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Fingerprinting the Shadows: Unmasking Malicious Servers with
Machine Learning-Powered TLS Analysis

Anonymous Author(s)

ABSTRACT
Over the last few years, the adoption of encryption in network
traffic has been constantly increasing. The percentage of encrypted
communications worldwide is estimated to exceed 90%. Although
network encryption protocols mainly aim to secure and protect
users’ online activities and communications, they have been ex-
ploited by malicious entities that hide their presence in the network.
It was estimated that in 2022, more than 85% of the malware used
encrypted communication channels.

In this work, we examine state-of-the-art fingerprinting tech-
niques and extend amachine learning pipeline for effective and prac-
tical server classification. Specifically, we actively contact servers to
initiate communication over the TLS protocol and through exhaus-
tive requests, we extract communication metadata. We investigate
which features favor an effective classification, while we utilize and
evaluate state-of-the-art approaches. Our extended pipeline can
indicate whether a server is malicious or not with 91% precision and
95% recall, while it can specify the botnet family with 99% precision
and 99% recall.
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TLS, TLS Fingerprinting, Active Probing, Botnet, Command and
Control, Server Characterization, Machine Learning

ACM Reference Format:
Anonymous Author(s). 2023. Fingerprinting the Shadows: Unmasking Mali-
cious Servers with Machine Learning-Powered TLS Analysis. In Proceedings
of Make sure to enter the correct conference title from your rights confirma-
tion emai (1). ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
As of October 2020, more than 90% of Internet traffic is commu-
nicated over TLS [4]. The adoption rate of TLS 1.3 surpassed the
adoption rate of previous versions of TLS with remarkable speed.
Based on the TLS Telemetry Report in 2021 [9], TLS 1.3 has become
the preferred protocol for 63% of the top 1 million web servers on
the Internet[3]. Yet, the increasing popularity and simplified usage
of TLS led malware to exploit encryption to hide its presence and
communications [13]. WatchGuard observed in 2021 that 91.5% of
malware is delivered through encrypted channels [12]. Further-
more, the TLS Telemetry Report revealed that the proportion of
phishing sites using HTTPS and valid certificates had risen to 83%
in the same year [9].

To establish a secure channel using the TLS protocol, a crucial
step involves the exchange of metadata between the client and
the server. This metadata is shared through unencrypted Client
Hello and Server Hello messages. Previous work [2, 8, 28, 39] has ac-
knowledged the significance of metadata exchanged during the TLS
handshake and attempted to leverage this information to enhance

Internet security [45]. These works focus on the passive analysis
of the messages exchanged during the TLS handshake.

By employing active approaches, like active TLS fingerprinting,
researchers and organizations [16, 22] can collect relevant TLS pa-
rameters that when properly processed, they enable the extraction
of valuable information for the network status and the participating
devices and applications [7, 44].

In this work, we leverage a range of active TLS fingerprinting
techniques to examine server behavior. First, we initiate our in-
teraction with servers by sending the first request from a set of
predefined requests, and then, we start re-sending this request by
progressively forcing the server to select an alternative cipher suite.
These TLS parameters then are utilized from the enhanced version
of a publicly available semi-automatic machine learning pipeline
[21]. To ensure a robust evaluation, we employ three distinct clas-
sification models. Building upon this methodology, we compile a
database with traffic from benign and malicious entities. We create
a robust binary classification system capable of accurately labeling
servers as either benign or malicious. Additionally, we implement a
multi-class classification model to identify specific botnet families.
Finally, we implement a TLS fingerprinting technique and evaluate
the performance of 4 different categories. Through this compari-
son, we explore the strengths and limitations of each method. The
contributions of this work follow:

• We examine state-of-the-art approaches for server classi-
fication through active probing and integrate them into a
publicly available machine learning pipeline.

• We present the most extensive dataset known to date for
actively categorizing servers, containing information from
all current approaches. Upon acceptance of the paper we
will make the dataset publicly available1.

• We present an analysis of these approaches using a compar-
ative evaluation between (i) 4 different features categories
based on fingerprinting and (ii) 3 machine learning models
for Binary and Multi-Class classifications.

2 BACKGROUND
To establish a secure channel via TLS, a secure TLS parameters
exchange is essential immediately following the TCP handshake,
allowing both sides to share their capabilities and preferences.

The TLS handshake begins with the client sending a Client Hello
message to the server. This message contains crucial information,
such as the supported TLS versions, cipher suites, and extensions.
It serves as a way for the client to communicate its capabilities and
preferences to the server. Upon receiving the Client Hello message,
the server responds with a Server Hello message. This message
includes details about the selected TLS version, cipher suite, and

1The dataset includes data from the top 10K Tranco domains [15], 1 labeled [10] and
4 unlabeled blocklists [11, 14, 18, 19] over a 5-month period of daily measurements
(01/2023 – 05/2023).
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other parameters chosen by the server. It allows the server to inform
the client of its preferences and capabilities, enabling both parties to
negotiate and agree upon the most secure and compatible settings
for their communication.

A common technique is to leverage these parameters during the
initial stages of establishing the secure channel for different pur-
poses (e.g., OS identification [44], server-side libraries [43], client
identification [37, 50], or in censorship circumvention tools [36]),
since the messages exchange happens in plaintext. TLS incorpo-
rates various parameters and configurations that contribute to its
security and compatibility. The cipher suite, for example, deter-
mines the encryption algorithms and key exchange methods used
for secure communication.

TLS fingerprinting and Machine Learning utilize the parameters
extracted from the Server Hellomessages during the TLS handshake
to perform server identification and characterization. By analyzing
the unique combination of these parameters, ideally, a distinguish-
ing identifier is generated for each different configuration, enabling
the classification and differentiation of servers.

3 RELATEDWORK
Although we follow an active probing approach, in this paragraph,
we briefly discuss related works that focus on passive analysis.
In 2009, Ristic’s work [52] made TLS fingerprinting gain popular-
ity [27], leading to more research [1, 2, 28, 32, 39, 53]. Over time,
TLS fingerprinting was applied to diverse applications. It has been
employed for longitudinal studies [43], instrumental in distinguish-
ing android apps [50], and even used in discerning IoT ecosystem
components[49].

In the domain of active probing-based fingerprinting techniques,
there are two popular methodologies, ATSF [58] and JARM [7],
which send a fixed number of Client Hello messages to a server.
Both techniques generate fingerprints according to the Server Hello
responses they receive. Papadogiannaki et al. [48] use JARM to
generate fingerprints for servers that is known to participate in
botnets and they examine their evolution over time. They also show
that the percentage of fingerprint overlapping with benign servers
progressively rises. In ATSF, authors propose a list of alternative
Client Hello messages, which seem to result to more expressive
and optimized fingerprints when compared to JARM. Nonetheless,
a notable aspect of these approaches is the initial generation of
the first 10 Client Hello messages. This initial step, could benefit
from heightened explainability, thus facilitating potential optimiza-
tion strategies and refining the generation process. DissecTLS [57]
introduces an enhanced functionality of a recursive process of sys-
tematically excluding selected server parameters or preferences
from the interaction sequence. By iteratively eliminating these
values and subsequently re-sending the requests, the DissecTLS
methodology strives to generate more expressive fingerprints. No-
tably, DissecTLS concentrates on the comprehensive extraction of
server configurations for server classification. This emphasis on
configuration extraction sets DissecTLS apart, offering insights into
server behavior outperforming similar tools [24, 25].

To the best of our knowledge, there is no related work that uses
machine learning to classify server activity with information col-
lected after active probing. Although several studies have explored

the utilization of machine learning techniques in conjunction with
TLS parameters and fingerprinting [31, 38, 40, 42, 44, 47, 51, 55, 60],
they focus on different use cases (e.g., OS identification, website
fingerprinting, detection of privacy leaks). To accurately compare
works that do not share analogous techniques is challenging, since
the combination of active probing and machine learning adds an
additional layer of complexity. Kim et al. [41] remarkably focus on
analyzing TLS traffic based on enhanced neural networks combined
with TLS fingerprinting methods. However, its reliance on passive
techniques contrasts with our emphasis on active ones.

In this work, we aim to explore every facet of existing approaches,
striving to identify the optimal outcome in terms of classification.
That’s why we employ active techniques to gather a broad range of
features and subsequently feed them into machine learning models,
which are then utilized in our fingerprinting methods. In the upcom-
ing sections, we’ll explore the benefits of fingerprinting methods
used in active probing and combine the different techniques used
in ATSF, JARM and DissecTLS. Finally, we use a modified version
of a publicly available machine learning pipeline tailored for our
experiments. By testing different fingerprinting techniques and
adapting the machine learning models, we aim to examine how
they perform in active scenarios.

4 METHODOLOGY
In this section, we present an overview of the methodology used
in this study. Our approach centers on optimizing and comparing
the current active approaches of collecting unique messages from
servers during TLS parameter negotiation.

An approach to attain this is by employing a predefined number
of particular requests to a server and receiving the corresponding
responses in return. For this purpose, instead of generating new
initial Client Hellomessage, we leverage existing ones from previous
works. We select the JARM tool, renowned for its scalability and
efficiency [6], widely adopted by major Internet scanners, such as
Censys [17] and Shodan [23]. JARM sends 10 customized TLS Client
Hello messages to a target TLS server, enabling us to identify a
distinct set of responses.

Each one of these Client Hello messages triggers a response from
the server in the form of a Server Hello message, agreeing on the
selected parameters. During this process, it is possible for a server
to abort the handshake or attempt to renegotiate. DissecTLS [57]
exploits this opportunity by conducting intensive scans on servers.
This process continues until the complete TLS configuration can be
successfully reconstructed. Based on this approach, we implement
an extension of JARM tool which integrates this additional function-
ality. Our tool executes each of its initial requests by progressively
removing previous preferences. Our choice is to concentrate on a
specific parameter for reduced complexity. The key is to iteratively
remove previous cipher suites selected by servers. This process
continues until an error occurs or a timeout elapses. This proves to
be the best case due to its wide range of options and the presence
of a preference order. More details can be found in §4.1. Finally, we
utilize and extend an existing pipeline and proceed to enhance and
fine-tune it for the purpose of server classification through active
probing.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Fingerprinting the Shadows: Unmasking Malicious Servers with Machine Learning-Powered TLS Analysis 1, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

4.1 Cipher Suite Selection
To enhance themethod of active probing and achieve amore stream-
lined process, we focus on a single parameter during TLS parameter
negotiation – the cipher suite. The cipher suite plays a crucial role
in establishing a secure channel between the client and server. Ci-
pher suites encompass a wide variety of cryptographic algorithms
and key exchange methods, and their order of preference can sig-
nificantly impact the server’s behavior.

We perform an iterative process, where we interact with the
server by initiating TLS connections and start removing the se-
lected cipher suites one by one. We continue this process until an
error occurs or a timeout is reached. The primary objective is to
identify the server’s preferred cipher suite by observing its behavior
when specific cipher suites are eliminated. By concentrating on a
single parameter, we aim to extract all possible preferences of the
server related to the cipher suite, leading to more unique responses.
This approach not only increases the precision of our model, but
also reduces the extra overhead associated with probing multiple
parameters simultaneously, while also delaying the occurrence of
errors. We monitor the server’s responses and gather data on each
interaction. This data serves the crucial purpose of identifying the
server’s most preferred cipher suite and comprehending how its
behavior evolves when different cipher suites are removed.

4.2 Data Collection
Our data collectionmethodology is carefully designed to encompass
a wide spectrum of servers and network configurations. The process
involves two main sources: the “Top 10K domains” from the Tranco
list and various “Blocklists” containing potentially malicious IP
addresses.

4.2.1 Top 10K Domains. To initiate our data collection process, we
select the “Top 10K domains” from the Tranco list, which is a reliable
source of Internet-wide domain information [15]. Considering the
time and resources required to scan the entire Tranco list on a
daily basis, we scan a representative sample; the top 10K domains.
To maintain the relevance and timeliness of our data, we schedule
nightly downloads. This regular update process allows us to capture
evolving trends within the TLS ecosystem.

4.2.2 Blocklists. In addition to the top 10K domains, we strategi-
cally incorporate the Feodo Blocklist into our data collection [10].
This blocklist offers a unique opportunity to examine IP addresses
associated with five different botnet families. To expand our dataset,
we also include unlabeled blocklists that contain potential malicious
IP addresses (i.e., Blocklists.de [14], Ci-Badguys [18], SSLBL [11],
and Darklist.de [19]). Blocklists term in the rest of the paper refers
to these unlabeled lists. The daily number of unique IP addresses
contained in these blocklists ranges from 30 to 20K. This integra-
tion enables us to gain insights into existing TLS behaviors across
a broader range of servers, encompassing both benign and poten-
tially malicious activities. To handle the large size of blocklists, we
employ weekly Censys’s active TLS scans [33], which filter the lists
and provide us with an up-to-date and manageable set of active IP
addresses along with a list of open ports.

4.2.3 Database. After this preparation phase, we employ our tool,
starting to send its 10 consecutive Client Hello messages. For each

one of them, we proceedwith an iterative process, where we remove
the cipher suite selected by the server. Initially, we send the first
Client Hello message to the server and wait for its response. Upon
receiving the server’s selection of a cipher suite, we proceed with
removing this specific option from the list of supported cipher suites
for the subsequent interaction.We then resend the same Client Hello
message to the server, this time without the eliminated cipher suite.
This iterative approach continues until the server either refuses
to respond or stops acknowledging our queries. Subsequently, we
repeat this entire procedure for each of the remaining 9 Client Hello
messages in a methodical manner.

Through this process, we acquire valuable insights into TLS pa-
rameter negotiation, allowing us to assess how servers dynamically
adapt their responses to different cipher suite options. Throughout
this interaction, we monitor and collect the network packets ex-
changed using the tcpdump tool, saving the data into packet capture
files. In contrast to real-time fingerprint generation approaches,
we store the collected traffic for subsequent analysis. This decision
allows us to focus on the efficiency of feature selection when creat-
ing fingerprints. The stored traffic forms a rich dataset that enables
deeper investigations into TLS parameter negotiation and server
behavior.

Over a five-month period (01/2023 – 05/2023), we accumulate ap-
proximately 1.8M samples, resulting in a database totaling to 278GB
in size. This extensive repository empowers us to observe evolu-
tionary trends within the TLS ecosystem, monitor how malicious
botnets adapt their activities on benign servers, and evaluate the
effectiveness of various state-of-the-art approaches. Furthermore,
this dataset provides fertile ground for exploring novel capabilities
and potential in TLS parameter negotiation and secure channel
establishment research.

4.3 Filtering
To ensure the integrity and reliability of our dataset, we implement
a filtering process to retain only the successful samples while re-
ducing potential anomalies. First, we remove servers that did not
respond to any of the initial 10 Client Hello messages, resulting in
empty pcap files.

Next, we identify scenarios where servers initially respond suc-
cessfully to our requests but subsequently stop acknowledging our
messages during the TLS renegotiation, leading to a timeout. Such
occurrences are flagged as “Incomplete”, as they do not provide
valuable insights into server behavior in cases that communication
is unexpectedly disrupted. Furthermore, we encounter instances
that servers respond with no SSL/TLS packets or repeatedly provide
the same Server Hello for each request. These anomalies are marked
as “Disrupted”, and we discard them from processing alongside
with “Incomplete” samples.

To minimize these anomalies to the maximum extent possible,
as a final step, we perform a flow checksum on the collected traffic.
We carefully check and confirm that the way each communication
happens follows the usual patterns and rules expected. For example,
we make sure that the TLS information is contained within the TCP
packet. We also look at cases where packets arrive too late (after
the timeout lapsed) or when ACK numbers do not match the SEQ
ones. If things don’t match up or follow the rules, we remove that

3
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Table 1: Overview of the final number of data samples pro-
cessed.

Source Filtered Samples

Tranco 763,443
Blocklists 84,354
QakBot (Feodo) 3,890
Dridex (Feodo) 1,369
BumbleBee (Feodo) 931
Emotet (Feodo) 863
BazarLoader (Feodo) 75

Total 854,925

data from our collection. Table 1 provides an overview of the final
data samples resulting from our filtering process.

4.4 Data Transformation and Parameters
Selection

After filtering our dataset and retaining only the Completed files,
the next crucial step is to address the challenge posed by the size of
packet capture files, since processing and feeding them directly into
a classification model for training proved impractical. Therefore,
we have created a lighter format that would still retain the essential
features needed for our analysis and evaluation. To achieve this, a
subset of TLS parameters, extensions, and certificates is carefully
selected2. These parameters include TLS versions, cipher suites,
ALPNs, Elliptic Curves, certificates (x509) and other relevant infor-
mation. During the data transformation phase, we aim for a balance
between information richness and efficiency. Thus, we create a
list large enough to enable the utilization of different parameters
subsets and perform comparisons effectively. Finally, we unify the
original data samples into a single CSV (Comma-Separated Val-
ues) file, containing all the extracted fields and reaching the size
of 52 GB. Its simplicity and ease of use make it an ideal choice for
representing the curated list of parameters and TLS negotiation
data.

To ensure consistent data presentation, each packet capture file
in our database corresponds to a single row into a CSV file. This row
contains all the parameters extracted from each server’s response,
providing a total view of the TLS negotiations that occur. Each
column holds a particular parameter’s value that the server chose
from the corresponding request at that specific time. Since we
perform exhaustive requests to servers, the exact number of their
total responses for each Client Hello varies, resulting in a dataset
that includes rows with features ranging from 200 to 20K. The
calculation yielding 20K features is determined by the following
factors: we extract 46 distinct parameters from each Server Hello
message, the maximum observed number of iterations is 45, and
there are 10 initial handshake procedures. Consequently, if a server
responds 45 times recursively for each of the 10 initial handshakes,
the resultant dataset comprises 20,000 features (46 parameters x
45 iterations x 10 handshakes), in addition to columns indicating
the corresponding date of the sample, category, botnet family (if
applicable), IP/domain, port, and 10 columns indicating the total
2We present these parameters in Table 8, included in the Appendix

number of responses for each of the 10 initial handshakes until the
server encounters an error or fails to respond.

Finally, in the last step, we transform string-type values into an
arithmetic-like format representation. This conversion is necessary
for the selected classification machine learning models, as they
can only process numeric features. We implement a technique to
represent strings as integers while ensuring consistency for the
same input. By leveraging the MD5 hash function, we effectively
convert these string-based parameters into a standardized format
that is suitable. Consequently, we successfully transform the string-
based parameters into fixed-size representations and then convert
the hexadecimal output into integers. In cases where the input is
empty, for example, ’None’, our implementation returned ’-1’ to
maintain data integrity and signify the absence of applicable data.

5 ANALYSIS
Before proceeding to the design of our models, we conduct a prelim-
inary analysis on the final transformed and extracted data to gain
insights and understand the variation in server responses when
performing exhaustive requests.

In the analysis phase, we calculate the average number of re-
sponses for each data source to examine the servers behavior during
TLS parameter negotiation and cipher suite selection. Additionally,
we apply the Borda Count rule [34, 35, 54] to identify the top cipher
suites among the servers in our dataset, based on their min-max
normalized scores [26].

To gain a deeper understanding of the data, we visualize the
distribution of server responses. Following figures represent the av-
erage responses of the sources and the distribution of them through
box plots, provide an overview of the data central tendency, dis-
persion, and outliers. By analyzing these plots, we examine the
variation in server responses and determine if exhaustive tech-
niques can lead to better results. The insights gained from this
preliminary analysis help us identify patterns, trends, and potential
variations in server behavior during TLS parameter negotiation.
Understanding these aspects is critical to move on with the evalua-
tion phase and compare of our models. The box plots, in particular,
allow us to visually compare the distribution of server responses
across different sources, highlighting any variations and enable us
to draw important conclusions about the impact of uniqueness in
server classification.

5.1 Number of Responses
Figure 1 presents the mean number of responses for each source
(i.e., Tranco, Blocklists, Feodo) during the 10 exhaustively iterative
handshakes until the server either responds with an error message
or ignores the request. We observe that at the last handshakes the
majority of sources exhibit lower number of responses compared to
earlier ones. This could open up intriguing possibilities for future
investigations into the specific Client Hello parameters responsible
for this reduction and why they influence server behavior. Dridex
and Emotet botnets exhibit the highest average number of responses
among all sources. Notably, the Dridex botnet demonstrates a high
response rate across all handshakes, indicating its reluctance to
refuse a TLS connection regardless the utilization of any outdated
parameters. On the other hand, the Emotet botnet seems to respond

4
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Figure 1: Mean number of successful handshakes per itera-
tion and data source (i.e., Tranco, Blocklists, Feodo)

in a standardized manner, consistently producing specific patterns
in its responses following a specific configuration.

Figure 2 illustrates the distribution and variability of the total
response counts across the different sources. The extent of spread
within the boxes and the length of the whiskers directly indicate the
degree of variation. Tranco, which represents benign server activity,
exhibits a high number of outliers. This could be because of certain
servers that might not show up frequently in the Tranco list, yet
they have configurations leading to high response rates. Another
reason could be the presence of limited servers with responses
significantly higher from the majority. This outcome is in line with
expectations considering the extensive diversity among domains
and their unique configurations. In contrast, the Feodo source has
a reduced number of outliers (resulting from BumbleBee, Emotet
and QakBot botnet families). It consists traffic from 5 different
botnet families, each consistently following its distinct behavior.
For this source, an outlier might indicate a misclassification. Lastly,
interpreting the list namely Blocklists is challenging, since the family
of the IP addresses contained is unknown. Unlike the Feodo list, the
list Blocklists contains raw IP addresses with no other information.

5.2 Variances in Cipher Suite Selection
In the next phase of our analysis, we evaluate the cipher suite
preferences exhibited by various sources within the dataset. We
extract the cipher suite selections for each Client Hello message
and aggregate them based on the specific handshakes employed.
To benchmark the preferences, we harness the Borda Count rating
technique [35]. This method assigns points to candidates accord-
ing to their rankings on each ballot. Lower-ranked candidates are
allocated fewer points, while higher-ranked ones garner more. By
summing up the scores granted to each cipher suite (divided per
source list), we derive server preferences. To ensure uniformity, we
apply min-max normalization. This allows us to identify the cipher
suite selections per source list, based on the initial handshakes and
to observe variations across sources. Coupled with the analysis
of response counts, these findings could potentially reveal botnet
attempts to imitate benign TLS configurations. Table 2 presents
the top 10 Tranco cipher suites selection. For each cipher suite, we

Table 2: Top 10 SSL/TLS cipher suites of Tranco Ranked by
Borda count (presented in descending order) and the corre-
sponding values of the C2 lists

Cipher Score

Tranco Blocklists Feodo

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 1.000 0.998 0.975
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 0.965 1.000 0.964
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 0.742 0.730 0.856
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA 0.730 0.834 1.000
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 0.711 0.756 0.843
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA 0.703 0.846 0.979
TLS_RSA_WITH_AES_128_GCM_SHA256 0.586 0.650 0.751
TLS_RSA_WITH_AES_128_CBC_SHA 0.563 0.940 0.873
TLS_RSA_WITH_AES_256_CBC_SHA 0.531 0.937 0.852
TLS_RSA_WITH_AES_256_GCM_SHA384 0.497 0.658 0.737

Unique cipher suites 69 68 49

display its corresponding score as occurred during the examination
of the Blocklists and Feodo source lists.

6 MODEL DESIGN
In this section, we present the machine learning classification ap-
proach and an implementation of a fingerprinting method with 4
different feature categories, each one derived from a different strat-
egy. Our aim is to explore the potential of these methods for server
classification. Notably, there is a significant gap in the existing liter-
ature, as no prior work has delved into the use of machine learning
models for server classification with active probing. Our research
seeks to address this limitation by investigating the effectiveness
of machine learning models in this unique context, combining the
benefits of active probing.

6.1 Machine Learning Model
In this study, one of our main objectives is to investigate the effi-
cacy and accuracy of machine learning classification approaches.
We examine the characterization of servers into benign and mali-
cious (binary classification), as well as the categorization into differ-
ent types of malicious sources (multi-class classification). Machine
learning classification tasks entail several key steps, including data
pre-processing, feature selection, defining multiple models along
with their configurations, fine-tuning during cross-validation, and
ultimately selecting the best model. It is crucial to execute each
step properly to avoid common pitfalls such as information leakage
between training and testing sets, class imbalance, overfitting/un-
derfitting, and decision threshold optimization.

To ensure a robust implementation, we have chosen a publicly
available semi-automatic machine learning pipeline that addresses
common issues encountered in classification tasks [21, 56]. Further-
more, we have selected 3 distinct classification models to facilitate
a comprehensive comparison of different classification approaches:
Gaussian Naive Bayes [59], Random Forest [29], and the state-of-
the-art XGBoost (eXtreme Gradient Boosting) [30]. These selected
methods are well-equipped to handle class imbalance and perform
effectively on imbalanced datasets, a crucial consideration for our
dataset.

The chosen pipeline includes data division into 80%/20% propor-
tions for training-validation and testing (also known as hold-out).
However, this random split based solely on the sample class cate-
gory (also known as a target) is not suitable for our dataset due to
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Figure 2: The distribution of total responses across the sources (i.e. Tranco, Blocklists, Feodo)

the presence of different malicious or benign machines that have
been sampled multiple times (daily measurements). In some cases, a
machine may or may not change its configuration during the mon-
itoring period, and the initial splitting based solely on the target
value could result in nearly identical samples being present in both
the training and testing data portions. This type of data separation
could lead to overly optimistic model performance.

To address this issue, we have taken measures to ensure the
appropriateness of our data splitting. Specifically, we have retained
only unique samples for each machine in our dataset. Furthermore,
we have divided the dataset into 80% for train/validation and 20% for
the testing portion. This division is based on the combination of the
target (benign or malicious) and the machine’s IP address, ensuring
that the testing set contains 20% of the unique machines, avoiding
the presence of similar samples between training and hold-out set.

6.2 Fingerprinting
Fingerprinting techniques consist two fundamental steps. The first
step focuses on feature selection, which is the most significant as-
pect of this methodology. During this phase, most informative and
discriminative parameters from TLS metadata are carefully curated
and identified. The selected features play a pivotal role in charac-
terizing the server behavior and for effective classification. The
second step involves the fingerprint generation by concatenating
these features and then by utilizing hash functions, convert them
into standardized format outputs.

In a dataset with more than 20K possible features, selecting the
optimal ones is challenging. Based on current approaches we create
4 distinct combinations of features. Each category offers valuable
insights into the trade-off between the selected features and the
model’s precision. Table 3 presents the different categories. Exhaus-
tive category, contains features from only 1 parameter, the chosen
cipher suite extracted from each Server Hello during the handshakes.
Although changing cipher suites could impact other parameters,
we concentrate on the most relevant one during our step-by-step
removal process. Conversely, in Predefined category, 21 out of the 46
parameters are included as features as we choose to exclude param-
eters relevant to certificates (x509af_version, x509af_serialnumber
etc.) and instead concentrate solely on behavioral patterns. These

Table 3: The maximum number of selected features/unique
parameters extracted from the corresponding successful it-
erations per category

Exhaustive Predefined ML-Selected All-Possible

450 210 84 20710

features are exclusively extracted from the initial response of each
handshake, ignoring the previous exhaustive approach completely.

The last 2 categories are designed with the first containing the
features selected from themachine learning pipeline outlined in §6.1
and the second with all features possible, with an additional 10
features that indicate the total responses per handshake.

To generate the fingerprints, we follow a simple approach. We
concatenate the selected features and pass directly through the
SHA-256 hash function, resulting to a 32-byte output. This process
should provide a single fingerprint for each unique server behavior.

JARM’s 62-character fingerprints are segmented, with the initial
30 characters representing the server’s chosen TLS version and
ciphers for each of the 10 client hello messages, and the subsequent
32 characters forming a truncated SHA256 hash of the cumulative
server extensions, excluding x509 certificate data [20]. Unlike JARM,
we’re not emphasizing in a fingerprint generation process that
relies on partial fingerprint matching for similarities. Using the
methodology described above, our goal is to observe the variations
in results across the different feature categories, each representing
a different feature selection approach.

Finally, we use a different approach for data splitting compared to
the machine learning process. Given that fingerprinting techniques
depend on periodically updated databases we divide the dataset
into 80%-20% based on the dates collected. We retain the traffic from
the initial 80% of dates for training, generating fingerprints that
are stored in our database, while the remaining 20% is allocated for
testing.

7 EVALUATION
In this section, we outline the various steps we followed to evaluate
our models. The entire process was carried out on a machine with
512GiB of system memory, driven by 2 AMD EPYC 7543 32-Core
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Table 4: Number of total and unique fingerprints per fea-
ture category (i.e., Exhaustive, Predefined, ML-Selected, All-
Possible) across the different data sources.

Source Total FPs Unique FPs

Ex/ve Pred/ed ML All

Tranco 763K 5K 123K 207K 329K
Blocklists 84K 2K 19K 27K 35K
QaKBot (Feodo) 3K 4 109 354 1855
Emotet (Feodo) 863 2 37 72 158
Dridex (Feodo) 1369 3 42 62 330
BumbleBee (Feodo) 931 5 16 35 215
BazarLoader (Feodo) 75 3 28 3 33

Total 854K 7K 143K 235K 367K

Processors, and equipped with an Nvidia A30 GPU. This config-
uration was essential for efficiently handling and processing the
substantial amount of data, particularly given the extensive num-
ber of extracted features and the fine-tuning of machine learning
models.

We evaluate our models based on two distinct classification tech-
niques. First, we perform binary classification to specify whether
a server is malicious (C&C) or not. Then, we perform multi-class
classification, where we focus on the labeled traffic collected from
Feodo, to identify the botnet family of each sample. To compare
the performance of our models, we extract precision, recall and F1
metrics.

7.1 Pre-Assessment
Before training, we perform some checks for possible IP address
overlaps over the whole dataset. We encounter only 3 IP addresses
overlapping in different dates between the Emotet and Dridex bot-
nets of Feodo. For realistic reasons, none of them was excluded.

Subsequently, we extract all possible fingerprints from our dif-
ferent feature selections. Table 4 provides an overview of the total
and unique fingerprints per category. Interestingly, even though
ML-Selected category contains the fewest features, produces more
unique fingerprints than the Exhaustive and Predefined.

In our next step, we aim to determine the number of overlaps
between the fingerprints. Figure 3 illustrates the unique overlaps
across sources. We observe that, once again, the ML-Selected cate-
gory, despite having fewer features, exhibits fewer overlaps com-
pared to the Exhaustive and Predefined. Notably, several servers
from the Blocklists list share identical fingerprints with the Tranco,
possibly indicating an effort to imitate legitimate behavior and
duplicate configurations.

7.2 Malicious vs benign
7.2.1 Machine Learning. As previously indicated, the binary clas-
sification pipeline effectively reduces the dataset’s dimensionality
by selecting only the top 84 most important features from the
pool of maximum 20K extracted features. We identify the signifi-
cant features using the Lasso regression model based on non-zero
coefficients. Following the feature selection process, the pipeline
proceeds to fine-tune each predefined model, retaining only the
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Figure 3: Number of overlaps for each pair of sources (unique)

best configuration for each. The average performance of these con-
figurations during K-Fold cross-validation is summarized in Table 5.
The results strongly indicate that XGBoost is the optimal classifica-
tion configuration, achieving an average F1 score of 0.973 over the
validation set.

To comprehensively evaluate the performance of the selected
model, we utilize the remaining of the hold-out dataset, which
contains 120,374 unseen data samples. The chosen configuration
achieves an F1 score of 0.931, a ROC-AUC score of 0.971, a recall
score of 0.95, and a precision score of 0.911. Additionally, to fur-
ther evaluate and stress the selected model, we repeat the testing
procedure with newly added data, originating from IP addresses
never processed before3. Specifically, we collect different sets of
unseen benign and malicious machines for 2 separate time periods
(06/2023 and 07/2023). We process unseen data from 18,883 samples
collected in June and 21,782 samples collected in July. We utilize
these data samples in order to evaluate the model performance
in a realistic case scenario. According to the results presented in
Table 6, our model (XGBoost) manages to achieve more than 0.95
F1 score and more than 0.986 precision in both datasets (06/2023
and 07/2023).

Table 5: Performance of the selected binary and multi-class
classificationmodels during the K-Fold cross validation, mea-
sured in F1 score

Model Binary Multi-class
Training Validation Training Validation

XGBoost 0.986 0.973 0.997 0.981
Random Forest 0.948 0.939 0.997 0.981
Gaussian NB 0.863 0.863 0.930 0.925

In addition, we have extracted the explanation of the captured
model patterns using the SHAP model explainability technique.4

3Same sources used: 10K Tranco domains [15], Feodo [10] and blocklists [11, 14, 18, 19]
4Presented in Figure 6, included in the Appendix
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Table 6: Performance of the selected binary classification
model over three different datasets: (i) the hold-out dataset
(120,374 samples), (ii) the dataset collected in June 2023
(18,883 samples), and (iii) the dataset collected in July 2023
(21,782 samples).

Dataset F1-Score ROC-AUC Precision Recall

Hold-out 0.931 0.971 0.911 0.95
06/2023 samples 0.955 0.976 0.925 0.986
07/2023 samples 0.953 0.943 0.919 0.99

7.2.2 Fingerprinting. In our next step, we want to examine how
the selection of features based on different approaches affects the
results. Any sample within our testing data, as discussed in sec-
tion §6.2, which generates a fingerprint observed at least once in
Blocklists-Feodo traffic, is classified as malicious. The calculation of
the precision, recall and F1 score is calculated using the classifica-
tion_report function from the python library metrics.

Surprisingly, the results reveal a significant deviation. The cate-
gories Exhaustive, Predefined, ML-Selected and All-Possible achieve
precision/recall scores of 0.38/0.94, 0.51/0.69, 0.71/0.59, and 0.64/0.47
respectively. This outcome suggests that while the All-Possible cate-
gory has fewer overlaps compared to ML-Selected, the overall over-
lap count was actually higher leading to more miss-classifications.

The scores highlight the essential role of feature selection in
determining the quality of predictions. ATSF [58] uses an emprical
strategy of randomly generating Client Hellos in order to find the
best feature set based on the specific kind of classification each
time. Their binary classifier which decides whether a server is a
C2 server from a blocklist achieves 99% precision score, with a 35%
recall due to the nature of these techniques which rely on exact
matching.

7.3 Malicious separation
7.3.1 Machine Learning. Similarly to binary classification, themulti-
class pipeline also succeeds in significantly reducing the feature
space of the extracted dataset, from 20K down to a 108 best fea-
tures, determined by the Lasso regression coefficients. Moreover,
the model fine-tuning process accurately identifies the optimal
configuration for each of the predefined classification models, as
documented in Table 5. In contrast to the binary classification,
the pipeline selects the Random Forest model as the most suitable
choice, primarily due to its higher average validation F1 score.

Upon selecting the appropriate model, its performance is further
evaluated using the hold-out dataset. The chosen configuration for
the Random Forest model yields impressive results, achieving a
ROC-AUC score of 0.999, F1 score of 0.990, Precision of 0.990 and
Recall of 0.990.

7.3.2 Fingerprinting. Simultaneously, we use the fingerprinting
technique similarly to the binary classification to explore how fea-
ture categories behave in a multi-class problem. After updating the
new features to the ML-Selected category and considering only la-
beled traffic, we extract following scores. The categories Exhaustive,
Predefined, ML-Selected and All-Possible achieve precision/recall
scores of 0.70/0.79, 0.68/0.71, 0.68/0.70, and 0.62/0.28 respectively.

Remarkably, this time, the highest scores are achieved by the Ex-
haustive category, which exclusively leverages the cipher suites
selected from the botnet families. Given that each server within
this experiment is associated with a distinct botnet family, it is
supposed to consistently respond in the same manner. On the other
hand, the All-Possible category demonstrated lower performance
due to the potential issue of overfitting caused by the inclusion of
numerous features.

Compared with the binary classification based on fingerprinting
in §7.2.2, we see that these techniques work better when servers
consistently follow a regular pattern, which makes them particu-
larly suitable for categorizing familiar behaviors. Moreover, since
they rely on exact matches with known patterns before, they are
optimal for configuration replication discovery. Finally, it is nec-
essary to mention that we do not directly compare them to our
machine learning experiments, since we split the dataset differently
in order to reflect how each technique would be used in real-life
situations.

8 ETHICAL CONSIDERATIONS
We contact IP addresses that are advertised as malicious in public
blocklists and we do not perform any port scanning. In addition,
the communication initiated by our machines did not provoke any
reaction from system administrators (e.g., email warnings), as other
works mention [46]. Thus, we presume that the presence of our
activity in the network is acceptable.

9 LIMITATIONS
In this work, we utilize two distinct IP addresses, which are exclu-
sively used for the data collection process. We have not performed
any analysis to detect any potential blacklisting from the servers
side. For example, it would be possible for servers to detect our
activity and respond using fixed TLS Server Hello messages. In the
future, we plan to address this limitation.

10 CONCLUSION
In this paper, we utilize active TLS fingerprinting techniques in
conjunction with a machine learning pipeline to examine whether
a server is part of a botnet network and to identify in which spe-
cific botnet the server participates. We evaluate 3 machine learning
models and 4 distinct feature categories selected with different ap-
proaches based on fingerprinting. Our results demonstrate that both
machine learning and fingerprinting techniques mutually enhance
one another, resulting to higher precision. Finally, upon acceptance
of the paper, we plan to make our dataset and selected models
configurations publicly available.

As future work, we aim to enrich our TLS fingerprints database
with more and different botnets, explore approaches that could help
us recognize the randomization of cipher suite vectors and try to
recognize servers in the wild. We will perform a more in depth
analysis of those server TLS responses specifically to uncommon
“TLS Client Hello” configurations. Ultimately, we plan to optimize
our fingerprinting techniques throughmachine learning by refining
the utilization of the initial 10 handshakes.
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A APPENDIX
A.1 TLS Handshake
The TLS handshake follows an exchange process between the client
and server to verify identities, establish cryptographic keys and en-
sure communication integrity. Throughout this procedure, a shared
secret key is generated and exchanged, along with other relevant
parameters essential for establishing a secure channel. Typically,
the 3-way handshake is sufficient for collecting and agreeing upon
these TLS parameters. However, in some cases, additional requests
may be necessary depending on the specific negotiation and ex-
tensions used during the process as shown in Figure 4. For exam-
ple, if the server requests the client’s certificate for authentication,
an additional exchange ensues where the server prompts for the
client’s certificate, and the client responds by presenting its cer-
tificate. Furthermore, in TLS 1.3, the use of key share extensions
requires additional messages for cryptographic negotiation and the
Diffie-Hellman key exchange, enhancing the security of the ses-
sion. Another instance could involve the inclusion of Application-
Layer Protocol Negotiation (ALPN) extension, where both client
and server exchange messages to harmoniously decide on the ap-
plication protocol to employ over the secure connection.

A.2 Cipher Suite Distribution
Figure 5 reveals how different cipher suite scores are spread across
the sources. The x-axis of each plot corresponds to the cipher suite
scores, measuring the degree of preference or prominence. As the
cipher suites score on the x-axis advances, the increasing signif-
icance in the negotiation process is apparent. On the y-axis, the
cumulative probability is depicted, showcasing the proportion of
sources that have cipher scores equal to or less than a given value.
For example, a steeper slope on the CDF curve indicates that there
is a rapid increase in the proportion of cipher suites with lower
scores (as x-axis increases). This phenomenon suggests a prevailing

Figure 4: The TLS handshake [5].
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Figure 5: The cumulative distribution function (CDF) of the
normalized cipher suite scores per source

Table 7: Confusion matrix of the selected binary model over
the hold-out dataset.

TN FP FN TP

108,854 517 968 10,035

consensus among sources, where specific cipher suites are con-
sistently prioritized across varying handshakes. This uniformity
underscores the stability in their preferences, potentially indicative
of standardized security or housekeeping practices. In contrast,
a less pronounced slope on the curve indicates a broader distri-
bution of scores. This scenario hints at a diversified selection of
cipher suites, pointing to sources that exhibit varying preferences
in different contexts. Such behavior could signify adaptability in
security protocols or the utilization of diverse encryption strategies,
reflecting the nuanced nature of network traffic.

A.3 Binary classification
A.3.1 Machine Learning. Table 7 visually presents a detailed break-
down of the number of accurately predicted samples through a
confusion matrix of the Binary classification.

Figure 6 shows the insights about feature values and the effect
of those feature values over the final model decision of the Binary
classification. More specifically, in the y-axis we can see the most
significant features which have the biggest influence over the model
decision. Each of the presented features have a range of values,
which are represented between blue (low feature values) and red
(high feature values) colors. Furthermore, the x-axis represents
the impact of the particular feature value over the final model
decision (SHAP value). The higher SHAP values push the model
decision towards the positive decision, in our case represented
as the malicious sample prediction, and lower values push the
model towards the negative decision (benign class). For example,
samples with low value of port number will push the model towards
predicting a server as benign, and the higher port number samples
will be classify a server as malicious. Additionally, the dot cluster
thickness provides information about the distribution of tested
values. In the case of the port number feature, it is clear that most
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Figure 6: SHAP decision explanation of the binary classifica-
tion model. Illustrates the variances among the top 20 signifi-
cant features and their influence on the finalmodel’s decision
(i.e. handshake_length_10_1 corresponds to the handshake
length extracted from the 10th handshake and the 1st Server
Hello).

Figure 7: The performance of each category in Binary classi-
fication based on fingerprinting

of the samples have low values since our dataset is imbalanced and
a higher percentage of tested samples belong to the benign class.
Furthermore, as it is shown in Figure 6 the separation and the effect
of feature values is not always binary since in some cases machine
configuration may utilize low port number but additional features
will lead to a classification decision towards malicious.

A.3.2 Fingerprinting. Figure 7 shows the precision, recall and F1
score that achieved each category during the Binary classificaiton
process based on TLS Fingerprinting.

Figure 8: Confusion matrix of our multi-class classification
model over the hold-out dataset portion.

Figure 9: SHAP explanation of the secondary model based on
multi-class classification. This figure illustrates the average
impact of the top 20 features over the final model’s decision.

A.4 Multi-Class classification
A.4.1 Machine Learning. Figure 8 shows the detailed predictions
for each class during the Multi-Class classification.

Similar to the binary classification, in the case of multi-class clas-
sification, we also utilize the SHAP explainability method to extract
additional insights from our developed method concerning predic-
tion decisions (Figure 9). Unlike the previous explainability method
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Figure 10: The performance of each category in Multi-Class
classification based on fingerprinting

(binary classification), the current figure illustrates the mean impact
of the most important features overall for class differentiation. In
this representation, features are displayed on the y-axis, and the
impact of each feature on a specific class can be discerned through
the colored bars and their sizes. For instance, the feature hs_len_5_1
has a significant impact on the QakBot and BumbleBee categories,
while its impact is much lower on the Dridex and BazarLoader
classes. Furthermore, certain features appear to have no impact on

certain categories at all, such as the feature ber_bs_padding_4_5 for
the Dridex category. The explainability presented offers general
insights into the patterns captured by the developed classification
model for each botnet category.

Moreover, Figure 11 provides the SHAP multi-class model ex-
plainability for each specific botnet category. The presented figures
illustrate the top 20 features for each botnet along with their deci-
sion distribution.

A.4.2 Fingerprinting. Figure 10 shows the precision, recall and F1
score that achieved each category during the Multi-Class classifica-
tion process based on TLS Fingerprinting.

A.5 Parameters Extraction
Lastly, Table 8 contains the parameters extracted from each packet
capture file from our database. Each parameter derived from each
individual Client Hello and it is presented with the corresponding
name from our source code alongside with a small description.
We select a wide range of options available for feature selection.
This, combined with the exhaustive approach allow us to exponen-
tially increase the total number of parameters. We aim to generate
an extensive collection of 20K potential features and let machine
learning choose the optimal ones. Since manually testing every
possible combination is impractical, even impossible, we leveraged
a machine learning pipeline for accomplishing this.
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Table 8: The TLS parameters extracted from each Server Hello with a brief description

Parameter Description

versions TLS protocol version
ciphers Cipher suite
record_length Length of the TLS record
handshake_length Total length of the handshake message
handshake_extensions_length Length of the handshake extensions field in bytes
handshake_extension_type Type of the handshake extension included in the negotiation
handshake_extensions_reneg_info_len Length of the renegotiation information field
handshake_extensions_ec_point_formats_length Length of the elliptic curve point formats list in the handshake extensions
handshake_extensions_alpn_len Length of the Application-Layer Protocol Negotiation
handshake_extensions_alpn_str_len Length of the ALPN protocol string in the handshake extensions
handshake_extensions_alpn_str ALPN protocol string indicating the selected application protocol
handshake_fragment_count Number of fragments used for the handshake
handshake_certificate_length Total length of the X.509 certificate chain
x509af_signedcertificate_element Element containing the signed certificate in the X.509 certificate structure
x509af_version Version number of the X.509 certificate
x509af_serialnumber Serial number of the X.509 certificate
x509af_signature_element Element containing the signature in the X.509 certificate
x509af_algorithm_id Algorithm identifier used for the signature in the X.509 certificate
x509af_issuer Issuer of the X.509 certificate
x509if_rdnsequence RDN sequence in the X.509 certificate
x509if_rdnsequence_item Individual item in the RDN sequence of the X.509 certificate
x509if_id Identifier for the X.509 certificate
x509sat_countryname Country name field in the X.509 Subject Attribute Type
x509sat_directorystring Directory string in the X.509 Subject Attribute Type
x509sat_utf8string UTF-8 string in the X.509 Subject Attribute Type
x509af_validity_element Element containing the validity period of the X.509 certificate
x509af_notbefore Certificate validity start date in the X.509 certificate
x509af_notafter Certificate validity end date in the X.509 certificate
x509af_subject Subject of the X.509 certificate
x509af_rdnsequence RDN sequence in the subject of the X.509 certificate
x509af_subjectpublickeyinfo_element Element containing the subject public key info in the X.509 certificate
x509af_algorithm_element Element containing the algorithm info in the X.509 certificate
x509af_extensions Extensions included in the X.509 certificate
x509af_extension_id Identifier for the extensions in the X.509 certificate
x509ce_authoritykeyidentifier_element Element containing the authority key identifier in the X.509 certificate
x509ce_basicconstraintssyntax_element Element containing basic constraints info in the X.509 certificate
x509ce_ca Basic constraints indicating if the certificate is a CA or an end-entity
x509af_algorithmidentifier_element Element containing the algorithm identifier in the X.509 certificate
ber_bitstring_padding Padding used for the BER-encoded bitstrings
handshake_server_curve_type Elliptic curve type used by the server
handshake_server_named_curve Named curve used by the server
handshake_server_point_len Length of the server’s elliptic curve point
handshake_sig_hash_alg Signature hash algorithm used
handshake_sig_hash_hash Hash value used in the signature
handshake_sig_hash_sig Signature value used
handshake_sig_len Length of the signature used
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Figure 11: SHAP decision explanation (abbreviations are used) of the multi-class classification model (i.e. ciphers_10_2 corre-
sponds to the cipher suite extracted from the 10th handshake and the 2nd Server Hello). Each figure presented in an order from
top left to the bottom right corresponds to the following botnets: QakBot, Dridex, BumbleBee, Emotet and BazarLoader
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