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Abstract

Inverse problems pose significant challenges due to their inherent ambiguity in
mapping observed data back to its original state. While recent advances have
yielded impressive results in restoring degraded data, attaining high perceptual
quality comes at the cost of increased hallucinations. This paper investigates this
phenomenon to reveal a fundamental tradeoff between perception and uncertainty
in solving inverse problems. Using error entropy as a measure of uncertainty, we
demonstrate that higher perceptual quality in restoration algorithms is accompanied
by a surge in uncertainty. Leveraging Rényi divergence as a perception metric,
we derive bounds for this tradeoff, allowing for categorization of different inverse
methods based on their performance. Additionally, we connect estimation distortion
with uncertainty, offering novel insights into the traditional perception-distortion
tradeoff. Our work provides a rigorous framework for analyzing uncertainty in the
context of solving inverse problems, highlighting its interplay with perception and
distortion, while underscoring the limitations of current approaches to achieving
both high perceptual quality and low uncertainty simultaneously.

1 Introduction

Generative artificial intelligence (AI) has transformed inverse problems by delivering unprecedented
performance in tasks like image denoising, super-resolution, and inpainting [8, 7]. These models
have far-reaching applications in fields like medical imaging, computer vision, and signal processing,
offering the ability to recover missing or corrupted data with astonishing realism. However, generative
models are susceptible to "hallucinations," generating realistic but inaccurate content due to the
ill-posed nature of restoration problems. Interestingly, the severity of hallucinations seems to correlate
with the model’s perceptual quality.

One of the seminal works investigating the perception of restoration models is the perception-
distortion tradeoff [4, 3, 6]. The authors established a fundamental tradeoff between perceptual
quality and distortion in image restoration, applicable to any distortion measure and distribution.
When using mean squared error (MSE), they showed that achieving perfect perceptual quality could
incur a maximum penalty of 3dB in peak signal-to-noise ratio. The work in [11] extended this
concept by providing closed-form expressions for the tradeoff when considering MSE distortion and
Wasserstein-2 distance as a perception measure.

In this paper, we complement the above studies by analyzing the relation of uncertainty to perception
and distortion, establishing a fundamental tradeoff between uncertainty and perception. The main
contributions are as follows: (i) The introduction of the uncertainty-perception function, a novel
framework based on information-theoretic principles, proving the existence of a tradeoff between
uncertainty and perception, regardless of the underlying data distribution. (ii) Derivation of lower
and upper bounds for the UP function using Rényi divergence as a measure of perception, construct-
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Table 1: Information-Theory Measures.

Name Definition

Differential Entropy h(X) , −
∫
pX(x) log pX(x)dx.

Entropy Power N(X) , 1
2πee

2
dh(X) (X ∈ Rd).

Rényi Entropy For order r ≥ 0: hr(X) , 1
1−r ln

∫
prX(x)dx.

Rényi Divergence For order r ≥ 0: Dr(X,Y ) , 1
r−1 ln

∫
prX(x)p1−r

Y (x)dx.

Conditional Entropy h(X|Y ) , Ey∼pY [h(X|Y = y)].
Conditional Divergence Dv(X,Z

∣∣Y ) , Ey∼pY [Dv(X|Y = y, Z|Y = y)] .

ing an uncertainty-perception plane that categorizes estimators into distinct performance domains.
(iii) Extension of a well-known relationship between uncertainty and distortion to demonstrate that
the uncertainty-perception tradeoff implies the seminal distortion-perception tradeoff. Theoreti-
cal findings are supported by numerical experiments using established super-resolution algorithms.
Throughout the paper, we rely on the information-theoretic measures defined in Table 1, where we
assume all mentioned quantities, which involve integrals, are well-defined and finite.

2 The Uncertainty-Perception Tradeoff

Problem Formulation We study the problem of estimating a random vector X ∈ Rd from its
observations Y ∈ Rd′ . This translates to devise an estimator X̂(Y ) which induces a conditional
distribution measure pX̂|Y on Rd. We rely on the following mild assumptions:

Assumption 1 (Markovian Process). The estimation process is a Markov chain X → Y → X̂ , such
that X̂ is independent of X given Y .
Assumption 2 (Loss of Information). The problem is ill-posed so X cannot be perfectly recovered
from Y . Namely, pX|Y (·|y) is not a delta function for almost every y.

Assumption 3 (Unbiasedness). X̂ is an unbiased estimator of X , implying E(X̂) = E(X).

Our aim is to establish the relationship between two performance criteria of an estimator X̂(Y ):

• Estimation uncertainty Unc(X̂|Y ) of estimator X̂ given the information available in Y .

• Perception quality Dv(X, X̂
∣∣Y ) of estimator X̂ in capturing the true distribution of X .

While there are diverse approaches to define and quantify uncertainty [12, 1], we rely on an
information-theoretic approach and adopt the concept of entropy, a measure of statistical dispersion.
Specifically, we employ error entropy power as our uncertainty measure to formulate the following
uncertianty-perception (UP) function:

U(P ) , min
pX̂|Y

{
N(X̂ −X|Y ) : Dv(X, X̂

∣∣Y ) ≤ P
}
. (1)

In words, U(P ) represents the minimum achievable uncertainty for an estimator with a perception
quality of at least P , considering the information provided by the measurements Y . The above
objective focuses on the information content of the error signals rather than their energy (second-order
statistics), forcing errors to be concentrated and thus leading to robust predictions.

The Uncertainty-Perception Plane Following the definition of the uncertainty-perception function,
we deduce its properties to establish the uncertainty-perception tradeoff. The exact form of the
tradeoff generally governed by the underlying distributions of X and Y , as well as the chosen
divergence measure Dv(·, ·). However, the following theorem identifies fundamental properties of
the uncertainty-perception function, U(P), that hold regardless of these specifics.
Theorem 1. The uncertainty-perception function U(P ) displays the following properties

1. Quasi-linearity (monotonically non-increasing and continuous):

min
(
U(P1), U(P2)

)
≤ U

(
λP1 + (1− λ)P2

)
≤ max

(
U(P1), U(P2)

)
, ∀λ ∈ [0, 1].
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2. Boundedness: N(X|Y ) ≤ U(P ) ≤ 2N(X|Y )e
2
dDKL(X,XG|Y ).

3. Assume Dv(X, X̂
∣∣Y ) is convex in its second argument. Then, for any P ≥ 0, the minimum

is attained on the boundary where Dv(X, X̂
∣∣Y ) = P .

Here XG ∼ N (0,Σx) is a Gaussian random variable, independent of X , with the identical covari-
ance matrix ΣXG

= ΣX , and DKL(X,XG|Y ) is the conditional Kullback–Leibler divergence.

Irrespective of the divergence measure or underlying distributions, the theorem establishes a quasi-
linear tradeoff between perceptual quality and uncertainty. This tradeoff is intrinsically linked
to N(X|Y ), representing the inherent uncertainty rooted in information loss. Remarkably, for
sufficiently large dimension d such that e

2
dDKL(X,XG|Y ) ≈ 1, perfect perceptual quality can be

attained at a expense of at most twice the inherent uncertainty.

To gain deeper insights, we adopt a specific perception measure based on Rényi divergence with
r = 1/2, leading to the following form:

U(P ) = min
pX̂|Y

{
N(X̂ −X|Y ) : D1/2(X, X̂

∣∣Y ) ≤ P
}
. (2)

Rényi divergence, with its connection to Rényi entropy, generalizes various entropy measures like
Hartley, Shannon, collision, and min-entropy. Thus, analyzing the specific formulation in (2) may
provide insights applicable to a broader range of divergence measures. The following theorem shows
the tradeoff, defined by (2), is confined between two convex functions.
Theorem 2. The uncertainty-perception function is confined to the following region

η(P ) ·N(X|Y ) ≤ U(P ) ≤ η(P ) ·N(XG|Y )

where η(P ) =
(

2e
2P
d −

√
(2e

2P
d − 1)2 − 1

)
∈ [1, 2] is a convex function w.r.t the perception index.

Theorem 2 defines the uncertainty-perception plane, shown in Fig. 1, which segmentes the space
into three distinct regions: (i) The impossible region, inaccessible to any estimator. (ii) The tradeoff
feasible region, containing all optimal estimators according to (2). (iii) The overestimation region,
occupied by suboptimal estimators that overestimate uncertainty for a given perceptual quality.
Thus, the uncertainty-perception plane is a valuable tool for evaluating and optimizing estimator
performance, suggesting that estimators in the overestimation region can be optimized to achieve
lower uncertainty without compromising perceptual quality. Next, we investigate the influence of
dimension on the tradeoff by analyzing η(d;P ), a variation of η(P ) with dimension for a fixed
perceptual quality. Fig. 2 reveals a severe tradeoff in high-dimensional settings, indicating that
marginal perceptual gains entail substantial uncertainty increases.
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Figure 1: The uncertainty-perception plane.
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Figure 2: Curse of dimensionality.

The Distortion-Perception Tradeoff Building upon the established uncertainty-perception tradeoff,
we extend our analysis to encompass estimation distortion. The following theorem establishes a
connection between uncertainty and mean-squared error distortion.

Theorem 3. For any random variable X , observation Y and unbiased estimator X̂ , it holds that
1

d
E
[
||X̂ −X||2

]
≥ N

(
X̂ −X

∣∣Y ) .
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By considering the estimator X̂ as a function of the perception index P , we derive the next corollary.
Corollary 1. Define the distortion-perception function as

D(P ) , min
pX̂|Y

{1

d
E
[
||X̂ −X||2

]
: Dv(X, X̂

∣∣Y ) ≤ P
}
.

Then, for any perceptual index P , we have D(P ) ≥ U(P ).

By employing MSE as a distortion measure, the uncertainty-perception tradeoff gives rise to a
distortion-perception tradeoff [5, 11], providing a fresh perspective on the latter and highlighting the
fundamental interplay between uncertainty, distortion, and perception.

3 Numeric Evaluation

To empirically validate the uncertainty-perception tradeoff and its connection to MSE distortion,
we follow previous works [11, 5] and evaluate super-resolution (SR) algorithms on the BSD100
dataset [18]. The algorithms include EDSR [16], ESRGAN [22], SinGAN-Z [20], SANGAN [13],
DIP [21], SRResNet and SRGAN variants [15], EnhanceNet [19], and bicubic recovery. Low-
resolution observations are generated by downsampling ground-truth images by a factor of 4 using
a bicubic kernel. We treat each image as a stationary random source and extract 9x9 patches for
statistical measures. R’enyi divergence is computed via kernel density estimation and empirical
expectations. Differential entropy is estimated using the Kozachenko-Leonenko nearest neighbor
method [14, 10, 2].

Fig. 3 showcases the tradeoff between uncertainty and perception in super-resolution methods.
Algorithms with superior perceptual quality exhibit higher uncertainty values, and vice versa. This
trend aligns with our theoretical findings. Operating in a high-dimensional space (d = 243),
we observe that even minor improvements in perceptual quality result in substantial increases in
uncertainty. Fig. 3 further confirms the relationship between uncertainty and distortion. A clear
correlation is observed, where increasing uncertainty leads to a significant rise in distortion. This
reinforces the findings from the previous section, highlighting the impact of uncertainty on distortion.
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Figure 3: Evaluation on SR algorithms on (left) the uncertainty-distortion plane and (right) on the
uncertainty-distortion plane.

4 Conclusion

This study unveils the uncertainty-perception tradeoff in restoration tasks, demonstrating that achiev-
ing superior perceptual quality leads to higher uncertainty levels. The tradeoff is characterized for
Rényi divergence, revealing its quasi-linear nature and its curse of dimensionality. We derived the
uncertainty-perception plane which emerges as a tool for evaluating estimator performance and
identifying potential improvements. By bridging the gap between uncertainty and MSE distortion,
a novel interpretation of the uncertainty-distortion tradeoff is presented. This work highlights the
intrinsic relationship between uncertainty, distortion, and perception in restoration tasks.
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A Information-Theory Preliminaries

Here, we provide a brief overview of essential definitions and fundamental results that stand in
the center of our study. Let X , Y and Z be continuous random variables with probability density
functions pX(x), pY (y) and pZ(z) respectively, defined over a space Ω.
Definition 1 (Entropy). The differential entropy of X , whose support is a set Sx, is defined by

h(X) , −
∫
SX

pX(x) log pX(x)dx.

Definition 2 (Rényi Entropy). The Rényi entropy of order r ≥ 0 of X is defined by

hr(X) ,
1

1− r
ln

∫
prX(x)dx.

The above quantity generalizes various notions of entropy, including Hartley entropy, collision
entropy, and min-entropy. In particular, for r = 1 we have

h1(X) , lim
r→1

hr(X) = h(X).

Definition 3 (Entropy Power). Let be h(X) be the differential entropy of X ∈ Rd. Then, the
entropy Power of X is given by

N(X) ,
1

2πe
e

2
dh(X).

Definition 4 (Divergence). A statistical divergence is any functionDv : Ω×Ω→ R+ which satisfies
the following conditions for all p, q ∈ Ω:

1. Dv(p, q) ≥ 0. 2. Dv(p, q) = 0 iff p = q almost everywhere.
Definition 5 (Rényi Divergence). The Rényi divergence of order r ≥ 0 between pX and pY is

Dr(X,Y ) ,
1

r − 1
ln

∫
prX(x)p1−r

Y (x)dx.

The above establishes a spectrum of divergence measures, generalising the Kullback–Leibler diver-
gence as D1(X,Y ) = DKL(X,Y ).
Definition 6 (Conditioning). Consider the joint probability pXY and the conditional probabilities
pX|Y (x|y) and pZ|Y (z|y). The conditional differential entropy of X ∈ Rd given Y is defined as

h(X|Y ) , −
∫
SXY

pXY (x, y) log pX|Y (x|y)dxdy = Ey∼pY [h(X|Y = y)]

where SXY is the support set of pXY . Then, the conditional entropy power of X given Y is

N(X|Y ) =
1

2πe
e

2
dh(X|Y ).

Similarly, the conditional divergence between X and Z given Y is defined as

Dv(X,Z
∣∣Y ) , Ey∼pY [Dv(X|Y = y, Z|Y = y)] .

For example, the conditional Rényi divergence is given by

Dr(X,Z
∣∣Y ) ,

∫ (
1

r − 1
ln

∫
prX|Y (x|y)p1−r

Z|Y (x|y)dx

)
pY dy.
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Table 2: Formulas for Multivariate Gaussian Distribution

Distribution Quantity Closed-Form Expression

X ∼ N (µx,Σx) h(X) 1
2 ln{(2πe)d |Σx|}.

X ∼ N (µx,Σx) N(X) |Σx|1/n .
X ∼ N (µx,Σx) h 1

2
(X) 1

2 ln{(8π)d |Σx|}.

X ∼ N (µx,Σx),
Y ∼ N (µy,Σy)

D1/2(X,Y ) 1
4 (µx − µy)T

(
Σx+Σy

2

)−1

(µx − µy) + ln

( ∣∣∣Σx+Σy
2

∣∣∣√
|Σx||Σy|

)
.

Equipped with the above, we present two important results that are used throughout our derivations.
Lemma 1 (Maximum Entropy Principle [9]). Let X ∈ Rd be a continuous random variable
with zero mean and covariance Σx. Define XG ∼ N (0,Σx) to be a Gaussian random variable,
independent of X , with the identical covariance matrix ΣxG

= Σx. Then,

h(X) ≤ h(XG),

N(X) ≤ N(XG) = |Σx|1/n .

Lemma 2 (Entropy power inequality [17]). Let X and Y be independent continuous random
variables. Then, the following inequality holds

N(X) +N(Y ) ≤ N(X + Y ),

where equality holds iff X and Y are multivariate Gaussian random variables with proportional
covariance matrices. Equivalently, let Xg and Yg be defined as independent, isotropic multivariate
Gaussian random variables satisfying h(Xg) = h(X) and h(Yg) = h(Y ). Then,

h(X) + h(Y ) = h(Xg) + h(Yg) = h(Xg + Yg) ≤ h(X + Y ).

B Proof of Theorem 1

We first prove the uncertainty-perception function is quasi-linear. The constraint C(P ) , {X̂ :

Dv(X, X̂
∣∣Y ) ≤ P} defines a compact set which is continuous in P . Hence, by the Maximum

Theorem [9], U(P ) is continuous. In addition, U(P ) is the minimal error entropy power obtained
over a constraint set whose size does not decrease with P , thus, U(P ) is non-increasing in P . Any
continuous non-increasing function is quasi-linear. Now, we drive the bounds of the uncertainty-
perception function, starting with the lower bound. Consider the case where P =∞, leading to the
following unconstrained problem

U(∞) , min
pX̂|Y

N(X̂ −X|Y ). (3)

For any P ≥ 0 it holds that U(∞) ≤ U(P ). In addition, by Lemma 2 we have

N(X|Y ) + min
pX̂|Y

N(X̂|Y ) ≤ U(∞), (4)

where we use the property that N(−X|Y ) = N(X|Y ). As minpX̂|Y
N(X̂|Y ) ≥ 0 we obtain

∀P ≥ 0 : N(X|Y ) ≤ U(P ). (5)

For the upper bound we have U(P ) ≤ U(0) = N(X̂0 − X|Y ) where pX̂0|Y = pX|Y . Define

V , X̂0 − X , then, we obtain Σv|y = Σx̂|y + Σx|y = 2Σx|y where we use that X and X̂ are
independent given Y . Thus,

U(0) = N(V |Y ) ≤ N(VG|Y ) =
∣∣Σv|y∣∣1/d =

∣∣2Σx|y
∣∣1/d = 2

∣∣Σx|y∣∣1/d = 2N(XG|Y ), (6)
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where the inequality above is due to Lemma 1. For any P ≥ 0 it holds that U(P ) ≤ U(0) which
implies U(P ) ≤ 2N(XG|Y ).

Finally, we prove the third claim. Assuming Dv(X, X̂
∣∣Y ) is convex in its second argument, the

constraint represent a compact, convex set. Moreover, h(X̂ −X|Y ) is strictly-concave w.r.t pX̂|Y as
a composition of a linear function (convolution) with a strictly-concave function (entropy). Therefore,
we minimize a log-concave function over a convex domain and thus the global minimum is attained
on the set boundary where Dv(X, X̂

∣∣Y ) = P .

C Proof of Theorem 2

We begin with applying Lemma 1 and Lemma 2 to bound the objective function as follows

N(X̂g|Y ) +N(Xg|Y ) = N(X̂g −Xg|Y ) ≤ N(X̂ −X|Y ) ≤ N(X̂G −XG|Y ). (7)

Note that the bounds are tight as the upper bound is attained when X̂|Y and X|Y are multivariate
Gaussian random variables, while the lower bound is attained if we further assume they are isotropic.
Thus, we can bound the uncertainty-perception function as follows

Ug(P ) ≤ U(P ) ≤ UG(P ) (8)

where we define

Ug(P ) , min
pX̂g|Y

{
N(X̂g|Y ) +N(Xg|Y ) : D1/2(Xg, X̂g

∣∣Y ) ≤ P
}
,

UG(P ) , min
pX̂G|Y

{
N(X̂G −XG|Y ) : D1/2(XG, X̂G

∣∣Y ) ≤ P
}
.

(9)

The above quantities can be expressed in closed form. We start with minimization problem of the
upper bound which can be written as

UG(P ) = min
pX̂G|Y

{ 1

2πe
e

2
dE[h(XG−XG|Y=y)] : E

[
D1/2(XG, X̂G

∣∣Y = y)
]
≤ P

}
, (10)

where the expectation is over y ∼ Y . Substituting the expressions for h(XG − XG|Y = y) and
D1/2(XG, X̂G

∣∣Y = y), we get

UG(P ) = min
{Σx̂|y}

{
1

2πe
e

2
dE
[

1
2 log

{
(2πe)d|Σx̂|y+Σx|y|

}]
: E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
 ≤ P}.

(11)
Notice the optimization is with respect to the covariance matrices {Σx̂|y}. Simplifying the above, we
can equivalently solve the following minimization

min
{Σx̂|y}

E
[
log
∣∣Σx̂|y + Σx|y

∣∣] s.t. E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
 ≤ P. (12)

The solution of a constrained optimization problem can be found by minizmiation the Lagrangian

L
(
{Σx̂|y}, λ

)
, E

[
log
∣∣Σx̂|y + Σx|y

∣∣]+ λ

E

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣
− P

 . (13)

Since expectation is a linear operation and using that P = E [P ], we rewrite the above as

L
(
{Σx̂|y}, λ

)
= E

log
∣∣Σx̂|y + Σx|y

∣∣+ λ

log

∣∣(Σx̂|y + Σx|y
)
/2
∣∣√∣∣Σx̂|y∣∣ ∣∣Σx|y∣∣ − P

 . (14)

The expression within the expectation can be written as

log
∣∣Σx̂|y + Σx|y

∣∣+ λ

(
log
∣∣(Σx̂|y + Σx|y

)
/2
∣∣− 1

2
log
∣∣Σx̂|y∣∣− 1

2
log
∣∣Σx|y∣∣− P) . (15)
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Next, according to KKT conditions the solutions should satisfy ∂L
∂Σx̂|y

= 0. Using the linearity of the
expectation and differentiating (15) w.r.t Σx̂|y we obtain(

Σx̂|y + Σx|y
)−1

+ λ

((
Σx̂|y + Σx|y

)−1 − 1

2
Σ−1
x̂|y

)
= 0 (16)

Multiplying both sides by
(
Σx̂|y + Σx|y

)
, we have

I + λI − λ

2
I − λ

2
Σx|yΣ−1

x̂|y = 0

⇒ (1 +
λ

2
)I =

λ

2
Σx|yΣ−1

x̂|y

⇒ (λ+ 2)Σx̂|y = λΣx|y

⇒ Σx̂|y =
λ

λ+ 2
Σx|y.

(17)

Define γ = λ
λ+2 , so Σx̂|y = γΣx|y . Substituting the latter into the constraint we get

log
∣∣(γΣx|y + Σx|y

)
/2
∣∣− 1

2
log
∣∣γΣx|y

∣∣− 1

2
log
∣∣Σx|y∣∣ = P

⇒ n log
1 + γ

2
− n

2
log γ = P

⇒ (1 + γ)2

4γ
= e

2
dP

⇒ γ2 + 2γ + 1 = 4γe
2
dP

⇒ γ(P ) = 2e
2
dP − 1−

√
(2e

2
dP − 1)2 − 1.

(18)

Thus, we obtain that
UG(P ) = η(P ) ·N(XG|Y ) (19)

where
η(P ) = γ(P ) + 1 = 2e

2
dP −

√
(2e

2
dP − 1)2 − 1. (20)

Notice that η(0) = 2, while limP→∞ η(P ) = 1, so 1 ≤ η(P ) ≤ 2. Following similar steps where
we replace Σx̂|y and Σx|y with N(X̂|Y ) and N(X|Y ) respectively, we derive

Ug(P ) = η(P ) ·N(X|Y ). (21)

D Proof of Theorem 3

Define E , X̂ −X . Then,

1

d
E
[
||X̂ −X||2

]
=
(a)

E
[

1

d
E
[
||X̂ −X||2

∣∣Y ]] = E
[

1

d
E
[
||E||2

∣∣Y ]] = E
[

1

d
E
[
ETE

∣∣Y ]]
= E

[
1

d
Tr
(
E
[
EET

∣∣Y ])] = E
[

1

d
Tr
(
Σε|y

)]
≥
(b)

E
[∣∣Σε|y∣∣1/d] = E

[∣∣Σx̂|y + Σx|y
∣∣1/d]

≥
(c)

E
[

1

2πe
e

2
dh(X̂−X|Y=y)

]
≥
(d)

1

2πe
e

2
dE[h(X̂−X|Y=y)] =

1

2πe
e

2
dh(X̂−X|Y ) = N

(
X̂ −X

∣∣Y ) ,
where (a) is by the law of total expectation, (b) is due to the inequality of arithmetic and geometric
means, (c) follows Lemma 1, and (d) is according to Jensen’s inequality.
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