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ABSTRACT

Pre-training scaling laws describe the best training decisions under resource con-
straints. The discovery of new laws is a demanding exercise, as each decision
requires a separate law. An alternative is to model the scaling dynamics of LLMs
directly, then use those models as surrogates for multiple decisions. Yet, most
theoretical models of scaling dynamics cannot be fit to scaling data easily. In
this paper, we introduce the Noisy Quadratic System (NQS), a fittable relative of
the theoretical models that can generate new scaling laws. We also identify some
key failure modes in the theoretical models, and further extend the NQS to cor-
rect for these deficiencies. In our experiments, our best model, fit on small-scale
runs, closely predicted the performance of runs near critical points, which Chin-
chilla failed to do. Finally, the NQS is the first practical scaling model to include
a variance term, which allows us to model the effect of batch size. Because of
this, it may help practitioners configure training under many resource constraints,
including compute, but also time and memory.

1 INTRODUCTION

Pre-training scaling laws helped catalyze the industrialization of large language model (LLM) train-
ing. They describe the relationship between training resources and optimal configurations of training
runs (optimal in terms of the final test loss). For example, [Hoffmann et al.| (2022)) found that the op-
timal allocation of training compute to either model size or dataset size is well-approximated by
power laws. It’s also now well-established that the test losses of properly-trained LLMs similarly
follow power laws in training compute (Achiam et al., [2024). That these empirical laws hold over
many orders of magnitude enabled frontier labs to justify investments and allocate resources.

Scaling laws exist for various pre-training decisions, but each decision requires a separate law. This
can be a demanding exercise. For example, DeepSeek LLM used power laws to predict optimal
batch sizes from training compute (Bi et al., 2024). More recently, Bergsma et al|(2025) showed
that a power law in dataset size more closely predicts the optimal batch size. This progress is critical,
but it seems to require extensive experiments, bespoke heuristic arguments, and clever insights.

Modeling the scaling dynamics of LLM test losses is an alternative approach to scaling laws. Ap-
proach 3 in |[Hoffmann et al.| (2022)) is a quintessential example: they fit a two-term power law to
predict LLM test loss from model and dataset size, then used that model as a surrogate to derive
compute-optimal configurations. The advantage of this approach is that a good scaling model can,
in principle, be used as a surrogate for more than one training decision or resource constraint.

Theoretical scaling models offer an intriguing path towards better practical scaling models. There
is a rich literature on models that qualitatively match LLM scaling dynamics (e.g., Bahri et al.,
2021; Maloney et al., [2022). The models are very-high-dimensional linear regression problems
in which random lower-dimensional projection is used to simulate model capacity and stochastic
optimization is used to simulate training. Because they are mechanistic models, they can model
training dynamics in new settings, e.g., data re-use (Lin et al.,|2025a), or even aid in the design of
algorithms, e.g., optimizers with better scaling dynamics (Ferbach et al.| 2025)).

Unfortunately, theoretical scaling models struggle as practical models. The naive approach of us-
ing the model’s risk function to predict LLM test losses runs into challenging high-dimensional
inference. A less naive approach, which would be to use asymptotic approximations, still struggles
because some of the risk terms are hard to approximate. Indeed, you can think of Chinchilla Ap-
proach 3 as an asymptotic approximation of the simplest terms of the theoretical models: the bias
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Table 1: Definitions used throughout. Where clear, we suppress the dependence on the configuration.

N Model size: number of trainable parameters
Configuration B Batch size: | tok timi ¢
Quantities atch size: examples (or tokens) per optimizer step
K Training steps: number of optimizer updates (iterations)
R D(B,K) Dataset size: number of training tokens = B X K x seq. length
esource . .
Quantities C(N,B,K) Training FLOPs: training compute =6 x N x D

M(N, B) Peak memory: peak GPU memory (MB) (Rees| (2023))

and approximation error. The variance is the most challenging term to approximate, which may
explain why no scaling model currently convincingly incorporates batch size.

In this paper we introduce a practical model for LLM scaling dynamics, called the Noisy Quadratic
System (NQS), with terms to match every term of the theoretical models, including variance with
batch size. The NQS is derived by gathering and simplifying the assumptions in prior works. Cru-
cially, the NQS can be approximated and fitted efficiently using recursions and numerical methods,
enabling inference on terms that do not admit simple asymptotic approximations.

We identified a couple of areas where LLM training dynamics significantly deviate from quadratic
models, and extended the NQS to correct for the differences. The extended model, called NQS™T,
closely tracked the behavior of LLM losses across batch sizes, explaining > 90% of the variations
due to token allocation on out-of-sample token budgets. In contrast, the basic NQS deviated signifi-
cantly on test and small batch training.

NQS ™7 incorporates model size, batch size, and training steps, so it can be used to allocate many re-
source types. In our experiments, we estimated compute-time, compute-memory and compute-data
optimal training configurations—all understudied—and the NQS™™ consistently chose configura-
tions that were close to the ground truth optimal. NQS™ also showed promise for high-dimensional
configurations, correctly ranking a number of batch size schedules over a range of average batch
sizes. No clever innovations were necessary to apply the NQS™™ to these new tasks.

NQS™ may also have better scaling priors than Chinchilla. In our experiments, NQS™ was able to
reproduce Chinchilla scaling laws and robustly extrapolate over compute scales, explaining > 85%
of the variation due to IV, D allocation out-of-sample, which was not matched by Chinchilla.

Of course, the mechanism underlying LLM training is very different from optimizing a quadratic
function. We expect and observed the NQS to fail on certain tasks. Nevertheless, the NQS provides
an extensible model through which we can study and control the scaling dynamics of LLMs.

2 MODELS OF SCALING DYNAMICS

We model the scaling dynamics of LLM test losses and use those models as cheap surrogates to
select optimal training configurations. Specifically, let LM be a test loss obtained after training
an LLM from a certain model family, configured to use IV; trainable parameters and K; steps of an
optimization algorithm with batch size B;. We define a model family as a mapping from a model
size N to a complete trainable LLM architecture (see for an example

Our intermediate goal is to model the scaling dynamics of the test loss. That is, predict the test loss
L*M for new configurations (N, B, K) as N, B, K — oo. We do this via a parametric model LEM
that minimizes an empirical loss over a “training” subset of scaling data (N;, B;, K;, L¥™M),
1
0* = argmin Z L(LEM(Ny, B;, K;), Ly). (1)

4 |train| i€train

In our experiments, we took L to be the Huber loss between the logarithms of its two arguments, as
in|Hoffmann et al.[(2022). We refer to models L3M as scaling models.

"Note that architectural choices influence the scaling of quantities like compute. We assume knowledge of
the model family when calculating these quantities throughout.
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The Chinchilla scaling model (Hoffmann et al.l 2022)) is the most widely used:

P Q
CHIN _
LG (N,D) _5irr+ prl + Dp/qfl/q’

2

where D = B x K X seq. length is the total number of tokens used in training and § =
(. P,q,Q, Err) € (RZ)? are scaling parameters satisfying p > 1]

Scaling models can be used to allocate resources or select configurations. E.g., suppose you have
a GPU with m MB of vVRAM and your energy limit affords you at most ¢ floating point operations
(FLOPs). If L§M ~ LM then you can use it as a surrogate to determine the best model size, batch
size, and training steps subject to a constraint on FLOPs C'(N, B, K) and peak memory M (N, B),

N*(¢,m), B*(¢,m), K*(¢,m) = argmin L3iM(N, B, K). 3)
C(N,B,K)<c
M(N,B)<m

Generalizations of eq. (3) can be used to allocate other resources. Table (1| summarizes our notation.

3 THE NOISY QUADRATIC SYSTEM

Our basic scaling model class is a model of single-epoclﬂ stochastic optimization along finite-
dimensional subspaces of certain infinite dimensional quadratics. Our model is a close relative of
theoretical scaling models (e.g.,|Zhang et al., 2019; Maloney et al.,|2022)), with a few critical changes
that make it feasible to fit to scaling data. For the sake of clarity, we introduce our model first and
discuss how it relates to existing models below. We defer extended related work to Appendix

We model LLMs as infinite sequences of real numbers, and express the test loss of LLMs as a
quadratic over sequences. Let w?, € RY be a square-summable sequence, H : RY — RN a
positive-definite linear mapping between sequenceﬂ and &, > 0. For w € RY, define

Q(w)=5n~1~+%<w—w*,Hw—Hw*>. 4)

(w,v) =3, WUy, is the standard inner product. w € RN represents an LLM, w* is the best LLM
achievable in our model family, &, is the best achievable loss (the Bayes error if the model family
is a universal function approximator), and Q is the expected test loss. Note: the coordinates w.,,, are
abstract; we don’t register them with the coordinates of an LLM’s weight vector.

We model LLM training as stochastic gradient descent along a finite-dimensional subspace. Let v,
be an orthonormal basis of H’s eigenvectors, in non-increasing order of the eigenvalues A,,. Let

v, R>0,w® e RN ¢{¥) € R be random, and Wy = span{v, }"_, for N' > 0. Define the update:

N
w® = w1 — 5y Projy (Hw(k_l) — Hw*) + 7 anl &P . )

This is an SGD optimizer of Q that updates w along the top N eigendirections of H with noise
injected along the same subspace. N captures the model size of an LLM in our model family. Note:
eigendirections don’t exactly correspond to weights, but you can think of the top eigendirections as
the trainable parameters of an LLM and the remaining directions as latent, untrained parameters.

We encode experimental observations as assumptions on Q. Specifically, LLM test losses follow a
power law in model size, which we encode with the following assumptions. Let p > 1, P, ¢, Q > 0.

1) D (0, 0@ —w N =L, @ A =2,  3) and &P ~ N (0,1, &) indep.
Assumptions and say: (i) for perfectly fitted models, increments in model size provide
marginal improvements in the loss that diminish like a power law; (ii) for each additional incre-
ment in the model size of partially fitted models, a misestimate is discounted with a factor that
decays like a separate power law. Assumption is at least consistent with experimental findings
that the spectra of LLM Hessians satisfy power laws (Tang et al., 2025).

2We changed Chinchilla’s parameterization to make it consistent with the semantics of our scaling model.
3 An epoch is a single pass of mini-batch optimization through a dataset.
*Technically, we also assume that H is compact and self-adjoint, to invoke the spectral theorem.
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Assumption [(3)] says: increments in model size contribute independent gradient noise that decays
with the same power law as the loss discount factor (B is the batch size and R is a constant variance
factor). The independence across iterations makes it a single-epoch model. The independence across
eigendirections is a strong assumption, but it is at least consistent with some experimental findings
(Zhang et al.,[2019) and theoretical observations (Martens, [2020).

Our scaling model class is the set of all functions that can be described as the expected value of
Q after K steps of update (5). We call this model class the Noisy Quadratic System. The NQS
model class has at most 6 degrees of freedom; the expected value of Q is invariant to changes in
the eigenbasis of H and the step size 7 is redundant. We prove this in Appendix D} Thus, we can
provide a simple expression for every element of the NQS model class, defined below.

Definition 3.1. (NQS Model Class) For integers N, B, K > 0, the Noisy Quadratic System model
class consists of functions satisfying LEQS(N ,B,K) =

Eapp(N) Epias(N,K) Evar(N,B,K)
wherep > 1, P,q,Q,R > 0, &, € Rand 0 = (p, P, q,Q, R, &) are the scaling parameters.

The approximation error &, captures the effect that latent parameters, which cannot be optimized,
have on the loss. For fixed IV, Eyias + Evar captures the expected optimization error that results from
imperfectly training the first N dimensions: these two terms are analogous to the bias and variance
in a linear regression problem, and their values depend on the number of total optimization steps K.

Relationship with Chinchilla. &,,,(N) € O(N'"P) decays with the same power law as Chin-
chilla. As we show in Appendix@ Evias(N, K) € O(K'/="/1) matches Chinchilla’s second term
for large values of IV, K. The variance term, the only term that incorporates batch size B, doesn’t
have a direct analog in Chinchilla, and Chinchilla doesn’t directly incorporate batch size.

Relationship with the Noisy Quadratic Model. Assumption is derived from the covariance
assumption in the Noisy Quadratic Model (NQM, Zhang et al.,|2019), a model of training dynamics
under rotation-invariant optimizer Yet, the NQM is not a complete “scaling model”: the NQM
doesn’t model the effect of model size /N and it doesn’t specify scaling parameters. By extending
the NQM across N and incorporating scaling parameters, the NQS can be fit to scaling data.

Relationship with Linear Regression Models. Assumptions[(T)|and[(2)|are derived from theoret-
ical models of LLM scaling dynamics based on linear regression (e.g., [Bahri et al., 2021} Maloney
et al.,|2022; Bordelon et al., [2024} |[Paquette et al.,|2025} [Lin et al.,[2025b). These models study the
risk of various linear regression estimators for data with latent, high-dimensional covariates that are
only observed through a random projection. The dimensionality of the projection captures the effect
of model size and power laws are encoded in the covariate and label distributions.

The random feature projection makes inference challenging in the linear regression models. In this
case, the bias and variance terms reduce to a form similar to Chinchilla, but the variance term does
not. Depending on the learning rate schedule, the variance can become negligible in the limit (Lin
et al., |2025b) or become a training bottleneck (Paquette et al.| [2025). Neither case is particularly
representative of LLM scaling behavior.

The NQS uses a deterministic projection, removing the need to infer or marginalize out the high-
dimensional random projection matrix. This allows us to approximate the variance term with nu-
merical methods, which makes it possible to fit the NQS to scaling data. The asymptotic behavior of
these quadratic models depends on the choice of assumptions, including the scaling exponents p and
q (Paquette et al} [2025). In NQS, p and ¢ are allowed to move freely between the phases between
which asymptotic behaviors shift, retaining the attractive expressivity of the quadratic models.

>The NQS is a namesake of the NQM.
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4 EXTENDING THE NOISY QUADRATIC SYSTEM

We found the basic NQS (def. [3.1) to be an insufficient model of LLM scaling dynamics in our
experiments. We introduce two innovations to help address this, and call the fully extended model
class, NQS™*. While we provide interpretations for these modifications, their justification is ulti-
mately empirical. Their usefulness may depend on the LLM architecture and optimizer we used.

Effective Model Size (EMS). In our experiments, compared to LLMs, the NQS displayed smaller
curvature near the optimal model size. Fig. [5] Appendix [E.2] contains visualizations of this failure
mode. We hypothesize that the LLM weights are moving in a lower-dimensional manifold embed-
ded within R, and the number of effective dimensions follows its own power law in terms of the
ambient weight dimension: Neg(N) = (AN)", where A, > 0 are additional scaling parameters of
the NQS™™. We select (A, r) based on the “additional variance explained” metric (23)), as measured
on a validation dataset, and use | Nog (IV) + 1/2] instead of N as the first argument to the NQS.

Learning Rate Adaptation (LRA). The basic NQS systemically overestimated the loss for LLMs
trained at small batch sizes. Given a fixed token count D, as one reduces B and increases K, the
NQS starts to increase, but LLM perplexity tended to maintain a flat profile ﬂ Fig. E] Appendix
contains visualizations of this failure mode. The discrepancy can be corrected with step-size
adaptation: at each step, the NQS™ aims to use a step-size v that minimizes the expected NQS loss
after the iteration, conditional on the current position. We suspect that the normalization layers in
LLMs served to regulate the norm of the weights, and therefore limited the influence of mini-batch
noise, producing an effect similar to that of diminishing step-size. To reduce the computational
cost of learning rate adaptation, we designed a greedy approximation scheme. This scheme incurs
a small additional cost, which is linear in the number of adaptation steps. See Appendix [B.3] In
our experiments we found that it was important to tune the tolerance parameter of the greedy algo-
rithm, and we recommended selecting the tolerance on a validation scaling set. Note that LRA is a
deployment-time modification; we do not fit the NQS to scaling data with LRA activated.

5 EVALUATING THE NOISY QUADRATIC SYSTEM

The advantages of the NQS for scaling analysis do not come at the cost of computational efficiency.
Naive calculations of eq. (@) require O(N K?2) FLOPs, which is is problematic, as training an LLM
requires only O(N BK). Luckily, the NQS computations required can be computed efficiently, ei-
ther exactly or approximately with numerical algorithms. Taken together, evaluations of expression
() took less than a second to compute on our hardware. Details are in Appendix [B.T]

The cost of eq. (6) can be brought down to O(N log K') with exact algorithms. When 1 — Q/n¢
is not too close to 1, it’s possible to use geometric series identities together with O(log K') power
calculations. Even if 1 — @/n is close to singular, a slightly more elaborate divide-and-conquer
algorithm exists to jointly compute powers and geometric series in O(log K) (Jezek, |1988)).

We use the Euler-Maclaurin (EM) formulae to address the dependence on N (Apostol, [1999). These
formulas use calculus to approximate large sums. We used a non-adaptive EM formula that approx-
imates eq. @ in O(log K). We did not analyze its error, but it performed well in our experiments.

6 LEARNING WITH THE NOISY QUADRATIC SYSTEM

For learning with the NQS and NQS ™, we adopt a model fitting and selection strategy that is highly
analogous to traditional statistical models. Namely, we fit the 6 NQS scaling parameters on a train
set and select models (like EMS or LRA) on validation. See Appendix [B.2]

Unlike traditional learning, the design of our training and validation sets is not random. Rather than
handling i.i.d. distributions, scaling models are deployed to predict critical configurations in regions
with extrapolated compute budgets. So, it is particularly important that scaling models perform

%In the NQM analysis (Zhang et al.[{(2019)), the variance reduction at small batch sizes was modeled via the
selection of a smaller learning rate. However, we observed that LLMs trained with a fixed learning rate also
exhibited the flat profile.
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well at these critical points. Ideally, the model performs well for any configuration, but given that
a sparsely parameterized scaling model is likely a mis-specified model, it is difficult to have high
accuracy over the entire space of configurations. Thus, the modeler defines the region on which the
model has to perform, potentially at the cost of deviations in other regions.

Inferring Scaling Parameters. For training sets, it is important to maximize coverage of config-
urations, but to do so strategically, as LLM training runs are expensive. We recommend training sets
built from resource level sets in configuration space to balance these considerations. For this paper,
we chose a scaling dataset with two components: the “IsoFLOPs” dataset and “IsoTokens” dataset.
The IsoFLOPs dataset is a collection of compute C' level sets, each of which extends along the N
axis, with B set at the so-called critical batch size. Similarly, the IsoTokens dataset is a collection
of level sets in dataset size D. There are a few more details, given in Appendix

We tackle the minimization posed in equation (IJ) using a similar approach to Chinchilla. This min-
imization does not admit an analytical solution, and the loss landscape is non-convex. Chinchilla’s
solution is to run the BFGS algorithm locally over a range of initialization points. For NQS, we
replace BFGS with a parallelize-able gradient based method. Although NQS scaling parameter gra-
dients are relatively fast to compute using auto-differentiation, they are still slower than Chinchilla’s.
To address this, we parallelized over initializations. See Appendix [B.2|for more details.

Selecting Scaling Models. Our recommendation is to design validation sets near critical points
in configuration space. In our case, the validation set used medium compute budgets at least 4
times larger than the highest in training, and used LLMs runs from a small range surrounding likely
optimal configurations. We select the following on validation sets: whether to use EMS or LRA,
and, if so, the specific extended scaling parameters (EMS parameters and LRA tolerance).

7 EXPERIMENTS

Our experiments tested the NQST™+ model class: (i) its performance near critical points in configu-
ration space, (ii) how its scaling predictions compared to baselines, (iii) its usefulness as a resource
allocator under compound resource constraints, and (iv) its ability to select batch size schedules.

For our scaling dataset, we trained a granular (across model sizes) version of Pythia model family
(for details, see Appendix [FI)) with model size up to 500M. We trained models for one epoch with
Adam with a fixed learning rate of v = 10~3 (Kingma & Bal [2017). We trained on OpenWebText2
(Gokaslan & Cohenl 2019), using a customized BPE tokenizer (Gage, |1994) with a vocabulary size
of 3000 and 128 sequence length. See Appendix [F:2] for FLOPs budget for dataset generation.

We fit one NQS T model using the strategies outlined in section@ and this single model is referred
to as NQS™ for all experiments below. Optimal configurations, i.e., solutions to problems like
eq. (@), were predicted by minimizing our fitted scaling model over a configuration grid, where

Table 2: NQS*+outperformed Chinchilla at explaining the variance in LLM scaling dynamics near
critical points in configuration space. EMS improved performance on IsoFLOP data, and LRA
improved prediction on small batch sizes in IsoToken data. There was a 64x compute gap between
the test runs and the most expensive train runs.

Add. train var. explained on  Add. test var. explained on

Scaling Model IsoFLOPs IsoTokens IsoFLOPs  IsoTokens
Chinchilla' 88 - -260 -

NQS 71 -185 1 32

NQS + LRA 71 93 -6 83

NQS + EMS 89 -28 84 67
NQS** 89 98 86 90

! Chinchilla overfit the training data, refer to Table [3|in Appendix



Under review as a conference paper at ICLR 2026
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Figure 1: NQS™Tmatched Chinchilla in compute allocation, and outperformed Chinchilla in pre-
dicting the loss at extrapolated compute scales. (a) and (b): for Chinchilla and NQS™* respectively,
color codes for compute budget. The 4 IsoFLOP sets from the top were used to train the scaling
models. NQS™" more accurately predicted the IsoFLOP curves at higher compute budget. (c):
NQS™*+ and Chinchilla performed comparably in N/ D allocation.

(a) Powerlines IsoLoss Curves  (b) NQS** IsoToken Curves (c) Allocation of data
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Figure 2: NQS™ closely predicted the critical batch sizes (CBS) at out-of-sample token budgets.
(a): Powerlines CBS is the batch size at the vertex of a hyperbola fitted to the IsoLoss (K, D)
curves. (b): NQS*+ CBS is defined as the point in B-LogLoss space where the IsoToken curve starts
rising. (c): The differences in the definition of CBS notwithstanding, NQS T largely reproduced the
relationship between B and D found in Powerlines. Important Note: Powerlines is not expected
to match LLM in (c), because the LLM points used the NOQS™ version of CBS definition.

N, B are logrithmically spaced (at most doubling between successive values), and K is computed
according to the given constraints. Ground truth optima were estimated using the same grid.

Note: NQS*+ is a model of momentumless SGD in an abstract space. Nevertheless, we found it to
be an acceptable model of Adam in LLM weight space. This emphasizes the point that the NQS is a
mechanistic model of a process in an abstract manifold, not the domain of the weights of the LLM.

How Well Does NQS** Predict LLM Test Losses? We used a variance explained metric 12, to
quantitatively evaluate scaling models. This metric compares a model’s predictive performance to
the best predictor given the level of compute (see Appendix [C|for definition).

NQS*+ outperformed Chinchilla in terms of variance explained (Table . On the IsoFLOP dataset,
NQS™T extrapolated well over compute scales, and maintained its predictive power on the test set,
up to x64 higher in compute relative to the largest training run, and explained 86% of the variance
on the test set. In contrast, Chinchilla failed to estimate the loss of LLMs at out-of-sample compute
budgets, potentially due to overfitting (see discussion in Appendix [E-I). On the IsoTokens dataset,
NQS™*Fexplained 90% of the variation due to batch size changes, over token budgets that were up
to x 16 higher than the largest token budget in the training portion of the IsoTokens dataseﬂ

"We did not obtain x64 on IsoTokens as this would exceed the total number of tokens in our chosen
language dataset OpenWebText2.
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Optimal Resource Allocations in an IsoFLOP Plane (C=2x 10!7 FLOPs)
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10°3 3
10*3 ; e
Q 3
g 3 = S
2103 3 e
2 brr|
2 3 3
10 E 3
| =TT —T T T T T T T T T T
10 10’ 10’ 10° 10’ 10° 10 10°
Model size N Model size N Model size N Model size N
Resource alloc. = Resource constraint boundary == Opt. alloc. (NQS**) @ Opt. alloc. (LLM) <& (Chin., CBS)

Figure 3: NQS™™ selected optimal (IV, B, K) configurations that were close to the ground truth
optimal, under various compound constraints. Each subplot displays IsoFLOP cross-sections: co-
ordinate (z,y) stands for N = z, B = y, K = 2.6 x 10" /zy. The red diamond marks a “default”
configuration. Shaded regions are valid configurations under progressively stricter resource con-
straints: as the constraint tightens, the optimal configuration moves away from the the “default”.

Does NQS™T Reproduce Known Scaling Laws? We used the NQS™™ to allocate compute and
select critical batch sizes (CBSs). We compared to baselines and the ground truth to see if the
NQS** captured known scaling law behavior. For baselines, we used Powerlines (Bergsma et al.,
20235)) as a method for CBS and Chinchilla (Hoffmann et al., 2022) for compute allocation. Chin-
chilla is trained on the training subset of the IsoFLOPs dataset, and Powerlines is trained on the
training subset of the IsoTokens dataset (interpolated to obtain the IsoLoss curves).

NQS™* and Powerlines made comparable CBS decisions, up to a slight difference in definition.
Powerlines CBS BYL: (D) is defined as the batch size at the vertex of a hyperbola fitted to the

IsoLoss (K, D) curves, see Fig. For NQS*™, we chose a definition of critical batch size that is
more natural for the NQS™* model familyl’| We define

BYY(D;N = n) = min {b: d%LON*QS (N =n,B=0b,K = D/(bx seq. length)) > x}, (7)

where  is a tunable curvature threshold, and d/db? L is approximated with finite differences using
discrete values of b at available data points. A prediction of By is easily obtained using NQS™*+
values computed over an IsoToken set at token budget D and model size N. NQS™* recommended
batch sizes were close to ground truth and similar to Powerlines, definition notwithstanding,

NQS* and Chinchilla made the same compute allocation decisions. For both, we define N*(C') =
argmin y LEM(N , D) subject to 6N D < C. To determine a training configuration for each token
budget D, we use B = BLL(D). Both successfully found N* near the ground truth, see Fig.

crit

NQS** Predicts Optimal N, B, K under Compound Resource Constraints. Compute-
optimal models trained at the critical batch size are not exactly optimal (or even achievable) under
some compound resource constraints. We used NQS™™ to select optimal configurations under com-
pound constraints (defined in , providing tailored solutions that outperformed (N*CHIN BPL
We use two notions of time, parallel-time (/) and time (/N K): with perfect model-parallelization,
wall clock time is proportional to the number of iterations K; otherwise, VK is a better indicator
of training time (Bergsma et al.l 2025). We also considered data constraints on D, in the single-
epoch setting, and memory constraints on M, both in combination with a compute budget. NQS*+
consistently favored configurations that were nearly ground truth optimal, see Fig.

8 An alternative definition of critical batch size was given by [Zhang et al|(2024), which required LLM
evaluations along the loss gradient.

Previous work (Bergsma et al., [2025) explored the (N, B) efficient frontier among configurations that
achieved a given loss; we address the dual problem.
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Figure 4: Batch size schedule rankings by NQS™ " were similar to LLM test loss rankings.

What is the best way to allocate tokens through time? A constant batch size may not be opti-
mal. Batch size schedules are challenging to optimize for scaling heuristics because of their high-
dimensionality, but NQS™ ™ easily incorporates schedules in the simulation of the quadratic modeﬁ
With a fixed number of tokens D, we evaluated a list of 6 different schedules, and each at 6 different
average batch size levels. We define the average batch size to be By, = D/K. We found that a
moderately increasing schedule was favorable over: a constant schedule, decreasing step schedules
or aggressively increasing schedules.

The ranking by NQS is similar to the ground truth ranking, and the winning schedule is consistent
with the choice of batch size schedule in the Llama 3 technical report (Meta All [2024). However,
NQS*+ seems to struggle at lower average batch sizes. At these points, NQS™ " incorrectly and
strongly preferred decreasing schedules. One likely culprit is the LRA in NQST*: LRA decreases
the learning rate as the batch size is decreased during training, reducing variance towards the end of
training; this may not mirror how LLMs respond to drops in batch size.

8 CONCLUSION AND LIMITATIONS

We introduced the Noisy Quadratic System, a new, practical, lightweight model of LLM scaling
dynamics. The NQS is designed to estimate optimal allocations of training resources whose scaling
behaviour is driven by model size, batch size, and number of training steps. In our experiments, we
found that the NQS allocations were close matches for the ground truth optima. We also found that
the NQS predicted LLM test losses near critical training configurations very well.

In its current form, the NQS has a number of limitations. (i) NQS does not seem to directly general-
ize over optimizers. In Sec. [7] we looked at LLMs trained with Adam; in Appendix[E.3] we use NQS
to fit LLMs trained with SGD. NQS™ " successfully fit both datasets. The difference in the LLM op-
timizer was reflected in the scaling parameters: from the Adam scaling dataset, NQS*Tinferred a
smaller Hessian exponent ¢, potentially reflecting Adam’s pre-conditioning effect. (ii) Similarly, the
NQS does not seem to generalize over learning rate. The scaling paramter () can absorb changes in
. A priori, we suspected that one could increase () to predict the LLM’s response to an increase in
v, but LLMs were less sensitive to changes in ~y than our quadratic system. (iii) So far, we’ve only
tested NQS on two LLM workloads, both are Pythia-style models trained on OpenWebText2, one
with SGD and the other with Adam. This limits any claims that we can make about generalization
of the best scaling model across workloads. Still, we made our decisions with proper train, valid,
test splits across compute within each workload. (iv) In our experiments, LLMs were trained with
a constant learning rate schedule and no weight decay. We did not incorporate warm up or a cosine
decay schedule. (v) We only tested workloads at small compute scales C' < 10'° and cannot make
claims about how NQS would compare to Chinchilla at larger scales. Nevertheless, we believe that
there is considerable scope to address these limitations in future work.

OPreviously we write LN a5 a function of N,B.K. In this section we update B from a scalar to a step
function that takes in the index set that enumerates the number of iterations K and outputs the dynamic batch
size. Naturally, we update the NQS™ evaluations by scheduling the B factor in the optimization of the
quadratic function.
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A EXTENDED RELATED WORK

Theoretical Models of Scaling Dynamics. The theory of scaling laws started around the early
2020s (Bahri et al., |2021; Maloney et al.l [2022), where statistical models simpler than neural net-
works were analysed and found to exhibit similar scaling behaviors as NN. NQS*Tis closely related
to this family of linear regression models (Maloney et al.,|2022; |Paquette et al., 2025;Bordelon et al.,
2024; |Paquette et al.,2025)). More recently, more complex models like two-layer mlps are analyzed,
and found to qualitatively describe the training of NN like RNNs applied on image data (Bordelon
et al., 2025; |Ren et al.| 2025; |Arous et al., [2025). Although some of these works offer testable hy-
pothesis (Bordelon et al.,[2024;2025), the results are limited to conjectures on the scaling exponents,
and the connection with empirical results is not strong enough to warrant practical use. LLMs tends
to be underexplored in the theory literature.

The Noisy Quadratic Model and the Investigation into Critical Batch Sizes. The pressing need
to utilize the parallel computing structure initiated a line of investigation to find the best batch size
that balances time efficiency and compute efficiency (Shallue et all, 2019). The Noisy Quadratic
Model (NQM) (Zhang et al., 2019) was found to produce useful qualitative insights in the rela-
tionship between optimizer properties and the critical batch size. NQSTTborrows from the NQM
assumptions on the noise structure of stochastic gradient updates. Inspired by similar quadratic
models, quantitative scaling laws in the critical batch size are discovered (McCandlish et al.||2018),
(Zhang et al.| 2024),(Bergsma et al., [2025)). The idea of “gradient noise scale” (McCandlish et al.,
2018)) is applied in the training of large scale LLMs (Brown et al.,|2020).

Scaling Laws of Learning Rate and Weight Decay. The tuning of learning rates and weight decay
are not modelled by the current version of NQS™™, but they are a key branch of scaling laws, and
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empirically influences the choice of batch size (Bi et al.| 2024} Bjorck et al., [2025; Bergsma et al.,
2025)). For Ir selection, an alternative to scaling law is “hyperparameter transfer”. |Yang et al.[(2022)
prescribed a formula to configure neural networks, so that the optimal hyperparameters at a small
scale also applied at a larger scale. Theoretical and empirical works followed to interpret and expand
this regime (Dey et al., 2025; Everett et al., 2024).

Scaling Models of Data. Using the available data efficiently is key to scaling. NQS™**considered
online training with homogeneous data, similar to (Hoffmann et al, [2022; [Kaplan et al., |2020),
while other works in this area explored data mixing (Shukor et al., [2025; Meta Al 2024; Thudi
et al} [2025)); and training with multiple epochs (Muennighoff et al., [2025). When compared to
existing practical scaling models, the NQS in its current state does not model multi-epoch training
(Muennighoff et al.,|2025) or data mixtures (Shukor et al., 2025), but given its close connection to
theoretical works, we hope this framework can be expanded to model these configuration options
and more.

The Scaling Properties of Optimizers. In NQS™*, we found that the optimization of a quadratic
model with SGD, given the correct scaling parameters and proper elaborations, are practically suf-
ficient to model NN trained with Adam (Kingma & Bal [2017). Other works explicitly consider the
scaling behavior of different optimizers (Zhang et al., 2019; Marek et al.,2025). Certain families of
optimizers are found to outperform SGD in theory and in practice (Ferbach et al., 2025)).

B ALGORITHMS

B.1 COMPUTATION OF NQS AND ITS GRADIENT

This section gives details on how we efficiently compute the NQS expression (equation (6)) and its
gradient with respect to the scaling parameters.

Given (N, B, K) and 0 = (P, p,Q, q, R, &irr ), the expression we would like to evaluate is

00 N 2K N K 2K —2k
P P Q RQ Q
NQS —& 41 41 i _ X 1 _x
Ly (N.B.K) =€ty D, 5430, 5 (1 n) T2 Fo (1 e
n=N+1 n=1 n=1k=1
Eapp (N) Ebias(N,K) Evar(N,K,B)

®)

Eapp(IN) is computed using a JAX (Bradbury et al., 2018) implementation of the Riemann zeta
function (in O(1) time).

For Evias (N, K) and &y (N, K, B):

To efficiently compute the products over K and sum of products over K terms, we use a divide-
and-conquer algorithm that is numerically stable (Jezek, [1988)). Our version is given below. This
algorithm is O(log K).

Algorithm 1 Calculating S,, = S>7—¢ A* and A" in O(log n)

Require: A € R>*%andn >0
1: function SUPERPOWER(A, n)
2 if n = 0 then return (0, /)

3: else
4: (k,b) «+ (|n/2],n mod 2)
5: (Sk, AF) <~ SUPERPOWER(A, k)
6: if b = 0 then
7: return (S + A¥S),, AF AF)
8: else
9: return (S + AFS), + AF AR Ak Ak A)
10: end if
11: end if

12: end function
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To efficiently compute the sums over N, we compute the first 5% of the summation terms exactly,
up till at most N = 100, and for the rest of the summation we approximate the sum using the
corresponding integral. The integral to sum approximation is corrected with first order terms from
the Euler-Maclaurin (E-M) formula. ie. Let L =: min(int(0.05/V),100), and we evaluate an

expression Zgﬂ f(n) by

N L N
S fm)=>fm)+ Y. f(n) )
n=1 n=1 n=L+1
and
N N
> s R g+ 50 - ) (10)

n=L+1

Integrals are then computed with fixed 20-point Gauss-Legendre. The run time is constant in V.

We explicitly calculate the first few terms in the summation, because in our experiment, these terms
cannot be adequately approximated with a first-order E-M formula.

To efficiently compute the gradient VgLyQS(N , B, K), we first compute the gradient of the N-

summands i.e., for V ZQLL f(n), we compute Zf:’zL Vo f(n). Since we implemented the com-
putation of f(n) in JAX (using Algorithm[I), V f(rn) can be implemented via jax.grad(f). For the
summation over N, analogously, we evaluate the first few terms exactly, and then approximate the
rest with an integral.

N

N L
Y Vef(n) =Y Vof(n)+ /

The computations are implemented with JAX and parallelize-able, making it possible to fit the scal-
ing model efficiently, by parallelizing over random initialization trials.

Vol + 5(Vaf(N) = V(L) D

B.2 FITTING NQS TO SCALING DATA

First, we describe how to fit an NQS system on the training data, assuming the hyper-parameters
(for the extensions) are determined. Then we describe how to select these hyper-parameters using a
validation dataset.

B.2.1 INFERENCE

Given a scaling dataset {(Ni, B, K;), L?IN}' , the goal of fitting an NQS is to find § that mini-

mizes the scaling loss given by (I):

0* = argmin ——
9 |train|

> L(LgM(N;, Bi, K, Ly). (12)
i€train
In our experiments, we took L to be the Huber loss between the logarithms of its two arguments, as
in|[Hoffmann et al. (2022)).

Data Filtering. As described in section[6] the training portion of the scaling dataset is composed of
the IsoFlops training dataset and the IsoTokens training dataset. Not all elements of the IsoTokens
training dataset are suitable to be included in the scaling loss. Recall that LRA is a deployment
time modification. Because we do not have an implementation of V,(LN?®) that incorporates
LRA, we would like to remove training data points that are expected to be significantly affected by
LRA. In our observations, it suffices to remove data points with (IV, B, K) satisfying the following:
LNN(N,B/2,2K) > LNN(N, B, K) — 0.05. We have access to this information because in the
IsoTokens dataset, B are spaced logarithmically, where the successive points are doubled in B. This
is a rule of thumb that has resulted in a good fit on the filtered training dataset.
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Optimization. Over the filtered portion of the training dataset, we optimized the target loss in
Eq. using the Adam optimizatior, over parallelized random initialization trials, using gradients
estimated according to Appendix [B.1I] Details are given below:

* Initialisations: we used 1000 pseudo-random initialisations, spaced as a Latin hyper-
cube over the following range: p € [1.05,2.5],P € [0.5,100],q € [0.6,2.5],Q €
[0.05,20],VR € [0.1,10],&,: € [0.1,1.5]. Note that these values are allowed to move
outside of these ranges during the optimization. In the implementation, we parametrized R

with VR,
* Optimization: we used the standard Adam optimizer with gradient clipping (gradients
clipped to be within [—1.0, 1.0]). Each optimization trial lasts for 1000 iterations.

* Decision: we picked the lowest loss iteration for each random initialization, and then com-
pared them across the initializations to select the final scaling parameters.

In our experiments, the optimization process takes about 1-2 hours (on one H100 GPU).

B.2.2 HYPERPARAMETER SELECTION FOR NQS*+

Power law scaling parameters for EMS. We describe one procedure to select EMS hyperparam-
eters (A, r). Recall that Nog(N) = (AN)".

1. Fix A = 1, among [0.55,0.6,0.75,0.9,1.0], select a ratio r such that a scaling model
trained with hyper-parameters A, r maximizes the additional variance explained metric in
the validation set. (denote 7).

2. Fix r = 1, among [0.001, 0.01,0.1, 1], select a multiplier A that maximize the additional
variance explained metric. (denote As).

3. Select 5 points, approximately evenly spaced along the line segment between (1, r1) and
(A2, 1), using log scale for A and normal scale for r. Test these points and select the one
with the maximum additional variance explained metric.

Tolerance for LRA. In[B.3|we go into details of the LRA algorithm. In short, the LRA is a greedy
algorithm that decays learning rate at certain steps during the optimization of the quadratic system,
where the decay results in an improvement in the expected value of the quadratic function. We place
a tolerance on the minimum amount of improvement before a learning rate decay is triggered.

Since LRA is a deployment time modification, tuning the tolerance parameter does not require re-
fitting of the system. It is recommended to determine the EMS paramters first, then use a validation
set to determine the appropriate tolerance (note: in case where an IsoTokens validation set is not
available, an IsoFlops validation set would also suffice for this task).

B.3 LEARNING RATE ADAPTATION

In LRA, we search for a step-function learning rate schedule of length K that improves the expected
loss of the quadratic E [Qg(w®))], and then outputs the expected loss with said schedule. By

learning rate schedule, we mean a sequence: k — i, where -y, is the learning rate used in the k*"
update of w. For this algorithm, we restrict the learning rate schedule to be a step function, with
evenly spaced steps. Details of the algorithm is given in Algorithm We denote by L(Ir_sch_curr)
the expected loss of the quadratic optimized with a learning rate schedule (a sequence) of Ir_sch_curr.
The length of the learning rate schedule dictates the number of steps that the quadratic function is
optimized for.

An input to the Algorithm is tolerance: this value controls the “greediness” of the weight decay,
and only an improvement beyond the tolerance can trigger a decay in the learning rate. This value
should be tuned using a validation scaling dataset (see Section[B.2.2).

The algorithm as given is O(S5?log K) in run time, where S is the maximum number of change
points allowed in the learning rate schedule. The dependence on S is quadratic, because computing
L(Ir sch) from scratch takes O(S log K) time. However, by carefully caching the relevant values
from the computation of L(Ir sch curr), one can compute L(Ir sch new) in O(log K) time.
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Algorithm 2 Learning Rate Adaptation

1: Input: Loss function L(-), total steps K, number of stages S, threshold
2: Qutput: Optimized learning rate schedule and corresponding loss

3: Compute step lengths: hy = |K /S| for s < S,and hg = K mod S

4: Initialize learning rate schedule (Ir_sch) as a sequence of 1’s of length h;.
5: prev_stage_Ir « Ir_sch[—1]

6: for s =2to S do

7: if by, = 0 then

8: break

9: end if

10: Ir_sch_curr <— Ir_sch.append(repeat(prev_stage_Ir, h;))
11: Loy < L(Ir_sch_curr)

12: prev_attempt_Ir < Ir_sch_curr[—1]

13: Ir_sch_new < Ir_sch.append(repeat(prev_attempt_Ir x 0.5, h))
14: Lpew < L(Ir_sch_new)

15: while L., — Lcyr < —threshold do

16: Leur ¢ Lyew

17: Ir_sch_curr <« Ir_sch_new

18: prev_attempt_Ir < Ir_sch_curr[—1]

19: Ir_sch_new < Ir_sch.append(repeat(prev_attempt_Ir x 0.5, hy))
20: Lpew < L(Ir_sch_new)

21: end while

22: Ir_sch < Ir_sch_curr

23: prev_stage_Ir + Ir_sch[—1]

24: end for

25: return Ir_sch_curr, Ly

To understand this, let us start by looking at the variance term of L for a single dimension, say the
nt" eigen direction of the Hessian matrix of the quadratic. Assume we have a 3-stage learning rate
schedule. The stages are A, B, C, with learning rates [y, V5, 7vc|. Each stage lasts for T weight
updates. The variance in dimension n is

3T

le‘n = §

k: j=k

’ﬂ

'77 s (13)

where \,, = % is the nt" eigenvalue of the operator H. (We derived the expression for &y, ing
for constant learning rate, which is easily extended to a step schedule.) The term that depends on
(and thus S) is:

3T 3T
varn/ 2B ZH’Y}@ (14)
k=1 j=k
T 3T 2T
:ZH’YIE(l_’YJ Z H'Ykl_% n Z HVk (15)
k=1 j=k k=T+1 j=k E=2T+1 j=k
T T 2T 3T
=> wl[a-vx)? JT G=vwra)® I @ —vra)+ .+ (16)
k=1 j=k j=T+1 j=2T+1
T T 2T 3T
=Y " AT[a=vax)? TT =v2)? T A —qcha)*+ .+ (17)
k=1 j=k j=T+1 j=2T+1
T
= (1= 782)*T (L= 790A)*" Y YA = 7ad)? TP + 4 (18)
k=1

19)
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Define F,(7) = (1 —A\)2T and Go(v) = S 72(1 — v2)2 T, We can now write a
recursion in the stages :

5var,n/()\2%%) atstage C' = Ga(va)Fp(v)Fe(vc) + Ge(vp)Fe(ye) + Gelve)  (20)
= (Ga(14)Fa(78) + Gs(18) ) Fo (o) + Gelrc) @D

MR
= {gvar,n/(ﬁ) at stage B} x Fe(ve) + Ge(ve) (22)

Similarly, we can write the bias term as a recursion:

3T

P
Evias.n/ (5, —) at stage C = kll(l — MAn)? = Fa(ya)Fs(vs)Fo(ye) (23)
P
= {Sbias,n /(5) at stage B} % Fo(ve) 24)

To go from N = n to the full risk, we need to sum the above expressions over n = 1,..., N. As
described previously, we estimate the sum over N with a fixed-point Gaussian quadrature. Instead
of computing the expression at Eyias pn, Evar,n, We can compute Evias,m; Evar,m at 20 values of m
spaced between 1 and N. The rest is straightforward.

C DEFINITIONS

Additional Variance Explained. On a scaling dataset, 72, is defined as:

2

) Ycec Liies. (log LM —log LY ¥(N;, B;, Kz))

Taga = 1 — 35 (25)
> cec 2ies. (1og Ly =3 s, log L%LM/|SC|)

where ¢ € C' are compute budgets within the scaling dataset (C' = {1el5, ..., 4e18}), and S, = {i :
6N;B;K; = c} is the set of all data points at the compute level c.

Doubly Constrained Optimal Configurations. For a doubly constrained setup, we define the
constrained optimal configuration as:

(N,B,K)*(f,c) = argmin L(N,B,K) s.t. F < f,C < cfor F € {D,N,NK, M}.
(N,B,K)

To obtain the NQS™* prediction of the optima, we ran NQS™* predictions along a grid over
(N, B, K) in the IsoFlop plane where C'(N, B, K) = ¢, and selected the configuration with the
lowest predicted loss.
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D PROOFS

D.1 DEGREES OF FREEDOM OF THE NQS

Before the derivation, let us review the assumptions and requirements in section 3]

We model LLMs as infinite sequences of real numbers, and express the test loss of LLMs as a
quadratic over sequences. Let w?, € R be an square-summable sequence, H : RY — RN a positive-
definite linear mapping between sequenceﬂ and &, > 0. For w € RY, define

Q(w):&rrJr%(wfw*,Hw—Hw*) (26)

We model LLM training as stochastic gradient descent along an finite-dimensional subspace. Let
vy, be an orthonormal basis of H’s eigenvectors, in non-increasing order of the eigenvalues \,,. Let

v, R>0,w® € RN ") € R be random, and W = span{v, }_, for N > 0. Define the update:

w® = w*=Y — 5y Projy, . (Hw(k_l) — Hw*) +7 anl & . 27)
We model this with the following assumptions. Letp > 1, P, q, @ > 0.

(1) By x ((vn, w® — w*))?] = Pfar,
(2) A\p = @/ns,
(3) and £ ~ N(0,+/An x (®/B)) independently.

We want to show that E[Q(w))] =

) N 2K N K 2K —2k
P P Q RQ Q
1 I | — _x 1 _x
fed Y Y (1-0) XY e (- o)
n=N+1 n=1 n=1k=1
Eapp(N) Ebias(N,K) Evar(N,K,B)

which is the expression we use for the NQS model family. We would also show that the NQS model
family, defined as LN9S(N, B, K) = E[Q(w¥))], has at most 6 degrees of freedom.

Proof. The update rule gives

N
w® — k=D = 5 Projy . (H(w(kfl) - w*)) + ’yznzl P, (29)
> N
= —7 Projy, ( 2_:1< w1 w*), Un>vn> +,an:1 gk?)vn_ (30)
= —7 Projy (Z((w““) —w") vn>Anvn> D DG Y
N — ’ ne1 " n

—y Z < (k—1) _ w*), Un> AnUp + VZ Un (32)

Foreachn < N,

<w(k) —w* Yy > =—y <(w(k71) —w*), Un> A + ¥EH (33)
<w(k) —w*, vn> = <w(k) — w1, vn> + <w(k_1) —w*, vn> =(1—79\) <(w(k_1) —w"),
(34

Thus E [ ((w®) = w*, v,))"]
= (1= ) [({(@®) = w*), v, ))?] +9°E [(€)?] (35)

"'Technically, we also assume that H is compact and self-adjoint, to invoke the spectral theorem.
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Apply recursively, we get E [(<w(k) —w*, vn>)2:|

We also know w*) — w(© ¢ span{vy, ...ux }, SO <w(’“) — w(o), vn> = (0 foranyn > N.

E [<w(k) —w*, Hw® — w*)>} (38)
- [i An <w(k) — w0, vn>2+§:>\n2 <w<k> —w®, Un> <w<0) - n> i < 0) _ " vnﬂ
n—=1 n=1 n=1 39)
N
= (k) _ ,,(0) o) _ % 2
T;)\nE Rw w > } P N+1E [)\ <w w*, Un>) } (40)
N N k oo
D D R IS ICE S LU S @n
n=1 n=1 j=1 n=N+1 K

Therefore E[Q(w5))] = &, + 1E [(w5) —w*, H(wE) —w*))]

= ¢ ) — P A242N (1 = n,, ) 2R R,L s P 42
irr + = Z + Z n’Y Z - n E 5 Z E ( )
n=N+1
P 1 QR & 1 P
_ )2K 2 2K—k) | L r
=&int 5 Z Z n2a B Z T 2 Z np’ @3)
n=1 =1 k=1 n=N+1
By re-parameterizing @ =: 7Q, R =: R/Q, we get:
E[Q(w!™))] (44)
N N K o
1 1L QR @ jaac 1 P
= Eine 52 §ZT§Z T30 e @y
n=1 n=1 k=1 n=N+1

Other than N, B, K, this function has 6 input arguments: P, p, @), q, R and &;;,. Thus, the model
class LNQS(N, B, K) = E[Q(w®))] has at most 6 degrees of freedom.

End of proof.
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D.2 AsYMPTOTIC UPPER BOUND FOR THE BIAS TERM

In this section we show that Epias (N, K) = %Zi\’:l(l e 2EL s O(K~@/a=1/a)),

Proof.
N
1 Q \ox P
Epias(N, K) = 3 z::(l - ﬁ) v (46)
p X K
< ) Z P H exp(—yQn~7)? 47)
n=1 k=1
pX
=3 Z n~Pexp(—2KyQn~7) (48)

3
Il
—

We next bound the summation with integrals. To do that, we need to find the regions where the
summand is monotone. Take the derivative of the summand f(n) = n™? exp(—2K~yQn~9):

ff( ) = (—p)n P exp(—2KvQn~9) + n" P exp(—2KyQn~ ) (—2KvQ)(—q)n ™" (49)

ME _ 1) (50)
p

— pn "~ exp(—2K~Qn~?) (
nd

Define h(K) = (%)1/9 The summand is non-decreasing in n for 1 < n < h(K), and non-
increasing for h(K) < n < N. Using this monotonicity:

N
Epias (N, K) Z f)y+ > fn) (51)
[h(K)]
p i K)j-i—l N
<% / n)dn + / J(n)dn (52)
[h(K)]—-1
p ) N
< 5 (n)dn + 2f(h(K)) + / f(n)dn (53)
n=1 [h(K)]
p [h(K)]+0.5 N-0.5
< 5 (/ f(n)dn +2f(h(K)) +/ f(n)dn) (54)
15 [h(K)]—-0.5
Simplify the integral
/ f(z)dr = / x P exp(—cKz™?)dx (55)
to=cKxj 9 - d(cK/t)l/q
= / (cK/t) 7P/ 9 exp(—t) ——L——dt (56)
ti=cKax, ? dt
to=cKx !
- / (K /t) P9 exp(—t)(cK)/9(~1 /gyt~ dt  (57)
ti=cKaxy 9

t1=cKxz; ¢
:(1/q)(0K)*(p/q71/q)/ ' exp(—t)tP/a1/a=1qt (58)

tzchz;q
Define G(s, (t1,t2)) = fttf ts~Lexp(—t)dt and c = 27Q.
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Then we have

Enias(N. K) < };i(cK)‘WQ‘”‘”( (59)
G(p/q—1/q, (cK(|h(K)] +0.5)7%, cK(1.5)79)) + (60)

+2f(h(K))+ (61)

G(p/q—1/q, (cK(N —0.5)"%, cK([h(K)] — 0.5)—‘1))) (62)

for convenience, if y is an integer, define |y| = y and [y] = y + 1, so that we always have

ly] +0.5= [y] — 0.5.
8ias NvK
Then we get W < 2f(h(K))+

G(p/q—1/q, (cK(N —0.5)7%, cK(1.5)77)) (63)

< 2/(h(K)) +G(p/a—1/a, (0, x) ) (64)
<2f(MK))+T(p/qa—1/q) (65)

Enias(N, K) < g(ﬁ)”/“”q (27((F)) + T(p/q — 1/q) ) K= #/5 (66)
FME)) x K7P/7 - 0as K — oo. (67)

We can find sufficiently large M such that for all K > M, f(h(K)) <e.g. I'(p/q — 1/q) (or any
other constant). Therefore Eyias (N, K) is O(K ~(P/4=1/9)), (Holds for any N sufficiently large.)

End of Proof.

E FIGURES AND TABLES

With the exception of figures[§]and[7] the figures and tables in this section are based on NQS fitted
to LLMs trained with the Adam optimizer.

E.1 COMPARISONS WITH CHINCHILLA

In Table |2} we saw that NQST*was predictive with a x64 compute gap, and the test performance
(86%) is comparable to that on training (89%). In contrast, Chinchilla fitted the training dataset
very well (88%), but failed to predict the loss of LLMs in the test set (-260%). Upon investigation,
the error on the test set was mostly due to Chinchilla overestimating the overall level of LLM test
loss at the test compute budgets. In Table |3} as we close the compute gap between train and test,
Chinchilla’s test metric improved, and training metric deteriorated. Chinchilla seemed to have over-
fitted on our scaling dataset.

Table 3: In our experiments, Chinchilla overfitted on small datasets. As more data is added, Chin-
chilla’s performance on training deteriorated, and performance on test improved.

Add. var. explained Compute

Chinchilla fitted on Train  Test gap
Train 88 260 up to 64x
Train + val. 87 -113 up to 16x
Train + val. + part of test 82 27 4x

Train + val. + all of test 81 52 None
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E.2 ABLATION STUDIES

NQS IsoFLOP

NQS+LRA IsoFLOP
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Figure 5: NQS without EMS fits [soFLOPs poorly.
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Figure 6: NQS needs both EMS and LRA to fit IsoTokens well, but the LRA accounts for most of

the improvements.
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E.3 FITTING NQS TO LLMS TRAINED WITH SGD

Table 4: On LLMs trained with SGD, NQS**+outperformed Chinchilla on extrapolated compute
budgets (IsoFlops), and explained 80% of the variance due to variation in batch sizes (IsoTokens).
Note that on the IsoFLOPs test set, both Chinchilla and NQS™*gave negative variance-explained
values: this was due to the flatness of the IsoFLOP curves in the test set; the variance within each
FLOPS budget was smaller than the squared difference between the LLM loss and the Scaling Model
loss. The average squared difference between NQS™Tand LLM is small, as visible in Fig.

Add. train var. explained on  Add. test var. explained on

Scaling Model IsoFLOPs IsoTokens IsoFLOPs  IsoTokens
Chinchilla 98 - -1960 -
NQS*+ 89 97 -58 80
(a) Chinchilla IsoFLOP Curves (b) NQS** IsoFLOP Curves (c) Allocation of compute
_ _ . _- Test region
14 1.4 = 10"] — Chinchilla
g 81 4 Nos++
T2 \/ 127 ZT 1 eLLM
g £ 1073
o " g ]
3107 — Chinchilla :"%’. 107 — NQs*+ % % ]
o LLM Cece o LLM ¢ © 1063
T 10 10"
Model size N Model size N FLOPs budget C

Figure 7: For LLMs trained with SGD, NQS™*successfully fitted the IsoFlop curves and matched
Chinchilla and ground truth in resource allocation.

(a) Powerlines IsoLoss Curves  (b) NQS** IsoToken Curves (c) Allocation of data
1 Y CBS estimate Y CBS estimate 10*3 Test region ¢
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S10°] ® LL g e LLM Zz ] e °
8103 s 210 eLLM ®
2z ] 5 1.4 3 E
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72} 4 o —_—
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Figure 8: For LLMs trained with SGD, NQS**successfully fitted the IsoToken curves and chose
critical batch sizes (CBS) that are close to the ground truth. Important Note: CBS selected by
Powerlines is not expected to match LLM, because the LLM points in (c) used the NQS™ " version
of CBS definition.

23



Under review as a conference paper at ICLR 2026

E.4 NQS SCALING PARAMETERS

Table 5: Comparison of the NQS*+scaling parameters for Adam and SGD, fitted on the training
portion of our scaling datasets. P, p are not directly comparable due to the different EMS hyper-
parameters. For ¢, the Adam value is smaller, likely reflecting better pre-conditioning properties.
Adam-trained LLMs also appeared to have a smaller irreducible risk &y, as inferred by the NQS.
Interestingly, the fitted scaling exponent of the bias term (p/q — 1/q) is comparable between the
optimizers .

Parameter SGD Adam
P 1.24 1.16
q 1.21 0.89
P 8.25 3.83
Q 0.72 0.61
VR 1.61  2.89
5irr 1.07 0.31
EMS A 1.00 0.10
EMS r 0.58 0.70

LRA Tolerance 0.05 0.0001
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F EXPERIMENT DETAILS

F.1 LLM MODEL FAMILY

We define a model family as a function that maps a requested model size to a fully specified trainable
model architecture. LLMs in the scaling datasets were trained with the GPT-NeoX suite in the
Huggingface Transformers library (Wolf et al.,|2020). In our experiments, the requested model sizes
are of the form 1e6 x 27 for integers 7, ranging from 0.25 to 512 million parameters. Due to the
constraints of the model family, the actual achievable model sizes are not identical to the requested
model size. Some of the constraints are: (1) for transformer models, the number of layers and hidden
size are required to be integers, and the latter often multiples of 16; (2) we request a certain power
law relationship between the number of layers, hidden size and the model size. In short, given a
requested model size, we search for an LLM that is close to the requested size, and satisfies the
constraints. Details are given below.

To construct the model family, we first fit a power law relationship on the existing Pythia suite of
models (Biderman et al.,2023), by running regressing the hidden size (H) and the number of layers
(L) against the model size (IV):

log(H) ~ pp log(N) 4 apy, and log(L) ~ prlog(N) + ar.

In the pythia family, the intermediate size is always four times the hidden size, and we follow that
convention in our model family. We also define the number of heads to be hidden size/16. In Pythia
the divisor is > 64. We chose 16 for convenience, so that we can have an integer number of heads as
long as the hidden size is divisible by 16, and be able to construct smaller LLMs that closely match
requested model sizes.

Given a requested model size Niequest» We search in a neighborhood of Nyequest (10% to 150%), for a
value N’ that minimizes the difference:

’NNeoGPT (H =16 x int(exp(py log N’ + ap)/16), L = intexp(py, log N’ + aL)) — Nrequested

Here Nneoger(H, L) denotes the count of trainable parameters of a GPT-NeoX LLM constructed
with the given hidden size H and number of layers L. Said constructed model is the output of
the model family mapping for input N = Nyeocpr(H, L). Where possible, we prefer to use N =
NNeoGPT(Hv L) over Nrequest-

F.2 SCALING DATASETS

IsoFLOPs Dataset. The IsoFLOPs dataset consists of 7 levels, each level contains LLMs trained
with a fixed FLOP budget C, but with various N/D allocation (by default, we use the Powerlines
critical batch size to allocate D to B, K). The FLOP budget quadruples between levels, resulting in
an overall compute gap of x45. The first 4 levels are used for training (included in the computation
of Lg), level 5 is used as a validation set to select the EMS hyperparameters of NQS™Tas well as the
tolerance of LRA, and the last 2 levels with the highest C are reserved for testing. The validation and
test data points in the IsoFLOPs dataset are from a small range around the optimal N, D allocation.
All included, the range of compute budget for the IsoFLOPs dataset is 9e14 to 4e18 FLOPs.

IsoTokens Dataset. The IsoTokens dataset is obtained by training LLMs at a fixed model size , and
consists of 6 levels of data points, each level containing LLMs trained at a fixed number of tokens
(fixed D, varying B, K). Between levels, D quadruples, resulting in a x4° gap between the lowest
and the highest levels. The first 4 levels are used for training, and the last 2 levels with the highest
token counts are reserved for testing. All included, the range of compute budget for the IsoFLOPs
dataset is 9e14 to 9e17 FLOPs.

F.3 LLMS TRAINED WITH SGD

The experiment set up for the SGD trials were identical to that of the Adam trials, with the following
exceptions: the LLMs were trained with an SGD optimizer with a learning rate of 1.999. We chose
this learning rate because in our experiments this was nearly optimal on the range of LLMs we
tested.
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