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ABSTRACT

Pre-training scaling laws describe the best training decisions under resource con-
straints. The discovery of new laws is a demanding exercise, as each decision
requires a separate law. An alternative is to model the scaling dynamics of LLMs
directly, then use those models as surrogates for multiple decisions. Yet, most
theoretical models of scaling dynamics cannot be fit to scaling data easily. In this
paper, we introduce the Noisy Quadratic System (NQS), a fittable relative of the
theoretical models that can generate new scaling laws. We also identify some key
failure modes in the theoretical models, and further extend the NQS to correct for
these deficiencies. In our experiments, our best model, fit on small-scale runs,
closely predicted the performance of runs near critical points, which Chinchilla
failed to do. Finally, the NQS is the first practical scaling model to include a vari-
ance term, which allows us to model the effect of batch size. In our experiments,
we show how to use the NQS to decide batch size, training steps, and model size
under many resource constraints, including compute, but also time and memory.

1 INTRODUCTION (REVISED)

Pre-training scaling laws describe how the performance of large language models (LLM) improve
predictably with increasing resources. The cross-entropy of well-trained LLMs follows a power-law
relationship with training compute (Achiam et al., 2024).

Some of these laws prescribe training recipes that would make best use of the resources. For ex-
ample, Hoffmann et al. (2022) found that the optimal model size is a function of the total compute;
DeepSeek LLM used power laws to predict optimal batch sizes from training compute (Bi et al.,
2024); and more recently, Bergsma et al. (2025) showed that a power law in dataset size more
closely predicts the optimal batch size. This progress is critical, but each training decision required
a separate law, each with extensive experiments, bespoke heuristic arguments, and clever insights.

An alternative to scaling laws is to build a single model that predicts LLM test loss as a function of
all relevant training configurations; the model acts as a surrogate of actual pre-training, and decisions
can be made by minizing the predicted loss. We refer to such approaches as “a scaling model” (in
contrast to “scaling laws”). Approach 3 in Hoffmann et al. (2022) is a step in this direction: they fit
a two-term power law to predict LLM test loss from model and dataset size. However, the model
does not incorporate important pre-training decisions like batch size, learning rate, optimizers and
schedules.

In this paper we introduce a richer scaling model class, called the Noisy Quadratic System (NQS). In
particular, we can model batch size and batch size schedules, which allows one to allocate memory
and time (both functions of batch size) and select the optimal schedules.

The NQS is derived by gathering and simplifying the assumptions in prior works, including statisti-
cal models from the theory literature, and the Noisy Quadratic Model. We side-steped the challenges
of the theoretical analysis using numerical methods and recursions, making these models efficiently
computable and fittable to scaling data. We also identified a couple of areas where LLM training
dynamics significantly deviate from quadratic models, and extended the NQS to correct for the gap.

The extended model, called NQS++, closely tracked the behavior of LLM losses across batch sizes,
explaining ≥ 90% of the variations due to token allocation on out-of-sample token budgets. The
NQS++ consistently chose configurations that were close to the ground truth optimal. NQS++
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also showed promise for high-dimensional configurations, correctly ranking a number of batch size
schedules over a range of average batch sizes.

Because the NQS model class is more elaborate than Chinchilla, we need to make sure that positive
results are not from overfitting. We used the standard statistical approach to compare models of
varying complexity: dividing the data into training/validation/test split, fitting the model on the
training split, and assessing the models on the test set. To make the analysis more relevant to scaling
analysis, LLMs in the test split is up to x64 larger than those in training, and the test split is only
revealed once NQS++is fully developed. We found no evidence of NQS++overfitting.

Surprisingly, NQS++is more robust than the apparently simpler Chinchilla model: because the NQS
is highly structured, it may contain beneficial inductive bias. In our experiments, NQS++ was able to
reproduce Chinchilla scaling laws and robustly extrapolate over compute scales, explaining ≥ 85%
of the variation due to N,D allocation out-of-sample. In contrast, Chinchilla overfitted on training
data, not only on our smaller scale LLM dataset, but also on its original Hoffman dataset (see E.5).

As a bridge between theory and practice, the NQS is not yet fully mechanistic, and does not model
some important pre-training configurations like the learning rate; however, our rolled-out optimiza-
tion approach makes the NQS easy to extend and modify, and no clever insights were required to
apply the model to new tasks. We hope as the NQS model class matures, it would offer a consoli-
dated solution to pre-training decisions.

2 A BACKGROUND IN SCALING MODELS (REVISED)

In this section, we briefly review the existing scaling laws and scaling model. We took inspirations
from these work to develop NQS++. For a complete discussion, please refer to App. A.

2.1 SCALING MODELS

A scaling model predicts the test loss of an LLM using its pre-training configurations. Specifically,
let LLLM

i be a test loss obtained after training an LLM from a certain model family, configured to use
Ni trainable parameters and Ki steps of an optimization algorithm with batch size Bi. We define a
model family as a mapping from a model size N to a complete trainable LLM architecture (see F.1
for an example)1.

Denote the test loss LLLM for new configurations (N,B,K) as N,B,K → ∞. We predict this
value via a parametric model LSM

θ that minimizes an empirical loss over a “training” subset of
scaling data (Ni, Bi,Ki, L

LLM
i ),

θ∗ = argmin
θ

1

|train|
∑

i∈train

L(LSM
θ (Ni, Bi,Ki), Li). (1)

In our experiments, we took L to be the Huber loss between the logarithms of its two arguments, as
in Hoffmann et al. (2022). We refer to models LSM

θ as scaling models.

A Practical Scaling Model: Chinchilla Approach 3 (Hoffmann et al., 2022)

The Chinchilla Approach (Hoffmann et al., 2022) is the most widely used scaling model:

LCHIN
θ (N,D) = Eirr +

P

Np−1
+

Q

Dp/q−1/q
, (2)

where D = B × K × seq. length is the total number of tokens used in training, and θ =
(p, P, q,Q, Eirr) ∈ (R≥0)5 are scaling parameters satisfying p > 1.a

aWe re-parameterized Chinchilla for consistency with our scaling model’s semantics.

Scaling models can be used to allocate resources or select configurations. E.g., suppose you have
a GPU with m MB of vRAM and your energy limit affords you at most c floating point operations

1Note that architectural choices influence the scaling of quantities like compute. We assume knowledge of
the model family when calculating these quantities throughout.
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Table 1: Definitions used throughout. Where clear, we suppress the dependence on the configuration.

Configuration
Quantities

N Model size: number of trainable parameters
B Batch size: examples (or tokens) per optimizer step
K Training steps: number of optimizer updates (iterations)

Resource
Quantities

D(B,K) Dataset size: number of training tokens = B ×K × seq. length
C(N,B,K) Training FLOPs: training compute = 6×N ×D

M(N,B) Peak memory: peak GPU memory (MB) (Rees (2023))

(FLOPs). If LSM
θ∗ ≈ LLLM, then you can use it as a surrogate to determine the best model size, batch

size, and training steps subject to a constraint on FLOPs C(N,B,K) and peak memory M(N,B),

N∗(c,m), B∗(c,m),K∗(c,m) = argmin
C(N,B,K)≤c
M(N,B)≤m

LSM
θ∗ (N,B,K). (3)

Generalizations of eq. (3) can be used to allocate other resources. table 1 summarizes our notation.

2.2 THEORETICAL SCALING MODELS

Statistical models that qualitatively match LLM scaling dynamics are proposed by theorists (e.g.,
Bahri et al., 2021; Maloney et al., 2022). For a high-level understanding, we present informally the
assumptions in Maloney et al. (2022), a representative of the linear regression family of such models.
Later, when we introduce NQS, we described how these assumptions can be stated precisely and/or
transformed for practical use.

Assumptions in the Linear Regression Theoretical Scaling Models (Maloney et al., 2022)

Data Generation: A very high-dimensional latent input space X with covariance eigen-
values following a power-law distribution. Labels y are generated from the latent space via
a high-dimensional linear map, y = w∗X + ϵ, where w∗ has zero-mean random coefficients
with power-law covariance, and ϵ is additive noise.
Modeling: The modeler does not observe X directly. Instead, a lower dimensional variable
Φ is given: Φ = XP , where P is a random Gaussian matrix mapping X into a lower-
dimensional “feature” space. The modeler’s objective is to recover y using Φ via linear
regression y ∼ westΦ. Maloney et al. (2022) solved the regression problem via ERM, while
later work uses gradient flow (Bordelon et al., 2024) or SGD (Paquette et al., 2025).
Analogy to LLM pre-training: The expected risk of y ∼ westΦ is a quadratic func-
tion in the parameters west (Q(west)), and can be broken down into the irreducible error
(due to noise in y), the approximation error (since the random feature projection removed
dimensions, the model can never be perfect), and bias, variance (similar to standard linear
regression, these two terms are functions of the optimization algorithm).

Expected Risk = Q(west) = Eirr + Eappx + Ebias + Evar (4)

To apply the scaling model is to use this risk as a proxy for LLM cross-entropy.

Because such models are mechanistic models, i.e. models a training trajectory guided by an opti-
mizer, they can model training dynamics in new settings, e.g., data re-use (Lin et al., 2025a), or even
aid in the design of algorithms, e.g., optimizers with better scaling dynamics (Ferbach et al., 2025).

Unfortunately, theoretical scaling models struggle as practical models. The naive approach of us-
ing the model’s risk function to predict LLM test losses runs into challenging high-dimensional
inference.

A less naive approach, which would be to use asymptotic approximations of the risk, still struggles
because some of the terms are hard to approximate. Indeed, you can think of Chinchilla Approach
3 as an asymptotic approximation of the simplest terms of the theoretical models: the irreducible
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error Eirr, the approximation error Eappx = P
Np−1 and the bias Ebias = Q

Dp/q−1/q . The variance term
Ebias is the most challenging term to approximate, which may explain why no scaling model cur-
rently convincingly incorporates batch size. Lin et al. (2025b) assumed an exponentially decaying
learning rate schedule, which results in a negligible variance term in the asymptotics, not suitable for
analysing the effect of batch size. Paquette et al. (2025) discussed case-by-case the implication of
noise under constant learning rate schedule and varying degrees of noise, with the noise becoming
a bottleneck in late-stage training. However, as we will learn from the LRA elaboration to the NQS
(3.2), LLM training (even at fixed lr) is not well-captured by a quadratic function optimized at fixed
learning rate. The line of work by Bordelon et. al similarly did not address noise explicitly, with
asymptotic results mostly concerning the training horizon and model size.

In NQS++, we include terms to match every term of the theoretical models, including the variance
term as a function of batch size. To address the challenges associated with the variance term, we
take a numerical approach, rather than analytical simplifications. Crucially, the NQS can be approx-
imated and fitted efficiently using recursions, and flexibly adapts between the phase transitions of
the asymptotics.

3 OUR SCALING MODEL: THE NOISY QUADRATIC SYSTEM

3.1 DEFINITIONS

Our basic scaling model class is a close relative of theoretical scaling models with a few critical
changes that make it feasible to fit to scaling data. For the sake of clarity, we introduce our model
first and discuss how it relates to existing models below.

We model LLMs as infinite sequences of real numbers, and express the test loss of LLMs as a
quadratic over sequences. Let w∗

m ∈ RN be a square-summable sequence, H : RN 7→ RN a
positive-definite linear mapping between sequences2, and Eirr ≥ 0. For w ∈ RN, define

Q(w) = Eirr + 1
2 ⟨w − w∗, Hw −Hw∗⟩. (5)

⟨w, v⟩ =
∑

m wmvm is the standard inner product. w ∈ RN represents an LLM, w∗ is the best LLM
achievable in our model family, Eirr is the best achievable loss (the Bayes error if the model family
is a universal function approximator), and Q is the expected test loss. Note: the coordinates wm are
abstract; we don’t register them with the coordinates of an LLM’s weight vector.

We model LLM training as stochastic gradient descent along a finite-dimensional subspace. Let vn
be an orthonormal basis of H’s eigenvectors, in non-increasing order of the eigenvalues λn. Let
γ,R > 0, w(0) ∈ RN, ξ

(k)
n ∈ R be random, and WN = span{vn}Nn=1 for N > 0. Define the update:

w(k) = w(k−1) − γ ProjWN

(
Hw(k−1) −Hw∗

)
+ γ

∑N

n=1
ξ(k)n vn. (6)

This is an SGD optimizer of Q that updates w along the top N eigendirections of H with noise
injected along the same subspace. N captures the model size of an LLM in our model family. Note:
eigendirections don’t exactly correspond to weights, but you can think of the top eigendirections as
the trainable parameters of an LLM and the remaining directions as latent, untrained parameters.

We encode experimental observations as assumptions on Q. Specifically, LLM test losses follow a
power law in model size, which we encode with the following assumptions. Let p > 1, P, q,Q > 0.

(1) E[λn

(
⟨vn, w(0) − w∗⟩

)2
] = P

np , (2) λn = Q
nq , (3) and ξ

(k)
n ∼ N

(
0, λn

R
B

)
indep.

Assumptions (1) and (2) say: (i) for perfectly fitted models, increments in model size provide
marginal improvements in the loss that diminish like a power law; (ii) for each additional incre-
ment in the model size of partially fitted models, a misestimate is discounted with a factor that
decays like a separate power law. Assumption (2) is at least consistent with experimental findings
that the spectra of LLM Hessians satisfy power laws (Tang et al., 2025).

Assumption (3) says: increments in model size contribute independent gradient noise that decays
with the same power law as the loss discount factor (B is the batch size and R is a constant variance

2Technically, we also assume that H is compact and self-adjoint, to invoke the spectral theorem.
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factor). The independence across iterations makes it a single-epoch model. The independence across
eigendirections is a strong assumption, but it is at least consistent with some experimental findings
(Zhang et al., 2019) and theoretical observations (Martens, 2020).

Our scaling model class is the set of all functions that can be described as the expected value of
Q after K steps of update (6). We call this model class the Noisy Quadratic System. The NQS
model class has at most 6 degrees of freedom; the expected value of Q is invariant to changes in
the eigenbasis of H and the step size γ is redundant. We prove this in Appendix D. Thus, we can
provide a simple expression for every element of the NQS model class, defined below.

The Noisy Quadratic System of Scaling Dynamics

Definition 3.1. (NQS Model Class) For integers N,B,K > 0, the Noisy Quadratic System
model class consists of functions satisfying LNQS

θ (N,B,K) =

Eirr +
∞∑

n=N+1

P

np︸ ︷︷ ︸
Eapp(N)

+

N∑
n=1

P

np

(
1− Q

nq

)2K

︸ ︷︷ ︸
Ebias(N,K)

+

N∑
n=1

K∑
k=1

RQ2

Bn2q

(
1− Q

nq

)2K−2k

︸ ︷︷ ︸
Evar(N,B,K)

, (7)

where p > 1, P, q,Q,R > 0, Eirr ∈ R and θ = (p, P, q,Q,R, Eirr) are the scaling parame-
ters.
The approximation error Eapp captures the effect that latent parameters, which cannot be
optimized, have on the loss. For fixed N , Ebias + Evar captures the expected optimization
error that results from imperfectly training the first N dimensions: these two terms are
analogous to the bias and variance in a linear regression problem, and their values depend
on the number of total optimization steps K.

Relationship with Chinchilla. Eapp(N) ∈ O(N1−p) decays with the same power law as Chin-
chilla. As we show in Appendix D, Ebias(N,K) ∈ O(K1/q−p/q) matches Chinchilla’s second term
for large values of N,K. The variance term, the only term that incorporates batch size B, doesn’t
have a direct analog in Chinchilla, and Chinchilla doesn’t directly incorporate batch size.

Relationship with the Noisy Quadratic Model. Assumption (3) is derived from the covariance
assumption in the Noisy Quadratic Model (NQM, Zhang et al., 2019), a model of training dynamics
under rotation-invariant optimizers3. Yet, the NQM is not a“scaling model”: the NQM doesn’t
model the effect of model size N and it doesn’t specify scaling parameters. By extending the NQM
across N and incorporating scaling parameters, the NQS can be fit to scaling data.

Relationship with the Theoretical Linear Regression Models. Assumptions (1) and (2) are de-
rived from theoretical models of LLM scaling dynamics based on linear regression (e.g., Bahri et al.,
2021; Maloney et al., 2022; Bordelon et al., 2024; Paquette et al., 2025; Lin et al., 2025b). They
corresponds to the Data Generation and Modelling assumptions described in 2.2

The NQS uses a deterministic projection, removing the need to infer or marginalize out the high-
dimensional random projection matrix. This allows us to approximate the variance term with nu-
merical methods, which makes it possible to fit the NQS to scaling data. The asymptotic behavior of
these quadratic models depends on the choice of assumptions, including the scaling exponents p and
q (Paquette et al., 2025). In NQS, p and q are allowed to move freely between the phases between
which asymptotic behaviors shift, retaining the attractive expressivity of the quadratic models.

3.2 EXTENDING THE NOISY QUADRATIC SYSTEM

We found the basic NQS (def. 3.1) to be an insufficient model of LLM scaling dynamics in our
experiments. We introduce two innovations to help address this, and call the fully extended model

3The NQS is a namesake of the NQM.
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class, NQS++. While we provide interpretations for these modifications, their justification is ulti-
mately empirical. Their usefulness may depend on the LLM architecture and optimizer we used.

Extensions to the Noisy Quadratic System

Effective Model Size (EMS). In our experiments, compared to LLMs, the NQS displayed
smaller curvature near the optimal model size. Fig. 5 Appendix E.2 contains visualiza-
tions of this failure mode. We hypothesize that the LLM weights are moving in a lower-
dimensional manifold embedded within RN , and the number of effective dimensions follows
its own power law in terms of the ambient weight dimension: Neff(N) = (AN)r, where
A, r > 0 are additional scaling parameters of the NQS++. We select (A, r) based on the
“additional variance explained” metric (26), as measured on a validation dataset, and use
⌊Neff(N) + 1/2⌋ instead of N as the first argument to the NQS.
Learning Rate Adaptation (LRA). The basic NQS systemically overestimated the loss for
LLMs trained at small batch sizes. Given a fixed token count D, as one reduces B and
increases K, the NQS starts to increase, but LLM perplexity tended to maintain a flat profile
a. Fig. 6 Appendix E.2 contains visualizations of this failure mode. The discrepancy can
be corrected with step-size adaptation: at each step, LRA aims to use a step-size γ that
minimizes the expected NQS loss after the iteration, conditional on the current position. In
E.6, we visualized how LRA maintains the flat profile by matching the loss trajectory of
LLMs.

aIn the NQM (Zhang et al. (2019)), the flat loss profile at small batch sizes resulted from co-tuning
with learning rate. In our case, LLMs trained with a fixed learning rate also exhibited the flat profile.

Although the implementation of LRA is new, we are not the first to propose an adaptive algorithm
as a theoretical explanation for LLM training behaviours. McCandlish et al. (2018) suggests that a
quadratic optimization, with line search over the learning rate, is a good model of LLM loss profiles
with changing batch size. Our LRA algorithm can be viewed as a crude approximation of their
hypothesis. For the mathematical motivation, see Appendix D.1 of McCandlish et al. (2018).

We suspect that the normalization layers in LLMs served to regulate the norm of the weights, and
therefore limited the influence of mini-batch noise, producing an effect similar to that of diminish-
ing step-size. To reduce the computational cost of learning rate adaptation, we designed a greedy
approximation scheme. This scheme incurs a small additional cost, which is linear in the number
of adaptation steps. See Appendix B.3. In our experiments we found that it was important to tune
the tolerance parameter of the greedy algorithm, and we recommended selecting the tolerance on a
validation scaling set. Note that LRA is a deployment-time modification; we do not fit the NQS to
scaling data with LRA activated.

3.3 LEARNING WITH THE NOISY QUADRATIC SYSTEM

For learning with the NQS and NQS++, we adopt a model fitting and selection strategy that is highly
analogous to traditional statistical models. Namely, we fit the 6 NQS scaling parameters on a train
set and select models (like EMS or LRA) on validation. See Appendix B.2.

Unlike traditional learning, the design of our training and validation sets is not random. Rather than
handling i.i.d. distributions, scaling models are deployed to predict critical configurations in regions
with extrapolated compute budgets. So, it is particularly important that scaling models perform
well at these critical points. Ideally, the model performs well for any configuration, but given that
a sparsely parameterized scaling model is likely a mis-specified model, it is difficult to have high
accuracy over the entire space of configurations. Thus, the modeler defines the region on which the
model has to perform, potentially at the cost of deviations in other regions.

Inferring Scaling Parameters. For training sets, it is important to maximize coverage of config-
urations, but to do so strategically, as LLM training runs are expensive. We recommend training sets
built from resource level sets in configuration space to balance these considerations. For this paper,
we chose a scaling dataset with two components: the “IsoFLOPs” dataset and “IsoTokens” dataset.
The IsoFLOPs dataset is a collection of compute C level sets, each of which extends along the N

6
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axis, with B set at the so-called critical batch size. Similarly, the IsoTokens dataset is a collection
of level sets in dataset size D. There are a few more details, given in Appendix F.2.

We tackle the minimization posed in equation (1) using a similar approach to Chinchilla. This min-
imization does not admit an analytical solution, and the loss landscape is non-convex. Chinchilla’s
solution is to run the BFGS algorithm locally over a range of initialization points. For NQS, we
replace BFGS with a parallelize-able gradient based method. Although NQS scaling parameter gra-
dients are relatively fast to compute using auto-differentiation, they are still slower than Chinchilla’s.
To address this, we parallelized over initializations. See Appendix B.2 for more details.

Selecting Scaling Models. Our recommendation is to design validation sets near critical points
in configuration space. In our case, the validation set used medium compute budgets at least 4
times larger than the highest in training, and used LLMs runs from a small range surrounding likely
optimal configurations. We select the following on validation sets: whether to use EMS or LRA,
and, if so, the specific extended scaling parameters (EMS parameters and LRA tolerance).

3.4 COMPUTING WITH THE NOISY QUADRATIC SYSTEM

The advantages of the NQS for scaling analysis do not come at the cost of computational efficiency.
Luckily, the NQS computations required can be computed efficiently via recursions, either exactly
or approximately with numerical algorithms. We use the Euler-Maclaurin (EM) formulae to address
the dependence on N (Apostol, 1999), and the geometric series summation formula to address the
dependency on K. Taken together, evaluations of expression (7) is O(1) (at most O log(K) in case
of numerical instability) and took about a second to compute on our hardware (including the LRA
adaption procedure); fitting the NQS to the scaling dataset takes only about a minute, because we
parallelize the initialization trials over multiple seeds. Details can be found in App. B.1.

4 EXPERIMENTS

Our experiments tested the NQS++ model class: (i) its performance near critical points in configu-
ration space, (ii) how its scaling predictions compared to baselines, (iii) its usefulness as a resource
allocator under compound resource constraints, and (iv) its ability to select batch size schedules.

For our scaling dataset, we trained a granular (across model sizes) version of Pythia model family
(for details, see Appendix F.1) with model size up to 500M. We trained models for one epoch with
Adam with a fixed learning rate of γ = 10−3 (Kingma & Ba, 2017). We trained on OpenWebText2
(Gokaslan & Cohen, 2019), using a customized BPE tokenizer (Gage, 1994) with a vocabulary size
of 3000 and 128 sequence length. See Appendix F.2 for FLOPs budget for dataset generation.

We fit one NQS++ model using the strategies outlined in section 3.3, and this single model is
referred to as NQS++ for all experiments below. Optimal configurations, i.e., solutions to problems

Table 2: NQS++ outperformed Chinchilla at explaining the variance in LLM scaling dynamics
near critical points in configuration space. EMS improved performance on IsoFLOP data, and LRA
improved prediction on small batch sizes in IsoToken data. There was a 64x compute gap between
the test runs and the most expensive train runs.

Add. train var. explained on Add. test var. explained on

Scaling Model IsoFLOPs IsoTokens IsoFLOPs IsoTokens

Chinchilla1 88 - −260 -

NQS 71 −185 1 32
NQS + LRA 71 93 −6 83
NQS + EMS 89 −28 84 67

NQS++ 89 98 86 90
1 Chinchilla overfits the training data, which is also observed on its original

Hoffman dataset. Please see E.1 (our data) and E.5 (Hoffman data).
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Figure 1: NQS++ matched Chinchilla in compute allocation, and outperformed Chinchilla in pre-
dicting the loss at extrapolated compute scales. (a) and (b): for Chinchilla and NQS++ respectively,
color codes for compute budget. The 4 IsoFLOP sets from the top were used to train the scaling
models. NQS++ more accurately predicted the IsoFLOP curves at higher compute budget. (c):
NQS++ and Chinchilla performed comparably in N/D allocation.
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Figure 2: NQS++ closely predicted the critical batch sizes (CBS) at out-of-sample token budgets.
(a): Powerlines CBS is the batch size at the vertex of a hyperbola fitted to the IsoLoss (K,D)
curves. (b): NQS++ CBS is defined as the point in B-LogLoss space where the IsoToken curve starts
rising. (c): The differences in the definition of CBS notwithstanding, NQS++ largely reproduced the
relationship between Bcrit and D found in Powerlines. Important Note: Powerlines is not expected
to match LLM in (c), because the LLM points used the NQS++ version of CBS definition.

like eq. (3), were predicted by minimizing our fitted scaling model over a configuration grid, where
N,B are logrithmically spaced (at most doubling between successive values), and K is computed
according to the given constraints. Ground truth optima were estimated using the same grid.

Note: NQS++ is a model of momentumless SGD in an abstract space. Nevertheless, we found it to
be an acceptable model of Adam in LLM weight space. This emphasizes the point that the NQS is a
mechanistic model of a process in an abstract manifold, not the domain of the weights of the LLM.

How Well Does NQS++ Predict LLM Test Losses? We used a variance explained metric η2add to
quantitatively evaluate scaling models. This metric compares a model’s predictive performance to
the best predictor given the level of compute (see Appendix C for definition).

NQS++ outperformed Chinchilla in terms of variance explained (Table 2). On the IsoFLOP dataset,
NQS++ extrapolated well over compute scales, and maintained its predictive power on the test set,
up to ×64 higher in compute relative to the largest training run, and explained 86% of the variance
on the test set. In contrast, Chinchilla failed to estimate the loss of LLMs at out-of-sample compute
budgets, potentially due to overfitting (see discussion in Appendix E.1). On the IsoTokens dataset,
NQS++explained 90% of the variation due to batch size changes, over token budgets that were up
to ×16 higher than the largest token budget in the training portion of the IsoTokens dataset4.

4We did not obtain ×64 on IsoTokens as this would exceed the total number of tokens in our chosen
language dataset OpenWebText2.
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Does NQS++ Reproduce Known Scaling Laws? We used the NQS++ to allocate compute and
select critical batch sizes (CBSs). We compared to baselines and the ground truth to see if the
NQS++ captured known scaling law behavior. For baselines, we used Powerlines (Bergsma et al.,
2025) as a method for CBS and Chinchilla (Hoffmann et al., 2022) for compute allocation. Chin-
chilla is trained on the training subset of the IsoFLOPs dataset, and Powerlines is trained on the
training subset of the IsoTokens dataset (interpolated to obtain the IsoLoss curves).

NQS++ and Powerlines made comparable CBS decisions, up to a slight difference in definition.
Powerlines CBS BPL

crit(D) is defined as the batch size at the vertex of a hyperbola fitted to the
IsoLoss (K,D) curves, see Fig. 2. For NQS++, we chose a definition of critical batch size that is
more natural for the NQS++ model family.5 We define

BNQS
crit (D;N = n) = min

{
b :

d

db2
LNQS
θ∗

(
N = n,B = b,K = D/(b× seq. length)

)
≥ κ

}
, (8)

where κ is a tunable curvature threshold, and d/db2L is approximated with finite differences using
discrete values of b at available data points. A prediction of Bcrit is easily obtained using NQS++

values computed over an IsoToken set at token budget D and model size N . NQS++ recommended
batch sizes were close to ground truth and similar to Powerlines, definition notwithstanding,

NQS++ and Chinchilla made the same compute allocation decisions. For both, we define N∗(C) =
argminN LSM

θ∗ (N,D) subject to 6ND ≤ C. To determine a training configuration for each token
budget D, we use B = BPL

crit(D). Both successfully found N∗ near the ground truth, see Fig. 1.

NQS++ Predicts Optimal N ,B,K under Compound Resource Constraints. Compute-
optimal models trained at the critical batch size are not exactly optimal (or even achievable) under
some compound resource constraints. We used NQS++ to select optimal configurations under com-
pound constraints (defined in C), providing tailored solutions that outperformed (N∗CHIN, BPL

crit)
6.

We use two notions of time, parallel-time (K) and time (NK): with perfect model-parallelization,
wall clock time is proportional to the number of iterations K; otherwise, NK is a better indicator
of training time (Bergsma et al., 2025). We also considered data constraints on D, in the single-
epoch setting, and memory constraints on M , both in combination with a compute budget. NQS++

consistently favored configurations that were nearly ground truth optimal, see Fig. 3.

5An alternative definition of critical batch size was given by Zhang et al. (2024), which required LLM
evaluations along the loss gradient.

6Previous work (Bergsma et al., 2025) explored the (N,B) efficient frontier among configurations that
achieved a given loss; we address the dual problem.
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Figure 4: Batch size schedule rankings by NQS++were similar to LLM test loss rankings.

What is the best way to allocate tokens through time? A constant batch size may not be opti-
mal. Batch size schedules are challenging to optimize for scaling heuristics because of their high-
dimensionality, but NQS++ easily incorporates schedules in the simulation of the quadratic model7.
With a fixed number of tokens D, we evaluated a list of 6 different schedules, and each at 6 different
average batch size levels. We define the average batch size to be Bavg = D/K. We found that a
moderately increasing schedule was favorable over: a constant schedule, decreasing step schedules
or aggressively increasing schedules.

The ranking by NQS is similar to the ground truth ranking, and the winning schedule is consistent
with the choice of batch size schedule in the Llama 3 technical report (Meta AI, 2024). However,
NQS++ seems to struggle at lower average batch sizes. At these points, NQS++incorrectly and
strongly preferred decreasing schedules. One likely culprit is the LRA in NQS++: LRA decreases
the learning rate as the batch size is decreased during training, reducing variance towards the end of
training; this may not mirror how LLMs respond to drops in batch size.

5 CONCLUSION AND LIMITATIONS (REVISED)

We introduced the Noisy Quadratic System, a new, practical, lightweight model of LLM scaling
dynamics. The NQS is designed to estimate optimal allocations of training resources whose scaling
behaviour is driven by model size, batch size, and number of training steps. In our experiments, we
found that the NQS allocations were close matches for the ground truth optima. We also found that
the NQS predicted LLM test losses near critical training configurations very well.

Optimizers: To use NQS for predictions on LLMs trained on a new optimizer required re-fitting the
NQS on training data with the said optimizer. In Appendix E.3, we use NQS to fit LLMs trained with
SGD (rather than Adam). NQS++successfully fit the SGD dataset, and the the difference in the LLM
optimizer was reflected in the scaling parameters: from the Adam scaling dataset, NQS++inferred
a smaller Hessian exponent q, potentially reflecting Adam’s pre-conditioning effect.

Learning Rate: Similarly, the NQS does not seem to generalize directly over learning rate. The
scaling paramter Q can absorb changes in γ. A priori, we suspected that one could increase Q to
predict the LLM’s response to an increase in γ, but LLMs were less sensitive to changes in γ than
our quadratic system.

Scope of Experiments: So far, we’ve only tested NQS on two LLM workloads, both are Pythia-
style models trained on OpenWebText2, one with SGD and the other with Adam. This limits any
claims that we can make about generalization of the best scaling model across workloads. In our
experiments, LLMs were trained with a constant learning rate schedule and no weight decay. We
did not incorporate warm up or a cosine decay schedule. We only tested workloads at small compute
scales C < 1019 and cannot make claims about how NQS would compare to Chinchilla at larger
scales.

7Previously we write LNQS++

as a function of N,B,K. In this section we update B from a scalar to a step
function that takes in the index set that enumerates the number of iterations K and outputs the dynamic batch
size. Naturally, we update the NQS++ evaluations by scheduling the B factor in the optimization of the
quadratic function.
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A EXTENDED RELATED WORK

Theoretical Models of Scaling Dynamics. The theory of scaling laws started around the early
2020s (Bahri et al., 2021; Maloney et al., 2022), where statistical models simpler than neural net-
works were analysed and found to exhibit similar scaling behaviors as NN. NQS++is closely related
to this family of linear regression models (Maloney et al., 2022; Paquette et al., 2025; Bordelon et al.,
2024; Paquette et al., 2025). More recently, more complex models like two-layer mlps are analyzed,
and found to qualitatively describe the training of NN like RNNs applied on image data (Bordelon
et al., 2025; Ren et al., 2025; Arous et al., 2025). Although some of these works offer testable hy-
pothesis (Bordelon et al., 2024; 2025), the results are limited to conjectures on the scaling exponents,
and the connection with empirical results is not strong enough to warrant practical use. LLMs tends
to be underexplored in the theory literature.

The Noisy Quadratic Model and the Investigation into Critical Batch Sizes. The pressing need
to utilize the parallel computing structure initiated a line of investigation to find the best batch size
that balances time efficiency and compute efficiency (Shallue et al., 2019). The Noisy Quadratic
Model (NQM) (Zhang et al., 2019) was found to produce useful qualitative insights in the rela-
tionship between optimizer properties and the critical batch size. NQS++borrows from the NQM
assumptions on the noise structure of stochastic gradient updates. Inspired by similar quadratic
models, quantitative scaling laws in the critical batch size are discovered (McCandlish et al., 2018),
(Zhang et al., 2024),(Bergsma et al., 2025). The idea of “gradient noise scale” (McCandlish et al.,
2018) is applied in the training of large scale LLMs (Brown et al., 2020).
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In case where the time constraint is not severe, (Marek et al., 2025) found that smaller batch sizes are
beneficial to minimizing cross-entropy under a fixed token budget; this is achievable with carefully
tuned hyperparameters including those relate to the Adam optimizer.

Scaling Laws of Learning Rate and Weight Decay. The tuning of learning rates and weight decay
are not modelled by the current version of NQS++, but they are a key branch of scaling laws, and
empirically influences the choice of batch size (Bi et al., 2024; Bjorck et al., 2025; Bergsma et al.,
2025). For lr selection, an alternative to scaling law is “hyperparameter transfer”. Yang et al. (2022)
prescribed a formula to configure neural networks, so that the optimal hyperparameters at a small
scale also applied at a larger scale. Theoretical and empirical works followed to interpret and expand
this regime (Dey et al., 2025; Everett et al., 2024).

Scaling Models of Data. Using the available data efficiently is key to scaling. NQS++considered
online training with homogeneous data, similar to (Hoffmann et al., 2022; Kaplan et al., 2020),
while other works in this area explored data mixing (Shukor et al., 2025; Meta AI, 2024; Thudi
et al., 2025); and training with multiple epochs (Muennighoff et al., 2025). When compared to
existing practical scaling models, the NQS in its current state does not model multi-epoch training
(Muennighoff et al., 2025) or data mixtures (Shukor et al., 2025), but given its close connection to
theoretical works, we hope this framework can be expanded to model these configuration options
and more.

The Scaling Properties of Optimizers. In NQS++, we found that the optimization of a quadratic
model with SGD, given the correct scaling parameters and proper elaborations, are practically suf-
ficient to model NN trained with Adam (Kingma & Ba, 2017). Other works explicitly consider the
scaling behavior of different optimizers (Zhang et al., 2019; Marek et al., 2025). Certain families of
optimizers are found to outperform SGD in theory and in practice (Ferbach et al., 2025).

B ALGORITHMS

B.1 COMPUTATION OF NQS AND ITS GRADIENT

This section gives details on how we efficiently compute the NQS expression (equation (7)) and its
gradient with respect to the scaling parameters.

Given (N,B,K) and θ = (P, p,Q, q,R, Eirr), the expression we would like to evaluate is

LNQS
θ (N,B,K) = Eirr +

∞∑
n=N+1

P

np︸ ︷︷ ︸
Eapp(N)

+

N∑
n=1

P

np

(
1− Q

nq

)2K

︸ ︷︷ ︸
Ebias(N,K)

+

N∑
n=1

K∑
k=1

RQ2

Bn2q

(
1− Q

nq

)2K−2k

︸ ︷︷ ︸
Evar(N,K,B)

(9)

Eapp(N) is computed using a JAX (Bradbury et al., 2018) implementation of the Riemann zeta
function (in O(1) time).

For Ebias(N,K) and Evar(N,K,B):

To efficiently compute the products over K and sum of products over K terms, we use a divide-
and-conquer algorithm that is numerically stable (Ježek, 1988). Our version is given below. This
algorithm is O(logK).

To efficiently compute the sums over N , we compute the first 5% of the summation terms exactly,
up till at most N = 100, and for the rest of the summation we approximate the sum using the
corresponding integral. The integral to sum approximation is corrected with first order terms from
the Euler-Maclaurin (E-M) formula. i.e. Let L =: min(int(0.05N), 100), and we evaluate an
expression

∑N
n=1 f(n) by

N∑
n=1

f(n) =

L∑
n=1

f(n) +

N∑
n=L+1

f(n) (10)
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Algorithm 1 Calculating Sn =
∑n−1

k=0 A
k and An in O(log n)

Require: A ∈ Rd×d and n ≥ 0
1: function SUPERPOWER(A,n)
2: if n = 0 then return (0, I)
3: else
4: (k, b)← (⌊n/2⌋, n mod 2)
5: (Sk, A

k)← SUPERPOWER(A, k)
6: if b = 0 then
7: return (Sk +AkSk, A

kAk)
8: else
9: return (Sk +AkSk +AkAk, AkAkA)

10: end if
11: end if
12: end function

and
N∑

n=L+1

f(n)
E−M
≈

∫ N

n=L

f(n) +
1

2
(f(N)− f(L)) (11)

Integrals are then computed with fixed 20-point Gauss-Legendre. The run time is constant in N .

We explicitly calculate the first few terms in the summation, because in our experiment, these terms
cannot be adequately approximated with a first-order E-M formula.

To efficiently compute the gradient ∇θL
NQS
θ (N,B,K), we first compute the gradient of the N -

summands i.e., for ∇θ

∑N
n=L f(n), we compute

∑N
n=L∇θf(n). Since we implemented the com-

putation of f(n) in JAX (using Algorithm 1),∇θf(n) can be implemented via jax.grad(f). For the
summation over N , analogously, we evaluate the first few terms exactly, and then approximate the
rest with an integral.

N∑
n=1

∇θf(n) ≈
L∑

n=1

∇θf(n) +

∫ N

n=L

∇θf(n) +
1

2
(∇θf(N)−∇θf(L)) (12)

The computations are implemented with JAX and parallelize-able, making it possible to fit the scal-
ing model efficiently, by parallelizing over random initialization trials.

B.2 FITTING NQS TO SCALING DATA

First, we describe how to fit an NQS system on the training data, assuming the hyper-parameters
(for the extensions) are determined. Then we describe how to select these hyper-parameters using a
validation dataset.

B.2.1 INFERENCE

Given a scaling dataset
{
(Ni, Bi,Ki), L

NN
i

}m

i=1
, the goal of fitting an NQS is to find θ that mini-

mizes the scaling loss given by (1):

θ∗ = argmin
θ

1

|train|
∑

i∈train

L(LSM
θ (Ni, Bi,Ki), Li). (13)

In our experiments, we took L to be the Huber loss between the logarithms of its two arguments, as
in Hoffmann et al. (2022).

Data Filtering. As described in section 3.3, the training portion of the scaling dataset is composed
of the IsoFlops training dataset and the IsoTokens training dataset. Not all elements of the IsoTokens

15
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training dataset are suitable to be included in the scaling loss. Recall that LRA is a deployment
time modification. Because we do not have an implementation of ∇θ(L

NQS) that incorporates
LRA, we would like to remove training data points that are expected to be significantly affected by
LRA. In our observations, it suffices to remove data points with (N,B,K) satisfying the following:
LNN(N,B/2, 2K) > LNN(N,B,K) − 0.05. We have access to this information because in the
IsoTokens dataset, B are spaced logarithmically, where the successive points are doubled in B. This
is a rule of thumb that has resulted in a good fit on the filtered training dataset.

Optimization. Over the filtered portion of the training dataset, we optimized the target loss in
Eq. (1) using the Adam optimizatior, over parallelized random initialization trials, using gradients
estimated according to Appendix B.1. Details are given below:

• Initialisations: we used 1000 pseudo-random initialisations, spaced as a Latin hyper-
cube over the following range: p ∈ [1.05, 2.5], P ∈ [0.5, 100], q ∈ [0.6, 2.5], Q ∈
[0.05, 20],

√
R ∈ [0.1, 10], Eirr ∈ [0.1, 1.5]. Note that these values are allowed to move

outside of these ranges during the optimization. In the implementation, we parametrized R

with
√
R

2
.

• Optimization: we used the standard Adam optimizer with gradient clipping (gradients
clipped to be within [−1.0, 1.0]). Each optimization trial lasts for 1000 iterations.

• Decision: we picked the lowest loss iteration for each random initialization, and then com-
pared them across the initializations to select the final scaling parameters.

In our experiments, the optimization process takes about 1-2 hours (on one H100 GPU).

B.2.2 HYPERPARAMETER SELECTION FOR NQS++

Power law scaling parameters for EMS. We describe one procedure to select EMS hyperparam-
eters (A, r). Recall that Neff(N) = (AN)r.

1. Fix A = 1, among [0.55, 0.6, 0.75, 0.9, 1.0], select a ratio r such that a scaling model
trained with hyper-parameters A, r maximizes the additional variance explained metric in
the validation set. (denote r1).

2. Fix r = 1, among [0.001, 0.01, 0.1, 1], select a multiplier A that maximize the additional
variance explained metric. (denote A2).

3. Select 5 points, approximately evenly spaced along the line segment between (1, r1) and
(A2, 1), using log scale for A and normal scale for r. Test these points and select the one
with the maximum additional variance explained metric.

Tolerance for LRA. In B.3 we go into details of the LRA algorithm. In short, the LRA is a greedy
algorithm that decays learning rate at certain steps during the optimization of the quadratic system,
where the decay results in an improvement in the expected value of the quadratic function. We place
a tolerance on the minimum amount of improvement before a learning rate decay is triggered.

Since LRA is a deployment time modification, tuning the tolerance parameter does not require re-
fitting of the system. It is recommended to determine the EMS paramters first, then use a validation
set to determine the appropriate tolerance (note: in case where an IsoTokens validation set is not
available, an IsoFlops validation set would also suffice for this task).

B.3 LEARNING RATE ADAPTATION

In LRA, we search for a step-function learning rate schedule of length K that improves the expected
loss of the quadratic E

[
Qθ(w

(K))
]
, and then outputs the expected loss with said schedule. By

learning rate schedule, we mean a sequence: k 7→ γk, where γk is the learning rate used in the kth

update of w. For this algorithm, we restrict the learning rate schedule to be a step function, with
evenly spaced steps. Details of the algorithm is given in Algorithm 2. We denote by L(lr sch curr)
the expected loss of the quadratic optimized with a learning rate schedule (a sequence) of lr sch curr.
The length of the learning rate schedule dictates the number of steps that the quadratic function is
optimized for.
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Algorithm 2 Learning Rate Adaptation

1: Input: Loss function L(·), total steps K, number of stages S, threshold
2: Output: Optimized learning rate schedule and corresponding loss
3: Compute step lengths: hs = ⌊K/S⌋ for s < S, and hS = K mod S
4: Initialize learning rate schedule (lr sch) as a sequence of 1’s of length h1.
5: prev stage lr← lr sch[−1]
6: for s = 2 to S do
7: if hs = 0 then
8: break
9: end if

10: lr sch curr← lr sch.append(repeat(prev stage lr, hs))
11: Lcurr ← L(lr sch curr)
12: prev attempt lr← lr sch curr[−1]
13: lr sch new← lr sch.append(repeat(prev attempt lr× 0.5, hs))
14: Lnew ← L(lr sch new)
15: while Lnew − Lcurr < −threshold do
16: Lcurr ← Lnew
17: lr sch curr← lr sch new
18: prev attempt lr← lr sch curr[−1]
19: lr sch new← lr sch.append(repeat(prev attempt lr× 0.5, hs))
20: Lnew ← L(lr sch new)
21: end while
22: lr sch← lr sch curr
23: prev stage lr← lr sch[−1]
24: end for
25: return lr sch curr, Lcurr

An input to the Algorithm is tolerance: this value controls the “greediness” of the weight decay,
and only an improvement beyond the tolerance can trigger a decay in the learning rate. This value
should be tuned using a validation scaling dataset (see Section B.2.2).

The algorithm as given is O(S2 logK) in run time, where S is the maximum number of change
points allowed in the learning rate schedule. The dependence on S is quadratic, because computing
L(lr sch) from scratch takes O(S logK) time. However, by carefully caching the relevant values
from the computation of L(lr sch curr), one can compute L(lr sch new) in O(logK) time.

To understand this, let us start by looking at the variance term of L for a single dimension, say the
nth eigen direction of the Hessian matrix of the quadratic. Assume we have a 3-stage learning rate
schedule. The stages are A,B,C, with learning rates [γA, γB , γC ]. Each stage lasts for T weight
updates. The variance in dimension n is

Evar,n =:
1

2

3T∑
k=1

γ2
k

λnR

B

3T∏
j=k

(1− γjλn)
2, (14)

where λn = Q
nq is the nth eigenvalue of the operator H . (We derived the expression for Evar in D

for constant learning rate, which is easily extended to a step schedule.) The term that depends on K

17
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(and thus S) is:

Evar,n/(
λnR

2B
) =

3T∑
k=1

3T∏
j=k

γ2
k(1− γjλn)

2 (15)

=

T∑
k=1

3T∏
j=k

γ2
k(1− γjλn)

2 +

2T∑
k=T+1

3T∏
j=k

γ2
k(1− γjλn)

2 +

3T∑
k=2T+1

3T∏
j=k

γ2
k(1− γjλn)

2 (16)

=

T∑
k=1

γ2
k

T∏
j=k

(1− γjλn)
2

2T∏
j=T+1

(1− γjλn)
2

3T∏
j=2T+1

(1− γjλn)
2 + ...+ ... (17)

=

T∑
k=1

γ2
A

T∏
j=k

(1− γAλn)
2

2T∏
j=T+1

(1− γBλn)
2

3T∏
j=2T+1

(1− γCλn)
2 + ...+ ... (18)

= (1− γBλn)
2T (1− γCλn)

2T
T∑

k=1

γ2
A(1− γAλn)

2(T−k) + ...+ ... (19)

(20)

Define Fn(γ) = (1 − γλn)
2T and Gn(γ) =

∑T
k=1 γ

2(1 − γλn)
2(T−k). We can now write a

recursion in the stages :

Evar,n/(
λnR

2B
) at stage C = GA(γA)FB(γB)FC(γC) +GB(γB)FC(γC) +GC(γC) (21)

=
(
GA(γA)FB(γB) +GB(γB)

)
FC(γC) +GC(γC) (22)

=
{
Evar,n/(

λnR

2B
) at stage B

}
× FC(γC) +GC(γC) (23)

Similarly, we can write the bias term as a recursion:

Ebias, n/(
P

2np
) at stage C =

3T∏
k=1

(1− γkλn)
2 = FA(γA)FB(γB)FC(γC) (24)

=
{
Ebias, n/(

P

2np
) at stage B

}
× FC(γC) (25)

To go from N = n to the full risk, we need to sum the above expressions over n = 1, ..., N . As
described previously, we estimate the sum over N with a fixed-point Gaussian quadrature. Instead
of computing the expression at Ebias,n, Evar,n, we can compute Ebias,m, Evar,m at 20 values of m
spaced between 1 and N . The rest is straightforward.

C DEFINITIONS

Additional Variance Explained. On a scaling dataset, η2add is defined as:

η2add = 1−

∑
c∈C

∑
i∈Sc

(
logLLLM

i − logLNQS
i (Ni, Bi,Ki)

)2
∑

c∈C

∑
i∈Sc

(
logLLLM

i −
∑

i∈Sc
logLLLM

i

/∣∣Sc

∣∣)2 , (26)

where c ∈ C are compute budgets within the scaling dataset (C = {1e15, ..., 4e18}), and Sc = {i :
6NiBiKi = c} is the set of all data points at the compute level c.

Doubly Constrained Optimal Configurations. For a doubly constrained setup, we define the
constrained optimal configuration as:
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(N,B,K)∗(f, c) = argmin
(N,B,K)

L(N,B,K) s.t. F ≤ f, C ≤ c for F ∈ {D,N,NK,M}.

To obtain the NQS++ prediction of the optima, we ran NQS++ predictions along a grid over
(N,B,K) in the IsoFlop plane where C(N,B,K) = c, and selected the configuration with the
lowest predicted loss.
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D PROOFS

D.1 DEGREES OF FREEDOM OF THE NQS

Before the derivation, let us review the assumptions and requirements in section 3.

We model LLMs as infinite sequences of real numbers, and express the test loss of LLMs as a
quadratic over sequences. Let w∗

m ∈ R be an square-summable sequence, H : RN 7→ RN a positive-
definite linear mapping between sequences8, and Eirr ≥ 0. For w ∈ RN, define

Q(w) = Eirr + 1
2 ⟨w − w∗, Hw −Hw∗⟩. (27)

We model LLM training as stochastic gradient descent along an finite-dimensional subspace. Let
vn be an orthonormal basis of H’s eigenvectors, in non-increasing order of the eigenvalues λn. Let
γ,R > 0, w(0) ∈ RN, ξ

(k)
n ∈ R be random, and WN = span{vn}Nn=1 for N > 0. Define the update:

w(k) = w(k−1) − γ ProjWN

(
Hw(k−1) −Hw∗

)
+ γ

∑N

n=1
ξ(k)n vn. (28)

We model this with the following assumptions. Let p > 1, P, q,Q > 0.

(1) E[λn ×
(
⟨vn, w(0) − w∗⟩

)2
] = P/np,

(2) λn = Q/nq,

(3) and ξ
(k)
n ∼ N (0,

√
λn × (R/B)) independently.

We want to show that E[Q(w(K))] =

Eirr +
∞∑

n=N+1

P

np︸ ︷︷ ︸
Eapp(N)

+

N∑
n=1

P

np

(
1− Q

nq

)2K

︸ ︷︷ ︸
Ebias(N,K)

+

N∑
n=1

K∑
k=1

RQ2

Bn2q

(
1− Q

nq

)2K−2k

︸ ︷︷ ︸
Evar(N,K,B)

(29)

which is the expression we use for the NQS model family. We would also show that the NQS model
family, defined as LNQS(N,B,K) = E[Q(w(K))], has at most 6 degrees of freedom.

Proof. The update rule gives

w(k) − w(k−1) = −γ ProjWN

(
H(w(k−1) − w∗)

)
+ γ

∑N

n=1
ξ(k)n vn. (30)

= −γ ProjWN

(
H

∞∑
n=1

〈
(w(k−1) − w∗), vn

〉
vn

)
+ γ

∑N

n=1
ξ(k)n vn. (31)

= −γ ProjWN

( ∞∑
n=1

〈
(w(k−1) − w∗), vn

〉
λnvn

)
+ γ

∑N

n=1
ξ(k)n vn. (32)

= −γ
N∑

n=1

〈
(w(k−1) − w∗), vn

〉
λnvn + γ

∑N

n=1
ξ(k)n vn. (33)

For each n ≤ N ,〈
w(k) − w(k−1), vn

〉
= −γ

〈
(w(k−1) − w∗), vn

〉
λn + γξ(k)n (34)〈

w(k) − w∗, vn

〉
=
〈
w(k) − w(k−1), vn

〉
+
〈
w(k−1) − w∗, vn

〉
= (1− γλn)

〈
(w(k−1) − w∗), vn

〉
+ γξ(k)n .

(35)

Thus E
[(〈

w(k) − w∗, vn
〉)2]

= (1− γλn)
2E
[
(
〈
(w(k−1) − w∗), vn

〉
)2
]
+ γ2E

[
(ξ(k)n )2

]
(36)

8Technically, we also assume that H is compact and self-adjoint, to invoke the spectral theorem.
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Apply recursively, we get E
[(〈

w(k) − w∗, vn
〉)2]

= (1− γλn)
2kE

[
(
〈
(w(0) − w∗), vn

〉
)2
]
+

k∑
j=1

(1− γλn)
2(k−j)γ2E

[
(ξ(j)n )2

]
(37)

= (1− γλn)
2k 1

λn

P

np
+ γ2

k∑
j=1

(1− γλn)
2(k−j)λn

R

B
(38)

We also know w(k) − w(0) ∈ span{v1, ...vN}, so
〈
w(k) − w(0), vn

〉
= 0 for any n > N .

E
[〈

w(k) − w∗, H(w(k) − w∗)
〉]

(39)

= E

[
N∑

n=1

λn

〈
w(k) − w(0), vn

〉2
+

N∑
n=1

λn2
〈
w(k) − w(0), vn

〉〈
w(0) − w∗, vn

〉
+

∞∑
n=1

λn

〈
w(0) − w∗, vn

〉2]
(40)

=

N∑
n=1

λnE
[〈

w(k) − w(0), vn

〉2]
+

∞∑
n=N+1

E
[
λn(
〈
w(0) − w∗, vn

〉
)2
]

(41)

=

N∑
n=1

λn(1− γλn)
2k 1

λn

P

np
+

N∑
n=1

λnγ
2

k∑
j=1

(1− γλn)
2(k−j)λn

R

B
+

∞∑
n=N+1

P

np
. (42)

Therefore E[Q(w(K))] = Eirr + 1
2E
[〈
w(K) − w∗, H(w(K) − w∗)

〉]
= Eirr +

1

2

N∑
n=1

(1− γλn)
2K P

np
+

1

2

N∑
n=1

λ2
nγ

2
K∑

k=1

(1− γλn)
2(K−k)R

B
+

1

2

∞∑
n=N+1

P

np
(43)

= Eirr +
1

2

N∑
n=1

(1− γ
Q

nq
)2K

P

np
+

1

2

N∑
n=1

Q2

n2q

R

B
γ2

K∑
k=1

(1− γ
Q

nq
)2(K−k) +

1

2

∞∑
n=N+1

P

np
. (44)

By re-parameterizing Q =: γQ,R =: R/2, P =: P/2, we get:

E[Q(w(K))] (45)

= Eirr +
N∑

n=1

(1− Q

nq
)2K

P

np
+

N∑
n=1

Q2

n2q

R

B

K∑
k=1

(1− Q

nq
)2(K−k) +

∞∑
n=N+1

P

np
. (46)

Other than N,B,K, this function has 6 input arguments: P, p,Q, q,R and Eirr. Thus, the model
class LNQS(N,B,K) = E[Q(w(K))] has at most 6 degrees of freedom.

End of proof.
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D.2 ASYMPTOTIC UPPER BOUND FOR THE BIAS TERM

In this section we show that Ebias(N,K) = 1
2

∑N
n=1(1− γ Q

nq )
2K P

np is O(K−(p/q−1/q)).

Proof.

Ebias(N,K) =
1

2

N∑
n=1

(1− γ
Q

nq
)2K

P

np
(47)

≤ P

2

N∑
n=1

n−p
K∏

k=1

exp(−γQn−q)2 (48)

=
P

2

N∑
n=1

n−p exp(−2KγQn−q) (49)

We next bound the summation with integrals. To do that, we need to find the regions where the
summand is monotone. Take the derivative of the summand f(n) = n−p exp(−2KγQn−q):

d

dn
f(n) = (−p)n−p−1 exp(−2KγQn−q) + n−p exp(−2KγQn−q)(−2KγQ)(−q)n−q−1 (50)

= pn−p−1 exp(−2KγQn−q)

(
2qγQ

p

K

nq
− 1

)
(51)

Define h(K) = ( 2qγQK
p )1/q . The summand is non-decreasing in n for 1 ≤ n ≤ h(K), and non-

increasing for h(K) ≤ n ≤ N . Using this monotonicity:

Ebias(N,K) =
P

2

⌊h(K)⌋∑
n=1

f(n) +

N∑
⌈h(K)⌉

f(n) (52)

≤ P

2

∫ ⌊h(K)⌋+1

n=1

f(n)dn+

∫ N

⌈h(K)⌉−1

f(n)dn (53)

≤ P

2

∫ ⌊h(K)⌋

n=1

f(n)dn+ 2f(h(K)) +

∫ N

⌈h(K)⌉
f(n)dn (54)

≤ P

2

(∫ ⌊h(K)⌋+0.5

1.5

f(n)dn+ 2f(h(K)) +

∫ N−0.5

⌈h(K)⌉−0.5

f(n)dn

)
(55)

Simplify the integral∫ x2

x1

f(x)dx =

∫ x2

x1

x−p exp(−cKx−q)dx (56)

=

∫ t2=cKx−q
2

t1=cKx−q
1

(cK/t)−p/q exp(−t)d(cK/t)1/q

dt
dt (57)

=

∫ t2=cKx−q
1

t1=cKx−q
1

(cK/t)−p/q exp(−t)(cK)1/q(−1/q)t−1/q−1dt (58)

= (1/q)(cK)−(p/q−1/q)

∫ t1=cKx−q
1

t2=cKx−q
2

exp(−t)tp/q−1/q−1dt (59)

Define G(s, (t1, t2)) =
∫ t2
t1

ts−1 exp(−t)dt and c = 2γQ.
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Then we have

Ebias(N,K) ≤ P

2

1

b
(cK)−(p/q−1/q)

(
(60)

G(p/q − 1/q,
(
cK(⌊h(K)⌋+ 0.5)−q, cK(1.5)−q

)
) + (61)

+ 2f(h(K))+ (62)

G(p/q − 1/q,
(
cK(N − 0.5)−q, cK(⌈h(K)⌉ − 0.5)−q

)
)

)
(63)

for convenience, if y is an integer, define ⌊y⌋ = y and ⌈y⌉ = y + 1, so that we always have
⌊y⌋+ 0.5 = ⌈y⌉ − 0.5.

Then we get Ebias(N,K)
P
2 (cK)−(p/q−1/q) ≤ 2f(h(K))+

G(p/q − 1/q,
(
cK(N − 0.5)−q, cK(1.5)−q

)
) (64)

≤ 2f(h(K)) +G
(
p/q − 1/q, (0, ∞)

)
(65)

≤ 2f(h(K)) + Γ(p/q − 1/q) (66)

Ebias(N,K) ≤ P

2
(

1

2γQ
)p/q−1/q

(
2f(h(K)) + Γ(p/q − 1/q)

)
K−(p/q−1/q) (67)

f(h(K)) ∝ K−p/q → 0 as K →∞. (68)

We can find sufficiently large M1 such that for all K > M1, f(h(K)) ≤ e.g. Γ(p/q − 1/q) (or any
other constant). Therefore Ebias(N,K) is O(K−(p/q−1/q)). (Holds for any N sufficiently large.)

End of Proof.

E FIGURES AND TABLES

With the exception of figures 8 and 7, the figures and tables in this section are based on NQS fitted
to LLMs trained with the Adam optimizer.

E.1 COMPARISONS WITH CHINCHILLA

In Table 2, we saw that NQS++was predictive with a ×64 compute gap, and the test performance
(86%) is comparable to that on training (89%). In contrast, Chinchilla fitted the training dataset
very well (88%), but failed to predict the loss of LLMs in the test set (-260%). Upon investigation,
the error on the test set was mostly due to Chinchilla overestimating the overall level of LLM test
loss at the test compute budgets. In Table 3, as we close the compute gap between train and test,
Chinchilla’s test metric improved, and training metric deteriorated. Chinchilla seemed to have over-
fitted on our scaling dataset.

Table 3: In our experiments, Chinchilla overfitted on small datasets. As more data is added, Chin-
chilla’s performance on training deteriorated, and performance on test improved.

Add. var. explained Compute
gapChinchilla fitted on Train Test

Train 88 −260 up to 64x
Train + val. 87 −113 up to 16x
Train + val. + part of test 82 27 4x
Train + val. + all of test 81 52 None

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E.2 ABLATION STUDIES
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Figure 5: NQS without EMS fits IsoFLOPs poorly.
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Figure 6: NQS needs both EMS and LRA to fit IsoTokens well, but the LRA accounts for most of
the improvements.
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E.3 FITTING NQS TO LLMS TRAINED WITH SGD

Table 4: On LLMs trained with SGD, NQS++outperformed Chinchilla on extrapolated compute
budgets (IsoFlops), and explained 80% of the variance due to variation in batch sizes (IsoTokens).
Note that on the IsoFLOPs test set, both Chinchilla and NQS++gave negative variance-explained
values: this was due to the flatness of the IsoFLOP curves in the test set; the variance within each
FLOPS budget was smaller than the squared difference between the LLM loss and the Scaling Model
loss. The average squared difference between NQS++and LLM is small, as visible in Fig. 7.

Add. train var. explained on Add. test var. explained on

Scaling Model IsoFLOPs IsoTokens IsoFLOPs IsoTokens

Chinchilla 98 - −1960 -

NQS++ 89 97 −58 80
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Figure 7: For LLMs trained with SGD, NQS++successfully fitted the IsoFlop curves and matched
Chinchilla and ground truth in resource allocation.
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Figure 8: For LLMs trained with SGD, NQS++successfully fitted the IsoToken curves and chose
critical batch sizes (CBS) that are close to the ground truth. Important Note: CBS selected by
Powerlines is not expected to match LLM, because the LLM points in (c) used the NQS++version
of CBS definition.
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E.4 FITTING NQS TO LLMS TRAINED WITH ADAM AND A COSINE LEARNING RATE
SCHEDULE

Table 5: On LLMs trained with Adam and a cosine learning rate schedule, NQS++outperformed
Chinchilla on extrapolated compute budgets (IsoFlops), and explained 90% of the variance due to
variation in batch sizes (IsoTokens). Note that on the IsoFLOPs test set, Chinchilla gave negative
variance-explained values: this was due to the flatness of the IsoFLOP curves in the test set; the
variance within each FLOPS budget was smaller than the squared difference between the LLM loss
and the Scaling Model loss.

Add. train var. explained on Add. test var. explained on

Scaling Model IsoFLOPs IsoTokens IsoFLOPs IsoTokens

Chinchilla 93 - −216 -

NQS++ 83 95 74 92
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Figure 9: For LLMs trained with Adam and a cosine learning rate schedule, NQS++successfully
fitted the IsoFlop curves and matched Chinchilla and ground truth in resource allocation.
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Figure 10: For LLMs trained with Adam and a cosine learning rate schedule, NQS++successfully
fitted the IsoToken curves and chose critical batch sizes (CBS) that are close to the ground truth.
Important Note: CBS selected by Powerlines is not expected to match LLM, because the LLM
points in (c) used the NQS++version of CBS definition.
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E.5 FITTING CHINCHILLA ON THE HOFFMAN DATASET

Table 6: Chinchilla does not extrapolate well within the Hoffman dataset. As we removed the highest
FLOP budget data points from its training data, Chinchilla’s performance on training improved,
but performance on the highest IsoFLOPs slice deteriorated. The dataset and Chinchilla fitting
methodology is from Besiroglu et al. (2024) and we selected the IsoFLOPs subset for this analysis.

Add. var. explained Compute
gapChinchilla fitted on Train Test (@3e21)

IsoFLOPs ≤ 6e19 92 −456 50x

IsoFLOPs ≤ 3e20 85 −110 10x

All IsoFLOPs (max 3e21) 80 3 None
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(b) Fit on IsoFLOPs max 3e20
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Figure 11: Chinchilla does not extrapolate well within the Hoffman dataset. As we removed the
highest FLOP budget data points from its training data, Chinchilla’s fit on the highest IsoFLOPs slice
deteriorated. The dataset and fitting methodology is from Besiroglu et al. (2024) and we selected
the IsoFLOPs subset for this analysis.

E.6 THE MECHANISM OF LEARNING RATE ADAPTATION
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Figure 12: Learning Rate Adaptation (LRA) helped NQS++ match the training trajectory of LLMs.
With LRA, the loss is approximately level between iso-token points (where batch size × number of
batches processed is held constant); this is consistent with LLMs.
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E.7 SENSITIVITY TO THE NQS++HYPER-PARAMETERS
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Figure 13: Sensitivity of the fit of NQS++to the choice of the EPC parameters (power and multi-
plier), as measured by the Additional Variance Explained metric on the IsoFLOPs dataset. The red
asterisk marks the cell with the highest Add. Var. Explained. The selection is based on the highest
Additional Variance Explained on the the validation set. Fitted on SGD-trained LLMs.
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Figure 14: Sensitivity of the NQS++fit to the choice of LRA tolerance, as measured by the Addi-
tional Variance Explained metric. The selected LRA tolerance, at 0.05, is marked by the red dashed
line. The selection is based on the highest Additional Variance Explained on the the validation set
(note that the validation set contains IsoFLOPs data points only). Fitted on SGD-trained LLMs.

E.8 NQS SCALING PARAMETERS

Table 7: Comparison of the NQS++scaling parameters for Adam and SGD, fitted on the training
portion of our scaling datasets. P, p are not directly comparable due to the different EMS hyper-
parameters. For q, the Adam value is smaller, likely reflecting better pre-conditioning properties.
Adam-trained LLMs also appeared to have a smaller irreducible risk Eirr, as inferred by the NQS.
Interestingly, the fitted scaling exponent of the bias term (p/q − 1/q) is comparable between the
optimizers .

Parameter SGD Adam
p 1.24 1.16
q 1.21 0.89
P 8.25 3.83
Q 0.72 0.61√
R 1.61 2.89
Eirr 1.07 0.31

EMS A 1.00 0.10
EMS r 0.58 0.70
LRA Tolerance 0.05 0.0001
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F EXPERIMENT DETAILS

F.1 LLM MODEL FAMILY

We define a model family as a function that maps a requested model size to a fully specified trainable
model architecture. LLMs in the scaling datasets were trained with the GPT-NeoX suite in the
Huggingface Transformers library (Wolf et al., 2020). In our experiments, the requested model sizes
are of the form 1e6 × 2j for integers j, ranging from 0.25 to 512 million parameters. Due to the
constraints of the model family, the actual achievable model sizes are not identical to the requested
model size. Some of the constraints are: (1) for transformer models, the number of layers and hidden
size are required to be integers, and the latter often multiples of 16; (2) we request a certain power
law relationship between the number of layers, hidden size and the model size. In short, given a
requested model size, we search for an LLM that is close to the requested size, and satisfies the
constraints. Details are given below.

To construct the model family, we first fit a power law relationship on the existing Pythia suite of
models (Biderman et al., 2023), by running regressing the hidden size (H) and the number of layers
(L) against the model size (N ):

log(H) ∼ pH log(N) + aH , and log(L) ∼ pL log(N) + aL.

In the pythia family, the intermediate size is always four times the hidden size, and we follow that
convention in our model family. We also define the number of heads to be hidden size/16. In Pythia
the divisor is≥ 64. We chose 16 for convenience, so that we can have an integer number of heads as
long as the hidden size is divisible by 16, and be able to construct smaller LLMs that closely match
requested model sizes.

Given a requested model size Nrequest, we search in a neighborhood of Nrequest (10% to 150%), for a
value N ′ that minimizes the difference:∣∣∣NNeoGPT

(
H = 16× int(exp(pH logN ′ + aH)/16), L = int exp(pL logN ′ + aL)

)
−Nrequested

∣∣∣.
Here NNeoGPT(H,L) denotes the count of trainable parameters of a GPT-NeoX LLM constructed
with the given hidden size H and number of layers L. Said constructed model is the output of
the model family mapping for input N = NNeoGPT(H,L). Where possible, we prefer to use N =
NNeoGPT(H,L) over Nrequest.

F.2 SCALING DATASETS

IsoFLOPs Dataset. The IsoFLOPs dataset consists of 7 levels, each level contains LLMs trained
with a fixed FLOP budget C, but with various N/D allocation (by default, we use the Powerlines
critical batch size to allocate D to B,K). The FLOP budget quadruples between levels, resulting in
an overall compute gap of ×46. The first 4 levels are used for training (included in the computation
of LS), level 5 is used as a validation set to select the EMS hyperparameters of NQS++as well as the
tolerance of LRA, and the last 2 levels with the highest C are reserved for testing. The validation and
test data points in the IsoFLOPs dataset are from a small range around the optimal N,D allocation.
All included, the range of compute budget for the IsoFLOPs dataset is 9e14 to 4e18 FLOPs.

IsoTokens Dataset. The IsoTokens dataset is obtained by training LLMs at a fixed model size , and
consists of 6 levels of data points, each level containing LLMs trained at a fixed number of tokens
(fixed D, varying B,K). Between levels, D quadruples, resulting in a ×45 gap between the lowest
and the highest levels. The first 4 levels are used for training, and the last 2 levels with the highest
token counts are reserved for testing. All included, the range of compute budget for the IsoFLOPs
dataset is 9e14 to 9e17 FLOPs.

F.3 LLMS TRAINED WITH SGD

The experiment set up for the SGD trials were identical to that of the Adam trials, with the following
exceptions: the LLMs were trained with an SGD optimizer with a learning rate of 1.999. We chose
this learning rate because in our experiments this was nearly optimal on the range of LLMs we
tested.
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