
★STARFLOW: Scaling Latent Normalizing Flows for
High-resolution Image Synthesis

Jiatao Gu, Tianrong Chen, David Berthelot, Huangjie Zheng, Yuyang Wang,
Ruixiang Zhang, Laurent Dinh, Miguel Angel Bautista, Josh Susskind, Shuangfei Zhai

Apple
{jgu32, szhai}@apple.com

Figure 1: Text conditioned high-resolution samples of variable aspect ratios generated from our 3.8B STARFlow
model. Resolutions are adjusted for the ease of visualization.

Abstract

We present STARFlow, a scalable generative model based on normalizing flows
that achieves strong performance on high-resolution image synthesis. STARFlow’s
main building block is Transformer Autoregressive Flow (TARFlow), which com-
bines normalizing flows with Autoregressive Transformer architectures and has
recently achieved impressive results in image modeling. In this work, we first estab-
lish the theoretical universality of TARFlow for modeling continuous distributions.
Building on this foundation, we introduce a set of architectural and algorithmic
innovations that significantly enhance the scalability: (1) a deep-shallow design
where a deep Transformer block captures most of the model’s capacity, followed
by a few shallow Transformer blocks that are computationally cheap yet contribute
non-negligibly, (2) learning in the latent space of pretrained autoencoders, which
proves far more effective than modeling pixels directly, and (3) a novel guidance
algorithm that substantially improves sample quality. Crucially, our model remains
a single, end-to-end normalizing flow, allowing exact maximum likelihood train-
ing in continuous space without discretization. STARFlow achieves competitive
results in both class- and text-conditional image generation, with sample quality
approaching that of state-of-the-art diffusion models. To our knowledge, this is
the first successful demonstration of normalizing flows at this scale and resolution.
Code and weights available at https://github.com/apple/ml-starflow.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/apple/ml-starflow

1 Introduction

Recent years have witnessed remarkable progress in high-resolution text-to-image generative model-
ing, with state-of-the-art approaches predominantly falling into two distinct categories. On one hand,
diffusion models (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023; Esser et al., 2024)
operating in continuous space have set new benchmarks in image quality. However, their reliance on
iterative denoising processes renders both training and inference computationally intensive. On the
other hand, autoregressive image generation methods (Yu et al., 2022; Sun et al., 2024; Tian et al.,
2024)—inspired by the success of large language models (LLMs, Brown et al., 2020; Dubey et al.,
2024)—avoid such inefficiencies by modeling images in discrete space via quantization; yet, this
quantization can impose stringent limitations and adversely affect fidelity. More recently, a promising
trend has emerged to explore hybrid models (Li et al., 2024; Gu et al., 2024b; Fan et al., 2024)
that apply autoregressive techniques directly in continuous space. However, the inherently distinct
characteristics of these two paradigms introduce additional complexity in effective unification.

In this paper, we turn our eyes on the yet another modeling approach – Normalizing Flows (NFs,
Rezende & Mohamed, 2015; Dinh et al., 2016), a family of likelihood based models that have
received relatively little attention in the recent wave of Generative AI. We start from inspecting
TARFlow (Zhai et al., 2024), a recently proposed model that combines a powerful Transformer
architecture with autoregressive flows (AFs, Kingma et al., 2016; Papamakarios et al., 2017). While
TARFlow demonstrates promising results on the potential of NFs as a modeling principle, it remains
unclear whether it can perform as a scalable method, in comparison to other approaches such as
diffusion and discrete autoregressive models. To this end, we propose STARFlow, a family of
generative models that shows for the first-time that NF models can successfully generalize to high-
resolution and large-scale image modeling. We first provide a theoretical insight on why AFs can be
capable generative models by showing the universality of multi-block AFs in modeling continuous
distributions. On top of this, we propose a novel deep–shallow architecture. We found that the
architecture configuration, e.g., the number of flows as well as the depth and width of the Transformer
for each flow, plays a pivotal role to the model’s performance. While TARFlow (Zhai et al., 2024)
proposes to uniformly allocate model depth among all flows, we found that it is beneficial to have a
skewed architecture design, where we allocate most of the model parameters to the first AF block
(i.e., the one closest to the prior), which is followed by a few shallow but non-negligible blocks.
Importantly, our model still yields a stand-alone normalizing-flow framework that supports end-to-
end maximum-likelihood training in continuous space, thereby sidestepping the quantization limits
inherent to discrete models. Rather than operating directly in data space, we instead learn AFs
in the latent space of pretrained autoencoders. Crucially, we demonstrate that NFs align naturally
with compressed latents—an intuitive yet vital observation—enabling far superior modeling of high-
resolution inputs, as verified in our experiments, compared with training directly on pixels. Similar
to TARFlow, noise injection proves essential: by fine-tuning the decoder, we train the model on
noisy latents and at the same time simplify the original sampling pipeline. Moreover, we revisit the
classifier-free guidance (CFG) algorithm for AFs from a more principled way and propose a novel
guidance algorithm, which substantially improves image quality, especially at high guidance weights
in text-to-image generation tasks.

Together, these innovations represent the first demonstration of NF models applied to large-scale, high-
resolution image generation. Our approach offers a scalable and efficient alternative to conventional
diffusion-based and autoregressive approaches, achieving competitive performance on benchmarks
for both class-conditioned image and large-scale text-to-image synthesis. Moreover, our framework is
highly flexible, and we demonstrate that it easily enables interesting settings such as image inpainting
and instruction based image editing by finetuning.

2 Preliminaries

2.1 Normalizing Flows

In this paper, we consider Normalizing Flows (NFs, Rezende & Mohamed, 2015; Dinh et al., 2014,
2016) as the class of likelihood method that follows the change of variable formula. Given continuous
inputs x ∼ pdata, x ∈ RD, a NF learns an invertible transformation fθ : RD 7→ RD (with θ being
the parameters) which maps data x into the noise space fθ(x), and can be trained with maximum

2

likelihood estimation (MLE):

max
θ

Ex∼pdata
log pNF(x; θ) = log p0(fθ(x); θ) + log

(∣∣∣∣det(∂fθ(x)

∂x

)∣∣∣∣) , (1)

where the first term rewards sending data to high-density regions of the prior p0, while the Jacobian
term penalizes excessive local volume shrinkage, ensuring the transformation remains bijective and
does not collapse nearby points onto a lower-dimensional set. One automatically obtains a generative
model by inverting fθ, with a sampling procedure z ∼ p0(z), x = f−1

θ (z).

2.2 Autoregressive Flows and TARFlow

An interesting variant of NFs is autoregressive flows (AFs, Kingma et al., 2016; Papamakarios et al.,
2017). In the simplest affine form, an AF constructs z = fθ(x) = {µθ, σθ}(x) as a standalone
invertible model with the forward (x→ z) and sampling (z → x) process:

zd = (xd − µθ(x<d)) /σθ(x<d), xd = µθ(x<d) + σθ(x<d) · zd, ∀d ∈ [1, D], (2)

where x0 is a constant <sos>. This can be seen as “next-token prediction” with affine transformation,
and training with Eq. (1) where the Jacobian term becomes extremely simple as−

∑D
d=1 log σθ(x<d).

The extension to multi-channel inputs x ∈ RD×C (e.g., C = 3 for RGB image) is immediate as
channels at each step can be treated as conditionally independent. We omit the channel dim henceforth.

Recently, Zhai et al. (2024) introduced TARFlow, a compelling framework for building performant
NFs for image data. Specifically, TARFlows can be viewed as a special form of AFs by pairing
causal-Transformer blocks with an extension of classical AF formulation – stacking multiple AF
layers whose autoregressive ordering alternates from one layer to the next. To be concrete, with
T flows, we have z = fT

θ ◦ f2
θ ◦ · · · ◦ f1

θ (x), where each block f t
θ(.) processes the input in its

own ordering xπ = (xπ1
, . . . ,xπD

) (a permutation of {x1 . . .xD}), enabling the stack to capture
dependencies in both directions of the data sequence. Training is still performed end-to-end:

max
θ

Ex∼pdata
log pAF(x; θ) = −

1

2
∥z∥22 −

T∑
t=1

D∑
d=1

log σt
θ(x

t
π<d

), (3)

where xt = f t
θ(x

t−1) defines the forward propagation (Eq. (2)); we denote the data x = x0 and
the final output z = xT is modeled with standard Gaussian. Additionally, Zhai et al. (2024) also
proposed several techniques to improve the modeling capability, including noise augmented training,
score-based denoising and incorporating guidance (Ho & Salimans, 2021).

3 STARFlow

In this section, we propose Scalable Transformer Autoregressive Flow (STARFlow), a method that
pushes the frontier of NF based high-resolution image generation. We first establish—on theoretical
grounds—AFs’ expressivity as a general modeling method in § 3.1, based on which we propose our
core approaches by improving TARFlow in several key aspects: (1) a better architecture configuration
(§ 3.2), (2) a working recipe of learning in the latent space (§ 3.3) and (3) a novel guidance algorithm
(§ 3.4). An illustration of the learning and inference pipeline is presented in Fig. 4.

3.1 Why TARFlows are Capable Generative Models?

While empirical results confirm that TARFlow is highly competitive (Zhai et al., 2024), we ask—from
a modeling perspective—whether they are expressive enough to warrant scaling. Here, we claim:

Proposition 1. Stacked autoregressive flows with T ≥ 3 blocks of D autoregressive steps and
alternating orderings are universal approximators for any continuous density p ∈ L1(RD).

Sketch of Proof. First consider T = 2. Without loss of generality, we model fθ = fa
θ ◦ f b

θ where fa
θ

and f b
θ employ reversed orderings (forward and backward) for data x ∈ RD (see Fig. 2):

xd = µb
θ(x<d) + σb

θ(x<d) · yd, yd = µa
θ(y>d) + σa

θ (y>d) · zd, zd ∼ N (0, I), d ∈ [1, D], (4)

3

This yields the autoregressive factorization p(x) =
∏D

d=1 p(xd | x<d) as follows:

p(xd | x<d) =

∫
N
(
xd | µ̂θ(x<d,y>d), σ̂

2
θ(x<d,y>d)I

)
· p(y>d | x<d)dy>d, (5)

where µ̂θ = µb
θ(x<d) + µa

θ(y>d)σ
b
θ(x<d), σ̂θ = σa

θ (y>d)σ
b
θ(x<d) defined in Eq. (4).

For every d < D, we have y>d ̸= ∅. The integral in Eq. (5) forms an infinite Gaussian mixture,
a family that is dense in the continuous density based on the universal-approximation theorem of
Gaussian mixtures (p. 65 of Goodfellow et al. (2016)) with the expressive power of neural networks.

Figure 2: An illustration of 2-block AFs.

For the final coordinate d = D we have y>D = ∅.
Eq. (5) reduces to a single Gaussian and the universality
is lost. However, this restriction is lifted by extending
additional flows (T ≥ 3) to re-introduce latent vari-
ables or appending an augmented Gaussian variable.
Additional derivation details appear in the Appendix A.
□

The preceding proposition clarifies why we can safely
scale-up AFs on large data. Even in the minimal set-
ting T = 2 where full universality is not attained, the
resulting limitation is negligible in high-dimensional
domains such as natural images.

3.2 Proposed Architecture

Figure 3: Top to bottom, guiding the first 0, 3, 8 flow blocks
with a TARFlow model with 8 flow blocks. We see that
guidance is only effective up to the top 3 blocks.

The derivation in § 3.1 motivates a redesign
of scalable AF architectures within real-
istic computational budgets, emphasizing
that we need not greatly expand the num-
ber of flow blocks—indeed (even T =
2 often suffices). However, the remark
leaves unresolved how best to allocate com-
pute across those blocks. We first inspect
the proposed architecture configuration in
TARFlow, which suggests to allocate equal
sized Transformer layers for each flow. In-
terestingly, in our reproduced TARFlow re-
sults, we see that most effective compute
(measured through the lens of guidance)
concentrates in just the top few AF blocks
(see motivating examples Fig. 3). We conjecture that end-to-end training drives the network to exploit
layers closest to the noise, a behavior that contrasts that of diffusion models.

Deep-shallow Architecture Our architecture can be intuitively considered as an extension of
standard autoregressive language models (e.g., LLaMA (Dubey et al., 2024)) with a general deep-
shallow design. At inference time, a deep AF block first autoregressively generates x1 from noise z,
followed by a sequence of shallow AF blocks that iteratively refine it to xN , all while keeping the
total number of blocks T small. Given a total depth budget L, we instantiate the model as l(T): one
deep l-layer block and T−1 shallow 2-layer blocks, satisfying L = l + 2(T−1). This asymmetric
design turns the deep block into a Gaussian language model, while the shallow stack plays the role
of a learned image tokenizer.

Conditional STARFlow This design naturally extends to conditional generation by simply prepend-
ing the control signal (e.g., class label, caption) to the input of the flow. Interestingly, our preliminary
experiments show that conditioning only the deep block—while leaving the shallow blocks to focus
solely on local image refinement—incurs no loss in performance. This not only simplifies the overall
architecture, but also enables seamless initialization of the deep block with any pre-trained language
model, without major modifications. As a result, our image generator can be directly integrated into
any LLM’s semantic space, eliminating the need for a separate text encoder.

4

Figure 4: An illustration of the autoregressive inference (left) and parallel training (right) process of our
proposed model for text-to-image generation. The upward (green) and downward (purple) arrows refers to the
inverse and forward AF step as shown in Eq. (2).

3.3 Moving to Latent Space

Analogy to Stable Diffusion (SD, Rombach et al., 2022) w.r.t standard diffusion models, STARFlow
directly models the latent space of a pretrained autoencoders x ≈ D(x̃), x̃ = E(x), enabling high-
resolution image generation. For instance, when using SD-1.4 autoencoder1, one can reduce input
shape from 256 × 256 to 32 × 32. As noted by Zhai et al. (2024), injecting a proper amount of
Gaussian noise, instead of small dequantization noise Dinh et al. (2016); Ho et al. (2019), is crucial
for stable training and high quality sampling. This then makes it necessary to perform an additional
score-based denoising step to clean up the noise components in the samples Zhai et al. (2024).

In the context of latent normalizing flows, however, the added noise becomes an integral component
of the latent representation. Specifically, we encode each sample as x̃ ∼ qenc = N

(
E(x);σ2

LI
)
.

We perform preliminary search for the noise scale (σL) to based on the choice of autoencoders. For
example, we set σL = 0.3 throughout the paper.

Learning Learning in the latent space leaves additional flexibility that the flow model can focus
on high-level semantics and leave the low-level local details with the pixel decoder. In this way, AF
acts as a learnable prior for the latents. Following VAEs (Kingma & Welling, 2013), we optimize the
entire model by maximizing the evidence lower-bound (ELBO) where the entropy term is constant:

max
θ,ϕ

Ex̃∼qenc(x̃|x),x∼pdata
[log pAF(x̃; θ) + log pdec(x|x̃;ϕ)− log qenc(x̃|x)] , (6)

where ϕ are the parameters of decoder pdec which transforms the noisy latents back to the pixel space.
Here, we jointly train the AF prior and pixel decoder, freezing the encoder distribution –as in SD–,
which stabilizes training and decouples their optimization. Relaxing the encoder qenc and training
with the full ELBO loss including entropy regularization are left for future work.

Pixel Decoder As shown in Eq. (6), the prertaiend decoder has to be adapted in order to decode
from the noisy latents. Different from Zhai et al. (2024) which relies on gradient-based denoising,
modeling in the latent allows a simpler solution by directly fine-tuning the decoder over noisy latents:

min
ϕ
L (D(E(x+ σϵ);ϕ),x) , (7)

where following Esser et al. (2021), L = LL2+LLPIPS+βLGAN. We empirically observe consistently
better performance than score-based denoising technique proposed in (Zhai et al., 2024), with FID
decreasing from 2.96 to 2.40 on ImageNet-256. See Appendix C for more discussions.

1https://huggingface.co/stabilityai/sd-vae-ft-mse.

5

https://huggingface.co/stabilityai/sd-vae-ft-mse

Figure 5: (a) Guidance from TARFlow (Zhai et al., 2024) (b) Proposed guidance on ImageNet 256 × 256.

3.4 Revisiting Classifier-Free Guidance for Autoregressive Flows

Classifier-free guidance (CFG), originally introduced for diffusion models (Ho & Salimans, 2021),
has become a cornerstone in modern generative modeling, proving broadly effective across various
architectures, including AR models (Yu et al., 2022). At a high level, CFG amplifies the difference
between conditional and unconditional predictions, encouraging more mode-seeking behavior.

In the context of AFs, Zhai et al. (2024) made the first attempt to apply CFG by linearly extrapolating
the mean and variance at each step (Eq. (2)): µ̃c = µc + ω(µc − µu) and σ̃c = σc + ω(σc − σu)

2,

where ω > 0 denotes the guidance weight. While effective to some extent, this naïve formulation lacks
principled justification, leaving unclear how µ and σ should be jointly modulated under guidance.
Furthermore, as shown in Fig. 5, this approach becomes unstable at high guidance weights—precisely
the regime required for visually compelling results in text-to-image generation.

We propose to revisit CFG from the perspective of score function, the original intuition of Ho &
Salimans (2021). In short, we want to sample from a guided distribution p̃ which score satisfies:

∇x log p̃c(x) = ∇x log pc(x) + ω (∇x log pc(x)−∇x log pu(x)) . (8)

It is generally non-trivial to determine p̃c for every flow block. Fortunately, under the design of
our proposed model, guidance is only required in the deep block, which functions as a Gaussian
Language Model (§ 3.2). Therefore, Eq. (8) can be easily simplified into the following:

Proposition 2. Given pu = N (µu, σ
2
uI), and pc = N (µc, σ

2
cI), the guided distribution p̃c is

also Gaussian p̃c = N (µ̃c, σ̃
2
cI) and satisfies:

µ̃c = µc +
ωs

1 + ω − ωs
· (µc − µu), σ̃c =

1√
1 + ω − ωs

· σc, (9)

where s = σ2
c/σ

2
u and ω > 0.

proof : A detailed derivation is provided in the Appendix A. □

Notably, when σc = σu, Eq. (9) reduces to the standard CFG used in diffusion models. However,
directly applying Eq. (9) can lead to severe numerical instability, as the denominator 1+ ω− ωs may
approach zero or even become negative. To address this, we propose clipping s via s = CLIP(s, 0, 1),
motivated by the intuition that the guided distribution should be more mode-seeking than the original,
implying that 1 + ω − ωs ≥ 1 for any ω, therefore s ≤ 1.

3.5 Applications

STARFlow is a versatile generative model that not only produces diverse, high-quality images under
various conditions but also extends naturally to downstream applications. We showcase two examples:
image inpainting and editing.

2We use c and u to denote the conditional and unconditional predictions, respectively.

6

Figure 6: (a) image inpainting (b) interactive editing.

Training-Free Inpainting We first
map the masked image to the latent
space, replacing masked regions with
Gaussian noise. Reverse sampling is
then performed, restoring unmasked
pixels with ground truth. We perform
generation iteratively until the final
inpainted output.

Interactive Generation and Edit-
ing We finetune STARFlow on an
image editing dataset (Fig. 6b), en-
abling joint modeling of generation
and editing with a single conditional
AF model. Its invertibility also allows
direct image encoding, making it suit-
able for interactive use.

4 Experiments

4.1 Experimental Settings
Dataset We experiment with STARFlow on both class-conditioned and text-to-image generation
tasks. For the former, we conduct experiments on ImageNet-1K (Deng et al., 2009) including
256 × 256 and 512 × 512 resolutions. For text-to-image, we show two settings: a constrained
setting CC12M (Changpinyo et al., 2021), where each image is accompanied by a synthetic caption
following (Gu et al., 2024a). We also demonstrated a scaled setting where our models trained an
in-house dataset with CC12M, in total ∼ 700M text-image pairs.

Evaluation In line with prior works, we report Fréchet Inception Distance (FID) (Heusel et al.,
2017) to quantify the the realism and diversity of generated images. For text-to-image generation,
we use MSCOCO 2017 (Lin et al., 2014) validation set to assess the zero-shot capabilities of these
models. We also report additional evaluation (e.g., GenEval (Ghosh et al., 2023)) in Appendix C.

Model and Training Details We implement all models following the setup of Dubey et al. (2024),
using RoPE (Su et al., 2024) for positional encoding. By default, we set the architecture to d(N) =
18(6) with a model dimension of 2048 (XL) and 24(6) with a dimension of 3096 (XXL) for class-
conditioned and text-to-image models, respectively (§ 3.2), resulting in 1.4B and 3.8B parameters.
Since STARFlow operates in a compressed latent space, we are able to train all models with a patch
size of p = 1. For text-to-image models, we use T5-XL (Raffel et al., 2020) as the text encoder. To
showcase the generality of our approach, we also train a variant where the deep block is initialized
from a pretrained LLM (Gemma2 (Team et al., 2024) in this case), without additional text encoder.

All models are pre-trained at 256× 256 resolution on 400M images with a global batch size of 512.
High-resolution finetuning is done by increasing input length. For text-to-image models, variable-
length inputs are supported via mixed-resolution training: images are pre-classified into 9 shape
buckets and flattened into sequences for unified processing. See Appendix B for detailed settings.

4.2 Results
Comparison with Baselines We benchmark our approach on class-conditioned ImageNet-256,
comparing against diffusion and autoregressive models across both discrete and continuous domains
(Table 1). For fair comparison, we train a TARFlow model Zhai et al. (2024) in pixel space with
a similar parameter count and original architecture (8 flows, 8 layers each, width 1280). We also
train a variant with our deep-shallow design, identical to STARFlow except for using pixel inputs
with linearly scaled patch sizes. Among NF models, the deep-shallow architecture consistently
outperforms the standard design, and switching to latent-space inputs yields further gains. Our
method achieves competitive results compared to other baselines (Tables 1 and 2). Note the FID on
ImageNet 256× 256 is near saturated to the upper-bound of the finetuned decoder (see additional
details in Appendix B). Zero-shot evaluations on COCO (Table 3) show strong performance on

7

Figure 7: Random samples of STARFlow on ImageNet 256× 256 and 512× 512 (ω = 3.0).

Table 1: Class-cond ImageNet 256×256 (FID-50K)

Model FID↓ # Param.

Diffusion Models
ADM (Dhariwal & Nichol, 2021) 10.94 554M
CDM (Ho et al., 2022b) 4.88 –
LDM (Rombach et al., 2022) 3.60 400M
RIN (Jabri et al., 2022) 3.76 410M
DiT (Peebles & Xie, 2023) 2.27 675M
SiT (Ma et al., 2024) 2.06 675M

Autoreg. (discrete)
VQGAN (Esser et al., 2021) 15.78 1.4B
RQTran (Lee et al., 2022) 3.80 3.8B
LlamaGen-3B (Sun et al., 2024) 2.18 3.1B
VAR (Tian et al., 2024) 1.73 2.0B

Autoreg. (continuous)
Jetformer (Tschannen et al., 2024b) 6.64 2.75B
MAR-AR (Li et al., 2024) 4.69 479M
MAR (Li et al., 2024) 1.55 943M
DART (Gu et al., 2024b) 3.82 820M
GIVT (Tschannen et al., 2024a) 2.59 –

Normalizing Flow
TARFlow (Zhai et al., 2024) a 5.56 1.3B
TARFlow + deep-shallow 4.69 1.4B
STARFlow (Ours) 2.40 1.4B

aImplemented using their official codebase.

Table 2: Class-cond ImageNet 512×512 (FID-50K)

Model FID↓ # Param.

ADM-U (Dhariwal & Nichol, 2021) 3.85 731M
DiT-XL/2 (Peebles & Xie, 2023) 3.04 674M
LEGO (Zheng et al., 2024b) 3.74 681M
MaskDiT-G (Zheng et al., 2024a) 2.50 730M
EDM2-XXL(Karras et al., 2024) 1.25 1.5B

STARFlow (Ours) 3.00 1.4B

Table 3: Zero-shot T2I on COCO (FID-30K)

Method FID↓ # Param.

DALL·E (Ramesh et al., 2021) 27.5 12B
CogView2 (Ding et al., 2021) 24.0 6B
Make-A-Scene (Gafni et al., 2022) 11.8 –
DART (Gu et al., 2024b) 11.1 800M
DALL·E 2 (Ramesh et al., 2022) 10.4 5.5B
GigaGAN (Kang et al., 2023) 9.1 1B
Muse (Chang et al., 2023) 7.9 3B
Imagen (Ho et al., 2022a) 7.3 3B
Parti-20B (Yu et al., 2022) 7.2 20B
eDiff-I (Balaji et al., 2022) 7.0 9B

STARFlow-CC12M 10.3 3.8B
STARFlow-CC12M-Gemma 11.4 2.4B
STARFlow-FullData 9.1 3.8B

text-conditioned generation, demonstrating that NFs can also serve as a scalable and competitive
generative modeling framework.

Qualitative Results Fig. 7 and Appendix Fig. 10 present representative class- and text-conditioned
generations, respectively. Our method delivers high-resolution images over a wide range of aspect
ratios, with perceptual quality comparable to state-of-the-art diffusion and autoregressive approaches.
Fig. 9 also highlights our model’s support for image editing. Further qualitative and interactive
editing results appear in Appendix G, underscoring the breadth and fidelity of our outputs.

Comparison with Diffusion and Autoregressive Models We further compare STARFlow with
diffusion and autoregressive (AR) models to analyze training dynamics. Fig. 8a shows FID trajectories

8

(a) Generation Quality (4096 and 50K samples) and Speed Comparison with DiT and AR

(b) Original vs. Proposed CFG (c) NLL vs. Model size (d) FID vs. Model size

(e) Impact of varying the number of layers within deep blocks. (f) Ablation of parameter allocation.

Figure 8: Experimental results of comprehensive ablation study

Figure 9: Example of Image editing using STARFlow. Given an input image and simple description, our model
can seamlessly edit the contents based on various instruction using with the learned model prior.

using nearly identical architectures. While the FID gap between STARFlow and the baselines is
smaller when computed over 4,096 samples, STARFlow consistently achieves the lowest FID at every
training checkpoint when evaluated with 50,000 samples. This suggests that STARFlow produces
more diverse outputs, which may not be fully captured with smaller evaluation sets.

Fig. 8a also compares inference throughput on a single H100 GPU for diffusion, AR, and STARFlow
models. Diffusion’s wall-clock time grows linearly with its number of refinement steps—≈ 250 steps
at best FID—so it’s the slowest. By contrast, each step in AR and STARFlow is only a lightweight
forward pass whose per-token cost is low, allowing throughput to rise as batch size increases. Beyond
a batch size of 32, STARFlow outperforms the AR baseline by restricting guidance to the deep block
and removing the per-token multinomial sampling loop, yielding superior inference-time scalability.

Comparison of CFG Strategies As shown in the Fig. 8b, the original strategy used in Zhai et al.
(2024) exhibits a sharp “dip-and-spike” behavior: it achieves its best FID at similar guidance weight
as the newly proposed CFG, but then degrades quickly as you move away from that optimum. Even
when using the “annealing trick” (Zhai et al., 2024), performance still suffers dramatically both

9

scales. By contrast, our proposed CFG not only improves on the original’s best point—without
additional tricks—but—more importantly—maintains nearly the same quality over a much wider
range of guidance weights, which gives more flexibility in tuning text-conditioned generation tasks.

Scalability Analysis To assess the scalability, we perform a study by varying the depth of the deep
block and tracking performance over training. Fig. 8c reports negative log-likelihood (NLL) and
Fig. 8d shows FID with 4096 samples across iterations. Both metrics indicate that deeper models
converge faster and achieve better final performance, demonstrating the increased capacity.

Ablation on Model Design To validate the theoretical insights from Prop. 1, we study how model
expressivity varies with the number of layers T in the deep block. Performance drops sharply when
T < 2, while models with T ≥ 2 perform similarly—consistent with Prop. 1. We also ablate the
number and depth of deep blocks in Figs. 8e and 8f, finding that block depth is more critical than
quantity, providing practical guidance for architectural design.

5 Related Work

Continuous Normalizing Flows, Flow Matching, and Diffusion Models Normalizing Flows
(NFs) can be extended to continuous-time via Continuous Normalizing Flows (CNFs) (Chen et al.,
2018), which model transformations as ODEs. This relaxes the need for explicit invertible mappings
and simplifies Jacobian computation to a trace (Grathwohl et al., 2018), though it requires noisy
stochastic estimators (Hutchinson, 1989). Flow Matching (Lipman et al., 2023), inspired by CNFs,
learns sample-wise interpolations between prior and data using vector fields grounded in Tweedie’s
Lemma (Efron, 2011). While CNFs and NFs optimize exact likelihoods through invertible mappings,
Flow Matching aligns more closely with diffusion models, sharing variational training objectives.

Autoregressive Models Discrete autoregressive models, especially large language models (Brown
et al., 2020; Dubey et al., 2024; Guo et al., 2025), dominate modern generative AI by scaling
next-token prediction. Scaling laws (Kaplan et al., 2020) show predictable gains with more data
and parameters. These models now power leading multimodal systems for both understanding and
generation (Liang et al., 2024; Sun et al., 2024; Tian et al., 2024; Li et al., 2025).

To overcome information loss from quantization, recent work extends AR modeling to continuous
spaces, using mixture-of-Gaussians (Tschannen et al., 2024a,b) or diffusion decoding (Li et al., 2024;
Gu et al., 2024b; Fan et al., 2024). Hybrid approaches also emerge, unifying AR and diffusion
paradigms (Gu et al., 2024a; Zhou et al., 2024; OpenAI, 2024).

6 Conclusion and Limitation

We have presented STARFlow, the first latent based normalizing flow model that scales to high
resolution images and large scale text to image modeling. Our results demonstrate that normalizing
flows are scalable generative modeling method, and is capable of achieving comparable results to
strong diffusion and autoregressive baselines.

There are also limitations to our work. For example, we have exclusively relied on pretrained
autoencoders for simplicity, but it leaves the question of a potential joint latent–NF model design
unexplored. Moreover, in this work we have primarily focused on training high-quality models,
which comes at the cost of un-optimized inference speed. Additionally, our evaluation has been
restricted to class- and text-conditional image generation on standard benchmarks; how well the
approach generalizes to other modalities (e.g., video, 3D scenes) or more diverse, real-world data
distributions remains to be seen.

Acknowledgements

We thank Ying Shen, Yizhe Zhang, Navdeep Jaitly, Alaa El-Nouby and Preetum Nakkiran for helpful
discussions. We also thank Samy Bengio for leadership support that made this work possible.

10

References
Balaji, Y., Nah, S., Huang, X., Vahdat, A., Song, J., Kreis, K., Aittala, M., Aila, T., Laine, S.,

Catanzaro, B., et al. ediffi: Text-to-image diffusion models with an ensemble of expert denoisers.
arXiv preprint arXiv:2211.01324, 2022.

Betker, J., Goh, G., Jing, L., Brooks, T., Wang, J., Li, L., Ouyang, L., Zhuang, J., Lee, J., Guo, Y.,
et al. Improving image generation with better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray,
S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. Advances in neural information processing systems, 2020.

Chang, H., Zhang, H., Barber, J., Maschinot, A., Lezama, J., Jiang, L., Yang, M.-H., Murphy, K. P.,
Freeman, W. T., Rubinstein, M., Li, Y., and Krishnan, D. Muse: Text-to-image generation via
masked generative transformers. In Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S.,
and Scarlett, J. (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 4055–4075. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/chang23b.html.

Changpinyo, S., Sharma, P., Ding, N., and Soricut, R. Conceptual 12M: Pushing web-scale image-text
pre-training to recognize long-tail visual concepts. In CVPR, 2021.

Chen, J., Yu, J., Ge, C., Yao, L., Xie, E., Wu, Y., Wang, Z., Kwok, J., Luo, P., Lu, H., et al. Pixart-
alpha: Fast training of diffusion transformer for photorealistic text-to-image synthesis. arXiv
preprint arXiv:2310.00426, 2023.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, E., Wang, X., Dehghani, M.,
Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen, X., Chowdhery, A., Narang, S.,
Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S., Chi, E. H., Dean, J., Devlin, J.,
Roberts, A., Zhou, D., Le, Q. V., and Wei, J. Scaling instruction-finetuned language models, 2022.
URL https://arxiv.org/abs/2210.11416.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. ImageNet: A Large-scale Hierarchical
Image Database. IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009.

Dhariwal, P. and Nichol, A. Diffusion models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao, Z., Yang, H., et al.
Cogview: Mastering text-to-image generation via transformers. Advances in Neural Information
Processing Systems, 34:19822–19835, 2021.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Yang, A., Fan, A., et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Efron, B. Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106
(496):1602–1614, 2011.

Esser, P., Rombach, R., and Ommer, B. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12873–12883, 2021.

11

https://proceedings.mlr.press/v202/chang23b.html
https://arxiv.org/abs/2210.11416

Esser, P., Kulal, S., Blattmann, A., Entezari, R., Müller, J., Saini, H., Levi, Y., Lorenz, D., Sauer,
A., Boesel, F., et al. Scaling rectified flow transformers for high-resolution image synthesis. In
Forty-first International Conference on Machine Learning, 2024.

Fan, L., Li, T., Qin, S., Li, Y., Sun, C., Rubinstein, M., Sun, D., He, K., and Tian, Y. Fluid:
Scaling autoregressive text-to-image generative models with continuous tokens. arXiv preprint
arXiv:2410.13863, 2024.

Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., and Taigman, Y. Make-a-scene: Scene-
based text-to-image generation with human priors. 2022. doi: 10.48550/ARXIV.2203.13131. URL
https://arxiv.org/abs/2203.13131.

Ghosh, D., Hajishirzi, H., and Schmidt, L. Geneval: An object-focused framework for evaluating
text-to-image alignment. Advances in Neural Information Processing Systems, 36:52132–52152,
2023.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

Grathwohl, W., Chen, R. T., Bettencourt, J., Sutskever, I., and Duvenaud, D. Ffjord: Free-form
continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367,
2018.

Gu, J., Shen, Y., Zhai, S., Zhang, Y., Jaitly, N., and Susskind, J. M. Kaleido diffusion: Improving
conditional diffusion models with autoregressive latent modeling. arXiv preprint arXiv:2405.21048,
2024a.

Gu, J., Wang, Y., Zhang, Y., Zhang, Q., Zhang, D., Jaitly, N., Susskind, J., and Zhai, S. Dart:
Denoising autoregressive transformer for scalable text-to-image generation. arXiv preprint
arXiv:2410.08159, 2024b.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R., Zhu, Q., Ma, S., Wang, P., Bi, X., et al.
Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in neural information
processing systems, 30, 2017.

Ho, J. and Salimans, T. Classifier-free diffusion guidance. In NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications, 2021.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P. Flow++: Improving flow-based generative
models with variational dequantization and architecture design. In International conference on
machine learning, pp. 2722–2730. PMLR, 2019.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

Ho, J., Chan, W., Saharia, C., Whang, J., Gao, R., Gritsenko, A., Kingma, D. P., Poole, B., Norouzi,
M., Fleet, D. J., et al. Imagen video: High definition video generation with diffusion models. arXiv
preprint arXiv:2210.02303, 2022a.

Ho, J., Saharia, C., Chan, W., Fleet, D. J., Norouzi, M., and Salimans, T. Cascaded diffusion models
for high fidelity image generation. J. Mach. Learn. Res., 23:47–1, 2022b.

Hutchinson, M. F. A stochastic estimator of the trace of the influence matrix for laplacian smoothing
splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076, 1989.

Jabri, A., Fleet, D., and Chen, T. Scalable adaptive computation for iterative generation. arXiv
preprint arXiv:2212.11972, 2022.

Kang, M., Zhu, J.-Y., Zhang, R., Park, J., Shechtman, E., Paris, S., and Park, T. Scaling up gans for
text-to-image synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10124–10134, 2023.

12

https://arxiv.org/abs/2203.13131
http://www.deeplearningbook.org
http://www.deeplearningbook.org

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A.,
Wu, J., and Amodei, D. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361,
2020.

Karras, T., Aittala, M., Kynkäänniemi, T., Lehtinen, J., Aila, T., and Laine, S. Guiding a diffusion
model with a bad version of itself. Advances in Neural Information Processing Systems, 37:
52996–53021, 2024.

Kingma, D. P. and Welling, M. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., and Welling, M. Improved
variational inference with inverse autoregressive flow. Advances in neural information processing
systems, 29, 2016.

Lee, D., Kim, C., Kim, S., Cho, M., and Han, W.-S. Autoregressive image generation using residual
quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11523–11532, 2022.

Li, T., Tian, Y., Li, H., Deng, M., and He, K. Autoregressive image generation without vector
quantization. arXiv preprint arXiv:2406.11838, 2024.

Li, T., Sun, Q., Fan, L., and He, K. Fractal generative models. arXiv preprint arXiv:2502.17437,
2025.

Liang, Z., Xu, Y., Hong, Y., Shang, P., Wang, Q., Fu, Q., and Liu, K. A survey of multimodel large
language models. In Proceedings of the 3rd International Conference on Computer, Artificial
Intelligence and Control Engineering, pp. 405–409, 2024.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick, C. L.
Microsoft COCO: Common Objects in Context. European Conference on Computer Vision, pp.
740–755, 2014.

Lipman, Y., Chen, R. T. Q., Ben-Hamu, H., Nickel, M., and Le, M. Flow matching for generative
modeling. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=PqvMRDCJT9t.

Ma, N., Goldstein, M., Albergo, M. S., Boffi, N. M., Vanden-Eijnden, E., and Xie, S. Sit: Exploring
flow and diffusion-based generative models with scalable interpolant transformers. arXiv preprint
arXiv:2401.08740, 2024.

OpenAI. Gpt-4o system card. https://openai.com/index/gpt-4o-system-card/, 2024.
Accessed: April 12, 2025.

Papamakarios, G., Murray, I., and Pavlakou, T. Masked autoregressive flow for density estimation.
In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus, R., Vishwanathan, S. V. N.,
and Garnett, R. (eds.), Advances in Neural Information Processing Systems 30: Annual Confer-
ence on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pp. 2338–2347, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/
6c1da886822c67822bcf3679d04369fa-Abstract.html.

Peebles, W. and Xie, S. Scalable diffusion models with transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 4195–4205, 2023.

Podell, D., English, Z., Lacey, K., Blattmann, A., Dockhorn, T., Müller, J., Penna, J., and Rombach,
R. Sdxl: improving latent diffusion models for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1–67, 2020.

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., and Sutskever, I. Zero-
shot text-to-image generation. In International Conference on Machine Learning, pp. 8821–8831.
PMLR, 2021.

13

https://openreview.net/forum?id=PqvMRDCJT9t
https://openai.com/index/gpt-4o-system-card/
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M. Hierarchical text-conditional image
generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Rezende, D. and Mohamed, S. Variational inference with normalizing flows. In Bach, F. and Blei,
D. (eds.), Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pp. 1530–1538, Lille, France, 07–09 Jul 2015. PMLR.
URL https://proceedings.mlr.press/v37/rezende15.html.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and Ommer, B. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10684–10695, 2022.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568:127063, 2024.

Sun, P., Jiang, Y., Chen, S., Zhang, S., Peng, B., Luo, P., and Yuan, Z. Autoregressive model beats
diffusion: Llama for scalable image generation. arXiv preprint arXiv:2406.06525, 2024.

Team, C. Chameleon: Mixed-modal early-fusion foundation models, 2024.

Team, G., Riviere, M., Pathak, S., Sessa, P. G., Hardin, C., Bhupatiraju, S., Hussenot, L., Mesnard,
T., Shahriari, B., Ramé, A., et al. Gemma 2: Improving open language models at a practical size.
arXiv preprint arXiv:2408.00118, 2024.

Tian, K., Jiang, Y., Yuan, Z., Peng, B., and Wang, L. Visual autoregressive modeling: Scalable image
generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Tschannen, M., Eastwood, C., and Mentzer, F. Givt: Generative infinite-vocabulary transformers. In
European Conference on Computer Vision, pp. 292–309. Springer, 2024a.

Tschannen, M., Pinto, A. S., and Kolesnikov, A. Jetformer: An autoregressive generative model of
raw images and text. arXiv preprint arXiv:2411.19722, 2024b.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. Attention Is All You Need. Advances in Neural Information Processing Systems, pp.
5998–6008, 2017.

Wang, X., Zhang, X., Luo, Z., Sun, Q., Cui, Y., Wang, J., Zhang, F., Wang, Y., Li, Z., Yu, Q., et al.
Emu3: Next-token prediction is all you need. arXiv preprint arXiv:2409.18869, 2024.

Xie, J., Mao, W., Bai, Z., Zhang, D. J., Wang, W., Lin, K. Q., Gu, Y., Chen, Z., Yang, Z., and Shou,
M. Z. Show-o: One single transformer to unify multimodal understanding and generation. arXiv
preprint arXiv:2408.12528, 2024.

Yu, J., Xu, Y., Koh, J. Y., Luong, T., Baid, G., Wang, Z., Vasudevan, V., Ku, A., Yang, Y., Ayan, B. K.,
et al. Scaling autoregressive models for content-rich text-to-image generation. Transactions on
Machine Learning Research, 2022.

Zhai, S., Zhang, R., Nakkiran, P., Berthelot, D., Gu, J., Zheng, H., Chen, T., Bautista, M. A.,
Jaitly, N., and Susskind, J. Normalizing flows are capable generative models. arXiv preprint
arXiv:2412.06329, 2024.

Zheng, H., Nie, W., Vahdat, A., and Anandkumar, A. Fast training of diffusion models with masked
transformers. In Transactions on Machine Learning Research (TMLR), 2024a.

Zheng, H., Wang, Z., Yuan, J., Ning, G., He, P., You, Q., Yang, H., and Zhou, M. Learning
stackable and skippable LEGO bricks for efficient, reconfigurable, and variable-resolution diffusion
modeling. In The Twelfth International Conference on Learning Representations, 2024b. URL
https://openreview.net/forum?id=qmXedvwrT1.

Zhou, C., Yu, L., Babu, A., Tirumala, K., Yasunaga, M., Shamis, L., Kahn, J., Ma, X., Zettlemoyer,
L., and Levy, O. Transfusion: Predict the next token and diffuse images with one multi-modal
model. arXiv preprint arXiv:2408.11039, 2024.

14

https://proceedings.mlr.press/v37/rezende15.html
https://openreview.net/forum?id=qmXedvwrT1

Appendix

1. an or i gami pi g on f i r e i n t he mi ddl e of a dar k r oom wi t h a pent agr am on t he f l oor (680x384) ; 2. A gl ass t er r ar i um cont ai ni ng a mi ni at ur e
r ai nf or est ecosyst em, compl et e wi t h t i ny wat er f al l s , exot i c pl ant s, smal l ani mal s l i ke f r ogs and but t er f l i es, t he gl ass r ef l ect i ng l i ght
f r om a near by wi ndow. (680x384) ; 3. A Br i t i sh shor t hai r k i t t en pl ayi ng wi t h yar n i n a r oom bat ched i n sunl i ght (1024x1024) ; 4. smi l i ng
car t oon dog si t s at a t abl e, cof f ee mug on hand, as a r oom goes up i n f l ames. ?Thi s i s f i ne, ? t he dog assur es hi msel f . (384x680) ; 5.
Phot or eal i st i c c l ose?up of a car acal gl i di ng i n t he i cy Ant ar ct i c shel f (1024x1024) ; 6. a beaut i f ul t i ger pokemon under an appl e t r ee,
car t oon st y l e (256x256) ; 7. A dai sy f l ower made ent i r el y of or i gami paper , pl aced agai nst a mi ni mal i st backgr ound, showcasi ng t he f ol ds and
cr af t smanshi p, hi gh- r esol ut i on, st udi o l i ght i ng. (416x624) ; 8. A det ai l ed pai nt i ng of At l ant i s, f eat ur i ng i nt r i cat e det ai l i ng and vi br ant
col or s (256x256) ; 9. A vapor ous cor al met r opol i s embedded i n f r ozen t i me, v i v i d wat er col or bl oom (384x680) ; 10. A wat er col or pai nt i ng of a
v i br ant f l ower f i el d i n spr i ng, wi t h a r ai nbow of bl ossoms. (256x256) ; 11. A l i ght house emi t t i ng r ai nbow beams i nt o coast al f og, wat er col or
i l l ust r at i on, bat hed i n gol den hour l i ght (336x784) ; 12. Sof t past el pai nt i ng of a r obot i cs engi neer by a bi ol umi nescent t i de pool ,
t op?t o?bot t om vi sual f l ow, t i l t ?shi f t mi ni at ur i zat i on ef f ect , phot or eal 8K det ai l (576x456) ; 13. chal k past el s i dewal k mur al of a bi son i n
or nat e gol den f r ame (512x512) ; 14. A r ed appl e on a bl ue t abl e next t o a gl ass of wat er , l ow?pol y 3?D ar t (336x784) .

1 2 3

4

5

6 7

8

9

10

11

12 13

14

Figure 10: Selected samples of various aspect ratios from STARFlow on for text-to-image generation (ω = 4.0).
Image resolutions are adjusted proportionally for the ease of visualization.

15

A Derivations

A.1 Extended Discussion of Prop. 1

Why a Single Block (T = 1) Cannot Be Universal. With only one autoregressive–flow block,

xd = µθ(x<d) + σθ(x<d) zd, zd ∼ N (0, 1), d = 1, . . . , D,

each conditional p(xd | x<d) is necessarily a single Gaussian. Because no latent variable influ-
ences the affine parameters beyond the current coordinate, the model cannot represent multimodal
densities or heavy tails. Consequently, T = 1 flows are not dense in L1(RD) and fail the universal-
approximation criterion.

Why T = 2 Is Almost Sufficient. For T = 2 blocks with opposite orderings, all coordinates
except the last (d < D) are expressed as infinite Gaussian mixtures (Eq. (5)) and hence enjoy the
universal-approximation property via the density of Gaussian mixtures (Goodfellow et al., 2016). The
principal reason why xD fails to possess the universal approximation property lies in the structure:

xD = µb
θ(x<D) + σb

θ(x<D) · yD, (10)

where yD is defined as

yD = µa
θ(y>D) + σa

θ (y>D) · zD (11)
= µa

θ(∅) + σa
θ (∅) · zD. (12)

It is evident that yD follows a unimodal Gaussian, since zD is sampled from a unimodal Gaussian
prior and the functions µa

θ and σa
θ receive no random variable input, regardless of their nonlinearity.

Consequently, xD also becomes a unimodal Gaussian, inheriting this limitation from yD.

Why T ≥ 3 Restores Universality. Introducing a third block injects fresh latent variables that
feed into the affine parameters of the final coordinate. In effect, xD now depends on a random
input produced by the second block, exactly as xd (d < D) depends on y>d in the T = 2 proof.
Consequently every conditional p(xd |x<d) becomes an (infinite) Gaussian mixture, and the entire
joint density is dense in L1(RD). Additional blocks (T > 3) only enlarge the model class and do not
degrade this property.

In summary, T = 1 flows are fundamentally limited to unimodal Gaussians; T = 2 flows with
alternating orderings achieve universality on D − 1 coordinates but leave the final one unimodal; and
T ≥ 3 flows overcome this last obstacle, granting full universal approximation power.

A.2 Proof of Prop. 2

Proof. For an isotropic Gaussian p(x) = N (µ, σ2I) the score is

∇x log p(x) = −x− µ

σ2
.

Hence

∇x log pc(x) = −
x− µc

σ2
c

, ∇x log pu(x) = −
x− µu

σ2
u

.

Step 1: Guided score. Insert these into Eq. (8) (CFG):

∇x log p̃c(x) = (1 + ω)
(
−x− µc

σ2
c

)
+ ω

(x− µu

σ2
u

)
= −

[(
1+ω
σ2
c
− ω

σ2
u

)
x −

(
1+ω
σ2
c
µc − ω

σ2
u
µu

)]
. (13)

16

Step 2: Match to a Gaussian form. Any Gaussian N (µ̃c, σ̃
2
cI) has score −(x− µ̃c)/σ̃

2
c . Equating

with Eq. (13) gives, for all x,

1

σ̃2
c

=
1 + ω

σ2
c

− ω

σ2
u

, (14)

µ̃c

σ̃2
c

=
1 + ω

σ2
c

µc −
ω

σ2
u

µu. (15)

Step 3: Solve for σ̃c. Let s := σ2
c/σ

2
u(> 0). Rewrite Eq. (14):

1

σ̃2
c

=
(1 + ω)− ωs

s σ2
u

=⇒ σ̃2
c =

s σ2
u

(1 + ω)− ωs
=

σ2
c

1 + ω − ωs
,

so that

σ̃c =
σc√

1 + ω − ωs
.

Step 4: Solve for µ̃c. Multiplying Eq. (15) by σ̃2
c and substituting the expression above yields

µ̃c =
(1 + ω)µc − ωsµu

1 + ω − ωs
= µc +

ωs

1 + ω − ωs
(µc − µu).

Additional Discussion.

• Consistency with standard CFG. When the two Gaussians share the same variance (σc = σu =⇒
s = 1), Eq. (9) reduces to σ̃c = σc and µ̃c = µc + ω(µc − µu), exactly matching the conventional
CFG used in diffusion models (Ho & Salimans, 2021).

• Numerical stability. The denominator 1 + ω − ωs can approach 0 or even become negative when
s is large, causing σ̃2

c to blow up or change sign. Intuitively, guidance should sharpen pc, which
entails σ̃2

c ≤σ2
c , i.e. 1 + ω − ωs ≥ 1. We therefore clip the variance ratio3 to

s = CLIP(s, 0, 1),

guaranteeing 1 + ω − ωs ≥ 1 for any ω > 0 and ensuring both numerical stability and a genuinely
mode-seeking guided distribution.

B Implementation Details

B.1 Architecture Design
Overall Structure. We implement STARFlow with a decoder-only Transformer (Vaswani et al.,
2017). The shorthand l(N)−d (see § 3.2) denotes a single deep AF block of l layers followed by
N−1 shallow blocks (two layers each) with hidden width d. Our class-conditioned baseline uses
18(6)−2048 (≈1.4 B parameters), while the text-conditioned model uses 24(6)−3072 (≈3.8 B
parameters). Layer-allocation sweeps in Fig. 8(b–e) probe scalability and convergence. Unlike Zhai
et al. (2024), we apply a final layer norm at the predictions of each Transformer block.

Conditioning Mechanism. For both conditioning modes, the context is prepended as a prefix to
the deep block, and we omit AdaLN (Peebles & Xie, 2023)—a choice that simplifies the network and
marginally improves quality. ImageNet classes are provided as one-hot vectors. Text captions (T2I)
are encoded by a frozen FLAN-T5-XL encoder (Raffel et al., 2020), truncated to 128 tokens.

VAE Latent Space. Images are first mapped to continuous latent tokens via the DiT VAE (Peebles
& Xie, 2023), which compresses spatial dimensions by 48×. Because performance is highly sensitive
to patch size, we keep p = 1 for all resolutions, yielding sequences of 1024, 4096, and 16384 tokens
for 256 × 256, 512 × 512, and 1024 × 1024 images, respectively. We also applied our proposed
deep-shallow architecture in pixels (see Table 3). To match similar computation, we adopted a patch
size of p = 8 for learning 256× 256 images.

3This is equivalent to clip the unconditional variance σu when it is smaller than σc.

17

Figure 11: (a) Direct generation results using the model’s latent samples without decoder fine-tuning or
score-based denoising. (b) Results after applying decoder fine-tuning, effectively reducing latent-space noise.
(c) and (d) provide comparisons of classifier-free guidance (CFG) strategies for text-to-image generation: (c)
demonstrates degraded outputs at guidance weight ω = 5 using the approach of Zhai et al. (2024), whereas (d)
shows stable results with our proposed CFG method, confirming its improved effectiveness and suitability for
text-conditioned applications.

Positional Embeddings. All variants employ rotary positional embeddings (RoPE) (Su et al.,
2024); we adopt 3D-RoPE, giving each token (x, y, t), where (x, y) encodes its spatial grid location
((0, 0) for text tokens) and t its caption index (0 for image tokens). During fine-tuning from 256×256
to higher resolutions, we align positions by setting (x′, y′, t) = (x/α, y/α, t), where α is the up-
sampling ratio.

Default Configuration. Below is the default configurations of STARFlows:

model config for \model{}-l(N)-d:
patch_size=1
hidden_size=d
num_layers=[l] + [2] * (N-1)
num_channels_per_head=64
use_swiglu_ffn=False
use_rope=True
use_final_rmsnorm=True

B.2 Training Details

In all the experiments, we share the following training configuration for our proposed STARFlow.
Models are trained on 32 (for 1.4B model) or 64 (for 3.8B model) H100 GPUs for around 2 weeks.

training config:
batch_size=512
optimizer=’AdamW’
adam_beta1=0.9
adam_beta2=0.95
adam_eps=1e-8
learning_rate=1e-4
min_learning_rate=1e-6
learning_rate_schedule=cosine
weight_decay=1e-4
max_training_images=400M
mixed_precision_training=bf16

Stability of Eq. (3). The maximization term − log σ in Eq. (3) is unbounded: the model can drive
some σ values arbitrarily close to zero whenever this hardly influences z, echoing a classic pathology
of normalizing-flow training. We mitigate it with three safeguards:

1. Soft clipping. Each raw Transformer output x is mapped through f(x) = a tanh
(
x/a

)
, softly

limiting its magnitude to ±a.
2. Positive scale parameterization. The scale is enforced positive via σ = softplus

(
σ̂
)
, where σ̂ is

the network’s variance output.

18

Table 4: GenEval comparison across different methods.
Method Overall Single Obj. Two Obj. Counting Colors Position Color Attri.
Diffusion Models
SDv1.5 (Rombach et al., 2022) 0.43 0.97 0.38 0.35 0.76 0.04 0.06
PixArt-α (Chen et al., 2023) 0.48 0.98 0.50 0.44 0.81 0.08 0.07
SDv2.1 (Rombach et al., 2022) 0.50 0.98 0.51 0.44 0.85 0.07 0.17
DALL-E 2 (Ramesh et al., 2022) 0.52 0.94 0.66 0.49 0.77 0.10 0.19
SDXL (Podell et al., 2023) 0.55 0.98 0.74 0.39 0.85 0.15 0.23
DALL-E 3 (Betker et al., 2023) 0.67 0.96 0.87 0.47 0.83 0.43 0.45
SD3 (Esser et al., 2024) 0.74 0.99 0.94 0.72 0.89 0.33 0.60

Autoregressive Models
LlamaGen (Sun et al., 2024) 0.32 0.71 0.34 0.21 0.58 0.07 0.04
Chameleon (Team, 2024) 0.39 – – – – – –
Show-o (Xie et al., 2024) 0.53 0.95 0.52 0.49 0.82 0.11 0.28
Emu3 (Wang et al., 2024) 0.54 0.98 0.71 0.34 0.81 0.17 0.21

Normalizing Flows
STARFlow (Ours) 0.56 0.97 0.58 0.47 0.77 0.20 0.34

3. Latent norm penalty. We add a small norm penalty over the intermediate latents xt to avoid
extremely large values. Typically a weight of 1e-4 is enough to keep the magnitude stable without
hurting the performance.

Mixed-Resolution Training. During the high-resolution phase, STARFlow supports mixed resolu-
tions, preserving each image’s native aspect ratio. Because the backbone is a Transformer, variable
sequence lengths are handled naturally, so no aggressive cropping is required; this better retains scene
content and improves caption–image alignment. We bucket images into nine aspect-ratio bins: 21:9,
16:9, 3:2, 5:4, 1:1, 4:5, 2:3, 9:16, and 9:21 with the ratio appened in the caption:

{original_caption}\n in a {aspect_ratio} aspect ratio.

Image is center-cropped and resized so that its token count roughly matches that of a square reference.
For a 512×512 target, we enforce H×W ≈5122. This procedure stabilizes optimization, maximizes
GPU utilization, and is used in conjunction with the 3D-RoPE alignment described above.

B.3 Decoder Fintuning Details

We perform decoder fine-tuning by freezing the encoder and introducing controlled noise into the
latent representations. The decoder is then trained using a standard autoencoder loss comprising
L2, perceptual, and GAN losses. Training is conducted on ImageNet images at a resolution of
256×256 for 200K updates with a batch size of 64, utilizing a single node with 8 GPUs. To monitor
performance, we compute an rFID by randomly sampling 50K real images, adding Gaussian noise
with a standard deviation of 0.3, and directly decoding these perturbed images to compare with
real images. Our resulting rFID is approximately 2.73, which exceeds the best achievable gFID
from STARFlow at 2.40. This suggests current STARFlow with this finetuned decoder might have
reached a performance ceiling under the specified noise conditions, highlighting an avenue for future
exploration. Notably, although trained only on ImageNet at 256 × 256 resolution, the fine-tuned
decoder can seamlessly generalize to arbitrary resolutions, aspect ratios, and text-to-image domains.
See visual comparison in Fig. 11 (a) and (b).

B.4 Inference Details

Notation. Let {fb}Bb=1 denote the autoregressive flow blocks ordered from deep (b=1) to shallow
(b=B). Deep blocks are text-conditioned; shallow blocks are unconditional. Each block predicts a
Gaussian head for the next token. The learnable start token is denoted s∈RC ([SOS]). A pretrained
VAE decoder D maps the final latent to image space.

Sampling procedure.

19

Algorithm 1 Sampling from STARFlow Models

Require: Prompt y, guidance scale γ≥0, blocks {fb}, block types τb∈{deep, shallow}, per-block
length T

1: Draw top latent seed u(B+1)∼N (0, I)
2: for b = 1 to B do ▷ deep block→ shallow blocks
3: Initialize per-head KV caches (Kb,Vb)
4: if τb = deep then
5: Prefill (Kb,Vb) with a single forward pass over text embeddings e(y)
6: else
7: Zero-initialize (Kb,Vb)
8: end if
9: x1←s ▷ inject [SOS] at the first position in every block

10: for t = 1 to T do
11: (µu,Σu)←fb(x1:t; Kb,Vb, COND = ∅)
12: if τb = deep and CFG on then
13: (µc,Σc)←fb(x1:t; Kb,Vb, COND = y)
14: (µg,Σg)←GAUSSIANCFG(µu,Σu, µc,Σc, γ)
15: else
16: (µg,Σg)←(µu,Σu)
17: end if
18: xt+1∼N (µg,Σg); append keys/vals of xt+1 into (Kb,Vb)
19: end for
20: u(B−b+1)←REVERSE(x1:T) ▷ hand off to the next block in reverse order
21: end for
22: return D(RESHAPETO2D(u(1)))

Closed-form classifier-free guidance for Gaussian heads (Prop. 2). Let pu(x)=N (µu,Σu) and
pc(x)=N (µc,Σc) be the unconditional and conditional heads. For scale γ≥0,

Σ−1
g = (1− γ)Σ−1

u + γΣ−1
c , µg = Σg

[
(1− γ)Σ−1

u µu + γΣ−1
c µc

]
. (16)

If Σu=Σc, then µg = µu + γ(µc − µu) and Σg = Σu. In practice, Eq. equation 16 is applied only
in deep blocks; shallow blocks remain unconditional.

Implementation details. (i) [SOS] is used as the first input in every AR block at train and test time.
(ii) KV caching follows standard LLM practice and is used only at inference in our code. (iii) Deep
blocks maintain longer caches due to prompt prefill; shallow caches grow only with generated tokens.

Optional parallel refinement. For very long sequences, a Jacobi iteration style K-sweep variant
can replace the inner loop by repeatedly updating all positions from a stale context and refreshing
caches between sweeps. While faster wall-clock on some regimes, standard left-to-right sampling
was most stable in our experiments.

B.5 Baseline Details

Diffusion Model Baseline We deploy the official implementation of DiT4 and report the perfor-
mance. To make the architecture comparable to STARFlow, we set the number of layers to 28 and
hidden dimension to 2048 while keeping the number of attention heads to 16, resulting in a model
size of 2.1B parameters. We kept all of the other official repository settings the same. Notably the
pretrained VAE of the official repository matches the one used in STARFlow. The baseline DiT is
trained for 200M samples with batch size 256 using the official implementation settings: AdamW
optimizer with learning rate 0.0001 and no weight decay 0.0. In inference, we set the number of
sampling steps to 250 and classifier-free guidance scale to 1.5 following the best reported setting in
the original paper.

4https://github.com/facebookresearch/DiT

20

https://github.com/facebookresearch/DiT

Autoregressive Model Baseline We deploy the official implementation of LlamaGen5 (Sun et al.,
2024) and report the performance. In particular, to make the architecture comparable to our
STARFlow, we set the number of layers as 28, hidden dimension 2048, and number of atten-
tion heads 32, which leads to the total model size of 1.4B parameters. We also adopt the VQ-VAE
from the official repository with downsample factor 8 which matches the downsample factor used in
STARFlow. The baseline LlamaGen is trained for 200M samples with batch size 512 using AdamW
optimizer with learning rate 0.0001, weight decay 0.05 and betas (0.9, 0.95). In inference, we set the
top-k the same as the vocabulary size 16384 and temperature 1.0. We also implement classifier-free
guidance with scale 1.75 following the best reported setting in the original paper.

C Additional Experiments

C.1 Additional Evaluation on Text-to-Image Generation

Table 4 summarizes our GenEval (Ghosh et al., 2023) performance against representative diffusion
and autoregressive (AR) baselines. STARFlow attains an Overall score of 0.56—slightly above SDXL
(0.55) and well ahead of earlier Stable Diffusion checkpoints—while simultaneously surpassing the
several recent AR models for text-to-image generation, including Emu-3 (0.54), Chameleon (0.39),
and LlamaGen (0.32). Improvements are most pronounced on the more compositional sub-tests.
Crucially, these gains are achieved without any reward-based alignment, target-dataset finetuning,
or caption rewriting—STARFlow is trained once, end-to-end, and evaluated exactly as generated.
Because GenEval isolates visual grounding, we purposefully restrict comparison to image-only
generators; nonetheless, STARFlow’s single-pass inference already delivers substantial latency
advantages over diffusion models that require tens to hundreds of denoising steps. The availability of
exact log-likelihoods further opens avenues for principled preference learning, sequential planning,
or cascaded generation—capabilities that likelihood-free baselines lack. An exciting next step is to
couple STARFlow with large pretrained language- or vision–language models, forming a unified
system that reasons jointly over text and images while retaining the speed, stability, and strong
grounding demonstrated here.

C.2 Inference Speed

Because STARFlow is autoregressive, tokens must be generated sequentially through every AF
block, which makes inference latency the dominant bottleneck. Our deep–shallow redesign partially
mitigates this issue: by concentrating parameters in the first few “deep” blocks and leaving the
remaining ones lightweight with no condition or guidance, the incremental cost of later blocks
becomes minimal. In practice, while the sampling speed is still relatively slow, this layout also
outperforms the equal-sized architecture of Zhai et al. (2024) (see Table 5), and its overall runtime
approaches that of a standard LLM—leaving additional head-room for techniques such as distillation
or speculative decoding.

C.3 Latent Denoising

A second limitation is that STARFlow cannot be trained directly on clean latents; adding Gaussian
noise is required to keep the flow learning stable (Ho et al., 2019; Zhai et al., 2024), but this both
complicates optimization and necessitates an explicit denoising stage at inference time. In this work,
we investigated three strategies of denoising:

(1) Single-step score denoising. Use the flow itself as a score estimator and apply one denoising
step. Works only for mild noise; at σ = 0.3 outputs are noticeably blurry.

(2) Multi-step diffusion denoising. Start from the noisy latent and run unconditional DDIM steps
with a pretrained DiT. Quality improves, but latency and model complexity increase substantially.

(3) Decoder finetuning (ours). Finetune the VAE decoder so it can reconstruct directly from noisy
latents. Training can be done very efficiently on unconditional images, and the GAN objective
effectively handles the uncertainty. This option is the simplest to deploy.

Future work will aim for a principled solution that trains directly on clean data, eliminating the
denoising stage entirely.

5https://github.com/FoundationVision/LlamaGen

21

https://github.com/FoundationVision/LlamaGen

Table 5: Per-block inference time (s) with a fixed batch size 16 of the 1.4B sized model for generating
256 × 256 images. Sampling speed is measured with CFG. The proposed deep–shallow uses 6 blocks: an
18-layer Transformer followed by a 5 blocks of 2-layer Transformer. The hidden dimension is 2048. The
equal-sized (Zhai et al., 2024) baseline uses 8 blocks where each block has 8 layer of Transformers. To match
the overall parameters, we reduce the hidden dimensions to 1280.

Block ID 0 1 2 3 4 5 6 7 Total (s)

Equal-sized (Zhai et al., 2024) 9 9 9 9 9 9 9 9 72
Deep–shallow (ours) 18 2 2 2 2 2 - - 35

Table 6: Comparison of latent-denoising strategies at σL = 0.3 on ImageNet 256× 256.

Method Extra Model Extra Steps FID 50K ↓ Remarks

Single-step score – 1 2.96 Blurry
Multi-step DiT (from 0.3) DiT-XL 30 2.53 Slowest
Decoder finetune Finetuned Decoder 0 2.40 Best, simplest

D Application Details

D.1 Training-free Image Inpainting with STARFlow

Let M ∈{0, 1}H×W be a binary mask that selects the pixels to be filled and let xgt∈RH×W×C be
the ground-truth image (available only at evaluation time for measuring fidelity). We split the image
into the observed part xO = (1−M)⊙ xgt and the missing part xM = M ⊙ xgt. The pretrained
flow fθ : x 7→ z induces a tractable density pθ(x)=N (fθ(x); 0, I) |det∇xfθ|. To sample from
the conditional pθ(xM | xO) without retraining, we construct a Metropolis–Hastings (MH) chain in
latent space:

1. Init. Replace the missing region by Gaussian noise, x̃(0) = xO +M ⊙ ϵ, ϵ∼N (0, σ2I), and
map to latent space z(0) = fθ(x̃

(0)).

2. Proposal. Draw fresh noise in the same masked region of latent space

z′ = z(t) +M ⊙ γ, γ ∼ N (0, τ2I),

and obtain the candidate image x′ = f−1
θ (z′). We then restore the context pixels, x̃′ = xO +

M ⊙ x′, ensuring every proposal satisfies the observed evidence.

3. Acceptance. Because the forward and reverse proposals are symmetric, the MH acceptance
probability reduces to the ratio of conditional probabilities:

α = min
{
1,

pθ(x̃
′ | xO)

pθ(x̃(t) | xO)

}
= min

{
1, exp

[
log pθ(x̃

′)− log pθ(x̃
(t))

]}
.

Accept with probability α; otherwise keep the current state.

4. Iteration. Set t← t + 1 and repeat steps (ii)–(iii) until convergence; the final sample x̃(T) is
reported as the inpainted image.

Intuitively, each step perturbs only the masked latents, letting the powerful flow prior propose
content that is globally coherent with the context while the MH test enforces exact consistency with
the joint density. The chain is ergodic—Gaussian noise gives non-zero probability to every latent
configuration—and its stationary distribution is precisely pθ(xM |xO). In practice we set both σ = 1
and τ = 1. Since our STARFlow is well-trained on large-scale text-to-image data with sufficient
capacity, it yields high acceptance rates and we set the total iterations to 20. No additional training,
guidance network, or data-specific tuning is required. effective plug-in for image inpainting with
pretrained autoregressive flows.

22

Figure 12: Demonstration of generation trajectories of inpainting output.
D.2 Interactive Image Editing with STARFlow

STARFlow can be naturally extended to multi-round tasks such as interactive image editing. We start
from a pretrained text-to-image checkpoint and finetune on the ANYEDIT corpus6. For simplicity, we
use only the subset that provides text instructions. Each training quadruple (xsrc, tcap, tinst, xtgt)
contains a source image, its caption, a free-form instruction, and the edited target (see Fig. 6b).

We serialize every sample into the sequence[
T5(tcap), AFs

[
VAE(xsrc)

]
, T5(tinst), AFs

[
VAE(xtgt)

]]
,

where image segments are tokenized by our VAE (p = 1) and text segments are embedded by a
frozen FLAN-T5-XL (Raffel et al., 2020; Chung et al., 2022). Image latents first pass through
the shallow-AF blocks independently, after which all tokens are processed by the shared deep-AF
Transformer. Because the deep block is strictly causal, the edited image and all later tokens can attend
to the entire prefix—including the source image—without any special masking. During inference the
prefix is written once into the KV cache; sampling the edited tokens simply reads from this cache,
mirroring the behavior of language-only LLMs.

Joint Training Objective. Instead of optimizing a single conditional likelihood, we maximize the
joint log-likelihood of both images:

max
θ
Ljoint = E(xsrc,tcap,tinst,xtgt)

[
log pθ

(
xsrc | tcap

)
+ log pθ

(
xtgt | tinst,xsrc, tcap

)]
,

where each term is evaluated via the change-of-variables formula (Eq. (3)). This objective maintains
maximum-likelihood training, allows gradients to propagate across all modalities, and enables the
same network to generate from scratch (empty image prefix) or perform edits (given image prefix).

Unlike diffusion-based MLLMs that first generate pixels and then re-encode them with a separate
vision backbone, our autoregressive flow is invertible: a single forward pass encodes the user image,
and a single reverse pass decodes the edited result. Encoding and decoding share parameters,
introduce no information loss, and integrate seamlessly with the Transformer’s KV cache. This
single-pass round-trip property sharply reduces latency and highlights autoregressive flows as a
compelling choice for tightly coupled vision–language applications. We show interactive image
generation and editing examples in Fig. 13 where given a caption and editing instruction, our model
predicts two images one after another.

E Related Topic Discussion

E.1 Autoregressive Model v.s. Autoregressive Flow

Connections between the two families emerge in masked autoregressive flows (MAF, (Papamakar-
ios et al., 2017)), which impose invertibility on an autoregressive factorisation, yet fundamental
differences remain. Autoregressive models dispense with any latent prior; each conditional distri-
bution is learned directly in the data domain, which is typically discrete—tokens, integer pixels,
or quantized audio samples—and generation proceeds strictly one element at a time. Normalizing
flows, by contrast, begin from an explicit Gaussian prior in a continuous latent space and learn an
invertible transformation that warps this prior into the target distribution. This design delivers exact
log-likelihoods, parallel one-shot sampling, and bidirectional latent inference, but at the cost of
enforcing invertibility and differentiability in every layer. While MAF narrows the gap by marrying
an autoregressive factorisation with invertibility, the reliance on a Gaussian base and a continuous
formulation remains the defining hallmark of normalizing flows, whereas the absence of a prior and
the natural alignment with discrete data continue to characterise pure autoregressive models.

6https://dcd-anyedit.github.io

23

https://dcd-anyedit.github.io

E.2 Flow Matching v.s. Autoregressive Flow

Normalizing flows (NF) and Flow Matching (FM) both map a simple latent prior to the data dis-
tribution, but they differ fundamentally in what they optimise and how they realise the map. A
normalizing flow learns a time-independent bijection whose parameters are updated by directly
minimising the data’s negative log-likelihood (NLL); the change-of-variables formula provides an
exact, unbiased gradient, so every parameter update moves the model toward the true maximum-
likelihood solution. Flow Matching instead specifies a time-dependent vector field that transports
probability mass along a chosen path and trains this field with a velocity-matching loss. In short,
Flow Matching reduces per-iteration cost by relaxing the objective, but Normalizing Flows retain the
rigorous maximum-likelihood foundation, and exact densities.

E.3 Relation to JetFormer (Tschannen et al., 2024b)

Architectural differences. JetFormer constructs a Transformer-RealNVP flow (“Jet”) in pixel
space and employs a GMM prior; training optimizes an ELBO due to the latent prior. In contrast,
STARFlow applies uniform affine autoregressive flows throughout, is invertible end-to-end, and
operates in the latent space of a fixed pretrained auto-encoder, so the flow itself is trained by exact
likelihood while the overall objective can be viewed as a fixed-encoder ELBO.

Expressivity and depth. Prop. 1 establishes that a small number of autoregressive flow blocks
already achieves universality in our construction (2–3 blocks suffice), which keeps STARFlow
compact and scalable. In our experience, the Jet mapping typically requires many blocks for
comparable expressivity.

Priors and guidance. A Gaussian prior in STARFlow enables the closed-form guidance in Eq. equa-
tion 16. While a GMM prior could be substituted, we found it unnecessary. Conversely, replacing
JetFormer’s GMM with a standard Gaussian weakens its modeling power under the Jet architecture
(consistent with its reported ablations) and removes a straightforward path to closed-form guidance.

Factor-out. JetFormer adopts multi-scale factor-out to compress activations for its GMM prior.
STARFlow does not factor-out by default; adopting a similar device is a natural extension but not
required for our results.

Table 7: Concise comparison with JetFormer.

Aspect JetFormer STARFlow

Domain Pixels Pretrained VAE latent
Transform Transformer-RealNVP (partial invertibility) Affine AR flows (fully invertible network)
Objective ELBO (GMM prior) Exact flow NLL (fixed-encoder ELBO

overall)
Depth Many Jet blocks often required 2–3 AR blocks suffice (Prop. 1)
Prior GMM N (0, I) (enables Eq. 16)
Factor-out Multi-scale factor-out Not used by default
Guidance No closed-form CFG Closed-form Gaussian CFG

F Broader Impacts

Positive societal impacts. STARFlow shows—for the first time—that normalizing flow–based
models can scale to the same resolutions and sample quality previously dominated by diffusion and
discrete autoregressive methods. The invertibility of normalizing flows enables interactive image
editing (See Fig. 9b for examples) making STARFlow suitable for assistive technologies (e.g., real-
time diagram manipulation for education or accessibility) and for professional design workflows that
demand faithful, iterative refinement.

Potential risks and negative impacts. Higher-quality image generation lowers the barrier to
fabricating realistic—but false—visual evidence. Interactive editing magnifies this risk by enabling

24

rapid revision cycles. We advocate the concurrent development of reliable flow-specific watermarking
and provenance tools.

G Additional Samples

We show more generated samples from STARFlow in Figs. 14 to 17.

25

Figure 13: Interactive editing with STARFlow. Starting from an initial caption, STARFlow generates a
base image. Given a subsequent user-provided editing instruction, the model then modifies the image accord-
ingly—without requiring re-encoding. Each example illustrates a generic instruction applied to a generated
image. All images are synthesized at a resolution of 512× 512.

26

Figure 14: Additional class-conditioned generation from STARFlows trained on 256 × 256 and 512 ×
512, respectively. The classes are sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita, loggerhead,
loggerhead turtle, Caretta caretta, and Siberian husky.

27

Figure 15: Additional text-conditioned generation from STARFlows trained on 256 × 256 and 512 × 512,
respectively.

28

Figure 16: Additional text-conditioned generation from STARFlows trained on 1024× 1024.

29

Figure 17: Additional text-conditioned samples from STARFlows trained on various aspect ratios.

30

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: we prove theocratically and empirically it is a scalable method for generative
model in the following sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

31

Justification: We have a limitation section in the end.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have rigorous proof in the appendix, and the statement of the proof is
accurate.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will release the code later.

Guidelines:

32

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We do not provide code in the paper, but we denote the open access link for
the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We discussed the experiment detail and setup in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: No , because the experiments are large scale and we cannot afford repeat
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We will disclose the computation resource in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.

34

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We do.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This is a generative model method paper. While there is no direct societal
impact of the method, the improvements it brings might have effects on applications such as
deepfake. The products it enables might also positively help with the society’s productivity.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

35

https://neurips.cc/public/EthicsGuidelines

Answer: [No]

Justification: This is the initial exploration of a brand new method. It has not reached the
level of safeguards, so we did not describe it.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We took care of the liscence and terms of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not release a new assets. The assets will be documented once we
release it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

36

paperswithcode.com/datasets

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [No]
Justification: we do not have crowdsourcing experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: we do not have human subjects in this work.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: We did not use LLM for important, original component of the core methods in
the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

37

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Normalizing Flows
	Autoregressive Flows and TARFlow

	STARFlow
	Why TARFlows are Capable Generative Models?
	Proposed Architecture
	Moving to Latent Space
	Revisiting Classifier-Free Guidance for Autoregressive Flows
	Applications

	Experiments
	Experimental Settings
	Results

	Related Work
	Conclusion and Limitation
	Derivations
	Extended Discussion of prop:expressive
	Proof of prop:newcfg

	Implementation Details
	Architecture Design
	Training Details
	Decoder Fintuning Details
	Inference Details
	Baseline Details

	Additional Experiments
	Additional Evaluation on Text-to-Image Generation
	Inference Speed
	Latent Denoising

	Application Details
	Training-free Image Inpainting with STARFlow
	Interactive Image Editing with STARFlow

	Related Topic Discussion
	Autoregressive Model v.s. Autoregressive Flow
	Flow Matching v.s. Autoregressive Flow
	Relation to JetFormer tschannen2024jetformer

	Broader Impacts
	Additional Samples

