GCPG: A General Framework for Controllable Paraphrase Generation

Anonymous ACL submission

Abstract

Controllable paraphrase generation (CPG) in-
corporates various external conditions to ob-
tain desirable paraphrases. However, exist-
ing works only highlight a special condition
under two indispensable aspects of CPG (i.e.,
lexically and syntactically CPG) individually,
lacking a unified circumstance to explore and
analyze their effectiveness. In this paper, we
propose a general controllable paraphrase gen-
eration framework (GCPG), which represents
both lexical and syntactical conditions as text
sequences and uniformly processes them in
an encoder-decoder paradigm. Under GCPG,
we reconstruct commonly adopted lexical con-
dition (i.e., Keywords) and syntactical con-
ditions (i.e., Part-Of-Speech sequence, Con-
stituent Tree, Masked Template and Sentential
Exemplar) and study the combination of the
two types. In particular, for Sentential Ex-
emplar condition, we propose a novel exem-
plar construction method — Syntax-Similarity
based Exemplar (SSE). SSE retrieves a syn-
tactically similar but lexically different sen-
tence as the exemplar for each target sentence,
avoiding exemplar-side words copying prob-
lem. Extensive experiments demonstrate that
GCPG with SSE achieves state-of-the-art per-
formance on two popular benchmarks. In addi-
tion, the combination of lexical and syntactical
conditions shows the significant controllable
ability of paraphrase generation, and these em-
pirical results could provide novel insight to
user-oriented paraphrasing.

1 Introduction

Paraphrase generation (Madnani and Dorr, 2010)
refers to restating a given sentence into an alterna-
tive surface form while keeping the semantics un-
changed. It is of long-standing interest (McKeown,
1983), with various applications such as question
answering (Gan and Ng, 2019), machine transla-
tion (Mallinson et al., 2017), and sentence simplifi-
cation (Martin et al., 2020). However, a sentence

[There was a picture of the revolving earth that have emerged.]
Lexically Syntactically
Controlling Controlling
[Keywords] . [Exemplar]
showed up rotating mum) Combination < The job at school went well.

There was a picture of the A picture of the rotating A picture of the revolving
rotating earth that showed up. | = earth showed up. earth emerged.

Figure 1: A toy example to explain what effect lexi-
cally controlling and syntactically controlling have on
paraphrasing.

can be re-expressed in various surface forms. Lack-
ing control might result in undesirable results (Gu
et al., 2019).

To obtain desirable surface forms, most recent
works focus on controllable paraphrase generation
(CPG) by incorporating external conditions. Ex-
isting efforts to CPG can be roughly divided into
two types: lexically and syntactically CPG. Lex-
ically CPG is concerned with what to say, which
generates paraphrases that contain pre-specified
keywords. As shown in Figure 1, a lexically CPG
model needs to generate a paraphrase that contains
the given keyword “showed up”. To achieve it,
a sequence-to-sequence model equipped with the
copy mechanism is commonly used (Zeng et al.,
2019). Different from lexically CPG, syntactically
CPG concentrates on how fo say it, generating a
paraphrase that conforms to the syntax of a given
exemplar (i.e., a sentence illustrating certain syn-
tax patterns). Substantial efforts have been made
on constructing syntactical features of the given
exemplar. For example, Kumar et al. (2020) incor-
porate a full syntactic tree of the exemplar to guide
paraphrasing; Bui et al. (2021) construct a masked
template to direct generation by masking words
with certain Part-of-Speech (POS) type of exem-
plar; Chen et al. (2019) directly use the sentential
exemplar. Since sentential exemplars are only avail-
able for testing, they have to manufacture exem-
plars for training by replacing certain words from

the target sentence. Despite the progress on the two
types of conditions individually, what to say and
how to say it are both aspects of vital importance
for CPG (Kumar et al., 2020). Furthermore, there
lacks a unified framework to study the effectiveness
of these conditions and their joint utilization.

To fill this gap, we propose a General
Controllable Paraphrase Generation framework
(GCPQG) to jointly include both lexically and syn-
tactically CPG in a unified model. The key idea
is to reconstruct both lexical and syntactical con-
ditions as text sequences and process them in a
text-to-text encoder-decoder paradigm. This also
allows GCPG to easily utilize the strong language
modeling capacity of pre-trained language mod-
els (PLMs), which have demonstrated great poten-
tial (Bui et al., 2021) yet rarely been explored under
the topic of CPG. For the lexical condition, we con-
catenate the pre-specified keywords as a sequence
while exploring different methods to pre-specify
keywords from rule-based to model-based. As for
syntactical conditions, we reconstruct commonly
used syntactic features as sequences, such as Lin-
earised Constituent Tree (Iyyer et al., 2018) and
masked template based on word mask (Bui et al.,
2021). Besides the manufactured syntax features,
we hypothesize that directly using the exemplar
is more effective as it can benefit from the pow-
erful sentence modeling capability of PLMs. To
construct the exemplar for training, we propose
a novel exemplar construction method as Syntax-
Similarity based Exemplar (SSE). Specifically, we
use a sentence that is syntactically similar but lex-
ically different from the target sentence, which is
retrieved in a self-constructed exemplar dictionary
based on the training set. This is different from
existing methods that construct exemplar through
modifying target sentences (Chen et al., 2019), alle-
viating exemplar-side words copying problem (Bui
et al., 2021) brought by Chen et al. (2019).

We examine GCPG on two popular benchmark
datasets. Those discussions include not only perfor-
mances of different conditions and their combina-
tions, but also the effectiveness of GCPG instanti-
ated by different PLMs. Experiments demonstrate
that GCPG consistently shows significant perfor-
mances when tested by three different methods to
pre-specify keywords. For syntactical CPG, GCPG
with SSE obtains 13.95/24.31/18.64 ROUGE-1/2/L
and 16.38 BLEU-4 over the previous state-of-the-
art (SOTA) model (Bui et al., 2021). Besides, the

combination of lexical and syntactical conditions
show encouraging controllability of paraphrase
generation in both quantitative and qualitative anal-
ysis. The main contributions are as follows:

* We propose GCPG, a general framework to
jointly include both lexically and syntactically
controllable paraphrasing. It is simple but
effective, enabling flexible combinations of
conditions by reconstructing them into text se-
quences and processing them in a text-to-text
encoder-decoder paradigm. Those properties
allow GCPG to easily adapt to mainstream
pre-trained language models and utilize pow-
erful language modeling capacity, which is
rarely explored in CPG.

We provide a novel exemplar construction
method SSE under the syntactical condition.
It allows GCPG to directly model syntax in-
formation from natural sentences without any
manufactured syntax features, while alleviat-
ing the exemplar-side words copying problem.

2 Related Work

In this section, we summarize existing works
on syntactically and lexically CPG. Syntactically
CPG generates a paraphrase constrained by a pre-
specified sentence of a certain syntax structure
namely exemplar. However, the exemplar is only
available during inference, resulting in a key chal-
lenge: obtaining manual exemplars for existing
paraphrasing training datasets is prohibitively ex-
pensive. To address this, some of the previous
works construct syntactical features from target
sentences during training, such as POS Tagging,
Constituent Tree, mask template as illustrated in
Table 1. For instance, SCPN (Iyyer et al., 2018)
makes the first attempt to introduce Linearised Con-
stituent Tree (LCT) of target sentence into para-
phrasing, where LCT is predicted based on pre-
defined parse templates. Similarly, GuiG (Li et al.,
2020) proposes two models to expand a partial tem-
plate LCT and generate paraphrasing, respectively.
Different from using LCT, SGCP (Kumar et al.,
2020) introduces a graph encoder to encode the
Constituent Tree of exemplar as the condition. Be-
sides, masked template replaces several words of
the exemplar with a special token to form a tem-
plate as the condition. For example, BCPG (Liu
et al., 2020b) follows BERT (Devlin et al., 2019) to
randomly mask exemplar words, ParafraGPT (Bui

Syntactical Condition

Work POS Tagging Constituent Tree Masked Template Sentential Exemplar
SCPN (2018) v/ (In Tree) v/ (LCT Templates) X X

CGEN (2019) v/ (In Exemplar) X v’ (Replace Words)
BCPG (2020b) X X v/ (Randomly) X

GuiG (2020) X v/ (Expanded LCT) X X

SGCP (2020) v (In Tree) v (Tree Structure) X X

ParafraGPT (2021) v/ (InWord MT) X

v/ (Certain POS) X

GCPG v/ (POS Sequence) v/ (LCT)

v/ (Certain POS) v/ (SSE)

Table 1: A comparison of different conditions under syntactically CPG. LCT: Linearised Constituent Tree. The
proposed framework GCPG reconstructs them as text sequences and we have experimented with all four forms.

et al., 2021) further masks exemplar words with
certain POS types. However, Chen et al. (2019)
advocate to directly utilize the sentential exemplar
(i.e., the sentence) as the condition, because they
believe “any syntactically valid sentence is a valid
exemplar". Since exemplar is only available in the
testing set, they construct exemplar by replacing
words of the target sentence with others that have
the same POS type. Besides, lexically CPG con-
straints paraphrasing with pre-specified keywords,
which is rarely explored but undoubtedly indis-
pensable in CPG. Zeng et al. (2019) make the first
attempt to integrate keywords with copy mecha-
nism. Despite their progress, existing works only
focus on a special condition under either lexically
or syntactically CPG. In comparison, GCPG jointly
includes lexically and syntactically CPG, flexibly
combining conditions in a unified circumstance.

3 Methodology

3.1 GCPG Framework

Before introducing GCPG, we first give the defi-
nition of controllable paraphrase generation with
external conditions. Given a source sentence x
and a variety of conditions ¢, the model generates

paraphrase y = (y1,¥2, ..., yr) by:

T

pylz, e) = [pwly<,, ,c;0), (1)
t=1

where 6 are the model parameters trained by max-
imizing the conditional likelihood of outputs in a
parallel corpus. Given this definition, the forms of
conditions ¢ might be varied, such as pre-defined
keywords and Constituent Parse Tree. To uni-
formly encode these conditions and investigate
their effectiveness, we propose a general frame-
work GCPG. GCPG contains a standard encoder-

[Is] [anyone] [home] [?]
t

Transformer Decoder

Pre-trained Language Model

) o

Source Sentence

Keywords | POS Sequence

Conditions

Constituent Tree | Masked Template| Sentential Exemplar

Figure 2: An overview of GCPG, the source sentence
and separated condition are concatenated as input.

decoder paradigm, which allows any mainstream
PLMs to adapt to this task rapidly. Meanwhile,
GCPG can flexibly use the combinations of in-
cluded conditions by concatenating them as one
sequence with “[SEP]”. As shown in Figure 2, the
source sentence “No one’s home ?” is concatenated
with optional sequential conditions by the separator
signal “[SEP]”, then fed into the model. Afterward,
the model auto-regressively generates “Is anyone
home?” as the final result.

3.2 Conditions under GCPG
3.2.1 Syntactical Condition

Syntactically CPG requests a syntax exemplar to
constrain the syntax structure of paraphrase. How-
ever, exemplars are only available in the testing set
of existing paraphrasing datasets. To train a syntac-
tically CPG model, we construct a syntactical con-
dition based on the target sentences in the training
set. During inference, we apply the same strategy
to obtain the corresponding syntactical conditions
from exemplars in the testing set. We explore four
syntactical conditions in this work, as follows:

POS Tagging is one of most simple solutions in

Raw Training Pair

Source No one’s home?
; Exemplar Dictionary

Target Is anyone home? i
| 'S (NP) (ADVP) (VP) (.)

Extracted

SQ (NP) (ADVP) (?) They almost finished.

Argmin Syntax Edit Distance
Is this the code word?
Source No one’s home? :
Exemplar Is this the code word ? SQ (NP) (VP (NP)) (?)

Target Is anyone home? Do you smell burning?

Enhanced Training Items

Figure 3: An overview of SSE. We take Truncated LCT
as the sequential syntax structure here.

modeling the syntax structure (Cutting et al., 1992),
which could be effectively implemented and show
promising performance in various NLP tasks (Yang
et al., 2021). We investigate POS Tagging as an
independent condition, which is rarely explored in
CPG. In detail, we extract POS sequence of target
sentence by CoreNLP! as the condition. To learn
these POS signals with PLMs, we regard these POS
tokens as special ones and add them into the word
vocabulary of PLMs.

Constituent Tree is a widely used condition for
syntax controlling while paraphrasing. Here, we
explore two kinds of LCT, i.e., full-fledged LCT
and Truncated LCT. For the full-fledged LCT con-
dition, we extract the complete sequential Con-
stituent Tree from the target sentence for training
and exemplar for testing, based on the off-the-shelf
tools of CoreNLP. We further explore the Trun-
cated LCT condition, which is the sequence that
removing POS-level tokens in full-fledged LCT.
Compared with full-fledged LCT, Truncated LCT
drastically shortens the input length.

Masked Template is first introduced in Liu et al.
(2020b), which randomly masks words of the target
sentence to form a syntax template as the condition.
To verify the effectiveness of this method in GCPG
circumstance, we follow the current SOTA Bui et al.
(2021) to construct a masked template by substitut-
ing all nouns, adjectives, adverbs, and verbs with
a special token in the exemplar. Similarly, this
strategy is applied to the target sentences during
training and the given exemplars during inference.
Sentential Exemplar is the most straightforward

"https://stanfordnlp.github.io/
CoreNLP/index.html

way for syntactically CPG, which directly uses the
sentential exemplar as the condition. In contrast to
the above three syntactical conditions, Sentential
Exemplar uses natural sentences to represent desir-
able syntax structure, without introducing any spe-
cial token which does not appear during PLMs pre-
training. We argue that this way can make better
use of PLMs. However, the previous method (Chen
et al., 2019) suffers from the exemplar-side words
copying problem during testing, which might be
caused by the noticeable words overlap with the
target sentence in constructing sentential exemplar
during training. To alleviate this problem, we pro-
pose Syntax-Similarity based Exemplar (SSE) to
enhance sentential exemplar condition.

An overview of our SSE method is demonstrated
in Figure 3. To alleviate the exemplar-side words
copying issue, the proposed SSE constructs Senten-
tial Exemplar by retrieving a syntactically similar
but lexically different sentence for each target sen-
tence during training. To achieve that, we construct
an exemplar dictionary that contains the syntactical
key-value mapping from the syntax structure k to
its corresponding natural sentence v. Each syn-
tactical key k € K is a Truncated LCT sequence,
and its value is a randomly selected natural sen-
tence that can be assigned to this Truncated LCT
sequence. During training, given a data pair (x, y)
and the Truncated LCT s of y, we select a syntac-
tical key k* by calculating the syntax edit distance
Dy, between s and each syntactical key in the
exemplar dictionary, which can be formulated as:

k* = arg min(Dgyn(s, k))
LevEdit(s, k)) 2
max(|s|, |k|)

where LevEdit(-) denotes the token-level Leven-
shtein edit distance between two sequences and
| - | denotes the token-level length of the sequence.
We assign the corresponding sentence v*, which is
related to k™, as the training exemplar.

Lexical Condition Lexically CPG uses pre-
specified keywords to constrain paraphrasing,
which requires a paraphrasing dataset containing
(sentence, keywords, paraphrase) triples. Because
the original dataset is formatted as (sentence, para-
phrase), we need to pre-specify keywords for each
data item. Following Zeng et al. (2019), we au-
tomatically extract keywords from the target sen-
tence as the condition in the training stage. Be-
sides, as also lacking manual keywords for each

= arg min
& kEK(

https://stanfordnlp.github.io/CoreNLP/index.html
https://stanfordnlp.github.io/CoreNLP/index.html

testing pair, we carry out two strategies for in-
ference. On the one hand, we directly extract
keywords from references as conditions follow-
ing Zeng et al. (2019). On another, a standard
sequence-to-sequence model is used to predict tar-
get keywords only from source sentences as condi-
tions while testing, as described in Liu et al.(2020a).
Specifically, we investigate three representative
keyword extraction methods to verify the effec-
tiveness of GCPG, including rule-based TF-IDF,
TextRank (Mihalcea and Tarau, 2004), and model-
based KeyBERT (Grootendorst, 2020). Each
method filters out the stop words and punctuation,
and guarantees the extracted keywords do not ap-
pear in the corresponding source sentence. The
maximum number of keywords is set to 3. Besides,
we use a special token “[NONE]” when there are
no keywords extracted.

4 Experiments

In this section, we individually evaluate syntacti-
cally and lexically conditions under GCPG, then
examine their combinations. Finally, detailed anal-
yses on properties of GCPG are provided.
Datasets Following previous works (Kumar et al.,
2020; Bui et al., 2021), we evaluate GCPG on
two datasets: (1) ParaNMT-small (Chen et al.,
2019) is a subset of ParaNMT-50M dataset (Wiet-
ing and Gimpel, 2018), which is collected via back-
translation referring to English sentences. It con-
tains 500K training pairs formatted as (sentence,
paraphrase), and 1.3K manually labeled data triples
formatted as (sentence, exemplar, paraphrase)
(0.8K for testing and 0.5K for validation). In each
triple, exemplar is a sentence that has the same syn-
tax as paraphrase but is semantically different from
sentence. (2) QQP-Pos (Kumar et al., 2020) is se-
lected from Quora Question Pairs (QQP) dataset. It
contains about 140K training pairs and 3K/3K data
triples for testing/validation. The format of dataset
is the same as ParaNMT-small.

4.1 Syntactically Controllable Paraphrasing

We explore four syntactical conditions recon-
structed by GCPG on the ParaNMT-small dataset,
then compare SSE with baselines on two datasets.
Baselines We first choose two direct return-input
baselines as dataset quality indicators: (1) Source-
as-Output copies inputs as outputs. (2) Exemplar-
as-Output regards exemplars as outputs. Next,
we evaluate the following text generation models,

while exploring performances of respectively in-
stantiating GCPG with them in § 4.3. (3) Trans-
former (Vaswani et al., 2017), the conventional
version in the original paper. (4) BART (Lewis
et al., 2020) has a denoising autoencoder for pre-
training sequence-to-sequence models, and BART-
large2 is used. (5) ProphetNet (Qi et al., 2020)
is a pre-training model with a self-supervised ob-
jective, and ProphetNet-large is used. Finally, we
compare GCPG with mainstream competitive mod-
els as follows. (6) SCPN (Iyyer et al., 2018) has
two encoders to encode source sentence and LCT
separately, then constrain generation with soft at-
tention mechanism?’. (7) CGEN (Chen et al., 2019)
encodes exemplars into latent vector to guide para-
phrasing4. (8) SGCP (Kumar et al., 2020) uses a
graph encoder to process the exemplar Constituent
Trees as the condition’. (9) ParafraGPT (Bui et al.,
2021) masks words with certain POS types in the
target sentence as condition, then builds a para-
phrasing generator based on a pre-trained GPT2.
Syntactical Conditions We first examine condi-
tions with manufactured syntax features, including
(10) POS Sequence, (11) LCT-Truncated is the LCT
sequence without POS-level information, (12) LCT
is the full-fledged Linearised Constituent Tree se-
quence, and (13) Masked Template. Then, two im-
plementations of SSE are evaluated: (14) SSE-POS
Sequence uses POS Sequence to measure syntax
similarity, and (15) SSE-LCT-Truncated uses LCT-
Truncated as measurement.

Implementation and Hyper-parameters All
GCPG models are instantiated by ProphetNet-
large (Qi et al., 2020), which are implemented with
Fairseq®. We employ the original hyper-parameter
setting of ProphetNet-large’ to train GCPG. During
inference, the beam size and length penalty are set
to 4 and 1.2 following Bui et al. (2021).

Metrics Following previous works (Iyyer et al.,
2018; Bui et al., 2021), we evaluate generating
results on six metrics, including BLEU-4 (Pap-
ineni et al., 2002), ROUGE-1 (R-1), ROUGE-
2 (R-2), ROUGE-L (R-L) (Lin, 2004), Me-
teor (MTR) (Denkowski and Lavie, 2014), and

https://github.com/pytorch/fairseq/
tree/master/examples/bart

3https://github.com/miyyer/scpn

*https://github.com/mingdachen/
syntactic-template—-generation

Shttps://github.com/malllabiisc/SGCP

*https://github.com/pytorch/fairseq

"https://github.com/microsoft/
ProphetNet

https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/miyyer/scpn
https://github.com/mingdachen/syntactic-template-generation
https://github.com/mingdachen/syntactic-template-generation
https://github.com/malllabiisc/SGCP
https://github.com/pytorch/fairseq
https://github.com/microsoft/ProphetNet
https://github.com/microsoft/ProphetNet

Model iBLEUT B-R1? R-1/R-2/R-L 1 MTR1t BST TED/|
ParaNMT-small
(1) Source-as-Output -17.05 18.50 23.10/47.70/12.00 28.80 86.20 12.00
(2) Exemplar-as-Output 2.31 3.30 2440/ 7.50/29.10 12.10 74.20 5.90
(3) Transformer 4.72 14.66 51.05/26.88/51.32 30.67 91.30 12.71
(4) BART 6.08 17.78 52.37/27.02/51.52 31.57 9199 11.92
(5) ProphetNet 4.67 18.46 55.29/31.17/55.18 32.42 9232 11.78
(6) SCPN (2018) - 6.40 30.30/11.20/34.60 14.60 73.70 9.10
(7) CGEN (2019) 8.14 13.60 44.80/21.00/48.30 24.80 79.50 6.70
(8) SGCP (2020) 6.95 16.40 49.60/22.90/50.50 27.20 80.50 6.80
(9) ParafraGPT (2021) 8.61 14.54 49.67/22.42/51.29 27.83 90.78 8.22
(10) GCPG (POS Sequence) 11.96 19.97 56.20/32.36/58.99 32.68 92.57 8.45
(11) GCPG (LCT-Truncated) 12.74 22.54 59.98/36.81/62.61 37.04 93.39 8.34
(12) GCPG (LCT) 11.92 19.52 55.75/30.54/58.88 31.35 92.42 7.84
(13) GCPG (Masked Template) 9.52 16.85 53.60/27.96/56.31 31.84 92.21 8.84
(14) GCPG (SSE-POS Sequence) 10.07 23.82 60.93/37.36/61.98 36.15 91.55 8.94
(15) GCPG (SSE-LCT-Truncated) 12.32 26.24 63.62/40.76 / 64.98 39.79 93.86 8.27
QQP-Pos
(16) Source-as-Output -17.96 17.20 51.90/26.20/52.90 31.10 84.90 16.20
(17) Exemplar-as-Output 10.64 16.80 38.20/20.50/43.20 17.60 78.20 4.80
(18) Transformer 7.63 23.44 54.58/30.48 /56.63 32.60 93.18 11.84
(19) BART 3.14 23.07 56.43/32.12/57.64 34.26 93.58 13.05
(20) ProphetNet 6.43 25.79 58.40/34.52/59.98 35.75 93.88 11.74
(21) SCPN (2018) - 15.60 40.60/20.50/44.60 19.60 77.60 9.10
(22) CGEN (2019) 17.60 29.94 58.53/37.42/61.74 32.90 92.82 6.43
(23) SGCP (2020) 19.97 38.00 68.10/45.70/70.20 41.30 94.53 6.80
(24) ParafraGPT (2021) 21.19 35.86 66.71/43.70/68.94 40.26 94.54 6.11
(25) GCPG (SSE-LCT-Truncated) 28.10 50.62 77.32/59.04/79.02 51.45 96.49 5.02

Table 2: Results of different syntactical conditions and comparisons with baselines on ParaNMT-small and QQP-
Pos datasets. B-R: BLEU-R. R-1:ROUGE-1. R-2: ROUGE-2. R-L: ROUGE-L. MTR:METEOR. BS:BERTScore.
1 means higher score is better where | is exactly the opposite. The highest numbers are in bold.

BERTScore (BS) (Zhang et al., 2020). Besides,
Source-as-Output will also get a high BLEU score
and BERTScore, we introduce iBLEU (Sun and
Zhou, 2012) for more precise evaluation. As a
variant of BLEU, iBLEU considers both fidelity to
reference and diversification from input:

iBLEU = aBLEU-R — (1 — aBLEU-S),

BLEU-R = BLEU-4 (output, reference),
BLEU-S = BLEU-4 (output, input),

3

where the constant « is set to 0.7, as in the original
paper. Finally, for syntactical condition evaluation,
we follow Kumar et al. (2020) to calculate Tree-
Edit Distance (TED)® between the Constituency
Parse Trees of both output and reference.

Results As shown in Table 2, the main conclu-
sions are: (1) SSE consistently and significantly
outperforms conditions that constructed with man-
ufactured syntax features (Rows 14-15 vs. Rows

8We use the evaluation tool implemented by SGCP.

10-13). (2) GCPG with SSE gets significant im-
provement over the previous SOTA (Row 15/25
vs. Row 14/24). (3) All syntactical conditions re-
constructed in GCPG outperform baselines (Rows
10-15 vs. Rows 6-9), demonstrating the superiority
of GCPG paradigm.

4.2 Lexically Controllable Paraphrasing

As mentioned in § 3.2, we use three different key-
word extraction methods to pre-specify keywords
and comprehensively evaluate the GCPG: (1) TF-
IDF (2) TextRank (Mihalcea and Tarau, 2004), and
(3) KeyBERT (Grootendorst, 2020). Meanwhile,
we follow the implementation settings in § 4.1.

Metrics For lexical condition, it should be noted
that there is a lack of the explicit request of de-
sirable keywords in the testing set. A generated
paraphrase hinted by model predicted keywords
might get a low score in BLEU, although humans
consider it reasonable. This is because paraphras-
ing models might focus on keywords that are not

Condition iBLEUT B-R? R-1/R-2/R-L* MTR1 BSt TEDJ
Keywords Extraction, GCPG instantiated by ProphetNet
(1) GCPG (None) 4.67 18.46 5529/31.17/55.18 3242 9232 11.78
(2) GCPG (TF-IDF) 10.07 23.04 6192/38.68/61.71 3697 9286 10.79
(3) GCPG (TextRank) 8.16 19.63 56.04/32.08/56.54 33.60 9245 1247
(4) GCPG (KeyBERT) 11.03 2412 60.92/38.00/61.14 35.41 92.79 10.26
(5) GCPG (KeyBERT (Upper Bound)) 16.06 28.64 67.81/43.99/66.30 4027 93.44 998
Keywords (KeyBERT) + Syntactical Condition, GCPG instantiated by ProphetNet
(6) GCPG (KeyBERT + POS Sequence) 15.10 2522 6296/39.04/6532 3642 9096 8.01
(7) GCPG (KeyBERT + LCT-Truncated) 15.38 26.80 66.07/43.52/68.07 39.53 90.56 8.08
(8) GCPG (KeyBERT + LCT) 14.47 2352 61.92/36.33/64.38 3473 9274 8.00
(9) GCPG (KeyBERT + Mask Template) 12.13 2098 58.83/33.58/61.01 35.02 92.67 8.44
(10) GCPG (KeyBERT + SSE-POS) 15.67 31.02 66.85/4530/68.48 40.12 9039 7.95
(11) GCPG (KeyBERT + SSE-LCT-Truncated) 15.73 3092 68.40/46.73/69.93 4198 9434 7095
Condition (11), GCPG instantiated by Different Models
(12) GCPG-LS (Transformer) 11.22 2126 60.94/37.10/62.52 3577 92.67 9.21
(13) GCPG-LS (BART) 14.23 26.80 66.32/4497/67.86 40.60 9390 9.51
(14) GCPG-LS (ProphetNet) 15.73 3092 68.40/46.73/69.93 4198 9434 7095

Table 3: Performance of different conditions and combinations under GCPG on ParaNMT-small.

consistent with the single reference. Therefore,
we evaluate GCPG in three settings. First, follow-
ing Liu et al.(2020a), we use a keywords prediction
model to generate top-k groups of keywords, which
are fed into GCPG to generate k paraphrases. Then
the sentence that has the highest BLEU with the
reference is selected as the final output. k is set
to 4 as well as beam size. Note that we use this
setting to report the final results unless otherwise
specified. Second, we further conduct human eval-
uations on the keyword condition based on Key-
BERT (The details are in § 4.3). We denote it
as “GCPG-L (k=1)". Here “k=1" means GCPG
only produces one paraphrase for each input, con-
strained by the top-1 set of keywords produced by
KeyBERT. Third, following Zeng et al. (2019), we
directly extract keywords from references as the
condition, marked with “(Upper Bound)”.

Results As shown in the first five rows of Table 3,
KeyBERT outperforms other two keyword extrac-
tion methods. Besides, GCPG with keyword condi-
tion significantly performs better than GCPG with-
out keyword condition, which verifies the lexically
controllable ability of our GCPG.

4.3 Combinations

We first discuss combinations of lexical and syn-
tactical conditions, and then evaluate GCPG in-
stantiated by different PLMs. To facilitate the
description, we define that “GCPG-L” denotes
GCPG with the keyword condition extracted by
KeyBERT, “GCPG-S” is GCPG with the SSE-LCT-

Truncated condition, and “GCPG-LS” indicates
the combination of conditions in “GCPG-L” and
“GCPG-S”. Meanwhile, GCPG is also instantiated
by ProphetNet-large.

Metrics We follow the metrics in § 4.1, yet the
automatic evaluations can not fully capture the flu-
ency and the quality of the generation results on
CPG. Especially for TED, as the ParaNMT-small
contains various noise data points, it is optimistic to
assume that the corresponding constituency parse
tree could be well aligned (Kumar et al., 2020).
Therefore, we conduct human evaluation on both
two datasets following Kumar et al.(2020). 100 test
samples are randomly selected from each dataset.
Then, 5 crowdsource evaluators are shown a source
sentence and the corresponding reference, then
asked to rate model results in three categories:
whether the paraphrase remains loyalty to the
source sentence, the fluency of paraphrase, and
syntax similarity with gold reference. Scores are
ranged from 1 to 4, and the higher score is better.

Results As shown in Table 3, the main conclusions
are: (1) Combinations of lexical and syntactical
conditions get consistently further improvements
compared with employing lexical condition individ-
ually (Rows 6-11 vs. Row 4). (2) GCPG can utilize
the strong language modeling capacity of main-
stream PLMs and show encouraging performances
(Row 12-13 vs. Row 14). Then, we illustrate hu-
man evaluations in Table 4. GCPG with lexical
condition (GCPG-L (k=1)) outperforms baselines
in meaning and fluency, yet poor in syntax similar-

Model Loyalty Fluency Syntax All
ParaNMT-small
CGEN 1.47 2.13 1.81 5.41
ParafraGPT 1.86 2.42 2.05 6.33
GCPG-L (k=1) 2.94 3.63 2.29 8.86
GCPG-LS (k=1) 3.09 3.51 2.46 9.06
QQP-Pos
CGEN 1.72 2.52 2.22 6.46
ParafraGPT 2.43 2.91 2.61 7.95
GCPG-L (k=1) 3.00 3.54 2.43 8.97
GCPG-LS (k=1) 2.97 343 2.81 9.21

Table 4: Results of Human evaluation.

BLEU-Exemplar |

Model
ParaNMT-small QQP-Pos
ParafraGPT 7.32 2431
GCPG-S 2.63 23.17
Reference 3.30 16.80
Table 5: GCPG can significantly reduce BLEU-

Exemplar score compared with previous SOTA.

ity. More importantly, the combination of lexical
and syntactical conditions (GCPG-LS (k=1)) shows
significantly improvements on all three scores.

4.4 Analyses and Discussions

We conduct discussions to shed light on other inter-
esting properties of GCPG. For the lack of space,
we take discussions with GCPG instantiated by
ProphetNet-large.

Exemplar-side Words Copying Problem We cal-
culate BLEU-4 between model outputs and exem-
plars. As shown in Table 5, GCPG with SSE
(i.e., GCPG-S) can significantly reduce BLEU-
Exemplar comparing with ParafraGPT, gets 4.69 /
1.14 improvements on two datasets, demonstrating
that SSE effectively alleviates this problem.
Generating Novel Grams Following Dou
et al.(2021), we further investigate generating
novel expressions under CPG settings, which is
also important for paraphrasing. To address this
issue, the number of novel n-grams is counted
in the model output. Specifically, these n-grams
appear in gold references but not in source
sentences. After normalized by the total number of
n-grams, we calculate the recall of novel n-grams.
It can be seen that GCPG indeed generates novel
expressions from Figure 4. The combination
version GCPG-LS gets the best result, which
means combination of two types of conditions may

ProphetNet ©GCPG-L ©GCPG-LS

25

20

>

Recall of Novel n-grams (%)

0
l-grams 2-grams 3-grams 4-grams l-grams 2-grams 3-grams 4-grams

ParaNMT QQP-Pos

Figure 4: Recall of novel n-grams results.

Input A powerful restorative energy emerges out of love.

Exemplar ~ There's one thing that makes me feel normal.

Reference There is a powerful healing energy that emanates from loving.

A powerful healing energy comes out of love. [healing]

GCPG-LS There's a powerful healing energy that comes out of love. [healing]

Input We 'd climb the mountain and make a house there ?

Exemplar ~ Will we have a list of six demands ?

Reference Will we build a house in the mountain?

Would we climb a mountain and build a house? [build]

GCPG-LS Will we build a house in the mountain ? [build]

Figure 5: Samples of paraphrases. Words in “[]” are of-
fered by our keywords prediction model based on Key-
BERT. We highlight different parts for better view.

improve the lexical diversification from the input.

Case Studies The qualitative effect of the lexical
and syntactical conditions on the model output is
also of interest. To intuitively display the effects
of conditions, we show some paraphrasing results
in Figure 5. In detail, GCPG-L can generate sen-
tence “A powerful healing energy comes out of
love.” that contain pre-specified keywords “[heal-
ing]". However, lexical condition provides less
information about syntactical controlling. In com-
parison, GCPG-LS shows better performances on
both controllability of lexical items and syntax.

5 Conclusions

In this paper, we propose a general framework
GCPQG, enabling flexibly combine lexical and syn-
tactical conditions and exploring their mutual ef-
fectiveness. Under GCPG, we provide SSE that
allows GCPG to directly model syntax information
from natural sentences and better utilize PLMs. As
we tentatively give a successful implementation of
leveraging two types of conditions in a unified cir-
cumstance, such paradigm deserves a closer and
more detailed exploration. In the future, we will
investigate to uniformly represent these conditions
in a more superior way.

References

Tien-Cuong Bui, Van-Duc Le, Hai-Thien To, and Sang-
Kyun Cha. 2021. Generative pre-training for para-
phrase generation by representing and predicting
spans in exemplars. In IEEE BigComp, pages 83—
90. IEEE.

Mingda Chen, Qingming Tang, Sam Wiseman, and
Kevin Gimpel. 2019. Controllable paraphrase gen-
eration with a syntactic exemplar. In ACL, pages
5972-5984. ACL.

Douglass Cutting, Julian Kupiec, Jan Pedersen, and
Penelope Sibun. 1992. A practical part-of-speech
tagger. In Third Conference on Applied Natural Lan-
guage Processing, pages 133-140.

Michael J. Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In WMT-ACL, pages 376—
380. ACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In NAACL, pages 4171-4186. ACL.

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao
Jiang, and Graham Neubig. 2021. Gsum: A general
framework for guided neural abstractive summariza-
tion. In NAACL, pages 4830—4842. ACL.

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-
ing the robustness of question answering systems to
question paraphrasing. In ACL, pages 6065-6075.
ACL.

Maarten Grootendorst. 2020. Keybert: Minimal key-
word extraction with bert.

Yunfan Gu, Yang Yugiao, and Zhongyu Wei. 2019. Ex-
tract, transform and filling: A pipeline model for
question paraphrasing based on template. In W-
NUT, pages 109-114.

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke
Zettlemoyer. 2018. Adversarial example generation
with syntactically controlled paraphrase networks.
In NAACL, pages 1875-1885. ACL.

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,
and Partha P. Talukdar. 2020. Syntax-guided con-
trolled generation of paraphrases. Trans. Assoc.
Comput. Linguistics, 8:330-345.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: denoising sequence-to-sequence pre-
training for natural language generation, translation,
and comprehension. In ACL, pages 7871-7880.
ACL.

Yinghao Li, Rui Feng, Isaac Rehg, and Chao Zhang.
2020. Transformer-based neural text generation
with syntactic guidance. CoRR, abs/2010.01737.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Zext Summariza-
tion Branches Out, pages 74-81, Barcelona, Spain.
ACL.

Dayiheng Liu, Yeyun Gong, Yu Yan, Jie Fu, Bo Shao,
Daxin Jiang, Jiancheng Lv, and Nan Duan. 2020a.
Diverse, controllable, and keyphrase-aware: A cor-
pus and method for news multi-headline generation.
In EMNLP, pages 6241-6250. ACL.

Mingtong Liu, Erguang Yang, Deyi Xiong, Yujie
Zhang, Chen Sheng, Changjian Hu, Jinan Xu, and
Yufeng Chen. 2020b. Exploring bilingual paral-
lel corpora for syntactically controllable paraphrase
generation. In IJCAI, pages 3955-3961. ijcai.org.

Nitin Madnani and Bonnie J. Dorr. 2010. Generating
phrasal and sentential paraphrases: A survey of data-
driven methods. Comput. Linguistics, 36(3):341—
387.

Jonathan Mallinson, Rico Sennrich, and Mirella Lapata.
2017. Paraphrasing revisited with neural machine
translation. In EACL, pages 881-893. ACL.

Louis Martin, Angela Fan, Eric de la Clergerie, An-
toine Bordes, and Benoit Sagot. 2020. Muss: Multi-
lingual unsupervised sentence simplification by min-
ing paraphrases. arXiv preprint arXiv:2005.00352.

Kathleen R. McKeown. 1983. Paraphrasing questions
using given and new information. Am. J. Comput.
Linguistics, 9(1):1-10.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In EMNLP, pages 404—411.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
vation of machine translation. In ACL, pages 311-
318. ACL.

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu,
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming
Zhou. 2020. Prophetnet: Predicting future n-gram
for sequence-to-sequence pre-training. In EMNLP,
volume EMNLP 2020 of Findings of ACL, pages
2401-2410. ACL.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual SMT system for paraphrase generation. In ACL,
pages 38-42. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS, pages 5998-6008.

John Wieting and Kevin Gimpel. 2018. Paranmt-50m:
Pushing the limits of paraphrastic sentence embed-
dings with millions of machine translations. In ACL,
pages 451-462. Association for Computational Lin-
guistics.

https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/n18-1170
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2010.01737
http://arxiv.org/abs/2010.01737
http://arxiv.org/abs/2010.01737
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://aclanthology.org/P12-2008/
https://aclanthology.org/P12-2008/
https://aclanthology.org/P12-2008/
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042

Kexin Yang, Wenqgiang Lei, Dayiheng Liu, Weizhen Qi,
and Jiancheng Lv. 2021. Pos-constrained parallel
decoding for non-autoregressive generation. In ACL,
pages 5990-6000. ACL.

Daojian Zeng, Haoran Zhang, Lingyun Xiang, Jin
Wang, and Guoliang Ji. 2019. User-oriented para-
phrase generation with keywords controlled network.
IEEE Access, 7:80542-80551.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with BERT. In ICLR. Open-
Review.net.

10

https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.1109/ACCESS.2019.2923057
https://doi.org/10.1109/ACCESS.2019.2923057
https://doi.org/10.1109/ACCESS.2019.2923057
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

