to other NAS methods across the seven validation datasets is shown in 462

Table 7. 463

LaMelo Gutenberg Adaline Chester Sadie Mateo Caitie
1 ResNet-18 Best Competition Bonsai-Net Random Bonsai Ours DrNAS PC-DARTS

2 ResNext ResNet-18 Ours Best Competition Best Competition Bonsai-Net Bonsai-Net

3 PC-DARTS PC-DARTS Random DARTS Ours DrNAS PC-DARTS Random DARTS

4 Random DARTS Bonsai-Net DrNAS Bonsai-Net Bonsai-Net Random DARTS Ours
5 Best Competition Ours PC-DARTS DenseNet Random DARTS Ours DrNAS

6 DrNAS Random DARTS Best Competition Random DARTS PC-DARTS Best Competition Best Competition

7 Ours DrNAS DenseNet DrNAS DenseNet DenseNet DenseNet

8 Bonsai-Net VGG16 ResNet-18 ResNet-18 VGG16 ResNet-18 MNASNet

9 MNASNet DenseNet VGG16 PC-DARTS ResNext ResNext ResNext

10 DenseNet ResNext ResNext MNASNet MNASNet VGG16 ResNet-18

11 VGG16 MNASNet MNASNet VGG16 ResNet-18 MNASNet Random Bonsai

12 Random Bonsai Random Bonsai Random Bonsai ResNext Random Bonsai Random Bonsai VGG16

Table 7: Ranking of our best score among NAS methods and CNN models on the validation datasets.

E Weights transfer in RegNets 464

The main structure of RegNet and its weight transfer conditions are shown in Figures 13 and 14. 465

17

-0.02 -0.30

-0.31

0.71

0.05 -0.25

-0.21

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

-0.03 -0.40

-0.39

-0.03

0.07 -0.38

-0.33

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

-0.06

0.24

0.27

0.30 0.20

0.34

0.30

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

0.02 -0.32

-0.30

0.70

0.16

-0.27

-0.02

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

0.08

-0.26 -0.23

0.72

-0.03

-0.20

0.02

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

0.10

-0.39

-0.37

0.39

0.02 -0.33

-0.08

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

0.09

-0.43

-0.40

0.49

0.12 -0.36

-0.30

gr
as
p

fis
he
r

gr
ad
_n
or
m

jac
ob
_c
ov

pla
in

sn
ip

sy
nf
low

−0.5

0

0.5

Spearmann Correlation of Each Zero-Cost Metric

Metrics Metrics

Metrics Metrics

Metrics Metrics

Metrics

C
or

re
la

ti
on

C
or

re
la

ti
on

C
or

re
la

ti
on

C
or

re
la

ti
on

C
or

re
la

ti
on

C
or

re
la

ti
on

C
or

re
la

ti
on

Sadie Chester

Caitie Adaline

Mateo LaMelo

Gutenberg

Figure 10: Spearman’s rank correlation of the ranking position estimated with 7 different zero cost

proxies on 240 models for each dataset.

18

0 2 4 6 8
Time (hours)

90

92

94

96

98

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P

T0_AA

T0_B
T0_P

T0_R10

T0_R20
T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_P

T6_B
T6_P

T7_P

Test accuracy vs. Time for Sadie Dataset

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time (hours)

78

80

82

84

86

88

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_PT0_AA

T0_B

T0_P
T0_R10

T0_R20

T1_P T2_PT3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_P

Test accuracy vs. Time for LaMelo Dataset

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time (hours)

52

54

56

58

60

62

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P

T0_AA
T0_B

T0_P

T0_R10

T0_R20

T1_P

T2_P

T3_P
T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_P
Test accuracy vs. Time for Chester Dataset

1 2 3 4 5
Time (hours)

94.0

94.5

95.0

95.5

96.0

96.5

97.0

Te
st

 a
cc

ur
ac

y

T0+_B
T0+_P

T0_AA

T0_B

T0_P

T0_R10 T0_R20

T1_P

T2_P

T3_P T4_P

T6+_B

T6+_P

T6_B

T6_P
T7_P

Test accuracy vs. Time for Adaline Dataset

1 2 3 4 5 6 7 8
Time (hours)

65

70

75

80

85

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P

T0_AA

T0_B

T0_P

T0_R10
T0_R20

T1_P
T2_P
T3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_P

Test accuracy vs. Time for Caitie Dataset

0 1 2 3 4 5
Time (hours)

43

44

45

46

47

48

Te
st

 a
cc

ur
ac

y
T0+_B

T0+_P

T0_AA

T0_B
T0_P

T0_R10

T0_R20

T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_P

Test accuracy vs. Time for Gutenberg Dataset

1 2 3 4 5
Time (hours)

92

93

94

95

96

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P

T0_AA

T0_B

T0_P

T0_R10

T0_R20

T1_P

T2_P
T3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P
T7_P

Test accuracy vs. Time for Mateo Dataset

Figure 11: Test accuracy versus time in hours for each study on seven validation datasets

19

2 4 6 8 10 12
Time (hours)

30

32

34

36

38

40

42

44

46

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P

T0_AA

T0_B

T0_P

T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_P
T6_B

T6_P

T7_B

T7_P

Test accuracy vs. Time for in16 Dataset

1 2 3 4 5
Time (hours)

87

88

89

90

91

92

93

94

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P

T0_AA

T0_B

T0_P

T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_PT6_B

T6_P
T7_B T7_P

Test accuracy vs. Time for CIFAR10 Dataset

1 2 3 4 5
Time (hours)

30

40

50

60

70

80

90

Te
st

 a
cc

ur
ac

y
T0+_B

T0+_P

T0_AA

T0_B

T0_P

T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_B

T7_P

Test accuracy vs. Time for Sokoto Dataset

1 2 3 4 5
Time (hours)

80

81

82

83

84

Te
st

 a
cc

ur
ac

y

T0+_B

T0+_P
T0_AA

T0_B

T0_P T1_P

T2_P

T3_P

T4_P

T6+_B

T6+_P

T6_B

T6_P

T7_B

T7_P

Test accuracy vs. Time for Volga Dataset

Figure 12: Test accuracy versus time in hours for each study on four test datasets

Stem
(Weights shape depend on

input shape)
Stage 1 Stage 2 Stage 3 Stage 4

Features stages

Head
(Weights shape depend on Width

of last stage + num_classes)

Task- dependent
Can directly be inherited from parent(s)

Depends on task and last stage.
Not directly inherited from parents.

Just from models with same last stage width.

Figure 13: Macro structure of RegNet networks and cases where weights can be transferred to the

Stem or Head layers

Stem
(Weights shape depend on

input shape)
Stage 1 Stage 2 Stage 3 Stage 4

Features stages

Head
(Weights shape depend on Width

of last stage + num_classes)

18,
104

104,
272104 104 104 104 272 272 272 272 272 272 272

Example

Blocks that just depend on stage width

Blocks that depend on last stage width and own width

Figure 14: Structure of stages in body of the RegNet networks and cases where blocks can be transferred

to the Stages layers

20

	Introduction
	Background
	Search space and Evolutionary operators
	Evolutionary Operators

	Data augmentation selection based on Zero-cost proxies
	Population initialization
	Fitness evaluation
	Experiments and results
	Experimental setup
	Ablation studies
	Results
	Augmentation selection
	Ablation studies
	Comparison with other methods

	Conclusion and Future Work
	Broader Impact Statement
	Breeding and Training parameters
	Candidate augmentations
	Ranking Correlation of Zero-Cost Proxies
	Test accuracies for Individual Datasets
	Weights transfer in RegNets

