
Published at the GEM workshop, ICLR 2024

MACHINE LEARNING OF FORCE FIELDS TOWARDS
MOLECULAR DYNAMICS SIMULATIONS OF PROTEINS
AT DFT ACCURACY

Christoph Brunken†‡∗ Sebastien Boyer†‡∗ Mustafa Omar† Bakary Diallo†

Karim Beguir† Nicolas Lopez-Carranza† Oliver Bent†‡

ABSTRACT

Deep learning model-based inference for molecular simulations offers a great
speedup (orders of magnitude) when compared to reference quantum chemical
methods such as density functional theory (DFT), along with evidence of increased
accuracy compared to classical force field calculations on some systems. We
demonstrate an entire atomistic simulation pipeline designed for protein systems
to exploit the benefits of such models. The application of the MACE model
architecture is combined with a physics-informed loss function inspired by PhysNet
to improve the representation of molecular physics and account for long-range
interactions explicitly. The model is trained on PhysNet’s solvated fragments
dataset. Our pipeline enables stable GPU-accelerated molecular dynamics (MD)
simulations of small molecules within the same size as the molecules present in
the dataset as well as generalisation towards larger peptides such as chignolin (175
atoms). Forces along the MD trajectories are assessed by comparison to a DFT
reference. Furthermore, we present stable and accurate energy minimisations for a
selection of six test molecules. Based on our results, we provide a discussion of
the strengths and limitations of the approach including an outlook towards future
improvements.

1 INTRODUCTION

Molecular dynamics (MD) simulations are an essential tool to determine macroscopic thermodynamic
properties of molecular systems (e.g., proteins) computationally Hansson et al. (2002). In an MD
simulation, the atomic coordinates are propagated through time by numerically solving Newton’s
equations of motion based on forces that are calculated by an interatomic potential or force field (FF),
i.e., any function mapping a set of atomic coordinates to a set of atomic forces. Due to the quantum
nature of molecular systems, an accurate description of their properties, including the forces, requires
the application of quantum chemical (QC) methods Levine et al. (2009), such as Density-functional
theory (DFT). However, these methods exhibit an unfavourable scaling with system size (typically,
at least a cubic scaling) Ratcliff et al. (2017) and MD simulations can often require millions of
individual force calculations on molecular systems of thousands of atoms. Therefore, pairing MD
with DFT is unfeasible for simulating larger organic molecules such as proteins, and instead, forces
are usually calculated with force fields based on classical physics (referred to as a classical FF), with
reduced computational cost along with reduced physical accuracy for these simulations Monticelli
& Tieleman (2013). Additionally, accurate atomic forces are required to run energy minimisations,
which are an essential tool in computational chemistry and biology used to identify stationary points
on potential energy surfaces relevant to the calculation of molecular properties, the understanding of
chemical reactions, and vital to structural biology modelling.

In recent years, a tremendous advancement in the field of machine learning models as force fields
(MLFF) Unke et al. (2021) has been made in an attempt to combine the accuracy of QC methods
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such as DFT with a computational cost comparable to that of a classical FF. Among the most notable
MLFF approaches are SchNet Schütt et al. (2017), BotNet Zhou et al. (2020), Nequip Batzner et al.
(2022), sGDML Chmiela et al. (2019), ViSNet Wang et al. (2022), Allegro Musaelian et al. (2023) and
MACE Batatia et al. (2022b). Furthermore, publicly available QC reference datasets are increasing in
size and quality. Examples include QM9 Rupp et al. (2012); Blum & Reymond (2009), PhysNet’s
solvated fragments dataset Unke & Meuwly (2019) and the SPICE dataset Eastman et al. (2023).
Despite these advances, MLFF models are still only rarely employed in applied computational studies
of biosystems, most likely due to a lack of demonstrated robustness and quantitative accuracy in
long-running MD simulations on large molecular systems, for which accurate QC reference data
cannot be obtained directly.

In this work, we present a new ML-based atomic force prediction pipeline, combining the MACE
model architecture with the physics-informed loss function and the solvated fragments dataset of
PhysNet Unke & Meuwly (2019). Our approach adds an explicit treatment of long-range (LR)
interactions to MACE and aims at increasing its understanding of molecular physics, creating a model
that generalises well across various protein systems. Furthermore, we connect our force predictor
to the JAX-MD simulation framework Schoenholz & Cubuk (2021) for GPU-accelerated protein
simulations including MD and energy minimisations.

2 METHODOLOGY

2.1 MODEL AND TRAINING DATASET

We apply the MACE model architecture Batatia et al. (2022b;a) in this work and build upon a MACE
implementation in JAX1. MACE is a state-of-the-art message passing GNN architecture predicting
interatomic potentials. Its main innovation is the expansion of messages as an hierarchical body order
expansion allowing for a decoupling between receptive field size, local geometry modelling and the
number of message passing layers. Hence, even with a small number of model layers, higher order
interactions can be captured. For more details on the original MACE model, we refer to the original
work Batatia et al. (2022b).

Our model does not only predict site energies Ei for each node (i.e., atom) in the molecular graph
like standard MACE, instead, we also output an atomic charge for each atom in accordance with the
PhysNet Unke & Meuwly (2019) physics-informed loss function. Details on the loss function are
provided in Appendix A.3.

We adopt PhysNet’s main innovation, obtaining the total energy of the system as the sum of the site
energies and the electrostatic correction term that explicitly models LR interactions:

E =

N∑
i=1

Ei + ke

N∑
i=1

N∑
i>j

q̃iq̃jr
−1
ij . (1)

The D3 correction term Grimme et al. (2010) that is added in the original PhysNet work is omitted
as we observed numerical instability during gradient evaluation when including it within our setup.
However, we plan to revisit this aspect in future work. In Eq. (1), q̃i and q̃j are the corrected atomic
charges, i.e., the predicted atomic charges rescaled such that their sum matches the total system
charge. Furthermore, ke is the Coulomb constant and rij is the distance between atoms i and j.
Moreover, to obtain more stable simulations for large systems, we apply a new message weighting
strategy that differs from the one in the original MACE model (we refer to Appendix A.1 for details).

We employ MACE with two layers and 3-body correlations. The hidden layers are of type 128 scalars
and 128 vectors, i.e., 128 0e 128 1o (we refer to the original E3NN work for the notation Geiger
& Smidt (2022)) and the output representation of each node is 2 scalars, i.e., 2 0e, one representing
the atomic site energy and one for the atomic charge. A constant bias for the energy per element
type is added to each site energy (corresponds to the atomisation energy), however, we did not treat
them as learnable but used tabulated values instead (see Table A1 in Appendix A.2). The mean and
standard deviation scaling factor for the element type energy are set to 1 and not calculated.

1https://github.com/ACEsuit/mace-jax (accessed: 2023-08-11)
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For building the atomic graphs, a distance cutoff of 5 Å per layer is applied (recommended by the
original MACE work) and the electrostatic correction is applied for atom pairs with a distance up to
28 Å during training. Furthermore, we choose a batch size of 32 and a learning rate of 0.001.

In training our model, we use the solvated fragments dataset from PhysNet, which was generated by
running semi-empirical MD simulations with the PM7 Stewart (2013) method on fragments of protein
chains (up to 120 atoms) to sample geometries. Approximately 2.7× 106 geometries are provided
in total with energies, forces and dipoles calculated using DFT at the revPBE-D3(BJ)/def2-TZVP
level of approximation. For our data split of training and validation sets, we ensure that geometries
from the same fragments (i.e., same molecules) do not appear in the training and validation set, thus
preventing any information ‘leakage’ into the training set. The split is performed in an 80:10:10
fashion for training, validation and testing, respectively. For speed-up, the model training is run on
multiple GPUs by using data parallelism across batches.

2.2 MD SIMULATION AND ENERGY MINIMISATION

We utilise the JAX-MD Python library Schoenholz & Cubuk (2021) that provides an implementation
of the necessary components to build atomistic simulations and energy minimisations based on JAX
Bradbury et al. (2018) along with its just-in-time (JIT) compilation and automatic differentiation
frameworks. JAX-MD is agnostic to the type of deep learning model architecture. We apply the
NVT-Langevin integration algorithm Davidchack et al. (2009) for MD simulations and the Fast
Inertial Relaxation Engine (FIRE) algorithm Guénolé et al. (2020) for energy minimisations, which
are both available in JAX-MD. We do not apply periodic boundary conditions in this work as we work
with finite systems, however, the framework allows to include them. To run efficient MD simulations
with MLFF models depends on the ability to leverage JIT compilation on GPUs or TPUs. By splitting
a simulation run into Nep episodes of Ns steps each, resulting in N = Nep · Ns total steps of the
simulation, we can JIT-compile the Ns steps of one episode and perform any tasks with side-effects,
e.g., logging to a remote file system or updating the dimensions of the neighbour lists, in between
episodes.

3 RESULTS AND DISCUSSION

3.1 ACCURACY ON THE SOLVATED FRAGMENTS DATASET

In this section, we summarize the key metrics of training our MLFF model, presenting validation and
test set performance. Overall, our predictions are correlated strongly with the ground truth, i.e., a
Spearman rank correlation coefficient of 0.99 was obtained for both the total energy of the system
and the norm of forces. We provide an overview of the absolute errors obtained for the validation
and test set in Appendix A.4. It demonstrates that our model achieves mean and median absolute
force errors of 5.1 and 3.1 kcal/(mol·Å), respectively. However, it also exhibits very large maximum
errors, significantly effecting the mean error. Due to this observation, we conducted an analysis of
the dataset, which is reported in Appendix A.5 and ideas on improving this dataset in future work are
discussed in section A.11 of the Appendix.

3.2 MD SIMULATIONS

To assess the generalisation of the developed MLFF model to unseen structures beyond the test set, we
conduct MD simulations using the complete MD pipeline and validate (1) qualitatively the stability
of the simulations (i.e., molecules remain intact) and (2) quantitatively the accuracy of the predicted
forces compared to DFT, for a selection of snapshots from the trajectory. As test systems, we select
(i) two fragments from the original test set, (ii) a selection of small non-peptide molecules, and (iii)
additional unseen peptide structures. The complete list of systems can be found in Table 1, in which
the quantitative MD results are presented. We ran 100 ps simulations with a timestep of 1 fs and at a
temperature of 300 K, and subsequently extracted 20 equidistant snapshots from the simulations to
calculate DFT reference forces with the PySCF Sun et al. (2018) program. For each snapshot, a MAE
value was obtained and the mean, standard deviation, and maximum of these values are presented in
Table 1. For the peptide chignolin with 175 atoms, we restricted the DFT reference calculation to the
initial structure of the simulation for which we obtained an MAE in forces of 2.4 kcal/(mol·Å).
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For the qualitative analysis of all simulated molecular systems, we observed stable simulations.
Visual inspection of the trajectories mostly revealed physically reasonable simulations, however,
a few untypical proton transfers were observed. In particular, protonated amino groups (−NH+

3 )
were found to be strong proton donors and deprotonated carboxyl groups (−CO−

2 ) strong proton
acceptors. In Figure A3 in the Appendix, we depict an example of an unphysical proton transfer that
was observed during the MD simulation of chignolin. A proton was transferred from a nitrogen atom
to the deprotonated carboxyl group. As this leaves the nitrogen atom behind with a formally negative
charge, this proton transfer is unexpected and unphysical. Furthermore, we performed simulations
at elevated temperatures of 500 K as a stress test and observed that the simulations of most systems
remain stable. Only for the decaalanine system, the very high temperature leads to a decomposition
of the molecule after about five picoseconds of stable simulation time.

The obtained force errors with respect to the DFT reference are between 0.8 and 4.0 kcal/(mol·Å)
on average, i.e., lower than the metrics reported in section 3.1. We suspect this mainly to be a
consequence of the lower MD temperature that was used to sample the structures (300 K instead of
1000 K). Furthermore, we obtain more accurate forces for the peptide-like structures than for the
generic organic molecules, which can be explained by the peptide-derived nature of the training set.
We also compared our forces to a GFN2-xTB reference, resulting in MAE values between 4.5 and
7.5 kcal/(mol·Å), which underlines (a) the spread that exists even between DFT and semi-empirical
forces as well as (b) how our model is trained to reproduce the ones from accurate DFT calculations.

Moreover, we selected the molecules chignolin and decaalanine to perform long-running 5 ns MD
simulations, (1) to verify the stability of the simulations and (2) generate Time-Independent Compo-
nent Analysis (TICA) and Root-Mean-Squared-Deviation (RMSD) plots (see Appendix A.7). We
also plot the velocity autocorrelation function for the first picosecond of the decaalanine simulation
(see Appendix A.10).

Table 1: Mean absolute error (MAE) of the MLFF forces for snapshots along an MD trajectory with
respect to revPBE-D3(BJ)/def2-TZVP. For each molecule, we provide the mean MAE of the snaphots,
the standard deviation σ and the maximum MAE (all values in kcal/(mol·Å)).

MOLECULE MEAN ERROR σ MAXIMUM ERROR

TEST SET FRAGMENT 1 0.809 0.094 1.101
TEST SET FRAGMENT 2 0.953 0.099 1.256
TRIPEPTIDE ACY 2.120 0.517 4.241
DECAALANINE (FOLDED) 1.854 0.225 2.693
DECAALANINE (UNFOLDED) 1.806 0.075 1.944
PROPYL-ANTHRACENE 2.943 0.188 3.263
ASPIRIN 3.017 0.272 3.470
CURCUMIN 3.951 0.352 4.738

For chignolin, the execution time is approximately 30 seconds (see Figure A5 in the Appendix) for
each picosecond of simulation time with our MLFF/MD pipeline on a single NVIDIA Tesla V100
SXM3 GPU. Compared to a generic force field such as GFN-FF Spicher & Grimme (2020), this is
around ten times slower, however, compared to the semi-empirical method GFN2-xTB, our pipeline
provides more than a 20-times speed-up (reference simulations are performed with the xTB program
Bannwarth et al. (2021)). We emphasize that there exists potential to further accelerate our pipeline,
for example, by parallelising inference on multiple GPUs, running it on TPUs, or applying general
code optimisations. In order for such improvement strategies to have a significant impact on the
execution speed of the simulations, it is essential that the scaling of the model with system size
follows a linear relationship (such as in classical force fields with an LR interaction cutoff distance)
rather than a quadratic or cubic one (such as for semi-empirical QC methods). To confirm that our
model exhibits this linear scaling, we visualise the execution times with respect to the number of
atoms for our test molecules in Figure A5. As we expect the bottleneck of the model inference to be
attributed to the GNN and not to the LR interaction correction term, the 5 Å graph cutoff should be
small enough such that we observe a linear scaling already for these test molecules comprised of less
than 200 atoms. The results presented in Figure A5 confirm this assumption.
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3.3 ENERGY MINIMISATIONS

In this section, we analyse the performance of the MLFF model for accurate energy minimisations
(structure optimisations). As mentioned in section 2.2, we have applied the FIRE algorithm Bitzek
et al. (2006) to six test molecules, namely; tripeptide ACY; propyl-anthracene; curcumin; aspirin;
and two fragments from the test set included in section 3.2. The FIRE algorithm has been run with
an initial timestep of 0.5 fs, a maximum timestep of 2 fs, and all other parameters set to the defaults
of the JAX-MD engine. In a successful and stable energy minimisation, the atomic forces should
converge at zero, hence, resulting in the atom positions to remain unchanged after convergence.
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Figure 1: Norm of forces (left) and change in RMSD (right) during an MLFF energy minimisation.

In Figure 1, we demonstrate that the developed MLFF model fulfills these two criteria. After 500
minimisation steps, we observe a ∆RMSD between steps of less than 0.001 Å for all molecules and
observe full convergence after at most 1000 steps for all but one of the test set fragments. Note that
both test set fragments consist of two non-covalently bonded substructures that are typically prone to
more difficult convergence. Furthermore, we observe a stable convergence of the forces to zero. For
two molecules, the tripeptide and the second test set fragment, we observe small fluctuations in forces
after 1000 steps, which appear to not result in significant fluctuations in the positions. We contribute
those to numerical instabilities that can be potentially resolved by fine-tuning the parameters of the
FIRE algorithm.

To assess the quality of the minimisation result, we optimised all six test structures with DFT
employing the PSI4 Parrish et al. (2017) quantum chemistry program with its default settings. To
these ground truth results, we compare (1) the initial structure, (2) a structure optimised with the
GFN2-xTB method using the xTB program Bannwarth et al. (2021), and (3) the final structure after
energy minimisation with the MLFF model. We compute the MAE of bond distances and bond angles
to assess local structural agreement and the RMSD to assess global conformational alignment. As
presented in Table A3 in the Appendix, we observe that the errors on bond distances are smaller for
the MLFF method as compared with GFN2-xTB for all tested molecules. The bond angle errors of
GFN2-xTB and the MLFF are similar. For RMSD, the MLFF exhibits similar errors as GFN2-xTB as
well. In particular, we observe more accurate results for the test set fragments and the tripeptide than
for the other systems, which can be explained by the peptide-based training set of the MLFF model.

In Figure A4 in the Appendix, we present a visual comparison of the initial structure to the final
structures obtained from energy minimisations with the MLFF model and the DFT reference. In the
two selected examples, it becomes clear that the optimised structures differ significantly from the
initial structures, however, the structures of the MLFF model compared to the DFT reference, are
similar, underlining the MLFF model’s ability to run stable and accurate energy minimisations for
the systems investigated in this work.

4 CONCLUSION

In this work, we introduced a new approach to combine the MACE model architecture and Phys-
Net physics-informed loss function, to build and train an MLFF model on the solvated fragments
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dataset, and run energy minimisations and MD simulations based on the JAX-MD framework. We
demonstrated that we are able to run long and stable MD simulations for small molecules as well as
generalise to larger systems such as chignolin. In Appendix A.11 we elaborate further the outlook of
this work and propose strategies for improvement towards an accelerated MD pipeline for simulating
biomolecules at DFT accuracy.
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A APPENDIX

A.1 MESSAGE WEIGHTING STRATEGY

As mentioned in the main text, we apply a new message weighting strategy that differs from the
one in the original MACE model. We observed that in our setup it is necessary to obtain stable
simulations for large molecular systems of more than 100 atoms. Instead of weighting the messages
with a learned or fixed average number of neighbours (original MACE), we employ,

mi =
∑

j∈N(i)

mi,j√
di ∗ dj

, (2)

where mi is the aggregated message at node i. N(i) is the set of nodes in the neighbourhood of i and
mi,j the contribution of node j via edge ei,j to the final message at node i. Finally, di and dj are the
degree of nodes i and j, respectively.

A.2 ELEMENT-SPECIFIC ENERGY BIAS

As mentioned in the main text, a constant bias for the energy per element type (corresponds to the
atomisation energy) is added to each site energy, however, we did not treat them as learnable but used
tabulated values instead. These values are presented in Table A1. The mean and standard deviation
scaling factor for the element type energy are set to 1 and not calculated.

Table A1: Element-specific energy bias added to the atomic site energies. These correspond to the
element-specific atomisation energies.

ELEMENT ATOMIC SITE ENERGY BIAS (EV)

HYDROGEN −13.587
CARBON −1029.489
NITROGEN −1484.981
OXYGEN −2041.982
SULFUR −10831.265

A.3 PHYSICS-INFORMED LOSS FUNCTION

In our work, we adopt the physics-informed loss function introduced by PhysNet. in Eq. (??). The
loss L can be understood as a sum of individual contributions which are the energy loss LE , force
loss LF , charge loss LQ, and dipole loss LP .

L = ωE LE +
ωF

3N
LF + ωQ LQ +

ωP

3
LP . (3)

In Eq. (3), N is the number of atoms. In our setup, we use the values ωE = ωQ = ωp = 1 and
ωF = 100 for the weights. Note that we put a larger weight on LF due to the importance of accurate
forces for atomistic simulations. The contributions LE and LF are defined as,

LE =
∣∣E − Eref

∣∣ ,

LF =

N∑
i=1

3∑
α=1

∣∣∣∣− ∂E

∂ri,α
− F ref

i,α

∣∣∣∣ . (4)

The energy consistency term LE ensures that the predicted energy E matches the reference energy
Eref. Note that the total energy E of the system is a sum of site energies Ei (for the i-th atom) in our
MACE model and the forces are calculated as the negative gradient of the energy with respect to the
atom coordinates ri. F ref

i,α is the reference force on atom i in Cartesian direction α (i.e., α = x, y, z).
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The terms LQ and LP of the loss function are defined as,

LQ =

∣∣∣∣∣
N∑
i=1

qi −Qref

∣∣∣∣∣ ,

LP =

3∑
α=1

∣∣∣∣∣
N∑
i=1

qiri,α − P ref
α

∣∣∣∣∣ , (5)

and enforce that the sum of atomic charges qi matches the reference charge of the full system Qref

and that the predicted dipole moments (calculated from the predicted atomic charges) align with
the reference P ref

α (α = x, y, z). The PhysNet loss function additionally includes a non-hierarchical
correction term to the loss function, however, this targets a particular concern within the PhysNet
architecture and is thus omitted from our loss function L.

A.4 RESULTS ON VALIDATION AND TEST SET

We provide an overview of the absolute errors obtained for the validation and test set in Table A2.

Table A2: Analysis of absolute errors (AE) for the MLFF predictions on energies, forces, and dipole
moments. Total charge is not included as the charge correction scheme renders the associated metrics
nontrivial to interpret.

Energy in kcal/mol Forces in kcal/(mol·Å) Dipole moment in Debye
validation test validation test validation test

Mean AE 22.46 22.60 5.46 5.08 0.12 0.13
Maximum AE 255.14 1051.60 699.88 804.53 7.17 14.87
25th percentile AE 6.13 6.37 1.84 1.80 0.06 0.07
Median AE 13.74 13.57 3.18 3.06 0.10 0.10
95th percentile AE 68.44 75.41 16.65 14.87 0.28 0.28

A.5 ANALYSIS OF SOLVATED FRAGMENTS DATASET

As mentioned in section 3.1, we observe that for some structures, the MLFF model exhibits low
correlation and large average errors. Furthermore, we found that generic physics-based methods such
as GFN-FF and GFN2-xTB also exhibit these errors compared to the reference values given in the
dataset. A closer investigation of these structures demonstrate that they contain unusual bond patterns
that are either (a) not found in typical protein structures (e.g., isolated molecular hydrogen H2) or (b)
not chemically reasonable (i.e., geometries with enormously high energies). Figure A1 provides four
example structures of this kind from the solvated fragment dataset.

We conjecture that these structures arise from the fact that a quantum chemical method (i.e., PM7)
combined with a high temperature of 1000 K was applied in the MD to sample the fragment con-
figurations. This setup can lead to a variety of chemical reactions to occur as part of the MD, as
well as reaching high energy conformations. To some extent this is desired such that a more diverse
space of conformations is sampled (also far away from equilibrium), however, it results in two issues,
namely that (i) DFT reference calculations may not converge properly, which can be hard to detect
when monitoring millions of calculations, and (ii) chemical reactions may lead to structures that are
not representative anymore of the dataset’s original purpose (e.g., isolated H2 molecules as part of
protein fragments). Furthermore, these structures can hamper the MLFF’s training procedure. In
future work, we propose to add additional quality checks for such datasets to avoid these structures,
either at dataset generation time or as a postprocessing step.

Furthermore, we take a look at the distribution of system sizes present in the solvated fragments
dataset. It is presented in the Appendix in Figure A2 and shows that most structures in the dataset
consist of 15 to 40 atoms. Relatively few structures contain more than 60 atoms. Implications of this
and further perspectives on improvement are discussed in section A.11.

10
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Figure A1: Four example structures from our reference dataset Unke & Meuwly (2019), which
show large errors in GFN-FF, GFN2-xTB and MLFF inferred forces compared to the DFT reference
forces provided. The discrepancy may be explained by a significant deviation from equilibrium atom
positions and bonding patterns, which are highly uncommon for biological systems. These visualised
molecular have the indices 2753, 9963, 6538, and 9957 (from top left proceeding clockwise), in the
dataset.

A.6 OBSERVED PROTON TRANSFERS

In Figure A3, we depict an example of an unphysical proton transfer that was observed during the
MD simulation of chignolin. A proton was transferred from a nitrogen atom to the deprotonated
carboxyl group. As this leaves the nitrogen atom behind with a formally negative charge, this proton
transfer is unexpected and unphysical.

A.7 LONG-RUNNING MD SIMULATIONS OF LARGE SYSTEMS

To evaluate the qualitative stability of long-running simulations with an MLFF model, we conduct
simulations with a simulation time of 5 ns for chignolin and decaalanine. As for all other simulations
in this work, the timestep is 1 fs. The temperature was set to 350 K, because we expect an increased
temperature to result in enhanced conformational sampling. Furthermore, it allows us to directly
compare our results on chignolin to Ref. Doerr et al. (2021). We also simulated the same molecules at
300 K, however, we did not observe a qualitatively different behaviour. Based on the trajectories, we
generate TICA and RMSD plots for each simulation. These plots are presented in the Appendix in
Figure A6 to A9. The results demonstrate that we are able to run stable long-running MD simulations
for chignolin and decaalanine with the MLFF model. However, based on the TICA and RMSD plots,
we infer that the energy landscape of the developed MLFF model clearly favours one molecular
conformation and a diverse sampling of three different states, as seen in Ref. Doerr et al. (2021), is
neither observed for chignolin nor for decaalanine. This may be attributed (i) to the significantly
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Figure A2: Size distribution of structures in the solvated fragments dataset. The total number of
structures n, mean µ, standard deviation σ, and the median are presented.

shorter simulation time compared to the reference for chignolin or (ii) to differences in the potential
energy landscape. Note that the long execution times for chignolin simulations with our current
implementation prevented us from running significantly longer simulations as part of this work,
however, we plan to deliver such results in future work. For decaalanine, we observe a similar
behaviour. Comparing to the RMSD plot given in Ref. Unke & Meuwly (2019), we again observe
a smaller number of different conformations visited during our MLFF−MD run. Furthermore, we
observe a conformation in between the completely unfolded and folded structures to be favoured,
while the original PhysNet model favours the folded conformation Unke & Meuwly (2019). To gain
a solid understanding of why the aforementioned differences are observed, further experiments and
direct comparison to reference methods will be necessary.

A.8 ENERGY MINIMISATIONS

The results of the energy minimisation results are presented in Table A3 and Figure A4.

Table A3: Molecular structures optimised with DFT (revPBE-D3(BJ)/def2-TZVP) compared to the
unoptimised ones, and the ones optimised with GFN2-xTB and the MLFF model. We present the
RMSD of positions in Å, MAE of bond distances ∆r in Å, and MAE of bond angles ∆α in degrees.

Molecule DFT − initial structure DFT − GFN2-xTB DFT − MLFF
RMSD ∆r ∆α RMSD ∆r ∆α RMSD ∆r ∆α

test set fragment 1 1.211 0.035 4.309 1.149 0.013 0.388 0.962 0.001 0.219
test set fragment 2 2.391 0.042 5.348 1.710 0.013 0.331 2.331 0.002 0.511
tripeptide acy 1.145 0.019 2.788 0.413 0.012 0.612 0.194 0.003 0.652
propyl-anthracene 1.028 0.015 1.206 0.951 0.013 0.318 1.604 0.005 0.457
aspirin 0.322 0.006 1.656 0.135 0.014 0.551 0.231 0.006 0.705
curcumin 1.149 0.009 1.297 0.371 0.012 0.431 0.591 0.005 0.575

A.9 EXECUTION TIMES

We present the execution times for 100 ps MD simulations for a variety of test systems in Figure A5.
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Figure A3: Example of an unphysical proton transfer observed during an MD simulation of chignolin.
The depicted snapshots correspond to (1) the initial structure, (2) 18 fs, (3) 24 fs, and (4) 250 fs into
the simulation.

Figure A4: Comparison of optimised to initial structures for energy minimisations with the MLFF
model and a DFT reference. The initial structures are depicted in yellow, the MLFF structure in
cyan, and the DFT reference structure in blue. The two examples presented are aspirin (left) and the
tripeptide ACY (right).

A.10 VELOCITY AUTOCORRELATION FUNCTION

For the first picosecond of the decaalanine simulation, we provide the autocorrelation function of the
velocities VACF(t),

VACF(t) =
1

N

N∑
i=1

vi(t = 0) · vi(t) , (6)
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Figure A5: Execution time for running a 100 ps MD simulation with respect to system size. The
data is presented for those systems for which the quantitative accuracy along the same trajectory is
provided in Table 1. The test set fragments 1 and 2 from Table 1 have the same number of atoms
and a very similar execution time, hence, we only present test set fragment 1 in this figure for clarity.
Based on this plot, we demonstrate the linear scaling capabilities of the MLFF model.

with N being the number of atoms and vi(t) as the velocity vector of atom i at time t. The VACF for
the decaalanine MD is depicted in Figure A10.

A.11 OUTLOOK

First, the training dataset can be improved. The solvated fragments dataset has the drawback that it
mostly consists of fragments between 15 and 40 atoms in size (see Appendix A2) and the average
number of neighbours of atoms in the dataset is thus also in this range. However, in larger systems, in
particular in the center of proteins, the average number of neighbours is much larger and we expect
an increased ability to generalise by having a more balanced dataset in terms of fragment size, up to
at least 120 atoms. Moreover, the training of the atomic charges that are inputs to the electrostatic
interactions could as well benefit from a dataset that includes more structures with large interatomic
distances. Pre-training of the model on a dataset obtained from semi-empirical QC calculations (e.g.,
with GFN2-xTB) would allow to include even larger molecular structures, i.e., up to several hundred
atoms. Additionally, we recommend a thorough quality assessment and filtering of the dataset to
avoid unreasonable structures, e.g., by analysing the energies for all geometries of a given fragment,
similar to the filtering proposed by the SPICE dataset for strained molecules Eastman et al. (2023).
Also, one could apply general-purpose methods with fixed bond topology like GFN-FF instead of
PM7 to obtain physically reasonable MD sampling while avoiding that chemical reactions can occur
as part of the sampling process.

Second, we value PhysNet’s approach to add other physical properties (charges, dipole) to the loss
function and suggest to extend it. For example, the atomic charges predicted by the model are trained
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only indirectly via the electrostatic contribution to the energy and the total charge consistency. Instead
one could compare these charges directly to charges obtained from QC calculations, which would
likely guide the model’s charge predictions towards physically reasonable values more efficiently and
reduce the overall risk of over-fitting. Likewise, one may add other physical properties calculated by
DFT calculations, for example, those derived from the electron density, to the model’s predictions to
obtain a more physics-informed model. Accurate treatment of LR interactions could also be achieved
by architectural changes such as incorporating Ewald message passing layers Kosmala et al. (2023).

Lastly, we point out that this work is targeted towards the simulation of protein systems which is
reflected by the employed dataset. However, the presented setup can, in principle, be extended to
systems with different chemical compositions or to models that calculate properties of chemical
reactions (as MLFF models should not be limited by defining a fixed set of chemical bonds). Finally,
generically trained MLFF models have the ability to be fine-tuned in a system-focused manner, if
additional system-specific reference data is available.
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Figure A6: TICA plot generated from a 5 ns MD simulation of chignolin at 350 K.
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Figure A7: RMSD plot for a 5 ns MD simulation of chignolin at 350 K.
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Figure A8: TICA plot generated from a 5 ns MD simulation of decaalanine at 350 K.
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Figure A9: RMSD plot for a 5 ns MD simulation of decaalanine at 350 K.

Figure A10: Velocity autocorrelation function (VACF) for the first picosecond of an MD simulation
of decaalanine at 300 K. In addition to the original data, we also provide a smoothed out version
using a Gaussian filter with a standard deviation of 15.
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