
GCPG: A General Framework for Controllable Paraphrase Generation

Anonymous ACL submission

Abstract

Controllable paraphrase generation (CPG) in-001
corporates various external conditions to ob-002
tain desirable paraphrases. However, exist-003
ing works only highlight a special condition004
under two indispensable aspects of CPG (i.e.,005
lexically and syntactically CPG) individually,006
lacking a unified circumstance to explore and007
analyze their effectiveness. In this paper, we008
propose a general controllable paraphrase gen-009
eration framework (GCPG), which represents010
both lexical and syntactical conditions as text011
sequences and uniformly processes them in012
an encoder-decoder paradigm. Under GCPG,013
we reconstruct commonly adopted lexical con-014
dition (i.e., Keywords) and syntactical con-015
ditions (i.e., Part-Of-Speech sequence, Con-016
stituent Tree, Masked Template and Sentential017
Exemplar) and study the combination of the018
two types. In particular, for Sentential Ex-019
emplar condition, we propose a novel exem-020
plar construction method — Syntax-Similarity021
based Exemplar (SSE). SSE retrieves a syn-022
tactically similar but lexically different sen-023
tence as the exemplar for each target sentence,024
avoiding exemplar-side words copying prob-025
lem. Extensive experiments demonstrate that026
GCPG with SSE achieves state-of-the-art per-027
formance on two popular benchmarks. In addi-028
tion, the combination of lexical and syntactical029
conditions shows the significant controllable030
ability of paraphrase generation, and these em-031
pirical results could provide novel insight to032
user-oriented paraphrasing.033

1 Introduction034

Paraphrase generation (Madnani and Dorr, 2010)035

refers to restating a given sentence into an alterna-036

tive surface form while keeping the semantics un-037

changed. It is of long-standing interest (McKeown,038

1983), with various applications such as question039

answering (Gan and Ng, 2019), machine transla-040

tion (Mallinson et al., 2017), and sentence simplifi-041

cation (Martin et al., 2020). However, a sentence042

There was a picture of the revolving earth that have emerged.

There was a picture of the
rotating earth that showed up.

showed up rotating

Lexically
Controlling

[Keywords]

A picture of the revolving
earth emerged.

Syntactically
Controlling

[Exemplar]
The job at school went well.

A picture of the rotating
earth showed up.

Combination

Figure 1: A toy example to explain what effect lexi-
cally controlling and syntactically controlling have on
paraphrasing.

can be re-expressed in various surface forms. Lack- 043

ing control might result in undesirable results (Gu 044

et al., 2019). 045

To obtain desirable surface forms, most recent 046

works focus on controllable paraphrase generation 047

(CPG) by incorporating external conditions. Ex- 048

isting efforts to CPG can be roughly divided into 049

two types: lexically and syntactically CPG. Lex- 050

ically CPG is concerned with what to say, which 051

generates paraphrases that contain pre-specified 052

keywords. As shown in Figure 1, a lexically CPG 053

model needs to generate a paraphrase that contains 054

the given keyword “showed up”. To achieve it, 055

a sequence-to-sequence model equipped with the 056

copy mechanism is commonly used (Zeng et al., 057

2019). Different from lexically CPG, syntactically 058

CPG concentrates on how to say it, generating a 059

paraphrase that conforms to the syntax of a given 060

exemplar (i.e., a sentence illustrating certain syn- 061

tax patterns). Substantial efforts have been made 062

on constructing syntactical features of the given 063

exemplar. For example, Kumar et al. (2020) incor- 064

porate a full syntactic tree of the exemplar to guide 065

paraphrasing; Bui et al. (2021) construct a masked 066

template to direct generation by masking words 067

with certain Part-of-Speech (POS) type of exem- 068

plar; Chen et al. (2019) directly use the sentential 069

exemplar. Since sentential exemplars are only avail- 070

able for testing, they have to manufacture exem- 071

plars for training by replacing certain words from 072

1

the target sentence. Despite the progress on the two073

types of conditions individually, what to say and074

how to say it are both aspects of vital importance075

for CPG (Kumar et al., 2020). Furthermore, there076

lacks a unified framework to study the effectiveness077

of these conditions and their joint utilization.078

To fill this gap, we propose a General079

Controllable Paraphrase Generation framework080

(GCPG) to jointly include both lexically and syn-081

tactically CPG in a unified model. The key idea082

is to reconstruct both lexical and syntactical con-083

ditions as text sequences and process them in a084

text-to-text encoder-decoder paradigm. This also085

allows GCPG to easily utilize the strong language086

modeling capacity of pre-trained language mod-087

els (PLMs), which have demonstrated great poten-088

tial (Bui et al., 2021) yet rarely been explored under089

the topic of CPG. For the lexical condition, we con-090

catenate the pre-specified keywords as a sequence091

while exploring different methods to pre-specify092

keywords from rule-based to model-based. As for093

syntactical conditions, we reconstruct commonly094

used syntactic features as sequences, such as Lin-095

earised Constituent Tree (Iyyer et al., 2018) and096

masked template based on word mask (Bui et al.,097

2021). Besides the manufactured syntax features,098

we hypothesize that directly using the exemplar099

is more effective as it can benefit from the pow-100

erful sentence modeling capability of PLMs. To101

construct the exemplar for training, we propose102

a novel exemplar construction method as Syntax-103

Similarity based Exemplar (SSE). Specifically, we104

use a sentence that is syntactically similar but lex-105

ically different from the target sentence, which is106

retrieved in a self-constructed exemplar dictionary107

based on the training set. This is different from108

existing methods that construct exemplar through109

modifying target sentences (Chen et al., 2019), alle-110

viating exemplar-side words copying problem (Bui111

et al., 2021) brought by Chen et al. (2019).112

We examine GCPG on two popular benchmark113

datasets. Those discussions include not only perfor-114

mances of different conditions and their combina-115

tions, but also the effectiveness of GCPG instanti-116

ated by different PLMs. Experiments demonstrate117

that GCPG consistently shows significant perfor-118

mances when tested by three different methods to119

pre-specify keywords. For syntactical CPG, GCPG120

with SSE obtains 13.95/24.31/18.64 ROUGE-1/2/L121

and 16.38 BLEU-4 over the previous state-of-the-122

art (SOTA) model (Bui et al., 2021). Besides, the123

combination of lexical and syntactical conditions 124

show encouraging controllability of paraphrase 125

generation in both quantitative and qualitative anal- 126

ysis. The main contributions are as follows: 127

• We propose GCPG, a general framework to 128

jointly include both lexically and syntactically 129

controllable paraphrasing. It is simple but 130

effective, enabling flexible combinations of 131

conditions by reconstructing them into text se- 132

quences and processing them in a text-to-text 133

encoder-decoder paradigm. Those properties 134

allow GCPG to easily adapt to mainstream 135

pre-trained language models and utilize pow- 136

erful language modeling capacity, which is 137

rarely explored in CPG. 138

• We provide a novel exemplar construction 139

method SSE under the syntactical condition. 140

It allows GCPG to directly model syntax in- 141

formation from natural sentences without any 142

manufactured syntax features, while alleviat- 143

ing the exemplar-side words copying problem. 144

2 Related Work 145

In this section, we summarize existing works 146

on syntactically and lexically CPG. Syntactically 147

CPG generates a paraphrase constrained by a pre- 148

specified sentence of a certain syntax structure 149

namely exemplar. However, the exemplar is only 150

available during inference, resulting in a key chal- 151

lenge: obtaining manual exemplars for existing 152

paraphrasing training datasets is prohibitively ex- 153

pensive. To address this, some of the previous 154

works construct syntactical features from target 155

sentences during training, such as POS Tagging, 156

Constituent Tree, mask template as illustrated in 157

Table 1. For instance, SCPN (Iyyer et al., 2018) 158

makes the first attempt to introduce Linearised Con- 159

stituent Tree (LCT) of target sentence into para- 160

phrasing, where LCT is predicted based on pre- 161

defined parse templates. Similarly, GuiG (Li et al., 162

2020) proposes two models to expand a partial tem- 163

plate LCT and generate paraphrasing, respectively. 164

Different from using LCT, SGCP (Kumar et al., 165

2020) introduces a graph encoder to encode the 166

Constituent Tree of exemplar as the condition. Be- 167

sides, masked template replaces several words of 168

the exemplar with a special token to form a tem- 169

plate as the condition. For example, BCPG (Liu 170

et al., 2020b) follows BERT (Devlin et al., 2019) to 171

randomly mask exemplar words, ParafraGPT (Bui 172

2

Work

Syntactical Condition

POS Tagging Constituent Tree Masked Template Sentential Exemplar

SCPN (2018) ! (In Tree) ! (LCT Templates) % %

CGEN (2019) ! (In Exemplar) % % ! (Replace Words)
BCPG (2020b) % % ! (Randomly) %

GuiG (2020) % ! (Expanded LCT) % %

SGCP (2020) ! (In Tree) ! (Tree Structure) % %

ParafraGPT (2021) ! (In Word MT) % ! (Certain POS) %

GCPG ! (POS Sequence) ! (LCT) ! (Certain POS) ! (SSE)

Table 1: A comparison of different conditions under syntactically CPG. LCT: Linearised Constituent Tree. The
proposed framework GCPG reconstructs them as text sequences and we have experimented with all four forms.

et al., 2021) further masks exemplar words with173

certain POS types. However, Chen et al. (2019)174

advocate to directly utilize the sentential exemplar175

(i.e., the sentence) as the condition, because they176

believe “any syntactically valid sentence is a valid177

exemplar". Since exemplar is only available in the178

testing set, they construct exemplar by replacing179

words of the target sentence with others that have180

the same POS type. Besides, lexically CPG con-181

straints paraphrasing with pre-specified keywords,182

which is rarely explored but undoubtedly indis-183

pensable in CPG. Zeng et al. (2019) make the first184

attempt to integrate keywords with copy mecha-185

nism. Despite their progress, existing works only186

focus on a special condition under either lexically187

or syntactically CPG. In comparison, GCPG jointly188

includes lexically and syntactically CPG, flexibly189

combining conditions in a unified circumstance.190

3 Methodology191

3.1 GCPG Framework192

Before introducing GCPG, we first give the defi-193

nition of controllable paraphrase generation with194

external conditions. Given a source sentence x195

and a variety of conditions c, the model generates196

paraphrase y = (y1, y2, ..., yT) by:197

p(y|x, c) =
T∏
t=1

p(yt|y<t,x, c; θ), (1)198

where θ are the model parameters trained by max-199

imizing the conditional likelihood of outputs in a200

parallel corpus. Given this definition, the forms of201

conditions c might be varied, such as pre-defined202

keywords and Constituent Parse Tree. To uni-203

formly encode these conditions and investigate204

their effectiveness, we propose a general frame-205

work GCPG. GCPG contains a standard encoder-206

Is anyone home ?

…S NP

Source Sentence

Pre-trained Language Model

Transformer Decoder

[SEP]

Conditions

POS SequenceKeywords

No one 's home ?

anyone
Constituent Tree Sentential Exemplar

Is this …VBZ NN… …[Mask]

Masked Template

Is

Figure 2: An overview of GCPG, the source sentence
and separated condition are concatenated as input.

decoder paradigm, which allows any mainstream 207

PLMs to adapt to this task rapidly. Meanwhile, 208

GCPG can flexibly use the combinations of in- 209

cluded conditions by concatenating them as one 210

sequence with “[SEP]”. As shown in Figure 2, the 211

source sentence “No one’s home ?” is concatenated 212

with optional sequential conditions by the separator 213

signal “[SEP]”, then fed into the model. Afterward, 214

the model auto-regressively generates “Is anyone 215

home?” as the final result. 216

3.2 Conditions under GCPG 217

3.2.1 Syntactical Condition 218

Syntactically CPG requests a syntax exemplar to 219

constrain the syntax structure of paraphrase. How- 220

ever, exemplars are only available in the testing set 221

of existing paraphrasing datasets. To train a syntac- 222

tically CPG model, we construct a syntactical con- 223

dition based on the target sentences in the training 224

set. During inference, we apply the same strategy 225

to obtain the corresponding syntactical conditions 226

from exemplars in the testing set. We explore four 227

syntactical conditions in this work, as follows: 228

POS Tagging is one of most simple solutions in 229

3

Exemplar Dictionary

...
Argmin Syntax Edit Distance

They almost finished.

Source No one’s home?

Target Is anyone home?

Extracted

Raw Training Pair

Enhanced Training Items

SQ (NP) (ADVP) (?)

SQ (NP) (NP) (?)

Is this the code word?
...

Do you smell burning?

Source No one’s home?

Target Is anyone home?

Exemplar Is this the code word ? SQ (NP) (VP (NP)) (?)

S (NP) (ADVP) (VP) (.)

Figure 3: An overview of SSE. We take Truncated LCT
as the sequential syntax structure here.

modeling the syntax structure (Cutting et al., 1992),230

which could be effectively implemented and show231

promising performance in various NLP tasks (Yang232

et al., 2021). We investigate POS Tagging as an233

independent condition, which is rarely explored in234

CPG. In detail, we extract POS sequence of target235

sentence by CoreNLP1 as the condition. To learn236

these POS signals with PLMs, we regard these POS237

tokens as special ones and add them into the word238

vocabulary of PLMs.239

Constituent Tree is a widely used condition for240

syntax controlling while paraphrasing. Here, we241

explore two kinds of LCT, i.e., full-fledged LCT242

and Truncated LCT. For the full-fledged LCT con-243

dition, we extract the complete sequential Con-244

stituent Tree from the target sentence for training245

and exemplar for testing, based on the off-the-shelf246

tools of CoreNLP. We further explore the Trun-247

cated LCT condition, which is the sequence that248

removing POS-level tokens in full-fledged LCT.249

Compared with full-fledged LCT, Truncated LCT250

drastically shortens the input length.251

Masked Template is first introduced in Liu et al.252

(2020b), which randomly masks words of the target253

sentence to form a syntax template as the condition.254

To verify the effectiveness of this method in GCPG255

circumstance, we follow the current SOTA Bui et al.256

(2021) to construct a masked template by substitut-257

ing all nouns, adjectives, adverbs, and verbs with258

a special token in the exemplar. Similarly, this259

strategy is applied to the target sentences during260

training and the given exemplars during inference.261

Sentential Exemplar is the most straightforward262

1https://stanfordnlp.github.io/
CoreNLP/index.html

way for syntactically CPG, which directly uses the 263

sentential exemplar as the condition. In contrast to 264

the above three syntactical conditions, Sentential 265

Exemplar uses natural sentences to represent desir- 266

able syntax structure, without introducing any spe- 267

cial token which does not appear during PLMs pre- 268

training. We argue that this way can make better 269

use of PLMs. However, the previous method (Chen 270

et al., 2019) suffers from the exemplar-side words 271

copying problem during testing, which might be 272

caused by the noticeable words overlap with the 273

target sentence in constructing sentential exemplar 274

during training. To alleviate this problem, we pro- 275

pose Syntax-Similarity based Exemplar (SSE) to 276

enhance sentential exemplar condition. 277

An overview of our SSE method is demonstrated 278

in Figure 3. To alleviate the exemplar-side words 279

copying issue, the proposed SSE constructs Senten- 280

tial Exemplar by retrieving a syntactically similar 281

but lexically different sentence for each target sen- 282

tence during training. To achieve that, we construct 283

an exemplar dictionary that contains the syntactical 284

key-value mapping from the syntax structure k to 285

its corresponding natural sentence v. Each syn- 286

tactical key k ∈K is a Truncated LCT sequence, 287

and its value is a randomly selected natural sen- 288

tence that can be assigned to this Truncated LCT 289

sequence. During training, given a data pair 〈x,y〉 290

and the Truncated LCT s of y, we select a syntac- 291

tical key k∗ by calculating the syntax edit distance 292

Dsyn between s and each syntactical key in the 293

exemplar dictionary, which can be formulated as: 294

k∗ = argmin(Dsyn(s,k))

= arg min
k∈K

(
LevEdit(s,k)
max(|s|, |k|)

),
(2) 295

where LevEdit(·) denotes the token-level Leven- 296

shtein edit distance between two sequences and 297

| · | denotes the token-level length of the sequence. 298

We assign the corresponding sentence v∗, which is 299

related to k∗, as the training exemplar. 300

Lexical Condition Lexically CPG uses pre- 301

specified keywords to constrain paraphrasing, 302

which requires a paraphrasing dataset containing 303

〈sentence, keywords, paraphrase〉 triples. Because 304

the original dataset is formatted as 〈sentence, para- 305

phrase〉, we need to pre-specify keywords for each 306

data item. Following Zeng et al. (2019), we au- 307

tomatically extract keywords from the target sen- 308

tence as the condition in the training stage. Be- 309

sides, as also lacking manual keywords for each 310

4

https://stanfordnlp.github.io/CoreNLP/index.html
https://stanfordnlp.github.io/CoreNLP/index.html

testing pair, we carry out two strategies for in-311

ference. On the one hand, we directly extract312

keywords from references as conditions follow-313

ing Zeng et al. (2019). On another, a standard314

sequence-to-sequence model is used to predict tar-315

get keywords only from source sentences as condi-316

tions while testing, as described in Liu et al.(2020a).317

Specifically, we investigate three representative318

keyword extraction methods to verify the effec-319

tiveness of GCPG, including rule-based TF-IDF,320

TextRank (Mihalcea and Tarau, 2004), and model-321

based KeyBERT (Grootendorst, 2020). Each322

method filters out the stop words and punctuation,323

and guarantees the extracted keywords do not ap-324

pear in the corresponding source sentence. The325

maximum number of keywords is set to 3. Besides,326

we use a special token “[NONE]” when there are327

no keywords extracted.328

4 Experiments329

In this section, we individually evaluate syntacti-330

cally and lexically conditions under GCPG, then331

examine their combinations. Finally, detailed anal-332

yses on properties of GCPG are provided.333

Datasets Following previous works (Kumar et al.,334

2020; Bui et al., 2021), we evaluate GCPG on335

two datasets: (1) ParaNMT-small (Chen et al.,336

2019) is a subset of ParaNMT-50M dataset (Wiet-337

ing and Gimpel, 2018), which is collected via back-338

translation referring to English sentences. It con-339

tains 500K training pairs formatted as 〈sentence,340

paraphrase〉, and 1.3K manually labeled data triples341

formatted as 〈sentence, exemplar, paraphrase〉342

(0.8K for testing and 0.5K for validation). In each343

triple, exemplar is a sentence that has the same syn-344

tax as paraphrase but is semantically different from345

sentence. (2) QQP-Pos (Kumar et al., 2020) is se-346

lected from Quora Question Pairs (QQP) dataset. It347

contains about 140K training pairs and 3K/3K data348

triples for testing/validation. The format of dataset349

is the same as ParaNMT-small.350

4.1 Syntactically Controllable Paraphrasing351

We explore four syntactical conditions recon-352

structed by GCPG on the ParaNMT-small dataset,353

then compare SSE with baselines on two datasets.354

Baselines We first choose two direct return-input355

baselines as dataset quality indicators: (1) Source-356

as-Output copies inputs as outputs. (2) Exemplar-357

as-Output regards exemplars as outputs. Next,358

we evaluate the following text generation models,359

while exploring performances of respectively in- 360

stantiating GCPG with them in § 4.3. (3) Trans- 361

former (Vaswani et al., 2017), the conventional 362

version in the original paper. (4) BART (Lewis 363

et al., 2020) has a denoising autoencoder for pre- 364

training sequence-to-sequence models, and BART- 365

large2 is used. (5) ProphetNet (Qi et al., 2020) 366

is a pre-training model with a self-supervised ob- 367

jective, and ProphetNet-large is used. Finally, we 368

compare GCPG with mainstream competitive mod- 369

els as follows. (6) SCPN (Iyyer et al., 2018) has 370

two encoders to encode source sentence and LCT 371

separately, then constrain generation with soft at- 372

tention mechanism3. (7) CGEN (Chen et al., 2019) 373

encodes exemplars into latent vector to guide para- 374

phrasing4. (8) SGCP (Kumar et al., 2020) uses a 375

graph encoder to process the exemplar Constituent 376

Trees as the condition5. (9) ParafraGPT (Bui et al., 377

2021) masks words with certain POS types in the 378

target sentence as condition, then builds a para- 379

phrasing generator based on a pre-trained GPT2. 380

Syntactical Conditions We first examine condi- 381

tions with manufactured syntax features, including 382

(10) POS Sequence, (11) LCT-Truncated is the LCT 383

sequence without POS-level information, (12) LCT 384

is the full-fledged Linearised Constituent Tree se- 385

quence, and (13) Masked Template. Then, two im- 386

plementations of SSE are evaluated: (14) SSE-POS 387

Sequence uses POS Sequence to measure syntax 388

similarity, and (15) SSE-LCT-Truncated uses LCT- 389

Truncated as measurement. 390

Implementation and Hyper-parameters All 391

GCPG models are instantiated by ProphetNet- 392

large (Qi et al., 2020), which are implemented with 393

Fairseq6. We employ the original hyper-parameter 394

setting of ProphetNet-large7 to train GCPG. During 395

inference, the beam size and length penalty are set 396

to 4 and 1.2 following Bui et al. (2021). 397

Metrics Following previous works (Iyyer et al., 398

2018; Bui et al., 2021), we evaluate generating 399

results on six metrics, including BLEU-4 (Pap- 400

ineni et al., 2002), ROUGE-1 (R-1), ROUGE- 401

2 (R-2), ROUGE-L (R-L) (Lin, 2004), Me- 402

teor (MTR) (Denkowski and Lavie, 2014), and 403

2https://github.com/pytorch/fairseq/
tree/master/examples/bart

3https://github.com/miyyer/scpn
4https://github.com/mingdachen/

syntactic-template-generation
5https://github.com/malllabiisc/SGCP
6https://github.com/pytorch/fairseq
7https://github.com/microsoft/

ProphetNet

5

https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/pytorch/fairseq/tree/master/examples/bart
https://github.com/miyyer/scpn
https://github.com/mingdachen/syntactic-template-generation
https://github.com/mingdachen/syntactic-template-generation
https://github.com/malllabiisc/SGCP
https://github.com/pytorch/fairseq
https://github.com/microsoft/ProphetNet
https://github.com/microsoft/ProphetNet

Model iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

ParaNMT-small

(1) Source-as-Output -17.05 18.50 23.10 / 47.70 / 12.00 28.80 86.20 12.00
(2) Exemplar-as-Output 2.31 3.30 24.40 / 7.50 / 29.10 12.10 74.20 5.90

(3) Transformer 4.72 14.66 51.05 / 26.88 / 51.32 30.67 91.30 12.71
(4) BART 6.08 17.78 52.37 / 27.02 / 51.52 31.57 91.99 11.92
(5) ProphetNet 4.67 18.46 55.29 / 31.17 / 55.18 32.42 92.32 11.78

(6) SCPN (2018) – 6.40 30.30 / 11.20 / 34.60 14.60 73.70 9.10
(7) CGEN (2019) 8.14 13.60 44.80 / 21.00 / 48.30 24.80 79.50 6.70
(8) SGCP (2020) 6.95 16.40 49.60 / 22.90 / 50.50 27.20 80.50 6.80
(9) ParafraGPT (2021) 8.61 14.54 49.67 / 22.42 / 51.29 27.83 90.78 8.22

(10) GCPG (POS Sequence) 11.96 19.97 56.20 / 32.36 / 58.99 32.68 92.57 8.45
(11) GCPG (LCT-Truncated) 12.74 22.54 59.98 / 36.81 / 62.61 37.04 93.39 8.34
(12) GCPG (LCT) 11.92 19.52 55.75 / 30.54 / 58.88 31.35 92.42 7.84
(13) GCPG (Masked Template) 9.52 16.85 53.60 / 27.96 / 56.31 31.84 92.21 8.84
(14) GCPG (SSE-POS Sequence) 10.07 23.82 60.93 / 37.36 / 61.98 36.15 91.55 8.94
(15) GCPG (SSE-LCT-Truncated) 12.32 26.24 63.62 / 40.76 / 64.98 39.79 93.86 8.27

QQP-Pos

(16) Source-as-Output -17.96 17.20 51.90 / 26.20 / 52.90 31.10 84.90 16.20
(17) Exemplar-as-Output 10.64 16.80 38.20 / 20.50 / 43.20 17.60 78.20 4.80

(18) Transformer 7.63 23.44 54.58 / 30.48 / 56.63 32.60 93.18 11.84
(19) BART 3.14 23.07 56.43 / 32.12 / 57.64 34.26 93.58 13.05
(20) ProphetNet 6.43 25.79 58.40 / 34.52 / 59.98 35.75 93.88 11.74

(21) SCPN (2018) – 15.60 40.60 / 20.50 / 44.60 19.60 77.60 9.10
(22) CGEN (2019) 17.60 29.94 58.53 / 37.42 / 61.74 32.90 92.82 6.43
(23) SGCP (2020) 19.97 38.00 68.10 / 45.70 / 70.20 41.30 94.53 6.80
(24) ParafraGPT (2021) 21.19 35.86 66.71 / 43.70 / 68.94 40.26 94.54 6.11

(25) GCPG (SSE-LCT-Truncated) 28.10 50.62 77.32 / 59.04 / 79.02 51.45 96.49 5.02

Table 2: Results of different syntactical conditions and comparisons with baselines on ParaNMT-small and QQP-
Pos datasets. B-R: BLEU-R. R-1:ROUGE-1. R-2: ROUGE-2. R-L: ROUGE-L. MTR:METEOR. BS:BERTScore.
↑ means higher score is better where ↓ is exactly the opposite. The highest numbers are in bold.

BERTScore (BS) (Zhang et al., 2020). Besides,404

Source-as-Output will also get a high BLEU score405

and BERTScore, we introduce iBLEU (Sun and406

Zhou, 2012) for more precise evaluation. As a407

variant of BLEU, iBLEU considers both fidelity to408

reference and diversification from input:409

iBLEU = αBLEU-R− (1− αBLEU-S) ,

BLEU-R = BLEU-4 (output, reference),

BLEU-S = BLEU-4 (output, input),

(3)410

where the constant α is set to 0.7, as in the original411

paper. Finally, for syntactical condition evaluation,412

we follow Kumar et al. (2020) to calculate Tree-413

Edit Distance (TED)8 between the Constituency414

Parse Trees of both output and reference.415

Results As shown in Table 2, the main conclu-416

sions are: (1) SSE consistently and significantly417

outperforms conditions that constructed with man-418

ufactured syntax features (Rows 14-15 vs. Rows419

8We use the evaluation tool implemented by SGCP.

10-13). (2) GCPG with SSE gets significant im- 420

provement over the previous SOTA (Row 15/25 421

vs. Row 14/24). (3) All syntactical conditions re- 422

constructed in GCPG outperform baselines (Rows 423

10-15 vs. Rows 6-9), demonstrating the superiority 424

of GCPG paradigm. 425

4.2 Lexically Controllable Paraphrasing 426

As mentioned in § 3.2, we use three different key- 427

word extraction methods to pre-specify keywords 428

and comprehensively evaluate the GCPG: (1) TF- 429

IDF (2) TextRank (Mihalcea and Tarau, 2004), and 430

(3) KeyBERT (Grootendorst, 2020). Meanwhile, 431

we follow the implementation settings in § 4.1. 432

Metrics For lexical condition, it should be noted 433

that there is a lack of the explicit request of de- 434

sirable keywords in the testing set. A generated 435

paraphrase hinted by model predicted keywords 436

might get a low score in BLEU, although humans 437

consider it reasonable. This is because paraphras- 438

ing models might focus on keywords that are not 439

6

Condition iBLEU ↑ B-R ↑ R-1 / R-2 / R-L ↑ MTR ↑ BS ↑ TED ↓

Keywords Extraction, GCPG instantiated by ProphetNet

(1) GCPG (None) 4.67 18.46 55.29 / 31.17 / 55.18 32.42 92.32 11.78
(2) GCPG (TF-IDF) 10.07 23.04 61.92 / 38.68 / 61.71 36.97 92.86 10.79
(3) GCPG (TextRank) 8.16 19.63 56.04 / 32.08 / 56.54 33.60 92.45 12.47
(4) GCPG (KeyBERT) 11.03 24.12 60.92 / 38.00 / 61.14 35.41 92.79 10.26
(5) GCPG (KeyBERT (Upper Bound)) 16.06 28.64 67.81 / 43.99 / 66.30 40.27 93.44 9.98

Keywords (KeyBERT) + Syntactical Condition, GCPG instantiated by ProphetNet

(6) GCPG (KeyBERT + POS Sequence) 15.10 25.22 62.96 / 39.04 / 65.32 36.42 90.96 8.01
(7) GCPG (KeyBERT + LCT-Truncated) 15.38 26.80 66.07 / 43.52 / 68.07 39.53 90.56 8.08
(8) GCPG (KeyBERT + LCT) 14.47 23.52 61.92 / 36.33 / 64.38 34.73 92.74 8.00
(9) GCPG (KeyBERT + Mask Template) 12.13 20.98 58.83 / 33.58 / 61.01 35.02 92.67 8.44
(10) GCPG (KeyBERT + SSE-POS) 15.67 31.02 66.85 / 45.30 / 68.48 40.12 90.39 7.95
(11) GCPG (KeyBERT + SSE-LCT-Truncated) 15.73 30.92 68.40 / 46.73 / 69.93 41.98 94.34 7.95

Condition (11), GCPG instantiated by Different Models

(12) GCPG-LS (Transformer) 11.22 21.26 60.94 / 37.10 / 62.52 35.77 92.67 9.21
(13) GCPG-LS (BART) 14.23 26.80 66.32 / 44.97 / 67.86 40.60 93.90 9.51
(14) GCPG-LS (ProphetNet) 15.73 30.92 68.40 / 46.73 / 69.93 41.98 94.34 7.95

Table 3: Performance of different conditions and combinations under GCPG on ParaNMT-small.

consistent with the single reference. Therefore,440

we evaluate GCPG in three settings. First, follow-441

ing Liu et al.(2020a), we use a keywords prediction442

model to generate top-k groups of keywords, which443

are fed into GCPG to generate k paraphrases. Then444

the sentence that has the highest BLEU with the445

reference is selected as the final output. k is set446

to 4 as well as beam size. Note that we use this447

setting to report the final results unless otherwise448

specified. Second, we further conduct human eval-449

uations on the keyword condition based on Key-450

BERT (The details are in § 4.3). We denote it451

as “GCPG-L (k=1)”. Here “k=1” means GCPG452

only produces one paraphrase for each input, con-453

strained by the top-1 set of keywords produced by454

KeyBERT. Third, following Zeng et al. (2019), we455

directly extract keywords from references as the456

condition, marked with “(Upper Bound)”.457

Results As shown in the first five rows of Table 3,458

KeyBERT outperforms other two keyword extrac-459

tion methods. Besides, GCPG with keyword condi-460

tion significantly performs better than GCPG with-461

out keyword condition, which verifies the lexically462

controllable ability of our GCPG.463

4.3 Combinations464

We first discuss combinations of lexical and syn-465

tactical conditions, and then evaluate GCPG in-466

stantiated by different PLMs. To facilitate the467

description, we define that “GCPG-L” denotes468

GCPG with the keyword condition extracted by469

KeyBERT, “GCPG-S” is GCPG with the SSE-LCT-470

Truncated condition, and “GCPG-LS” indicates 471

the combination of conditions in “GCPG-L” and 472

“GCPG-S”. Meanwhile, GCPG is also instantiated 473

by ProphetNet-large. 474

Metrics We follow the metrics in § 4.1, yet the 475

automatic evaluations can not fully capture the flu- 476

ency and the quality of the generation results on 477

CPG. Especially for TED, as the ParaNMT-small 478

contains various noise data points, it is optimistic to 479

assume that the corresponding constituency parse 480

tree could be well aligned (Kumar et al., 2020). 481

Therefore, we conduct human evaluation on both 482

two datasets following Kumar et al.(2020). 100 test 483

samples are randomly selected from each dataset. 484

Then, 5 crowdsource evaluators are shown a source 485

sentence and the corresponding reference, then 486

asked to rate model results in three categories: 487

whether the paraphrase remains loyalty to the 488

source sentence, the fluency of paraphrase, and 489

syntax similarity with gold reference. Scores are 490

ranged from 1 to 4, and the higher score is better. 491

Results As shown in Table 3, the main conclusions 492

are: (1) Combinations of lexical and syntactical 493

conditions get consistently further improvements 494

compared with employing lexical condition individ- 495

ually (Rows 6-11 vs. Row 4). (2) GCPG can utilize 496

the strong language modeling capacity of main- 497

stream PLMs and show encouraging performances 498

(Row 12-13 vs. Row 14). Then, we illustrate hu- 499

man evaluations in Table 4. GCPG with lexical 500

condition (GCPG-L (k=1)) outperforms baselines 501

in meaning and fluency, yet poor in syntax similar- 502

7

Model Loyalty Fluency Syntax All

ParaNMT-small

CGEN 1.47 2.13 1.81 5.41
ParafraGPT 1.86 2.42 2.05 6.33
GCPG-L (k=1) 2.94 3.63 2.29 8.86
GCPG-LS (k=1) 3.09 3.51 2.46 9.06

QQP-Pos

CGEN 1.72 2.52 2.22 6.46
ParafraGPT 2.43 2.91 2.61 7.95
GCPG-L (k=1) 3.00 3.54 2.43 8.97
GCPG-LS (k=1) 2.97 3.43 2.81 9.21

Table 4: Results of Human evaluation.

Model
BLEU-Exemplar ↓

ParaNMT-small QQP-Pos

ParafraGPT 7.32 24.31
GCPG-S 2.63 23.17

Reference 3.30 16.80

Table 5: GCPG can significantly reduce BLEU-
Exemplar score compared with previous SOTA.

ity. More importantly, the combination of lexical503

and syntactical conditions (GCPG-LS (k=1)) shows504

significantly improvements on all three scores.505

4.4 Analyses and Discussions506

We conduct discussions to shed light on other inter-507

esting properties of GCPG. For the lack of space,508

we take discussions with GCPG instantiated by509

ProphetNet-large.510

Exemplar-side Words Copying Problem We cal-511

culate BLEU-4 between model outputs and exem-512

plars. As shown in Table 5, GCPG with SSE513

(i.e., GCPG-S) can significantly reduce BLEU-514

Exemplar comparing with ParafraGPT, gets 4.69 /515

1.14 improvements on two datasets, demonstrating516

that SSE effectively alleviates this problem.517

Generating Novel Grams Following Dou518

et al.(2021), we further investigate generating519

novel expressions under CPG settings, which is520

also important for paraphrasing. To address this521

issue, the number of novel n-grams is counted522

in the model output. Specifically, these n-grams523

appear in gold references but not in source524

sentences. After normalized by the total number of525

n-grams, we calculate the recall of novel n-grams.526

It can be seen that GCPG indeed generates novel527

expressions from Figure 4. The combination528

version GCPG-LS gets the best result, which529

means combination of two types of conditions may530

0

5

10

15

20

25

1-grams 2-grams 3-grams 4-grams 1-grams 2-grams 3-grams 4-grams

ParaNMT QQP-Pos

R
ec

al
l o

f N
ov

el
 n

-g
ra

m
s

(%
)

ProphetNet GCPG-L GCPG-LS

Figure 4: Recall of novel n-grams results.

Input

Exemplar

Reference

A powerful restorative energy emerges out of love.
There's one thing that makes me feel normal.

There is a powerful healing energy that emanates from loving.

GCPG-L A powerful healing energy comes out of love. [healing]

GCPG-LS There's a powerful healing energy that comes out of love. [healing]

Input
Exemplar
Reference

GCPG-L

GCPG-LS

We 'd climb the mountain and make a house there ?

Will we have a list of six demands ?
Will we build a house in the mountain?

Would we climb a mountain and build a house? [build]

Will we build a house in the mountain ? [build]

Figure 5: Samples of paraphrases. Words in “[]” are of-
fered by our keywords prediction model based on Key-
BERT. We highlight different parts for better view.

improve the lexical diversification from the input. 531

Case Studies The qualitative effect of the lexical 532

and syntactical conditions on the model output is 533

also of interest. To intuitively display the effects 534

of conditions, we show some paraphrasing results 535

in Figure 5. In detail, GCPG-L can generate sen- 536

tence “A powerful healing energy comes out of 537

love.” that contain pre-specified keywords “[heal- 538

ing]". However, lexical condition provides less 539

information about syntactical controlling. In com- 540

parison, GCPG-LS shows better performances on 541

both controllability of lexical items and syntax. 542

5 Conclusions 543

In this paper, we propose a general framework 544

GCPG, enabling flexibly combine lexical and syn- 545

tactical conditions and exploring their mutual ef- 546

fectiveness. Under GCPG, we provide SSE that 547

allows GCPG to directly model syntax information 548

from natural sentences and better utilize PLMs. As 549

we tentatively give a successful implementation of 550

leveraging two types of conditions in a unified cir- 551

cumstance, such paradigm deserves a closer and 552

more detailed exploration. In the future, we will 553

investigate to uniformly represent these conditions 554

in a more superior way. 555

8

References556

Tien-Cuong Bui, Van-Duc Le, Hai-Thien To, and Sang-557
Kyun Cha. 2021. Generative pre-training for para-558
phrase generation by representing and predicting559
spans in exemplars. In IEEE BigComp, pages 83–560
90. IEEE.561

Mingda Chen, Qingming Tang, Sam Wiseman, and562
Kevin Gimpel. 2019. Controllable paraphrase gen-563
eration with a syntactic exemplar. In ACL, pages564
5972–5984. ACL.565

Douglass Cutting, Julian Kupiec, Jan Pedersen, and566
Penelope Sibun. 1992. A practical part-of-speech567
tagger. In Third Conference on Applied Natural Lan-568
guage Processing, pages 133–140.569

Michael J. Denkowski and Alon Lavie. 2014. Meteor570
universal: Language specific translation evaluation571
for any target language. In WMT-ACL, pages 376–572
380. ACL.573

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and574
Kristina Toutanova. 2019. BERT: pre-training of575
deep bidirectional transformers for language under-576
standing. In NAACL, pages 4171–4186. ACL.577

Zi-Yi Dou, Pengfei Liu, Hiroaki Hayashi, Zhengbao578
Jiang, and Graham Neubig. 2021. Gsum: A general579
framework for guided neural abstractive summariza-580
tion. In NAACL, pages 4830–4842. ACL.581

Wee Chung Gan and Hwee Tou Ng. 2019. Improv-582
ing the robustness of question answering systems to583
question paraphrasing. In ACL, pages 6065–6075.584
ACL.585

Maarten Grootendorst. 2020. Keybert: Minimal key-586
word extraction with bert.587

Yunfan Gu, Yang Yuqiao, and Zhongyu Wei. 2019. Ex-588
tract, transform and filling: A pipeline model for589
question paraphrasing based on template. In W-590
NUT, pages 109–114.591

Mohit Iyyer, John Wieting, Kevin Gimpel, and Luke592
Zettlemoyer. 2018. Adversarial example generation593
with syntactically controlled paraphrase networks.594
In NAACL, pages 1875–1885. ACL.595

Ashutosh Kumar, Kabir Ahuja, Raghuram Vadapalli,596
and Partha P. Talukdar. 2020. Syntax-guided con-597
trolled generation of paraphrases. Trans. Assoc.598
Comput. Linguistics, 8:330–345.599

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-600
jan Ghazvininejad, Abdelrahman Mohamed, Omer601
Levy, Veselin Stoyanov, and Luke Zettlemoyer.602
2020. BART: denoising sequence-to-sequence pre-603
training for natural language generation, translation,604
and comprehension. In ACL, pages 7871–7880.605
ACL.606

Yinghao Li, Rui Feng, Isaac Rehg, and Chao Zhang.607
2020. Transformer-based neural text generation608
with syntactic guidance. CoRR, abs/2010.01737.609

Chin-Yew Lin. 2004. ROUGE: A package for auto- 610
matic evaluation of summaries. In Text Summariza- 611
tion Branches Out, pages 74–81, Barcelona, Spain. 612
ACL. 613

Dayiheng Liu, Yeyun Gong, Yu Yan, Jie Fu, Bo Shao, 614
Daxin Jiang, Jiancheng Lv, and Nan Duan. 2020a. 615
Diverse, controllable, and keyphrase-aware: A cor- 616
pus and method for news multi-headline generation. 617
In EMNLP, pages 6241–6250. ACL. 618

Mingtong Liu, Erguang Yang, Deyi Xiong, Yujie 619
Zhang, Chen Sheng, Changjian Hu, Jinan Xu, and 620
Yufeng Chen. 2020b. Exploring bilingual paral- 621
lel corpora for syntactically controllable paraphrase 622
generation. In IJCAI, pages 3955–3961. ijcai.org. 623

Nitin Madnani and Bonnie J. Dorr. 2010. Generating 624
phrasal and sentential paraphrases: A survey of data- 625
driven methods. Comput. Linguistics, 36(3):341– 626
387. 627

Jonathan Mallinson, Rico Sennrich, and Mirella Lapata. 628
2017. Paraphrasing revisited with neural machine 629
translation. In EACL, pages 881–893. ACL. 630

Louis Martin, Angela Fan, Éric de la Clergerie, An- 631
toine Bordes, and Benoît Sagot. 2020. Muss: Multi- 632
lingual unsupervised sentence simplification by min- 633
ing paraphrases. arXiv preprint arXiv:2005.00352. 634

Kathleen R. McKeown. 1983. Paraphrasing questions 635
using given and new information. Am. J. Comput. 636
Linguistics, 9(1):1–10. 637

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring- 638
ing order into text. In EMNLP, pages 404–411. 639

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 640
Jing Zhu. 2002. Bleu: a method for automatic eval- 641
uation of machine translation. In ACL, pages 311– 642
318. ACL. 643

Weizhen Qi, Yu Yan, Yeyun Gong, Dayiheng Liu, 644
Nan Duan, Jiusheng Chen, Ruofei Zhang, and Ming 645
Zhou. 2020. Prophetnet: Predicting future n-gram 646
for sequence-to-sequence pre-training. In EMNLP, 647
volume EMNLP 2020 of Findings of ACL, pages 648
2401–2410. ACL. 649

Hong Sun and Ming Zhou. 2012. Joint learning of a 650
dual SMT system for paraphrase generation. In ACL, 651
pages 38–42. ACL. 652

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 653
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 654
Kaiser, and Illia Polosukhin. 2017. Attention is all 655
you need. In NeurIPS, pages 5998–6008. 656

John Wieting and Kevin Gimpel. 2018. Paranmt-50m: 657
Pushing the limits of paraphrastic sentence embed- 658
dings with millions of machine translations. In ACL, 659
pages 451–462. Association for Computational Lin- 660
guistics. 661

9

https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.1109/BigComp51126.2021.00025
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.18653/v1/p19-1599
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.3115/v1/w14-3348
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/2021.naacl-main.384
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.18653/v1/p19-1610
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.5281/zenodo.4461265
https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/n18-1170
https://doi.org/10.18653/v1/n18-1170
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://transacl.org/ojs/index.php/tacl/article/view/1967
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/2010.01737
http://arxiv.org/abs/2010.01737
http://arxiv.org/abs/2010.01737
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.18653/v1/2020.emnlp-main.505
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.24963/ijcai.2020/547
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.1162/coli_a_00002
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.18653/v1/e17-1083
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://doi.org/10.18653/v1/2020.findings-emnlp.217
https://aclanthology.org/P12-2008/
https://aclanthology.org/P12-2008/
https://aclanthology.org/P12-2008/
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042
https://doi.org/10.18653/v1/P18-1042

Kexin Yang, Wenqiang Lei, Dayiheng Liu, Weizhen Qi,662
and Jiancheng Lv. 2021. Pos-constrained parallel663
decoding for non-autoregressive generation. In ACL,664
pages 5990–6000. ACL.665

Daojian Zeng, Haoran Zhang, Lingyun Xiang, Jin666
Wang, and Guoliang Ji. 2019. User-oriented para-667
phrase generation with keywords controlled network.668
IEEE Access, 7:80542–80551.669

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.670
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-671
uating text generation with BERT. In ICLR. Open-672
Review.net.673

10

https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.18653/v1/2021.acl-long.467
https://doi.org/10.1109/ACCESS.2019.2923057
https://doi.org/10.1109/ACCESS.2019.2923057
https://doi.org/10.1109/ACCESS.2019.2923057
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr

