
Under review as submission to TMLR

Mislabeled examples detection viewed as probing machine
learning models: concepts, survey and extensive benchmark

Anonymous authors
Paper under double-blind review

Abstract

Mislabeled examples are ubiquitous in real world machine learning datasets. We show that
most mislabeled detection methods can be viewed as probing trained machine learning mod-
els using a few core principles. We formalize a modular framework that encompasses these
methods, parameterized by only 4 building blocks, as well as a python library that showcases
that these principles can actually be implemented. The focus is put on classifier-agnostic
concepts, with an emphasis on adapting methods developed for deep learning models to non-
deep classifiers for tabular data. We benchmark existing methods on (artificial) Completely
At Random (NCAR) as well as (actual) Not At Random (NNAR) labeling noise coming
from a series of tasks with imperfect labeling rules. This benchmark offers new insights as
well as limitations of existing methods in this setup.

1 Introduction

In supervised machine learning, the performance of learned algorithms crucially depends on the quality of
the dataset of examples used during training: how many examples do we have access to, are these examples
representative of the actual distribution on the feature space, and were the training examples correctly
labeled. We focus on the latter subject. Indeed, many actual use cases include some amount of labeling
errors. For example, this is typically the case in tasks that involve human supervision since labeling large
datasets requires a pool of annotators that possess a mix of expert knowledge (which is costly), and willingness
to perform repetitive tasks (which is dull). This is also known to be the case for widely used benchmark
datasets such as CIFAR10/100 or MNIST (Northcutt et al., 2021b). Therefore, cleansing datasets offers
the promise of better performance, but at the cost of additional efforts. Since the early days of machine
learning, it has been widely thought that this could be achieved by automated methods, thus avoiding the
need for further human intervention. This has given rise to a series of methods of automatic detection of
mislabeled examples using classical machine learning methods (Guan & Yuan, 2013). With the success of
deep learning methods in applications ranging from image recognition to language models, new mislabeled
detection methods have also been proposed that exploit their specific training dynamics.

The aim of this paper is to offer a new perspective on existing mislabeled detection methods, as well as
practical recommendations in actual use cases in the presence of labeling noise. Rather than learning a model
that captures the structure of the labeling noise, our approach is to blindly evaluate existing methods on
real-world datasets, with no prior knowledge. We survey mislabeled detection methods regardless of whether
they were designed to work with deep learning models or other classical machine learning algorithms, and we
highlight a few common principles. We also focus on tabular and text data, a type of data that is prevalent
in the industry (e.g. in logs, in customer databases, etc) but that has lately received less attention than
datasets that are more suited to using deep learning methods such as images, sound or language.

This paper is organized as follows: In section 2, we suggest a definition of the problem of detecting
mislabeled examples. We discuss its limitations and the inherent ambiguity of what can be considered a
mislabeled example in the statistical learning framework. We also describe existing strategies for dealing
with mislabeled examples. In section 3, we highlight the concepts behind a majority of mislabeled detection
methods found in the literature. We show that most methods can be described using a few core principles

1

Under review as submission to TMLR

with 4 distinct components. We survey a large amount of existing mislabeled detection methods and show
how they fit in this framework. The modularity of this framework can also be leveraged to design new
methods by recombining existing components. We review a series of extensions of existing methods that
address some specific issues encountered in real use cases. In section 4, we describe our contributed library
that implements the framework of the previous section, showing that it is not only a theoretical view but that
it can actually be implemented. Most existing methods of the literature can be readily implemented using
this library. In section 5, we run a large scale experiment by varying detectors, handling strategies, and
noise structure on a large series of actual datasets. This leads us to new insights regarding the behavior of
mislabeled detection methods in different setups, as well as practical guidance aimed at future practitioners.
Section 6 is dedicated to other related works that were not included in previous sections, and we conclude
in section 7.

List of contributions

• Concepts - We provide a fresh view on a majority of existing mislabeled detection methods by
showing that they can be described in a modular framework that uses a few components. This
allows us to provide a large survey where the similarities and differences of these methods are
highlighted. We identify a series of probes that provide the base signal used to distinguish between
genuine and mislabeled examples.

• Survey - We review a large number of existing detection methods, as well as other strategies for
dealing with specific issues. We survey 3 common strategies in weakly supervised learning.

• Implementation - We contribute a library that allows to instantiate a large amount of existing
mislabeled detection methods, as well as design and experiment with new ones. Rather than packag-
ing a series of different detection methods, our library is focused on implementing the core principles
of our framework, then existing specific methods can be instantiated in a few line of codes and are
readily available, as well as the possibility to benchmark new methods. We also package helpers to
load existing weakly supervised datasets found in the literature using a common interface in order
to improve the reproducibility of experiments in the weakly supervised setup.

• Empirical evaluation - On a large benchmark of text and tabular datasets, we evaluate a series
of detectors in different setups, where we vary the type of noise (weak supervision using labeling
functions or uniform noise), the hyperparameter selection method (using a clean validation set or
a noisy validation set), as well as the strategy for handling detected mislabeled examples (filtering
or relabeling). We identify a series of practical questions for which our experiments provide new
insights. We also share raw data for our experimental results as we think it can be used to answer
some future questions. Using our classifier-agnostic implementation, we propose the first comparison
of different mislabeled detection methods on the exact same task and using the same features and
base machine learning model.

2 Supervised learning and mislabeled examples: concepts and strategies

2.1 Definitions and problem statement

Training datasets that contain mislabeled examples are prevalent in real-world machine learning applications.
Our main aim is to detect these mislabeled examples. A first challenge that we found while reviewing
mislabeled detection methods is that it is difficult to come up with a general formal definition of what it
means for an example to be mislabeled.

For some obvious cases, a human annotator can easily tell if an example is correctly labeled or mislabeled,
but in some others the definition of mislabeled is more ambiguous such as when an instance can be considered
to lie in 2 different classes. As an attempt at giving a precise definition, we distinguish between 2 theoretical
frameworks in the next sections. Even though imperfect, we found no precedence of a definition of what is
a mislabeled example in the context of statistical learning theory.

2

Under review as submission to TMLR

2.1.1 Deterministic case: the true concept is a function

We aim at estimating a (deterministic) function f from an input space X to an output space Y. Ideally we
would observe a finite sample Dnoiseless of n examples and their corresponding labels {(xi, yi = f (xi))}1≤i≤n

where the xi are sampled from an unknown distribution P (X) over the input space. Typically, in classifica-
tion, yi is the class of the instance, whereas in regression, yi is a scalar value.

In real life, the data labeling process is often imperfect: our actual observed dataset Dtrain contains examples
{(xi, ỹi)}1≤i≤n that can undergo a corruption process and get a different label ỹi ̸= yi. In this case, the
definition is straightforward: an example is considered mislabeled if ỹi ̸= f (xi).

The approach of seeing machine learning as estimating an unknown function has permitted many theoretical
and practical successes in the early days of computational learning theory. It, however, falls short of formal-
izing the more general case where each point in the input space corresponds to several different targets with
non-zero (but possibly unbalanced) probability. This is the setup studied in statistical learning theory (see
Luxburg & Schölkopf, 2011, for a concise but comprehensive overview of statistical learning theory).

2.1.2 Stochastic case: the true concept is defined as a probability distribution

A more general case consists in defining the true underlying concept as a joint probability distribution
P (X, Y) = P (X) P (Y |X). At fixed x ∈ X , the mass of P (Y |X = x) is not necessarily concentrated into
a single mode. Put differently, there are (possibly infinitely) many possible values for y with non-zero
probability. This happens for instance when x does not contain all necessary information to predict y and
there remains some aleatoric uncertainty. Typically, in classification, we would like to learn an estimator
that returns probabilities of belonging to each class f̂ (x)c = P (Y = c|X = x), while in regression, it would
return the expected value f̂ (x) = E[Y |X = x].

Similarly to the deterministic case, contrarily to the independent and identically distributed assumption often
used in statistical learning theory, there is some discrepancy between the true concept that we want to learn,
and the actual distribution of collected examples during the data labeling process: whereas we would ideally
get a sample Dideal of n examples {(xi, yi)}1≤i≤n from P (X, Y), we actually observe a training dataset Dtrain

of examples (x, ỹ) sampled from a corrupted distribution P
(
X, Ỹ

)
.

In this case, the definition of a mislabeled example is ambiguous since we do not have a single ground truth
value, but instead a probability distribution over the output space Y of many possible ones. This happens,
for instance, when the true concept is modeled as a mixture of possible classes. As an example, suppose an
input x where P (Y |X = x) is a mixture of a majority class with probability 99% and a minority class with
probability 1%, and suppose an example (x, y) where y is the minority class. Do we consider this example
to be mislabeled?

In the rest, we suppose that we have access to a sensible threshold τ ∈ [0, 1]: we consider examples (x, y)
with probability under the true concept P (Y = y|X = x) < τ to be mislabeled and other examples to be
genuine. Note that this is the true concept P (Y |X), which is unknown in general, not the output of an
estimator trained using a finite set of examples. This definition also covers the deterministic setting as a
special case.

This choice is further motivated in data pipelines (section 2.6), where the output of a detection stage is fed
to a filtering procedure that produces a dataset of most trusted examples used to train a machine learning
estimator. In this case, we are often interested in recovering only the majority classes since they are also
the most likely ones in our evaluation (test) set. However, we emphasize that in some other contexts,
this definition might not be well suited, such as when we are more interested in predicting correctly for
underrepresented instances in fairness-related tasks.

2.2 Detecting mislabeled examples using trust scores

Estimating the conditional probability is by itself a difficult problem, which e.g. requires proper calibration
of machine learning models. Since we are only interested in splitting the dataset into genuine examples

3

Under review as submission to TMLR

and mislabeled ones, it is sufficient to solve the relaxed problem of estimating a proxy of the conditional
probability, hereafter called trust score.
Definition 2.1 (Trust score). Any scoring function s (x, ỹ) that is correlated with the conditional probability
such that for any 2 examples (x1, ỹ1) and (x2, ỹ2), it preserves the ranking between conditional probabilities:
s (x1, ỹ1) ≤ s (x2, ỹ2) ⇔ P (Y = ỹ1|X = x1) ≤ P (Y = ỹ2|X = x2).

Equipped with this trust score, we can split the training dataset in 2 distinct parts: trusted examples
with high trust scores and untrusted examples with low trust scores. For an ideal trust score method and
threshold, the trusted and untrusted datasets are equal to the genuine and mislabeled examples sets. In
section 3.2, we give a comprehensive review of model-probing methods for computing trust scores.

2.3 Assumptions regarding the noise generating process

A common approach to detect mislabeled examples within a dataset is to design detectors based on explicit
assumptions regarding the structure of the underlying noise-generative process. A widely favored structure
is known as the noise transition matrix denoted by T. Here, ∀(i, j) ∈ [[1, K̃]] × [[1, K]], where K̃ is the
number of noisy classes and K the number of true classes, Ti,j represents the probability P(Ỹ = i|Y = j)
of an example from the class j to have been assigned a noisy label from class i (Van Rooyen & Williamson,
2017). This concept holds the advantage of generalizing over class-dependent label noise in a multi-class
classification setting.

In the instance-dependent label noise scenario, the noise transition matrix becomes a function of the example
T : X → MK̃,K(R), and in the uniform label noise scenario, it is reduced to a constant corresponding to the
overall noise rate. A series of work has been dedicated to the estimation of the noise transition matrix for
the class-dependent (Liu & Tao, 2015; Patrini et al., 2017; Xia et al., 2019; Yao et al., 2020) and instance-
dependent (Xia et al., 2020; Yang et al., 2022) case.

However, additional assumptions are often necessary to estimate the noise transition matrix. Anchor point-
based methods assume the existence and identifiability of high-confidence samples within the dataset (Liu &
Tao, 2015; Patrini et al., 2017). Alternatively, some techniques require prior knowledge of class distributions
or specific noise ratios (Wang et al., 2017), or they exploit the structural characteristics of the noise transition
matrix, such as its tendency to form clusters in the feature space (Liu et al., 2023). Mixture proportion
estimation approaches infer noise ratios or the noise transition matrix by assessing the contamination level
of one class’s feature distribution by others (Vandermeulen & Scott, 2016). However, these approaches
presuppose that class distributions are mutually irreducible, implying distinct and non-overlapping patterns
among classes Scott (2015).

In contrast, we assume no prior knowledge of the underlying noise structure in this paper. Instead, we chose
to focus on detectors that do not explicitly depend on structural aspects of the noise-generating process,
specifically focusing on the family of model-probing detectors. The success of these detectors relies on an
implicit assumption concerning the base model’s behavior, which should exhibit significant differences when
applied to noisy versus clean data. In practice, model-probing detectors may fail in extreme cases where the
base model struggles to discern regularities in the data, e.g. due to excessive noise or an inductive bias in
the base model that cannot capture the structure of the noise. In such situations, expecting them to identify
mislabeled examples correctly may be unrealistic.

Furthermore, we note that more complex scenarios, such as concept drift (Lu et al., 2018) or data poisoning
attacks (Tian et al., 2022), are out of the scope of this study but remain as open and interesting problems
to tackle.

2.4 A taxonomy of data regions

In practical machine learning applications, we do not have exact knowledge of the true concept P (X, Y), but
instead, we only have access to a limited sample of data points. Depending on the availability of data, by
looking at the training set examples only, we distinguish between 4 cases (pictured in figure 1 for a 2-classes
toy example):

4

Under review as submission to TMLR

Fig 1.(1) We have access to many examples and all are from the same class. In this case we can unambiguously
consider this class as the true class: any example from another class lying in this region would be
considered mislabeled.

Fig 1.(2) We have access to many examples, but they are equally spread into 2 different classes. In this case,
no example from these 2 classes should be considered mislabeled.

Fig 1.(3) We only have access to a few examples but it looks like they all come from the same class. Does this
mean that this is the true class, or just that data is too scarce in this region so we are just unsure
about the true class?

Fig 1.(4) We only have access to a few examples, and they come from 2 different classes. Does that mean that
we are close to a boundary of the true underlying concept with 2 separate regions from 2 different
classes, or is it a region where examples from the 2 classes are sampled with equal probability from
the true underlying concept?

p(x)

p
(y
|x

)

ep
is

te
m

ic

aleatoric

4 2

3 1

denserare

Figure 1: Illustration of a ground truth distribution P (X, Y) decomposed as P (X) on the y-axis and P (Y |X)
on the x-axis and a sample of 100 data points from this distribution. In this toy distribution, we distinguish 4
different cases represented as 4 quadrants: (1) P (X) is dense, P (Y |X) is low entropy: we are pretty confident
that the ground truth class is so any example would be mislabeled (2) P (X) is dense, P (Y |X) is high
entropy, we cannot distinguish between classes and thus we would be unable to tell correctly labeled
from mislabeled examples (3) P (X) is scattered, but P (Y |X) is low entropy so we can assume that the
ground truth class is and any example should be deemed mislabeled (4) Since P (X) is scattered, it is
more difficult to detect that P (Y |X) is high entropy by looking at the data only, it is likely that mislabeled
detection methods would fail in the absence of further assumptions.

In the last case, by looking at the data alone, the main difficulty resides in distinguishing between rare
examples which provide useful information regarding some specific part of the input space, and mislabeled
examples. These rare useful examples are termed "exceptions" in Brodley & Friedl (1999), and are the ones
that provide the last few percents in test accuracy in state-of-the-art classifiers (Feldman, 2020), or that
carry most information regarding underrepresented subgroups in the population in fairness-related tasks
(Liu et al., 2021).

A related concept is the distinction between aleatoric and epistemic uncertainty, where aleatoric uncertainty
is high in regions where the true underlying concept P (Y |X) has high entropy, whereas epistemic uncer-
tainty comes from a lack of knowledge due to not enough data points in specific regions (see Hüllermeier &
Waegeman, 2021, for an introduction).

5

Under review as submission to TMLR

2.5 Use cases

Detecting mislabeled examples is of practical interest in real-world scenarios where obtaining the ground truth
label of an example is an imperfect process. The causes of these imperfections are diverse and sometimes
even intended in order to automatize as much as possible machine learning operations. We now highlight
some imperfect labeling processes and the role that mislabeled example detection can play in these scenarios.

Weak supervision Properly labeling an example sometimes requires a costly and non-scalable procedure
prohibiting annotation of the whole training dataset. Fraud detection and cyber security are both fields
where the labeling process requires scarce domain experts who need to conduct time-consuming forensic
analysis. One of the most popular solutions is to distill expert knowledge into hand-engineered labeling rules
to automatize and scale the labeling process to the entire training dataset. These rules form a new form
of supervision called weak supervision (Ratner et al., 2016), and instead of the usual strong supervision,
these labeling rules might produce incorrect labels that could harm the efficiency of machine learning model
trained from these rules. Mislabeled example detection could potentially help experts design better rules to
strengthen the weak supervision. Our experiments in section 5 include a benchmark of mislabeled detection
methods in this setting.

Crowd labeling When the labeling task is achievable by human annotators, outsourcing the labeling
process to decentralized annotators is a common approach to annotate webscale datasets. This technique
called crowdsourced labeling (Yuen et al., 2011) has been employed extensively in computer vision to
create the first large image datasets such as ImageNet (Deng et al., 2009). Nowadays, it is employed to fine-
tune large language models from human feedback (Ouyang et al., 2022; Bai et al., 2022). However, with
crowdsourced labeling, the effectiveness of each annotator in following the labeling guidelines can vary and be
unreliable. Mislabeled example detection provides a way to evaluate the annotators’ ability to systematically
follow the guidelines and even detect malicious annotators.

Web scraping In order to quickly assemble supervised web-scale datasets free of human intervention,
automatically crawling the web gathering data and labels from querying engines is a popular approach.
Web scraping has been used in the natural language processing community to design sentiment analysis
datasets (Maas et al., 2011) from movie reviews, or in the computer vision community to study label noise
at scale (Xiao et al., 2015). As shown in the latter, the oracle used to label examples, here the search engine,
sometimes diverges from the ground truth and provides noisy annotations. In the former, the data in itself
was wrong because of human error, resulting in wrongly labeled data. More recently, web scraping has been
extensively used to train large language models, in a self but still supervised fashion where the label
to predict is the token next to the input sequence. However, using non-curated web data has been shown
to severely hinder their capacities to produce non-toxic or hallucinations-free text (Wang et al., 2023). In
these situations, mislabeled examples detection can provide insights on the quality of the data source used
to automatically construct datasets.

In light of these scenarios, the data understanding part of the data mining methodology (Shearer, 2000)
seems more prevalent than ever, caused by the ambition to automatize every part of the machine learning
operations.

2.6 Fully automated learning in the presence of mislabeled examples: detect + handle strategies

Strategies to address learning with noisy labels include (Frénay & Verleysen, 2013): (i) using algorithms that
are naturally robust to label noise; (ii) using algorithms that explicitly model label noise during training;
(iii) assigning a trust score to each training example to then manually inspect low trust training examples,
or use an automated downstream method that can leverage this additional metadata. All three families of
methods are useful depending on the context. In the rest of the paper, we focus on the latter strategy:
The detection of mislabeled instances is not only valuable for the sole purpose of curating a dataset that
more accurately reflects the underlying concept, but it is also a critical preliminary step in a comprehensive
pipeline, illustrated in figure 2. The ultimate goal is to train an estimator on a smaller dataset, free of
mislabeled instances, with the expectation of getting more accurate predictions. It is achieved using a

6

Under review as submission to TMLR

detection method that provides trust scores that are then fed to a splitting strategy that separates a trusted
part of the training examples from untrusted ones. A final stage handles the 2 datasets in order to provide
a trained estimator. Here we distinguish between 3 strategies:

Filtering The simplest approach for handling untrusted examples is to discard them from the training
dataset, thereby training using only trusted data. This approach can also be found in the literature under
the name of data cleaning or editing (Wilson & Martinez, 2000). From this perspective, it is not harmful to
accidentally flag some correctly labeled examples as being untrustworthy as long as enough representative
correctly labeled examples remain in the trusted dataset. To the contrary, some correctly labeled examples
that lie in underrepresented regions might be accidentally flagged as mislabeled, which would degrade the
performance of the final estimator in these regions of the feature space. Therefore the effectiveness of this
approach is bound to the underlying detection method being able to distinguish between rare (thus difficult)
and mislabeled examples and the precise tuning of the threshold used to split the dataset into trusted and
untrusted examples.

Semi-supervised learning Although filtering is a direct approach, it may be overly dismissive of the in-
formation contained within untrusted data. Since this study is restricted to labeling noise, training instances
are considered free of feature space noise. Thus, a more reasonable approach is to retain the instances while
disregarding their labels, thus casting the handle step into a semi-supervised problem (Li et al., 2020).

This semi-supervised approach has the advantage of maintaining the entirety of the training dataset, thus
preserving the original data distribution. However, it inherits the filtering method’s intrinsic limitation of
discarding some information from the untrustworthy examples (here, their labels), which could be partially
correct or beneficial for the learning process.

Biquality learning The ideal approach would involve retaining the full training dataset while incorporat-
ing metadata about the quality of each example, allowing the learning algorithm to leverage this auxiliary
information. A particular case of this scenario is called biquality data, where two datasets are available at
training time, a trusted and an untrustworthy dataset, which falls under the biquality learning framework
(Nodet et al., 2021). Algorithms within this framework are able to make more granular decisions regarding
how untrusted examples are handled, potentially reweighting or relabeling individually each example. How-
ever, this approach assumes a high confidence in the trusted dataset: Any mislabeled example misclassified
as trusted could significantly undermine the effectiveness of these algorithms.

Original data

Sc
or

e

Sp
lit

Filtering Semi-supervised
learning

Detect

Handle

Untrusted

Trusted

Biquality

Figure 2: Data pipeline for different learning strategies when in the presence of labeling noise, where an
intermediary step uses a detection method to assign trust scores to every example, then splits the dataset
into a trusted and an untrusted part.

7

Under review as submission to TMLR

From the perspective of this pipeline, an efficient detector is not only a detector that provides trust scores
preserving the ranking between conditional probabilities but also a detector that provides trust scores that
handlers can exploit to train good classifiers on refined data.

In the rest of the paper, we experiment with an automated pipeline that uses the filtering strategy. We
do so because it is a widely used strategy in the literature and often the first approach tested in practice.
Furthermore, it does not require tuning an additional component (such as the choice of the semi-supervised
or biquality algorithm and its hyperparameters).

3 Model-probing detection of mislabeled examples

3.1 Using trained models to detect mislabeled examples

Machine learning consists in identifying regularities in data sets and exploiting these regularities in order
to predict the outcome on new examples. To the contrary, mislabeled examples are instead the ones that
deviate from these regularities. The underlying concept behind most mislabeled detection methods is that
these irregular examples are treated somehow differently from genuine examples by the machine learning
model. Informally, a good base model should find mislabeled examples difficult to learn and genuine examples
easier to learn. In practice, quantifying how regular or irregular every example is, is done by probing
trained machine learning models (figure 3). The success in identifying mislabeled examples thus relies on
the detection method to correctly distinguish regular from irregular examples. To this end, similar to the
fact that some machine learning methods may be more suited than others to some particular tasks (i.e. they
get better generalization performance), accurately detecting mislabeled examples crucially depends on the
choice of machine learning method and proper tuning of hyperparameters.

Data

learnin
g

diagno
stics

Model

Figure 3: Whereas machine learning consists in choosing a model that best fits the data (from left to right),
mislabeled detection methods follow the opposite direction and probe a trained model in order to give
diagnostics on a set of examples (from right to left).

3.2 A general framework for model-probing methods with examples

We now discuss one of the contributions of our work, which is to provide a general framework that en-
compasses most methods for the identification of mislabeled examples, with a few exceptions discussed in
subsequent sections. We also survey existing methods found in the literature and show that they fit in this
framework. The framework is pictured in figure 4. The final outcome of these methods is a scalar trust score
(defined in Section 2.1) for each example, used to rank examples from most likely to be mislabeled to most
trusted. The framework is composed of 4 components that we shortly describe next. We then go in more
depth in subsequent sections, where we show that most surveyed methods correspond to an instance of this
framework using specific choices of each component.

1/ base model: All model-probing detection methods rely on fitting a machine learning model to the
training set examples (or a subset thereof, depending on an optional ensemble strategy). This model should
incorporate some robustness to mislabeled examples so that they are treated differently from genuine exam-
ples.

8

Under review as submission to TMLR

2/ model probe: We then probe1 this model (possibly at different checkpoints during training, depending
on the ensemble strategy), in order to score every example using a scalar metric used to discriminate between
genuine and mislabeled examples.

3/ ensemble strategy: Optionally, the base model is trained multiple times using an ensemble strategy
such as bootstrapping or boosting, where each learner of the ensemble provides a slightly different value of
the probed scores.

4/ aggregation method: These scores are then aggregated to provide a single scalar trust score for each
example.

As an example, the Area Under the Margin (AUM) method (Pleiss et al., 2020) fits in this framework by
considering the base model to be a deep network, the probe to be the margin at every iteration during
training, the ensemble strategy is the consecutive iterates, and the aggregation method is just the sum of
these margins.

Table 1 summarizes all surveyed methods that fit in the framework. This unified picture suggests that we can
automatically design new methods by simply replacing one or several of the components in already existing
methods. This also advocates for transferring ideas developed for deep learning models to classical ones
(section 4.3) and vice versa, where for instance the method of observing the fluctuations of the per-example
accuracy as training progresses has been independently discovered in deep learning (Toneva et al., 2018) and
with AdaBoost (Chen et al., 2022).

3.2.1 Base model

The base model is the core component of this framework, which is trained on the training examples (or
a subset of the training examples depending on the ensemble strategy, see section 3.2.3) and then probed
(section 3.2.2) to give a scalar score to every example. Intuitively, a good candidate base model should treat
genuine and mislabeled examples differently, so that mislabeled examples are more difficult to learn than
genuine ones. This form of robustness against learning mislabeled examples is for instance found in deep
learning models (Arpit et al., 2017; Feldman & Zhang, 2020) where mislabeled examples have been shown to
be handled differently (Krueger et al., 2017), in particular depending on the training regime (George et al.,
2022), or in decision trees where mislabeled examples often end-up as a single instance of a different class in
otherwise pure leaves. In general, every off-the-shelf machine learning method can be chosen, depending on
the task (data and output types, and performance metric). Some detection methods however require specific
characteristics for the base model, such as being differentiable with respect to their input (Agarwal et al.,
2022) or their parameters (Koh & Liang, 2017).

The popularity of base models used for mislabeled examples is directly linked to the general popularity
of machine learning models, where nearest neighbors methods used to be more popular in the early days
of machine learning (Wilson, 1972; Tomek, 1976), then kernelized linear methods (Thongkam et al., 2008;
Ekambaram et al., 2016) and more recently decision tree ensembles (Verbaeten & Van Assche, 2003; Chen
et al., 2022). With the success of deep learning methods in image or text related tasks, new mislabeled
detection methods have followed that exploit the specific features of neural networks such as their training
dynamics (Toneva et al., 2018; Pleiss et al., 2020; Agarwal et al., 2022; Pruthi et al., 2020; Koh & Liang,
2017; Jiang et al., 2021), as well as classical machine learning methods on top of features extracted from
deep networks representations (e.g. k-NNs in Bahri et al., 2020; Zhu et al., 2022; 2024).

As a summary, any supervised learning method can be used as a base model.

3.2.2 Model probe

Fitted models are then probed in order to get scalar scores that are used to discriminate between genuine
and mislabeled examples (figure 3). Probes produce intermediate values that are then aggregated (section

1We use the word probe throughout which is generic enough to encompass a variety of different methods that follow the
same purpose of scoring each example by means of some measurement on a trained model.

9

Under review as submission to TMLR

Independent
Ensemble

Progressive Ensemble

model

No Ensemble

scores scores scores

scores

scores

scores

Probe

Probe

Probe

Probe

Probe

Probe

scoresProbe

scores

Aggregate

Aggregate

Aggregate

scores

Aggregate

Aggregate

Aggregate

Figure 4: General framework for model-probing detection methods.

3.2.4) to a single scalar trust score for each example. The most naive way of probing a model is simply to use
its prediction, but it can also be done using more convoluted methods, some that are similar to the concept
of uncertainty in active learning (Settles, 2011), some others which are more specific to the machine learning
model used such as gradient of logits with respect to input pixels in Agarwal et al. (2022).

An early series of detection methods simply use the predicted class by comparing the prediction given by
neighbor examples with a k-NN classifier (Wilson, 1972; Tomek, 1976; Brodley & Friedl, 1999) or a SVM
(Segata et al., 2010; Thongkam et al., 2008) and flag examples as mislabeled if the prediction does not match
the dataset label. Following a different motivation but similarly using the predicted class as the probe, forget
scores (Toneva et al., 2018) in deep learning and fluctuation scores (Chen et al., 2022) in AdaBoost measure
how much the per-example accuracy oscillates as training progresses, where more oscillations indicate a more
difficult thus potentially mislabeled example.

AdaBoost example weights (Verbaeten & Van Assche, 2003) have been used as probes, with larger weights
indicating more difficult examples. This is very similar to the method of small loss popularized by a series
of methods in deep learning (Amiri et al., 2018; Jiang et al., 2018). Here, examples with small loss are
considered genuine and larger loss are a sign of suspicious examples. In the context of learning with the
cross-entropy loss, this is also similar to using the margin (Dligach & Palmer, 2011; Pleiss et al., 2020),
where a small or negative margin indicates a potential mislabeled example, or to consider support vector
examples (Ekambaram et al., 2016) as suspicious as these are the examples closer to the decision boundary
in support vector machines.

10

Under review as submission to TMLR

Following the principle that perfectly fitting mislabeled examples would require more complex models, a
family of methods estimates the additional complexity of the base model required to learn an example
compared to removing the example from the training set (Gamberger et al., 2000). A proxy measure for
complexity is used in Chen et al. (2022) as the number of weak learners required to learn the label. In Ma
et al. (2018), a high value of the local intrinsic dimensionality of the last layer representation for some
examples as training progresses indicates the need for a higher compression in order to learn these examples.
In Baldock et al. (2021) in deep learning, classifiers are trained using the representations extracted from
layers of varying depth, the smallest depth able to correctly classify a data point measures how easy it is,
thus higher prediction depths correspond to potential mislabeled examples. With a different motivation,
Agarwal et al. (2022) propose to measure the gradient of the target logit of individual dataset examples
with respect to the input space, which is a measure of the smoothness of the prediction function. This builds
on the idea that perfectly fitting a mislabeled example in a region with otherwise genuine examples requires
a very localized spike in the decision function, which will be reflected in a larger gradient.

A popular tool in statistics, influence functions (Hampel, 1974) have been adapted to machine learning as
a diagnostic tool to estimate the effect of adding or removing an example in the training dataset. Informally,
they are an estimate of the effect of an infinitesimal change in the weight given to a datapoint, to some value
of interest, such as the parameters of the optimal model learned from this new weighting of examples, or the
prediction on other examples (also see Cook, 1977, for closed-form expressions of several variants applied to
linear models). In deep learning, they are estimated using linearization of the predictor near an optimum
(Koh & Liang, 2017; Barshan et al., 2020; Kong et al., 2021; Bae et al., 2022). Self-influence is defined as the
influence of an example on its own prediction. High values of self-influence indicate that the prediction on an
example is only influenced by itself, whereas a low self-influence is a hint that other examples carry similar
features and target, indicating a more trustworthy example. In TracIn (Pruthi et al., 2020), the influence
of examples is instead estimated using the gradient of the per-example loss at several checkpoints during
training, also similar to GraNd (Paul et al., 2021) which use the averaged gradient norm as we vary the initial
parameters of a neural network. Inspired by the representer theorem for functions obtained by minimizing
the empirical risk over a reproducing kernel Hilbert space (RKHS), representer values (Yeh et al., 2018)
aim at explaining a trained deep model’s prediction by means of the contribution from each training point.
Similar to self-influence values, these coefficients can be used to diagnose mislabeled examples.

In Sedova et al. (2023), the cosine similarity between the gradients of the loss of individual examples,
and the average gradient of the loss estimated on a minibatch that does not contain these examples, is
used as an indication that this example disagrees with other examples, in that it would push the learned
model towards a different direction than that of the majority of examples. Low or negative cosine similarity
indicates potential mislabeled examples.

While most probes discussed so far are specialized to classification tasks, the same model-probing framework
also applies when dealing with regression by just choosing appropriate probes. This is e.g. done in Zhou
et al. (2023) where the model is probed using the ℓ1 distance between the prediction of the trained model
and the dataset target.

Designing new ways of probing trained models can lead to improved detection of mislabeled examples. This
is for instance explored in Kuan & Mueller (2022).

Summary of probes: predicted class, boosting weights, loss, margin, support vectors, number of weak
learners, local intrinsic dimensionality, prediction depth, input/output gradient, influence function, repre-
senter values, ℓ1 distance, similarity between gradients.

3.2.3 Ensemble strategy

Training a single base model and probing it gives a point estimate. In statistical learning, all quantities
observed are by nature random, thus we can often get more accurate estimates by following common ensem-
ble strategies. This principle also holds true when applied to identifying mislabeled examples (Verbaeten
& Van Assche, 2003). By combining multiple models, ensemble methods can boost the robustness and de-
pendability of the detection process by utilizing the combined knowledge of the ensemble weak learners, or

11

Under review as submission to TMLR

leverage their diversity as evidence of a potential mislabeled example. In our survey, we encountered all
popular ensemble methods, which we quickly review here with examples.

The simplest strategy, consisting in not using any ensemble method, is for instance used in early methods
(e.g. Wilson, 1972; Segata et al., 2010). A second strategy is to use bootstrapping, cross-validation or
leave-one-out, where an ensemble of models is trained on subsets of the original training set. This produces
a variety of measurements of the probe. In this case, the disagreement or inconsistency of different models
within the ensemble can be leveraged as an indication of a potential mislabeled example. Instead of varying
the subset of examples on which ensemble members are trained, it is also possible to train using different
models (Smith & Martinez, 2014), and leverage their diversity.

In boosting, a predictor is progressively built as a sum of weak learners, each of which is learned from
the prediction of the previous boosting iteration. In the context of the detection of mislabeled examples,
boosting models are probed at every iteration during training, which produces a series of different values.
Deep learning models are also trained in an iterative fashion, where each step in the parameter space incurs
a change in function space that can be assimilated to a weak learner2. Because of this analogy, methods
designed to work with deep networks can be readily adapted to boosted models (section 4.3).

Bootstrapping (and variants) and boosting differ by the nature of the members of the ensembles: in boot-
strapping all weak learners are trained on independently drawn subsamples of the training set, they can be
considered to be on equal terms. By contrast, in boosting as well as with any models trained iteratively (e.g.
deep networks), there is a natural ranking between weak learners that comes from the consecutive iterations.
The training procedure is progressive, where early iterations learn a prominent pattern (ideally the one cor-
responding to the clean examples) and late iterations are required to learn spiked decision boundaries as well
as mislabeled examples. In this case, the complexity of the decision function learned increases as training
progresses, which can be leveraged as an extra signal to detect clean and mislabeled examples.

Summary of ensemble strategies: bootstrapping, cross-validation, leave-one-out, different models,
boosting/deep learning.

3.2.4 Aggregation method

We obtain a series of probe scores from each model of the ensemble. In order to summarize them to a
single scalar trust score, we now need to aggregate all these measurements. This is achieved by choosing an
aggregation method. The simplest one is just to average the probed scores (or equivalently, take their sum)
as done e.g. in Northcutt et al. (2021a); Pleiss et al. (2020); Pruthi et al. (2020), or compute a majority
vote or consensus as in Guan et al. (2011); Verbaeten & Van Assche (2003).

A natural extension is instead to measure some form of spread of probed scores, with a large spread indicating
that ensemble members disagree thus a potential mislabeled example. This is e.g. achieved using the ℓ2
variance in Agarwal et al. (2022); Seedat et al. (2022), also reminiscent of the idea of uncertainty in active
learning (Chang et al., 2017). Going a step further, the difference in probe scores between members of
the ensemble that include a given example in their training subset and members that do not (e.g., van
Halteren, 2000) can also be leveraged, where a larger difference suggests a potential mislabeled example,
whereas a prototypical example will probably have less influence on the predictor since similar examples are
likely included in the training subset. For instance C-scores (Jiang et al., 2021) are a measure of how likely
a datapoint is to be correctly classified by a model trained on a subset that does not include it. Similarly,
DataShapley values (Ghorbani & Zou, 2019) measure the individual value of each example on a utility
function such as the test loss, with a negative value indicating a potentially mislabeled example.

For progressive ensemble strategies, there is a natural ordering of the members of the ensemble, which are
the consecutive iterations of the algorithm. This is exploited by several techniques. Forget scores in deep
learning (Toneva et al., 2018) and fluctuation (Chen et al., 2022) in AdaBoost count how many times

2At the end of training, fwT = fw0 +
∑T

t=1 fwt − fwt−1︸ ︷︷ ︸
:=ht

can be viewed as an ensemble of weak learners {ht}t∈J1,T K

stemming from parameters updates wt − wt−1.

12

Under review as submission to TMLR

Base model Probe Ensemble strategy Aggregation
k-NN accuracy leave-one-out OOB value Wilson (1972)
k-NN accuracy no ensembling n/a Tomek (1976)

various accuracy bootstrapping majority vote Brodley & Friedl (1999)
AdaBoost example weights no ensembling n/a Verbaeten & Van Assche (2003)

SVM accuracy no ensembling n/a Thongkam et al. (2008)
Local SVM accuracy no ensembling n/a Segata et al. (2010)

MaxEnt margin no ensembling n/a Dligach & Palmer (2011)
various self confidence different models sum Smith & Martinez (2014)
SVC support vectors no ensembling n/a Ekambaram et al. (2016)

deep network influence no ensembling n/a Koh & Liang (2017)
deep network accuracy learning iterations change count Toneva et al. (2018)
deep network loss no ensembling n/a Amiri et al. (2018)
deep network local intrinsic dim. no ensembling n/a Ma et al. (2018)
deep network representer value no ensembling n/a Yeh et al. (2018)
deep network loss no ensembling n/a Jiang et al. (2018)
deep network margin learning iterations sum Pleiss et al. (2020)
deep network loss gradient learning iterations sum Pruthi et al. (2020)

k-NN accuracy no ensembling n/a Bahri et al. (2020)
deep network accuracy bootstrapping sum Jiang et al. (2021)
deep network prediction depth no ensembling n/a Baldock et al. (2021)
deep network self confidence bootstrapping mean Northcutt et al. (2021a)
deep network influence no ensembling n/a Kong et al. (2021)
deep network input/output gradient learning iterations variance Agarwal et al. (2022)

decision stump accuracy boosting iterations change count Chen et al. (2022)
AdaBoost # weak learners no ensembling n/a Chen et al. (2022)

k-NN accuracy no ensembling n/a Zhu et al. (2022)
various ℓ1 distance cross-validation OOB value Zhou et al. (2023)

Table 1: Taxonomy of model-probing detection methods

the per-example accuracy between consecutive iterations changed from not predicting the dataset label to
correctly predicting it, with larger values indicating that the example is more difficult to learn. In Cordeiro
et al. (2023), examples are considered clean if their individual loss is smaller than a threshold τ for ζ epochs
in a row where τ and ζ are 2 hyperparameters, and in Yuan et al. (2023), trustworthy examples are those
that are correctly classified for k epochs in a row earlier during training, where k is also a hyperparameter.
The ℓ2 variance of the input/output gradient of individual examples across iterations is used in Agarwal
et al. (2022), with the idea that the training dynamics of a neural network will fluctuate around mislabeled
examples as it will require a decision function that spikes around a single example in an otherwise uniform
region.

Instead of aggregating different scores from different members of an ensemble, it is also possible to compute
k different probes for a single trained model, as done in Lu et al. (2023) for k = 2. Here, the scores are
aggregated in a single trust score using a Gaussian mixture model (GMM), but in general, we could expect
any k-dimensional clustering method to work.

Summary of aggregation methods average/sum, majority vote, consensus, variance, difference in vs
out, DataShapley, difference between iterates, stability for ζ epochs in a row, clustering in higher dimension

3.3 Bag of (clever) tricks

The framework proposed in section 3.2 is the backbone for many reviewed detection methods. In addition,
we now survey some additional techniques proposed in the literature, which we consider as plugins that aim

13

Under review as submission to TMLR

at solving specific problems that arise when dealing with mislabeled examples. These methods are applied
on top of the framework and are agnostic to the model-probing detection strategy.

3.3.1 Iterative refinement

The pipeline for learning in the presence of mislabeled examples detailed in section 2.6 is a 2-stage approach
with detect and handle stages applied once. A natural way to improve its efficiency is to do many-passes
over the training examples by probing base models fitted on a sequence of refined datasets iteratively, where
the base models of iteration T are trained using clean examples only filtered by iteration T − 1 (Tomek,
1976; Chen et al., 2019).

The iterative refinement approach can be integrated directly into the training procedure of the machine
learning model. As training progresses, the sets of beneficial and detrimental examples may change. By
incorporating the detection stage into each iteration of the training procedure, the model can be updated
incrementally with the suitable refined dataset given its current progress in its curriculum (Sedova et al.,
2023).

3.3.2 Surely mislabeled pseudo-class

The trust scores generated by most detection methods are often on an arbitrary scale. Splitting a training set
into a trusted and untrusted part thus requires a carefully chosen threshold. This threshold depends on the
detection method (and scale of the trust scores), as well as on the noise level and structure of noise. When
used in a detect + filter pipeline, choosing an appropriate value of the threshold is of crucial importance.
It can be achieved by treating it as a hyperparameter in a cross-validation setup (which likely requires a
noise-free validation set, see discussion in section 5.3).

Alternatively, Pleiss et al. (2020) proposed to artificially introduce examples that are purposely mislabeled
(we assign them a wrong class) and measure their trust scores so that we get a distribution of trust scores
corresponding to surely mislabeled examples. This is achieved by introducing an extra pseudo-class and
assigning it to a random subset of the training data. It, however, assumes that the noise introduced by this
additional class has similar properties as the noise in the original data.

3.3.3 Class-balancing mechanisms

A limitation of detection methods arises when dealing with class-imbalanced datasets. Given that minority
class examples are scarce, they are often more difficult to correctly predict than other examples, thus they
are more prone to being flagged as potentially mislabeled examples by most detection methods. In the
meantime, they are often the most useful ones given their scarcity: we would not be able to correctly predict
the minority class if there were to few examples from the minority class in the training data.

In order to alleviate this issue, a reasonable approach is to detect mislabeled examples in a one vs. rest
fashion by selecting trusted examples class per class (Northcutt et al., 2021a; Wang et al., 2022; Karim et al.,
2022).

An alternative approach is to normalize scores across classes allowing the splitting step to be done parsi-
moniously for all classes, which can be done by a simple scaling (Kim et al., 2023), or done under the peered
prediction framework (Miller et al., 2005) using peer examples (Liu & Guo, 2020; Cheng et al., 2020).

An alternative could revolve around the calibration of the trust scores compared to the true conditional
probability, which remains an under-explored area. The only works we are aware of that attempt to tackle
this problem proposes to adjust the predicted probabilities of training examples by the average predicted
probability for each class while probing the model (Northcutt et al., 2021a; Kuan & Mueller, 2022).

3.3.4 Reducing epistemic uncertainty

Another interpretation of the problem of differentiating hard but clean examples from noisy examples is
through the field of uncertainty quantification, specifically in the distinction between epistemic and aleatoric
uncertainty (Hüllermeier & Waegeman, 2021). Epistemic uncertainty corresponds to uncertain predictions of

14

Under review as submission to TMLR

a base model that can be reduced with more training data (rare and hard examples). Aleatoric uncertainty
corresponds to irreducible uncertainty, where the information from the features of a sample alone cannot
predict its label (e.g. when the true underlying concept is a mix of several classes).

When probing the base model, both of these categories of examples will be assigned a low trust score
(Hooker et al., 2019). To better differentiate these types of uncertainty, data augmentation can be used to
artificially create more training data (D’souza et al., 2021). This way, trust scores of examples with epistemic
uncertainty will increase, while trust scores of examples with aleatoric uncertainty will remain the same.

An alternative strategy involves designing detectors that combine probes that respond differently to aleatoric
and epistemic uncertainty. In Kuan & Mueller (2022); Zhou et al. (2023), it is done by re-weighting label-
noise probes (respectively the self-confidence and the ℓ1 distance) by out-of-distributions probes (respectively
the prediction entropy and the prediction variance). In Lu et al. (2023), a label-noise probe and an out-of-
distribution probe are computed separately and aggregated through clustering.

Furthermore, framing the problem of mislabeled examples detection as an outlier detection task is another
way to disambiguate epistemic and aleatoric uncertainty, yet out of scope of the model-probing framework
(see section 6 for a more thorough discussion regarding detection of outliers).

4 Library

To further emphasize that the proposed framework in section 3.2 is not only of theoretical interest but
also of practical one, we now present another important contribution of our work in the form of a Python
library that materializes the 4 components (base model, probe, ensemble strategy, aggregation method) of
the framework into a modular approach with 4 blocks that can readily be customized. Implementing an
existing method of the literature from table 1 then amounts to just specifying the value of each column of
the table, and we can invent new methods as new combinations of already existing components.

4.1 Detection of mislabeled examples by computing trust scores

The core of the library is a versatile ModelProbingDetector object that uses 4 arguments:

• a BaseModel which can be any estimator using scikit-learn’s API (Pedregosa et al., 2011),

• an EnsembleStrategy that defines the logic on how to fit and probe the base model,

• the probe that returns a score for every training example given a fitted model,

• and the aggregator that defines how we aggregate scores over multiple probes and/or multiple
fitted models.

Trust scores for training examples X and corresponding, possibly corrupted, labels y are then computed
by calling the .trust_scores(X,y) method of ModelProbingDetector which closely follows scikit-learn’s
design so that most machine learning practitioners should already feel familiar. The method returns a scalar
trust score for each example.

For example, the AreaUnderMargin detection method (AUM, Pleiss et al., 2020) can be defined to work with
gradient boosted trees using scikit-learn’s implementation GBT with the following code snippet:

AreaUnderMargin = ModelProbingDetector(
base_model=GBM(),
ensemble=ProgressiveEnsemble(),
probe="margin",
aggregate="sum",

)

Figure 5: This code reads "consider a gradient boosted
tree model (GBM) as a progressive ensemble, com-
pute margins for all examples at every iteration during
training, sum them up to obtain scalar trust scores".

Noteworthy, we can readily perform ablation studies with respect to any of the 4 components by keeping
all 3 others fixed. For instance, implementing the same detector but using iterates of a logistic regression

15

Under review as submission to TMLR

model trained with gradient descent can be done by replacing GBM with scikit-learn’s LogisticRegression
estimator. Similarly, instead of using the margin, we could design a different probe for a specific need, and
e.g. imagine an alternative implementation of AUM for regression that would instead use the ℓ2 distance to
the target as its probe (see section D.1).

The library comes with a series of helpers for defining most detectors found in the literature, so that all
detectors benchmarked in section 5 are readily available with a simple Python import.

4.2 A versatile API

We designed our library so that we can easily extend it with new ideas (e.g. new ways of probing a base
model), as long as each component follows the following block contracts:

• The BaseModel contract follows the widely used API of scikit-learn’s estimators (Buitinck et al.,
2013). It allows using scikit-learn’s suite of already implemented estimators, as well as estimators
from other libraries that follow the same widely used API.

• The EnsembleStrategy contract is a single method .probe_model(base_model, X, y, probe)
that takes as an input a non-initialized base model, the features, the labels, and the probing method,
and outputs the computed probes as an iterator of length n_models yielding NumPy arrays of shape
(n_samples, n_probes), and potential metadata, such as an iterator of boolean masks indicating
if a sample was part of the training set of the probed model (e.g. in the case of bootstrapping it
allows to distinguish in-the-bag from out-of-bag examples).

• The probe contract is a callable that takes as an input a fitted model, features, and labels of training
samples and outputs a one-dimensional NumPy array of length n_samples.

• The aggregator is a callable that defines how we summarize a series of probe scores viewed as an
iterator yielding NumPy arrays of shape (n_samples, n_probes) to a one-dimension NumPy array
of trust scores of length n_samples.

Thanks to the modularity of the API as well as the ease of adding new components, exploring new detectors
uncovered in table 1 (unknown region of a 4D cube) is as easy as changing one string when instantiating
a ModelProbingDetector. We hope that our library can foster the design and understanding of future
mislabeled detection methods.

4.3 A common API for progressive ensembles

We propose a novel API to unify all incremental machine learning approaches into a single contract named
staged_fit that produces a stream of machine learning models from a dataset. As streams are lazy data
structures, it allows flexible implementations of this contract for different families of machine learning models.
For deep networks, to reduce memory cost, only a single model is kept in memory, and the network is trained
incrementally between each iteration. For gradient boosting machines, all trees are trained at once and then
copied and dispatched into smaller GBT s for each iteration. Moreover, the concept of iteration can be
changed dynamically and independently for different model families. The provided implementation for deep
networks uses an epoch as the reference for an iteration, but a batch version could be used instead. As long
as a notion of increment in complexity exists for a family of machine learning models, a staged_fit can be
implemented. For example, decision trees are treated as progressive models, from decision stumps to fully
grown trees with pure leaves.

4.4 Full pipelines

In addition to the detection API using ModelProbingDetector objects, we also provide a way of building full
pipelines following detect + handle strategies as described in section 2. Splitter objects define strategies
to split a training set in a trusted and untrusted part using the trust scores (e.g. using a specified threshold
or by keeping a specified top quantile of the trust scores). Handler objects implement connectors to learning

16

Under review as submission to TMLR

strategies such as filtering, semi-supervised learning, or biquality learning so that all necessary tools to create
fully automated data pipelines are readily available.

5 Benchmarks

A classical approach to benchmarking detection methods is to evaluate them on synthetic tasks where noisy
labels are injected artificially into otherwise clean datasets. It allows us to conduct a post-mortem analysis
on the accuracy of detecting mislabeled examples since both the noisy and ground truth labels of all examples
are known. Yet, using only synthetic corruptions in experimental protocols might lead to wrong conclusions
on the actual performance of detection methods as they might not be representative of real-world corruptions.
In our benchmark, we use text and tabular datasets with noisy labels generated from imperfect labeling rules
, corresponding to more realistic scenarios, thanks to the growing availability of such datasets. On these
tasks, we evaluated multiple surveyed detection methods on different criteria, most notably in the case of
the fully automated weakly-supervised pipeline described in section 2.6.

Overall, the purpose of this benchmark is not to provide a definitive ranking between detection methods.
As we surveyed a large spectrum of existing and adapted methods, we could not exhaustively fine-tune each
method individually, so it is likely that some methods were not evaluated at their best capacity. Rather, this
benchmark serves to highlight a few recommendations for practitioners, as it provides data for a meta-analysis
on a large number of actual datasets.

5.1 Benchmark design

We now outline the features of the benchmark. A more detailed presentation with all specifics is included
in appendix B.

Tabular data We choose to put the emphasis of our benchmark on tabular tasks. Arguably (Grinsztajn
et al., 2022), these tasks do not benefit from the representation learning properties of deep models, thus our
evaluation only relies on the regularization properties of the machine learning models used instead of how
good they are at learning useful representations. Tabular data tasks also often include ambiguous mixing
regions, where the true underlying concept is a mix of several classes (Seedat et al., 2022). For illustration,
we also include an experiment on an image dataset in appendix D.2.

Datasets We use weakly supervised datasets from the Wrench benchmark (Zhang et al., 2021), supple-
mented by other datasets from the literature (Rühling Cachay et al., 2021; Hedderich et al., 2020), for which
we have access to weak labels from a set of automatic labeling rules as well as ground truth labels. A
summary of tasks statistics is available in table 2.

Sources of noise in benchmarked datasets We experiment with the following setups :

• Artificial uniform noise: with probability 30%, an example is assigned a random label uniformly
between existing classes, independently of its feature or true class. This creates a dataset with
Completely At Random (NCAR) noise. In practice, this form of noise is often used when experi-
menting since it can easily be artificially introduced in existing noise free datasets. It is, however,
very different (and simpler to deal with) from the actual structure of noise encountered in real-world
datasets.

• Imperfect labeling rules: a set of automatic labeling rules are applied to every example and then
aggregated as a single label. These labeling rules are imperfect, rendering the assigned labels noisy.
In this case, noisy examples are more frequent in regions that are not correctly covered by the
labeling rules or when several labeling rules disagree, thus the probability for examples to be mis-
labeled depends on their features x. The structure of the noise is Not At Random (NNAR). Some

17

Under review as submission to TMLR

Table 2: Tasks used to benchmark detectors. Columns: dataset size n, number of raw features d, number
of encoded features ϕ(d), number of classes K, histogram of class priors p(y), number of labeling rules LRs,
noise transition matrix T, noise ratio p(ỹ ̸= y), percentage of examples for which at least one labeling rule
gave a label coverage.

Benchmark Task Dataset n d ϕ(d) K p(y) LRs T p(ỹ ̸= y) coverage

waln text hausa 2.92K 4.82K 750 5 18.7K 0.50 97%
yoruba 1.91K 6.95K 539 7 20.3K 0.40 93%

weasel text amazon 200K 160K 3.68K 2 175 0.25 65%
professor-teacher 24.6K 113K 4.06K 2 99 0.18 81%

wrench tabular bank-marketing 45.2K 16 78 2 20 0.26 93%
basketball 20.3K 2.05K 2.05K 2 4 0.25 100%
bioresponse 3.75K 1.78K 10.4K 2 20 0.46 99%
census 31.9K 105 105 2 83 0.19 99%
commercial 81.1K 2.05K 2.05K 2 4 0.10 100%
mushroom 8.12K 22 108 2 20 0.13 99%
phishing 11.1K 30 46 2 15 0.21 97%
spambase 4.6K 57 57 2 15 0.25 97%
tennis 8.8K 2.05K 2.05K 2 6 0.13 100%

text agnews 120K 145K 3.36K 4 9 0.19 69%
imdb 25K 74K 10.1K 2 5 0.26 87%
sms 5.57K 13.5K 1.37K 2 73 0.03 40%
trec 6.03K 9.25K 946 6 68 0.46 95%
yelp 38K 200K 5.35K 2 8 0.28 82%
youtube 2.06K 7.08K 423 2 10 0.15 89%

examples might not be covered by any labeling rule3. This more general form of noise is often more
representative of actual use cases, but also more difficult to tackle.

Detection methods We evaluate several detection methods surveyed in section 3, choosing different
detectors with the right diversity of components: Some originate from the deep learning literature, using
progressive ensemble: Variance of Gradients (VoG, Agarwal et al., 2022), Area Under the Margin (AUM,
Pleiss et al., 2020), Forget Scores (Toneva et al., 2018), TracIn (Pruthi et al., 2020), Small Losses (Amiri
et al., 2018; Jiang et al., 2018) and AGRA (Sedova et al., 2023), others are not specific to deep learning:
Consensus (Brodley & Friedl, 1999) and CleanLab (Northcutt et al., 2021a), finally some methods come
from the influence literature in linear models: Self-Influence (Koh & Liang, 2017) and Self-Representer (Yeh
et al., 2018). Their respective position in our framework is described in table 1.

Evaluation of detection methods Evaluating detection methods is often task specific. We choose to
evaluate surveyed methods using the following criteria:

1. Predictive power of the trust scores to detect mislabeled examples. We use the Area under the
Receiver Operator Curve (AUROC) as a ranking quality metric.

2. Representativeness of the filtered dataset. We use class-balance as a proxy of representativeness. To
measure class-balance in multi-class classification, we use the ratio of the prior of the minority class
over the prior of the majority class.

3In these experiments, we chose to exclude examples that are not covered by any labeling rules from the training set.
Alternatively, one could assign them a random label, but it would likely be a noisy one.

18

Under review as submission to TMLR

3. Performance in a fully automated weakly supervised pipeline with no additional supervision. We use
the test loss of an estimator trained after filtering of the less trusted examples given by a method’s
trust scores (detect + filter).

4. Performance in a semi-automated pipeline with additional supervision. We use the test loss of an
estimator trained after relabeling of the 10% less trusted examples given by a method’s trust scores
(detect + relabel).

Hyperparameters The performance of mislabeled detection pipelines depends on the value of the follow-
ing hyperparameters:

• Hyperparameters of the detection method (This includes hyperparameters of the base model such
as e.g. the ℓ2 regularization coefficient in logistic regression, as well as the hyperparameters of the
probe, ensemble and aggregation strategies).

• Hyperparameters of the final estimator.

• Threshold for splitting the training dataset between trusted and untrusted examples.

Hyperparameters or the base model of the detector, as well as hyperparameters of the final estimator are
sampled by random search (12 times × 12 times). For each sampled couple of hyperparameters, threshold
values are then chosen from the grid {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Approximately 3 millions models have been trained in the making of this benchmark.

Choice of hyperparameter values Hyperparameter tuning is done using cross-validation, where an
holdout split of the training dataset is kept apart from training examples, and used only to compute an
estimate of the test loss. We distinguish between the following cases:

• Noisy: the validation set follows the same distribution as the training set. In particular, it contains
potential noisy examples

• Noise free: the validation set only contains clean examples. An example use-case is when an addi-
tional effort is made on labeling of the validation set: since it is typically smaller than the training
set, it is not prohibitively costly to review these particular instances more carefully.

• Oracle: the test set is used as validation set. This answers the question "how would my detection
method perform had I had access to an oracle that would give me perfect hyperparameters". Even if
not useful in practical applications, this hyperparameter selection method gives us some indications
on the behavior of detection methods.

Baselines and normalization In order to properly evaluate the surveyed detection methods, we use the
following baselines:

• None: No filtering step is performed, the training set is used as a whole including mislabeled exam-
ples.

• Random: Filtering or relabeling (depending on the experiment) uses random trust scores.

• Silver (perfect filtering): The training step only includes examples that have genuine labels.

• Gold: The whole training set is used, mislabeled examples are assigned their genuine label.

Since we compare detection methods across tasks of varying difficulties, we normalize by scaling the observed
metrics (i.e. the test loss) linearly between 100 and 200 so that the performance of the none baseline gets
200 and the silver baseline gets 100.

19

Under review as submission to TMLR

Machine learning models There are 2 different machine learning models involved in benchmarked
pipelines: the base model used at the detection stage, and the final estimator of the pipeline (Figure 2).
For both stages, we experiment with 2 different machine learning models: a kernelized linear model (KLM)
trained with stochastic gradient descent and a gradient boosting model (GBT).

Reproducibility Both detectors and helpers to download the datasets used in the benchmark are avail-
able in the open-sourced library described in section 4, available on the repository github.com/secret4.
The benchmark code spanning from feature pre-processing to detector evaluation is available in a separate
open-source repository github.com/secret, with fixed seeds for random number generators. The entire
benchmark results are also available in a public archive github.com/secret, so that reproducing figures
and tables can be done without re-running the benchmark. We hope that all provided code and raw results
will help foster research in weakly supervised learning.

5.2 Benchmark observations

This large scale benchmark allows us to ask a series of questions and observe some trends that we now
highlight. For completeness, additional experiments with different setups (different final estimator), different
noise structures (NCAR instead of NNAR), and different hyperparameter selection strategy (using a clean
or noisy validation set) are deferred to appendix C.

Overall performance of detection methods We start by evaluating detection methods in the detect +
relabel pipeline (Figure 6). The experiment consists in relabeling the 10% less trusted examples as pointed
by mislabeled detection methods. We use random trust scores as a baseline so that every setup is given
the same number of training examples, and the same budget of relabeling. On most datasets, we observe
an improvement in test loss compared to the random baseline, which confirms that mislabeled example
detectors provide a useful signal. This also gives us a ranking between detectors on these particular tasks,
where AGRA shows consistent performance compared to other methods.

Overall performance of filtering pipelines We turn to detect + filter pipelines, and ask the question
whether we can get an improvement in performance by using such a pipeline (which is fully automated and
does not require additional human supervision) compared to just using a carefully regularized model on
noisy dataset. This is not trivial as machine learning methods are known to already embed some form of
robustness to noisy examples: by playing with hyperparameters that reduce its capacity, we can tune any
machine learning method to focus on more salient features while trading off some flexibility to fit mislabeled
examples. Furthermore, there is a trade-off between a filtered training set with only trusted examples, or
keeping as many training examples as possible in order to have a bigger training dataset but at the cost
of including potential mislabeled examples. In our experiments on NNAR, we observe that models trained
on the subset of training examples that have genuine labels (the silver baseline) consistently get better
generalization performance than models trained using the whole training set (the none baseline) including
mislabeled examples (figure 7), even if there is less examples overall. More interestingly, we observe that
using a pipeline detect + filter with hyperparameters tuned using a clean validation set allows to improve
on generalization performance most of the time. For a few detectors, however, the detect + filter pipelines
do not improve compared to the none baseline or the random baseline. We believe this could be improved
by spending more effort to tune individual detectors.

Detect/none capacity In figure 8, we compare the regularization hyperparameter given by the oracle in
the classifier of the none baseline to the same hyperparameter in the classifier of detect + filter pipelines.
We observe that most of the time, less regularization is needed in detect + filter pipelines, even if the trusted
training set is smaller since untrusted examples have been removed. This is aligned with the intuition that
noisy datasets require more robust machine learning models (i.e. with larger regularization).

Clean or noisy validation set In our survey of mislabeled detection methods, we found that the question
of the validation set was often overlooked: as for any machine learning application, the final performance

4Github repositories will be revealed upon deanonymization, in the meantime the library is attached as a zip archive.

20

github.com/secret
github.com/secret
github.com/secret

Under review as submission to TMLR

ran
do

m

Fo
rge

t sco
res

(K
LM

)

Con
sen

su
s (G

BM
)

In
flu

en
ce

(K
LM

)
AUM

(K
LM

)
Tr

ac
In

(K
LM

)
VoS

G
(G

BM
)

Fo
rge

t sco
res

(G
BM

)

Clea
nla

b (G
BM

)

Clea
nla

b (K
LM

)

Sm
all

los
s (G

BM
)

AUM
(G

BM
)

Rep
res

en
ter

(K
LM

)
VoS

G
(K

LM
)

Con
sen

su
s (K

LM
)

Sm
all

los
s (K

LM
)

AGRA
(K

LM
)

0

50

100

150

200

250

300
no

rm
al

iz
ed

te
st

lo
ss

NNAR | 10% relabeling | Linear Classifier | HP tuned on noise free validation

Figure 6: Distribution (boxplot) of the normalized (base 100=training on correctly labeled examples only,
base 200=training on all examples including mislabeled ones) test loss of relabeling 10% less trusted examples
with varying detectors using a linear model as estimator on tasks (dots) corrupted by NNAR. Hyperparame-
ters are tuned using a clean validation set. Detector names include the detection method as well as the base
model. Respective colors assigned to each detector are consistent across figures in the rest of this section.

crucially depends on a set of hyperparameter, among which the threshold used to filter untrusted examples
is paramount. We found that choosing hyperparameters on a noisy validation set gave no improvement
compared to the none baseline (figure 9). Intuitively, this can be understood as the fact that since the noisy
training and noisy validation sets follow the same (noisy) distribution, from the perspective of the validation
set, what is actually noise does not look like noise. In practice, the threshold for splitting the training set
was often chosen to be 0 (no filtering at all, see figure 10). This questions the practical utility of mislabeled
detection methods comparatively with the biquality setup (Nodet et al., 2021): in biquality learning, clean
examples are used to actually learn the parameters of a model and simultaneously provide weak supervision
on other (by default untrusted) examples whereas here, they are just used to choose hyperparameters, losing
some useful signal.

Detection performance vs final performance In previous experiments, we evaluated mislabeled detec-
tion methods by observing their performance in full pipelines (detect + filter or detect + relabel). This is the
most relevant metric in practice since this is how detectors will be used in most cases. In this experiment, we
instead evaluate detection methods by measuring the predictive power of trust scores to distinguish between
genuine and mislabeled examples. We expect detectors that rank examples correctly would also lead to good
classifiers trained on their most trusted examples. However, in figure 11, only a mild correlation is found
between the two quantities, which suggests that good detectors possess other intrinsic qualities than their
ranking capacity, such as their capacities to select prototype examples or balance datasets that are otherwise
class-imbalanced.

Weak is more difficult than noise We compare two sets of experiments on the same datasets: examples
corrupted using artificial uniform noise (NCAR) and imperfect labeling rules (NNAR) in figure 12. Perhaps

21

Under review as submission to TMLR

no
ne

ran
do

m

Con
sen

su
s (G

BT)

Fo
rge

t sco
res

(K
LM

)

Con
sen

su
s (K

LM
)

Sm
all

los
s (G

BT)

Clea
nla

b (G
BT)

Fo
rge

t sco
res

(G
BT)

VoS
G

(G
BT)

Tr
ac

In
(K

LM
)

AUM
(K

LM
)

Rep
res

en
ter

(K
LM

)

Sm
all

los
s (K

LM
)

In
flu

en
ce

(K
LM

)

Clea
nla

b (K
LM

)
VoS

G
(K

LM
)

AUM
(G

BT)

AGRA
(K

LM
)

sil
ve

r
go

ld

0

50

100

150

200

250

300
no

rm
al

iz
ed

te
st

lo
ss

NNAR | Filtering | Linear Classifier | HP tuned on noise free validation

Figure 7: Distribution (boxplot) of the normalized (base 100=training on correctly labeled examples only,
base 200=training on all examples including mislabeled ones) test loss of detect + filter pipelines with varying
detectors with linear final estimator on tasks (dots) corrupted by NNAR. Hyperparameters are tuned using
a clean validation set. Detector names include the detection method as well as the base model.

Figure 8: For each detector/dataset pair (a circle), we com-
pare the oracle regularization (ℓ2 regularization in a linear
model) chosen when using the whole corrupted training set
on the x-axis, to the oracle regularization chosen in detect
+ filter pipeline on the y-axis. Most of the time, pipelines
obtained a smaller regularization (dots are below the y = x
line).

10−5 10−4 10−3

ℓ2 regularization of none baseline

10−5

10−4

10−3

ℓ 2
re

gu
la

riz
at

io
n

of
de

te
ct

+
fil

te
r

75
above

/ 97
≈

/ 132
below

unsurprisingly, we observe that detect + filter pipelines perform worse on NNAR corruption than NCAR
corruption. This is expected as NNAR is notoriously more difficult (Frénay & Verleysen, 2013): indeed,
the patterns in the noise are often indistinguishable from the patterns in the non-corrupted data from the
perspective of the learning algorithm in the absence of further hypotheses. More noteworthy, our experiments
show no clear correlation between performance on NNAR and performance on NCAR. As a corollary, this
questions the choice of testing mislabeled detection methods on NCAR-corrupted datasets: even if it is often

22

Under review as submission to TMLR

0.1 1
test log loss
(no filtering)

0.1

1
te

st
lo

g
lo

ss
(d

et
ec

t
+

fil
te

r)

clean valid.
noisy valid.

Figure 9: For each detector/dataset pair (a cross or a cir-
cle), we compare the classifier obtained by a detect + filter
pipeline (y-axis) to the classifier trained on all examples,
including noisy examples as a baseline (x-axis). Hyperpa-
rameters are tuned either on a clean validation set (crosses)
or on a noisy validation set (circles) for both the baseline
and the pipeline. We observe a trend where detect + fil-
ter pipelines tuned on the noisy validation set give worse
performance than the baseline (circles are above the y = x
line), whereas pipelines tuned on the clean validation set
give better performance than the baseline (crosses are be-
low the y = x line).

Figure 10: For each detector/dataset pair (a blue circle), we
compare the split quantile obtained by cross-validation on a
noisy validation set (y-axis) to the oracle (best) split quan-
tile (x-axis). Choosing the split threshold using a noisy val-
idation set consistently underestimates the optimal thresh-
old. In fact, the 0 threshold (no filtering at all) is chosen
most of the time.

0.0 0.2 0.4 0.6 0.8 1.0
Filtering quantile

Oracle

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lte

rin
g

qu
an

til
e

Tu
ne

d
us

in
g

no
isy

va
lid

.
se

t

more convenient to experiment on prevalent benchmarks and artificially introduce uniform label corruption,
it might not translate to actual use cases with more intricate NNAR corruption.

Adapting deep learning methods to classical machine learning algorithms A contribution of this
benchmark is also to evaluate mislabeled detection methods that were initially designed to work with deep
learning models and that we adapted to work generically with any model that is learned sequentially (more
details in appendix A). This is the case for AUM, Forget Scores, VoSG and TracIn. We evaluate them both
with the gradient boosting algorithm and a linear model learned by stochastic gradient descent (SGD), which
our library allows to treat as progressive learning natively. Empirically, we report mixed results: whereas
some methods did not produce any significant improvement in test loss, VoSG with a linear model is among
the best-performing methods. This demonstrates the feasibility of such an approach, which fosters future
work on the similarities and differences of training dynamics between deep learning algorithms and other
machine learning algorithms.

Choice of base model and additive robustness We hypothesize that in detect + filter pipelines,
using different machine learning models as base model in the detection stage and as the final classifier could
improve the final performance. The rationale is that different machine learning models include some form
of robustness to different examples: we could benefit from the combined robustness by using 2 different
methods. In figure 13, we compare the performance of detect + filter pipelines where both stages use either
a linear model (KLM) or a gradient boosted tree (GBT) model. We expect to see two point clouds pulled

23

Under review as submission to TMLR

0.5 1
ranking quality

100

200

no
rm

al
iz

ed
te

st
lo

g
lo

ss

Figure 11: For each detector/dataset pair (a circle), we com-
pare the normalized (none=200, silver=100) test loss of de-
tect + filter pipelines on the x-axis, to the ranking quality of
the trust scores on the y-axis. Detectors with better ranking
tends to produce filtered dataset that allows the training of
better classifiers (the black line is a robust linear regression).

Figure 12: For each detector/dataset pair (a circle), we com-
pare the task with NNAR corrupted labels (x-axis) to the
same training examples but corrupted using NCAR labels
(y-axis). This confirms that NNAR tasks are more difficult
than NCAR most of the time (circles are above the y = x
line). This also shows that there is no clear correlation be-
tween NCAR performance and NNAR performance.

0.1 1
test log loss

(NCAR dataset)

0.1

1

te
st

lo
g

lo
ss

(N
N

A
R

da
ta

se
t)

away from the y = x line, where KLM + GBT and GBT + KLM would perform better than KLM + KLM
or GBT + GBT. We actually do not see such a pattern, which invalidates the hypothesis, at least in the
current setup. Overall, it is clear from this figure that KLM is the best choice as a base model in these
experiments.

Representativeness of filtered data Being able to accurately sort out mislabeled examples from a
dataset is a fundamental property that detectors should possess, which they do (Figure 11). However, their
ranking capacity does not explain by itself the performance of a model trained on a filtered dataset. We
think that the representativity, in addition to the quality of the filtered dataset, matters. We experiment
with a proxy of representativity, the class balance. We expect that the class balance of the filtered dataset
to be closer to the test one than the noisy one. Figure 14 shows that most of the time, detectors tend
to favor examples from the majority class, or in other words, filter out more aggressively examples from
the minority class. We propose two potential reasons for this bias. Firstly, detectors may struggle to
distinguish between mislabeled instances and those of the minority class, as the latter are inherently scarcer
and more challenging to learn from. Secondly, the value among examples might not be evenly distributed.
We speculate that failing to detect a mislabeled instance from the minority class could be more detrimental
to the downstream taskthan failing to detect one from the majority class.

Filtering by class So far, we have studied detect + filter pipelines where the filtering step is performed
regardless of the (potentially noisy) observed class of the example. As seen in the previous experiment,

24

Under review as submission to TMLR

0.1 1
test log loss

(GBM base model)

0.1

1
te

st
lo

g
lo

ss
(K

LM
ba

se
m

od
el

)

KLM estimator
GBT estimator

Figure 13: For each detector/dataset pair (a blue or orange
circle), we compare (lower is better) the best classifier ob-
tained when using a detector with a GBT model on the
x-axis to the best classifier obtained when using a detector
with a KLM model on the y-axis. KLM detectors (orange
circles) seem to produce better performance most of the
time (circles are below the y = x line), and no clear pattern
emerges as to whether mixing models show a trend (blue
and orange circles do not show different patterns).

Figure 14: For each detector/dataset pair (a circle), we com-
pare the class balance of the original training dataset on the
x-axis to the class balance of the filtered train dataset on the
y-axis. Orange circles correspond to datasets where train-
ing is less balanced than test, and blue circles correspond to
datasets where training is more balanced than test. Even
though the ratio of above and below circles varies by color,
detectors tend to introduce more class imbalance than orig-
inally found in the training dataset (circles are below the
y = x line).

0 1
noisy class balance

0

1

fil
te

re
d

cl
as

s
ba

la
nc

e

this can change the distribution of the class in the filtered dataset. Indeed, in class-imbalanced dataset,
examples in the minority class often end up being less trusted than examples of the majority class. We thus
experiment with the alternative strategy of filtering example class-by-class, where e.g. the top 50% most
trusted examples of each class are kept for training. This ensures that the distribution between classes in the
filtered dataset does not depart too much from that of the original (noisy) dataset, thus avoiding a situation
where a minority class fully disappears from the training dataset. In Figure 5.2, we observe no such trend:
for most tasks it does not make much difference, for some other tasks a tiny difference in performance is
observed, either in favor of filtering by class, or in favor of filtering all classes at once.

Detection performance vs base model performance Similar to the fact that the inductive bias of
machine learning algorithms is paramount to their classification performance on unobserved examples, we
study how much this inductive bias relates to their performance at detecting mislabeled examples. Figure
16 shows that on datasets where the base model gets its better classification performance (measured as the
test loss of the same model trained on the whole noisy training set), it is also better at detecting mislabeled
examples. The trend is consistent across detectors.

25

Under review as submission to TMLR

0.1 1
test log loss

(filtering allclass)

0.1

1
te

st
lo

g
lo

ss
(fi

lte
rin

g
by

cl
as

s)

Figure 15: For each detector/dataset pair (a circle), we com-
pare (lower is better) the best classifier obtained when filter-
ing examples class-by-class on the x-axis to the best classifier
obtained when filtering all classes at once on the y-axis. No
clear picture emerges: it is sometimes better to filter class-
by-class, sometimes better to filter all classes at once, and
sometimes it does not make much difference.

Figure 16: For each detector across all datasets, we compare
the performance at detecting mislabeled examples on the
y-axis (AUROC for the task of detecting mislabeled exam-
ples, higher is better) to the performance of the underlying
base model (measured using the test loss, lower is better)
when trained using the whole training set including misla-
beled examples. For each detector, we also plot a linear
regression across datasets. We observe a trend where good
classification performance correlates with good performance
at detecting mislabeled examples

100

test loss of none baseline

0.5

0.6

0.7

0.8

0.9

1.0

ra
nk

in
g

qu
al

ity

5.3 Lessons learned

Our benchmark offers a critical view on the approach of filtering in the context of machine learning with
mislabeled examples when working with labeling functions or uniform noise: a fundamental flaw of such a
methodology lies in the fact that it requires access to a clean validation set in order to select hyperparameters
(the most important one being the threshold to split into trusted and untrusted examples). In that light,
it seems like a waste of resources to use this clean data only to select hyperparameters instead of using it
directly as a training set, or in a biquality learning setup. Filtering also imposes a hard threshold between
trusted and untrusted examples, whereas in some cases, examples that are on the verge of the splitting
threshold could also carry out some useful learning signal.

The results, however, show some interesting trends that could inspire future research. In particular, it
shows that some of the methods developed for deep learning algorithms (more specifically VoSG and AUM)
also show promising results with other classical machine learning algorithms (here a linear model and a
gradient boosting machine). To the contrary, Forget Scores do not seem to work very well with our current
implementation. Since we could not afford to spend too much effort on every method, it could just mean
that we did not find appropriate hyperparameters, or that the training dynamics of deep learning that forget
scores rely on are different from the training dynamics of GBTs and linear models.

Our experiments showcase encouraging results for applying model-probing methods on text and tabular
datasets. For a small extra implementation cost, computing trust scores provides useful information regarding

26

Under review as submission to TMLR

which examples look genuine and which examples require additional reviewing. There is however no clear
winner between detectors. Even if AGRA looks to perform better on this series of datasets, the distributions
of normalized test log loss largely overlap, suggesting that best-performing detectors vary across datasets.
This also offers room for improvement: as trust scores catch slightly different signals for different detectors,
a natural extension could be to try and summarize several detectors as a single trust score.

6 Other related works

This paper is part of a series of surveys in the weakly supervised learning literature, specifically on learning
with noisy labels (Frénay & Verleysen, 2013; Han et al., 2020; Song et al., 2022). However, it sets itself apart
from other surveys by focusing on the task of identifying mislabeled examples instead of studying more
broadly the literature of learning algorithms robust to noisy labels. It also provides a more modern view on
the mislabeled example detection literature (Guan & Yuan, 2013) by proposing an encompassing framework
closing the gap between approaches that were specifically developed for deep networks and classical machine
learning algorithms.

Identifying mislabeled examples is a topic also found in the data cleaning literature (Ilyas & Chu, 2019) and
has recently been successfully applied to the growing text datasets used to train or fine-tune large language
models (e.g. Zhu et al., 2024). Data cleaning surveys (Côté et al., 2023) also have a broader scope than the
one studied in this survey and are more comparable to the detect + filter pipeline but extended to other
forms of data corruption such as feature noise, missing data, and outliers detection.

Furthermore, outlier detection is an important field related to mislabeled examples detection. These methods
are designed to identify outliers in the sense P(X), whereas mislabeled detection methods seek to find outliers
in the sense P(Y |X). Outlier detection approaches have been applied to split non-scalar trust scores, for
example, when using the output of multiple detectors (Lu et al., 2023) or multiple probes where no apparent
aggregation exists. Another use of outlier detection is to find outliers in P(X|Y) instead of P(Y |X) by
training one outlier detection algorithm per class, assuming that outliers for a given class are mislabeled
examples (Rebbapragada & Brodley, 2007). We did not include these methods in the survey, as they were
out of scope.

Finally, we omit a series of methods that jointly optimize the two steps of the detect + handle pipeline.
Most notably, these approaches work iteratively, akin to the expectation-maximization algorithm, where the
detect and handle steps are optimized alternatively to minimize a global objective, usually getting the best
possible classifier out of the handle step (Tanaka et al., 2018; Zeng et al., 2022). Contrary to the iterative
refinement from section 3.3.1 where proper trust scores can be explicitly retrieved at every iteration, joint
methods use implicit trust scores. As they only serve the role to guide the optimization procedure, they lack
intrinsic significance, defeating our primary goal of mislabeled example detection.

7 Conclusion

The tremendous size of training datasets in modern tasks advocates for cheaper labeling strategies (e.g.
crowdsourced annotation or automatic labeling rules), at the cost of some amount of labeling error. Misla-
beled example detection methods offer the promise of being able to diagnose training datasets and review
examples in a second stage, either automatically (using filtering, semi-supervised learning or biquality learn-
ing) or by manual relabeling. In this paper, we gave a fresh view on past and recent detection methods,
showing that most of them can be understood using a framework composed of 4 components and a few prin-
ciples. Notably this includes recent methods that exploit the particular training dynamics of deep networks,
that we extended to be classifier agnostic (in particular, in the empirical evaluation, we experimented with
linear models and gradient boosted trees).

We proposed an implementation of this framework, that follows the scikit-learn API with which every
machine learning practitioner is familiar. Our implementation places its focus on the core mechanics of the
framework, which then enables implementation of the existing methods of the literature by only passing
specific values for the 4 components. This shows that this framework is not only an abstract one but can

27

Under review as submission to TMLR

also be actually implemented. Using this framework, we proposed a benchmark on a large number of tabular
and text datasets, with some amount of labeling noise that comes either from uniform noise (NCAR noise)
or from imperfect automatic labeling rules (NNAR noise). This benchmark is made available for reuse
in the weakly supervised machine learning community, with helpers to automatically fetch datasets with
train/validation/test splits and fixed seeds for pseudo-random generators.

This benchmark allowed us to provide a series of new insights to machine learning in the presence of misla-
beled examples. We also verify empirically common folklore in the field, specifically the difference between
NCAR and NNAR setups, or the fact that cleansing datasets from mislabeled examples allows to use less
regularized models. We highlight the often overlooked issue of the role of a clean validation set free of
any source of labeling noise in automatic pipelines, which questions their usefulness in actual use cases: if
I have access to clean examples, why not directly use them to learn the parameters of my model using a
semi-supervised algorithm or biquality learning?

Perspectives

The framework presented in section 3, as well as the implementation that we distribute, suggests that there is
room for improved detection of mislabeled examples by trying combinations of base model, probe, ensemble
strategy, and aggregation methods that have not yet been explored. We encourage a systematic comparison
of probes by looking specifically at which examples they score differently. Depending on the context, it
could be interesting to use a mix of probes in order to improve the robustness of detection methods. More
generally, the idea of using trained machine learning models in order to diagnose datasets of examples
spans other subfields of machine learning, such as active learning, example-based explainability methods, or
conformal prediction. This urges for cross-pollination between communities for a toolbox of methods that
extend machine learning algorithms in order to get not only a single prediction (e.g. class or a real value)
but also additional information regarding this prediction.

Finally, we advocate for a more fine-grained score of each instance than just being correctly or mislabeled.
As we discussed briefly in section 2.4, training examples can be categorized depending on whether they
belong to a region of the input space with low or high aleatoric or epistemic uncertainty, and recent works
aim at capturing this distinction (e.g. Javanmardi et al. (2024) using conformal prediction). Moreover, some
examples might be more useful or harmful, either because they belong to a minority class or an underrep-
resented pattern in an otherwise class-balanced dataset, or because they ward against some undesired bias
of the training data. In some cases, these are the examples that are the most important ones, for instance,
in fairness sensitive tasks. A more relevant metric would then be to use a measure of how useful is any
given example to the prediction of a learned classifier on test examples of this minority group, such as the
DataShapley value (Ghorbani & Zou, 2019) using a custom utility function.

References
Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating Example Difficulty Using Variance of

Gradients. pp. 10368–10378, 2022. URL https://openaccess.thecvf.com/content/CVPR2022/html/
Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html.

Hadi Amiri, Timothy Miller, and Guergana Savova. Spotting Spurious Data with Neural Networks. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp. 2006–2016, New Or-
leans, Louisiana, 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1182. URL
http://aclweb.org/anthology/N18-1182.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S Kan-
wal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at memorization
in deep networks. In International conference on machine learning, pp. 233–242. PMLR, 2017.

Juhan Bae, Nathan Ng, Alston Lo, Marzyeh Ghassemi, and Roger Grosse. If Influence Functions are
the Answer, Then What is the Question?, September 2022. URL http://arxiv.org/abs/2209.05364.
arXiv:2209.05364 [cs, stat].

28

https://openaccess.thecvf.com/content/CVPR2022/html/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Agarwal_Estimating_Example_Difficulty_Using_Variance_of_Gradients_CVPR_2022_paper.html
http://aclweb.org/anthology/N18-1182
http://arxiv.org/abs/2209.05364

Under review as submission to TMLR

Dara Bahri, Heinrich Jiang, and Maya Gupta. Deep k-NN for noisy labels. In Hal Daumé III and Aarti Singh
(eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pp. 540–550. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/bahri20a.html.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of example
difficulty. Advances in Neural Information Processing Systems, 34:10876–10889, 2021.

Elnaz Barshan, Marc-Etienne Brunet, and Gintare Karolina Dziugaite. Relatif: Identifying explanatory
training samples via relative influence. In International Conference on Artificial Intelligence and Statistics,
pp. 1899–1909. PMLR, 2020.

Carla E Brodley and Mark A Friedl. Identifying mislabeled training data. Journal of artificial intelligence
research, 11:131–167, 1999.

D.S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Complex
Systems, 2:321–355, 1988.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel, Vlad
Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake VanderPlas, Ar-
naud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning software: experiences from
the scikit-learn project. In ECML PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122, 2013.

Haw-Shiuan Chang, Erik Learned-Miller, and Andrew McCallum. Active bias: Training more accurate neural
networks by emphasizing high variance samples. Advances in Neural Information Processing Systems, 30,
2017.

Bowen Chen, Yun Sing Koh, and Ben Halstead. Measuring Difficulty of Learning Using Ensemble Methods. In
Laurence A. F. Park, Heitor Murilo Gomes, Maryam Doborjeh, Yee Ling Boo, Yun Sing Koh, Yanchang
Zhao, Graham Williams, and Simeon Simoff (eds.), Data Mining, Communications in Computer and
Information Science, pp. 28–42, Singapore, 2022. Springer Nature. ISBN 978-981-19874-6-5. doi: 10.1007/
978-981-19-8746-5_3.

Pengfei Chen, Ben Ben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing deep
neural networks trained with noisy labels. In International Conference on Machine Learning, pp. 1062–
1070. PMLR, 2019.

Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu. Learning with instance-dependent
label noise: A sample sieve approach. arXiv preprint arXiv:2010.02347, 2020.

R. Dennis Cook. Detection of Influential Observation in Linear Regression. Technometrics, 19(1):15–18,
1977. ISSN 0040-1706. doi: 10.2307/1268249. URL https://www.jstor.org/stable/1268249. Publisher:
[Taylor & Francis, Ltd., American Statistical Association, American Society for Quality].

Filipe R Cordeiro, Ragav Sachdeva, Vasileios Belagiannis, Ian Reid, and Gustavo Carneiro. Longremix:
Robust learning with high confidence samples in a noisy label environment. Pattern Recognition, 133:
109013, 2023.

Pierre-Olivier Côté, Amin Nikanjam, Nafisa Ahmed, Dmytro Humeniuk, and Foutse Khomh. Data cleaning
and machine learning: A systematic literature review. arXiv preprint arXiv:2310.01765, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248–255. Ieee,
2009.

29

https://proceedings.mlr.press/v119/bahri20a.html
https://proceedings.mlr.press/v119/bahri20a.html
https://www.jstor.org/stable/1268249

Under review as submission to TMLR

Dmitriy Dligach and Martha Palmer. Reducing the need for double annotation. In Proceedings of the 5th
Linguistic Annotation Workshop, pp. 65–73, 2011.

Daniel D’souza, Zach Nussbaum, Chirag Agarwal, and Sara Hooker. A tale of two long tails. arXiv preprint
arXiv:2107.13098, 2021.

Rajmadhan Ekambaram, Sergiy Fefilatyev, Matthew Shreve, Kurt Kramer, Lawrence O Hall, Dmitry B
Goldgof, and Rangachar Kasturi. Active cleaning of label noise. Pattern Recognition, 51:463–480, 2016.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pp. 954–959, New York,
NY, USA, 2020. Association for Computing Machinery. ISBN 9781450369794. doi: 10.1145/3357713.
3384290. URL https://doi.org/10.1145/3357713.3384290.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the long tail
via influence estimation. Advances in Neural Information Processing Systems, 33:2881–2891, 2020.

Benoît Frénay and Michel Verleysen. Classification in the presence of label noise: a survey. IEEE transactions
on neural networks and learning systems, 25(5):845–869, 2013.

Dragan Gamberger, Nada Lavrac, and Saso Dzeroski. Noise detection and elimination in data preprocessing:
Experiments in medical domains. Applied Artificial Intelligence, 14(2):205–223, February 2000. ISSN 0883-
9514. doi: 10.1080/088395100117124. URL https://doi.org/10.1080/088395100117124. Publisher:
Taylor & Francis _eprint: https://doi.org/10.1080/088395100117124.

Thomas George, Guillaume Lajoie, and Aristide Baratin. Lazy vs hasty: linearization in deep networks
impacts learning schedule based on example difficulty. Transactions on Machine Learning Research, 2022.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine learning. In
International conference on machine learning, pp. 2242–2251. PMLR, 2019.

Léo Grinsztajn, Edouard Oyallon, and Gaël Varoquaux. Why do tree-based models still outperform deep
learning on typical tabular data? Advances in Neural Information Processing Systems, 35:507–520, 2022.

Donghai Guan and Weiwei Yuan. A Survey of mislabeled training data detection techniques for pattern
classification. IETE Technical Review, 30(6):524–530, November 2013. ISSN 0256-4602. doi: 10.4103/
0256-4602.125689. URL https://www.tandfonline.com/doi/abs/10.4103/0256-4602.125689. Pub-
lisher: Taylor & Francis _eprint: https://www.tandfonline.com/doi/pdf/10.4103/0256-4602.125689.

Donghai Guan, Weiwei Yuan, Young-Koo Lee, and Sungyoung Lee. Identifying mislabeled training data
with the aid of unlabeled data. Applied Intelligence, 35(3):345–358, December 2011. ISSN 1573-7497. doi:
10.1007/s10489-010-0225-4. URL https://doi.org/10.1007/s10489-010-0225-4.

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american statistical
association, 69(346):383–393, 1974.

Bo Han, Quanming Yao, Tongliang Liu, Gang Niu, Ivor W Tsang, James T Kwok, and Masashi Sugiyama. A
survey of label-noise representation learning: Past, present and future. arXiv preprint arXiv:2011.04406,
2020.

Michael A. Hedderich, David Adelani, Dawei Zhu, Jesujoba Alabi, Udia Markus, and Dietrich Klakow.
Transfer learning and distant supervision for multilingual transformer models: A study on African lan-
guages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 2580–2591, Online,
November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.204. URL
https://aclanthology.org/2020.emnlp-main.204.

Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. What do compressed
deep neural networks forget? arXiv preprint arXiv:1911.05248, 2019.

30

https://doi.org/10.1145/3357713.3384290
https://doi.org/10.1080/088395100117124
https://www.tandfonline.com/doi/abs/10.4103/0256-4602.125689
https://doi.org/10.1007/s10489-010-0225-4
https://aclanthology.org/2020.emnlp-main.204

Under review as submission to TMLR

Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning: an
introduction to concepts and methods. Machine Learning, 110(3):457–506, March 2021. ISSN 1573-0565.
doi: 10.1007/s10994-021-05946-3. URL https://doi.org/10.1007/s10994-021-05946-3.

Ihab F Ilyas and Xu Chu. Data cleaning. Morgan & Claypool, 2019.

Alireza Javanmardi, David Stutz, and Eyke Hüllermeier. Conformalized credal set predictors. arXiv preprint
arXiv:2402.10723, 2024.

Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet: Learning data-driven
curriculum for very deep neural networks on corrupted labels. In International conference on machine
learning, pp. 2304–2313. PMLR, 2018.

Ziheng Jiang, Chiyuan Zhang, Kunal Talwar, and Michael C Mozer. Characterizing structural regularities
of labeled data in overparameterized models. In International Conference on Machine Learning, pp.
5034–5044. PMLR, 2021.

Nazmul Karim, Mamshad Nayeem Rizve, Nazanin Rahnavard, Ajmal Mian, and Mubarak Shah. Uni-
Con: Combating Label Noise Through Uniform Selection and Contrastive Learning. pp. 9676–9686,
2022. URL https://openaccess.thecvf.com/content/CVPR2022/html/Karim_UniCon_Combating_
Label_Noise_Through_Uniform_Selection_and_Contrastive_Learning_CVPR_2022_paper.html.

Jihye Kim, Aristide Baratin, Yan Zhang, and Simon Lacoste-Julien. CrossSplit: Mitigating Label
Noise Memorization through Data Splitting, April 2023. URL http://arxiv.org/abs/2212.01674.
arXiv:2212.01674 [cs].

Pang Wei Koh and Percy Liang. Understanding Black-box Predictions via Influence Functions. In Proceedings
of the 34th International Conference on Machine Learning, pp. 1885–1894. PMLR, July 2017. URL
https://proceedings.mlr.press/v70/koh17a.html. ISSN: 2640-3498.

Shuming Kong, Yanyan Shen, and Linpeng Huang. Resolving Training Biases via Influence-based Data
Relabeling. October 2021. URL https://openreview.net/forum?id=EskfH0bwNVn.

David Krueger, Nicolas Ballas, Stanislaw Jastrzebski, Devansh Arpit, Maxinder S Kanwal, Tegan Maharaj,
Emmanuel Bengio, Asja Fischer, and Aaron Courville. Deep nets don’t learn via memorization. 2017.

Johnson Kuan and Jonas Mueller. Model-agnostic label quality scoring to detect real-world label errors. In
ICML DataPerf Workshop, 2022.

Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with noisy labels as semi-supervised
learning. In International Conference on Learning Representations, 2020.

Evan Z Liu, Behzad Haghgoo, Annie S Chen, Aditi Raghunathan, Pang Wei Koh, Shiori Sagawa, Percy
Liang, and Chelsea Finn. Just train twice: Improving group robustness without training group information.
In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 6781–6792. PMLR, 18–24 Jul
2021. URL https://proceedings.mlr.press/v139/liu21f.html.

Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance reweighting. IEEE Trans-
actions on pattern analysis and machine intelligence, 38(3):447–461, 2015.

Yang Liu and Hongyi Guo. Peer loss functions: Learning from noisy labels without knowing noise rates. In
International conference on machine learning, pp. 6226–6236. PMLR, 2020.

Yang Liu, Hao Cheng, and Kun Zhang. Identifiability of label noise transition matrix. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pp. 21475–21496. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.
press/v202/liu23g.html.

31

https://doi.org/10.1007/s10994-021-05946-3
https://openaccess.thecvf.com/content/CVPR2022/html/Karim_UniCon_Combating_Label_Noise_Through_Uniform_Selection_and_Contrastive_Learning_CVPR_2022_paper.html
https://openaccess.thecvf.com/content/CVPR2022/html/Karim_UniCon_Combating_Label_Noise_Through_Uniform_Selection_and_Contrastive_Learning_CVPR_2022_paper.html
http://arxiv.org/abs/2212.01674
https://proceedings.mlr.press/v70/koh17a.html
https://openreview.net/forum?id=EskfH0bwNVn
https://proceedings.mlr.press/v139/liu21f.html
https://proceedings.mlr.press/v202/liu23g.html
https://proceedings.mlr.press/v202/liu23g.html

Under review as submission to TMLR

Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning under concept drift:
A review. IEEE transactions on knowledge and data engineering, 31(12):2346–2363, 2018.

Yang Lu, Yiliang Zhang, Bo Han, Yiu ming Cheung, and Hanzi Wang. Label-noise learning with intrinsically
long-tailed data. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
October 2023.

Ulrike von Luxburg and Bernhard Schölkopf. Statistical Learning Theory: Models, Concepts, and Results. In
Dov M. Gabbay, Stephan Hartmann, and John Woods (eds.), Handbook of the History of Logic, volume 10
of Inductive Logic, pp. 651–706. North-Holland, January 2011. doi: 10.1016/B978-0-444-52936-7.50016-1.
URL https://www.sciencedirect.com/science/article/pii/B9780444529367500161.

Xingjun Ma, Yisen Wang, Michael E. Houle, Shuo Zhou, Sarah Erfani, Shutao Xia, Sudanthi Wijew-
ickrema, and James Bailey. Dimensionality-Driven Learning with Noisy Labels. In Proceedings of
the 35th International Conference on Machine Learning, pp. 3355–3364. PMLR, July 2018. URL
https://proceedings.mlr.press/v80/ma18d.html. ISSN: 2640-3498.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts.
Learning word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 142–150, Portland, Oregon, USA, June
2011. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/P11-1015.

Nolan Miller, Paul Resnick, and Richard Zeckhauser. Eliciting informative feedback: The peer-prediction
method. Management Science, 51(9):1359–1373, 2005.

Pierre Nodet, Vincent Lemaire, Alexis Bondu, Antoine Cornuéjols, and Adam Ouorou. From weakly super-
vised learning to biquality learning: an introduction. In 2021 International Joint Conference on Neural
Networks (IJCNN), pp. 1–10. IEEE, 2021.

Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimating uncertainty in dataset labels.
Journal of Artificial Intelligence Research, 70:1373–1411, 2021a.

Curtis G. Northcutt, Anish Athalye, and Jonas Mueller. Pervasive label errors in test sets destabilize machine
learning benchmarks. In Proceedings of the 35th Conference on Neural Information Processing Systems
Track on Datasets and Benchmarks, December 2021b.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and Lizhen Qu. Making deep
neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1944–1952, 2017.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:20596–
20607, 2021.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning
in python. the Journal of machine Learning research, 12:2825–2830, 2011.

Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. Identifying Mislabeled Data using
the Area Under the Margin Ranking. In Advances in Neural Information Processing Systems, volume 33,
pp. 17044–17056. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/c6102b3727b2a7d8b1bb6981147081ef-Abstract.html.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey Gulin.
Catboost: unbiased boosting with categorical features. Advances in neural information processing systems,
31, 2018.

32

https://www.sciencedirect.com/science/article/pii/B9780444529367500161
https://proceedings.mlr.press/v80/ma18d.html
http://www.aclweb.org/anthology/P11-1015
https://proceedings.neurips.cc/paper/2020/hash/c6102b3727b2a7d8b1bb6981147081ef-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c6102b3727b2a7d8b1bb6981147081ef-Abstract.html

Under review as submission to TMLR

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data influence
by tracing gradient descent. Advances in Neural Information Processing Systems, 33:19920–19930, 2020.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural
information processing systems, 20, 2007.

Alexander J Ratner, Christopher M De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Data programming:
Creating large training sets, quickly. Advances in neural information processing systems, 29, 2016.

Umaa Rebbapragada and Carla E. Brodley. Class Noise Mitigation Through Instance Weighting. In Joost N.
Kok, Jacek Koronacki, Raomon Lopez De Mantaras, Stan Matwin, Dunja Mladenič, and Andrzej Skowron
(eds.), Machine Learning: ECML 2007, volume 4701, pp. 708–715. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007. ISBN 978-3-540-74957-8 978-3-540-74958-5. doi: 10.1007/978-3-540-74958-5_71. URL
http://link.springer.com/10.1007/978-3-540-74958-5_71. ISSN: 0302-9743, 1611-3349 Series Title:
Lecture Notes in Computer Science.

Salva Rühling Cachay, Benedikt Boecking, and Artur Dubrawski. End-to-end weak supervision. Advances
in Neural Information Processing Systems, 2021.

Hinrich Schütze, Christopher D Manning, and Prabhakar Raghavan. Introduction to information retrieval,
volume 39. Cambridge University Press Cambridge, 2008.

Clayton Scott. A rate of convergence for mixture proportion estimation, with application to learning from
noisy labels. In Artificial Intelligence and Statistics, pp. 838–846. PMLR, 2015.

Anastasiia Sedova, Lena Zellinger, and Benjamin Roth. Learning with noisy labels by adaptive gradient-
based outlier removal. In Danai Koutra, Claudia Plant, Manuel Gomez Rodriguez, Elena Baralis, and
Francesco Bonchi (eds.), Machine Learning and Knowledge Discovery in Databases: Research Track, pp.
237–253, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-43412-9.

Nabeel Seedat, Jonathan Crabbé, Ioana Bica, and Mihaela van der Schaar. Data-IQ: Characterizing sub-
groups with heterogeneous outcomes in tabular data. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 23660–
23674. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/
2022/file/95b6e2ff961580e03c0a662a63a71812-Paper-Conference.pdf.

Nicola Segata, Enrico Blanzieri, Sarah Jane Delany, and Pádraig Cunningham. Noise reduction for instance-
based learning with a local maximal margin approach. Journal of Intelligent Information Systems, 35:
301–331, 2010.

Burr Settles. From theories to queries: Active learning in practice. In Active learning and experimental design
workshop in conjunction with AISTATS 2010, pp. 1–18. JMLR Workshop and Conference Proceedings,
2011.

Colin Shearer. The crisp-dm model: the new blueprint for data mining. Journal of data warehousing, 5(4):
13–22, 2000.

Michael R. Smith and Tony Martinez. Becoming More Robust to Label Noise with Classifier Diversity,
March 2014. URL http://arxiv.org/abs/1403.1893. arXiv:1403.1893 [cs, stat].

Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Selfie: Refurbishing unclean samples for robust deep learning.
In International conference on machine learning, pp. 5907–5915. PMLR, 2019.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learning from noisy labels with
deep neural networks: A survey. IEEE Transactions on Neural Networks and Learning Systems, 2022.

Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa. Joint Optimization Framework for
Learning with Noisy Labels, March 2018. URL http://arxiv.org/abs/1803.11364. arXiv:1803.11364
[cs, stat].

33

http://link.springer.com/10.1007/978-3-540-74958-5_71
https://proceedings.neurips.cc/paper_files/paper/2022/file/95b6e2ff961580e03c0a662a63a71812-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/95b6e2ff961580e03c0a662a63a71812-Paper-Conference.pdf
http://arxiv.org/abs/1403.1893
http://arxiv.org/abs/1803.11364

Under review as submission to TMLR

Jaree Thongkam, Guandong Xu, Yanchun Zhang, and Fuchun Huang. Support Vector Machine for Outlier
Detection in Breast Cancer Survivability Prediction. In Yoshiharu Ishikawa, Jing He, Guandong Xu, Yong
Shi, Guangyan Huang, Chaoyi Pang, Qing Zhang, and Guoren Wang (eds.), Advanced Web and Network
Technologies, and Applications, Lecture Notes in Computer Science, pp. 99–109, Berlin, Heidelberg, 2008.
Springer. ISBN 978-3-540-89376-9. doi: 10.1007/978-3-540-89376-9_10.

Zhiyi Tian, Lei Cui, Jie Liang, and Shui Yu. A comprehensive survey on poisoning attacks and countermea-
sures in machine learning. ACM Computing Surveys, 55(8):1–35, 2022.

Ivan Tomek. An Experiment with the Edited Nearest-Neighbor Rule. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-6(6):448–452, 1976. doi: 10.1109/TSMC.1976.4309523.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and Ge-
offrey J. Gordon. An Empirical Study of Example Forgetting during Deep Neural Network Learning.
September 2018. URL https://openreview.net/forum?id=BJlxm30cKm.

Hans van Halteren. The detection of inconsistency in manually tagged text. In Proceedings of the COLING-
2000 workshop on linguistically interpreted corpora, pp. 48–55, 2000.

Brendan Van Rooyen and Robert C Williamson. A theory of learning with corrupted labels. J. Mach. Learn.
Res., 18(1):8501–8550, 2017.

Robert A Vandermeulen and Clayton D Scott. An operator theoretic approach to nonparametric mixture
models. arXiv preprint arXiv:1607.00071, 2016.

Sofie Verbaeten and Anneleen Van Assche. Ensemble Methods for Noise Elimination in Classification
Problems. In Terry Windeatt and Fabio Roli (eds.), Multiple Classifier Systems, Lecture Notes in
Computer Science, pp. 317–325, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-44938-6. doi:
10.1007/3-540-44938-8_32.

Haobo Wang, Ruixuan Xiao, Yiwen Dong, Lei Feng, and Junbo Zhao. Promix: combating label noise via
maximizing clean sample utility. arXiv preprint arXiv:2207.10276, 2022.

Ruxin Wang, Tongliang Liu, and Dacheng Tao. Multiclass learning with partially corrupted labels. IEEE
transactions on neural networks and learning systems, 29(6):2568–2580, 2017.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei Mi, Baojun Wang, Lifeng Shang, Xin Jiang, and Qun
Liu. Data management for large language models: A survey. arXiv preprint arXiv:2312.01700, 2023.

D Randall Wilson and Tony R Martinez. Reduction techniques for instance-based learning algorithms.
Machine learning, 38:257–286, 2000.

Dennis L Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE Transactions on
Systems, Man, and Cybernetics, (3):408–421, 1972.

Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, and Masashi Sugiyama. Are
anchor points really indispensable in label-noise learning? Advances in neural information processing
systems, 32, 2019.

Xiaobo Xia, Tongliang Liu, Bo Han, Nannan Wang, Mingming Gong, Haifeng Liu, Gang Niu, Dacheng Tao,
and Masashi Sugiyama. Part-dependent label noise: Towards instance-dependent label noise. Advances
in Neural Information Processing Systems, 33:7597–7610, 2020.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning from massive noisy labeled data
for image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2691–2699, 2015.

Shuo Yang, Erkun Yang, Bo Han, Yang Liu, Min Xu, Gang Niu, and Tongliang Liu. Estimating instance-
dependent bayes-label transition matrix using a deep neural network. In International Conference on
Machine Learning, pp. 25302–25312. PMLR, 2022.

34

https://openreview.net/forum?id=BJlxm30cKm

Under review as submission to TMLR

Yu Yao, Tongliang Liu, Bo Han, Mingming Gong, Jiankang Deng, Gang Niu, and Masashi Sugiyama. Dual
t: Reducing estimation error for transition matrix in label-noise learning. Advances in neural information
processing systems, 33:7260–7271, 2020.

Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar. Representer point selection for
explaining deep neural networks. Advances in neural information processing systems, 31, 2018.

Suqin Yuan, Lei Feng, and Tongliang Liu. Late stopping: Avoiding confidently learning from mislabeled
examples, 2023.

Man-Ching Yuen, Irwin King, and Kwong-Sak Leung. A survey of crowdsourcing systems. In 2011 IEEE third
international conference on privacy, security, risk and trust and 2011 IEEE third international conference
on social computing, pp. 766–773. IEEE, 2011.

Yi Zeng, Minzhou Pan, Himanshu Jahagirdar, Ming Jin, Lingjuan Lyu, and Ruoxi Jia. How to sift out a
clean data subset in the presence of data poisoning? arXiv preprint arXiv:2210.06516, 2022.

Jieyu Zhang, Yue Yu, Yinghao Li, Yujing Wang, Yaming Yang, Mao Yang, and Alexander Ratner.
WRENCH: A comprehensive benchmark for weak supervision. In Thirty-fifth Conference on Neural In-
formation Processing Systems Datasets and Benchmarks Track, 2021. URL https://openreview.net/
forum?id=Q9SKS5k8io.

Hang Zhou, Jonas Mueller, Mayank Kumar, Jane-Ling Wang, and Jing Lei. Detecting errors in numerical
data via any regression model, 2023.

Zhaowei Zhu, Zihao Dong, and Yang Liu. Detecting corrupted labels without training a model to predict.
In International conference on machine learning, pp. 27412–27427. PMLR, 2022.

Zhaowei Zhu, Jialu Wang, Hao Cheng, and Yang Liu. Unmasking and improving data credibility: A study
with datasets for training harmless language models. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=6bcAD6g688.

35

https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=Q9SKS5k8io
https://openreview.net/forum?id=6bcAD6g688

Under review as submission to TMLR

A Implementation details and comments regarding specific detection methods

A.1 Variance of gradients

We found a small inconsistency in the experiments in Agarwal et al. (2022): the toy experiment involves a
MLP with no non-linearities, which computes a linear mapping of the input vector. In this case, the gradient
of the logit w.r.t. the input vector only depends on the equivalent weight matrix W = W1W2 . . . Wl, and not
on the input. Put differently, the proposed VoG statistics is the same for every example, which means that
it cannot be used to rank examples. We thus think that there is an inconsistency in the results presented
in the toy experiment section. This is in contrast to the larger scale experiment with ResNet architectures,
where the mapping from the input space to the logits is non-linear since it involves non-linearities (here
ReLU activations).

When working with linear models in our experiments, we instead implemented a slightly different version
where we differentiate the probability given by the softmax, and not the logit. This mapping from input
space to softmax output is non-linear, and it depends on the example contrarily to the mapping from input
space to logit. We found the resulting statistics (i.e. the variance of gradients of the probability given by
the softmax) to be useful at detecting mislabeled examples.

A.2 Finite differences

During our survey, we reviewed some detectors which where fundamentally tailored to work on differentiable
machine learning models. For example, the Variance Of Gradients detector probes the model by looking at
the derivative of the pre-softmax layer of a neural network with respect to the input features. We proposed
in the library to use the finite difference approach for non-differentiable models such as decision trees. On the
same 2D toy-dataset used in the original paper (Agarwal et al., 2022), the finite difference method showed
to reasonably approximate the exact method for a kernelized linear model:

3 2 1 0 1 2 3
Feature 1

3

2

1

0

1

2

Fe
at

ur
e

2

Toy Dataset trained decision boundary

0.0008 0.0006 0.0004 0.0002 0.0000
VoG scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
st

an
ce

s t
o

Hy
pe

rp
la

ne

Distance vs VoG (Finite Diff) score

0.0008 0.0006 0.0004 0.0002 0.0000
VoG scores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Di
st

an
ce

s t
o

Hy
pe

rp
la

ne

Distance vs VoG (Linear) score

Figure 17: We reproduce the experiments from figure 1 in Agarwal et al. (2022) with a kernelized linear
model and finite difference approximation.

Thus it can be instantiated with the user’s favorite progressive ensemble such as gradient boosted trees.

B Benchmark details

B.1 Generating noisy label from labeling rules

The datasets used in the benchmark provides, on top of ground truth labels for each examples, a set of weak
labels given by labeling rules. Given an example, a labeling rule output a weak label, that may be a class
label if the rule matched, or nothing. These weak labels are aggregated thanks to a majority vote. However
two edge cases may arise, the first if the votes are tied between two classes, the second when no labeling
rules matched for an example. In the first case we pick a class completely at random among tied winners,
for the latter we chose to drop these examples from the training dataset.

36

Under review as submission to TMLR

Dropping unmatched examples is not a consensus among the weakly supervised learning literature, the usual
approach is to assign them a random label. We think dropping is a more sensible approach, akin to what
practitioners would do in practice, than the random assignment.

It should be noted that such noisy labels generate a non-squared transition matrix as the set of noisy classes
is equal to the set of original classes plus the unlabeled class. In the figures from table 2, the unlabeled noisy
class corresponds to the last row of the transition matrix T.

For example, on the youtube dataset, the noise transition matrix is the following:

0.79 0.22
0.04 0.74
0.17 0.04

The columns corresponds to true labels and the rows corresponds to noisy labels. The element in the second
row and first column means that 4% of examples from class 0 have been assigned the noisy labels 1. The
last element of the last row means that 4% of examples from class 1 have been assigned no noisy labels.

The implementation of weak label encoding is available in the open-source library, see section 4.

B.2 Feature engineering

In order to have a fair starting ground between the different machine learning models used in section 5, all
datasets have been preemptively encoded to only contain numerical attributes.

Two different feature engineering pipelines are applied to each dataset, depending if it’s a text or tabular
dataset.

For text datasets, TF-IDF features (Schütze et al., 2008) are generated and ℓ2 normalized. The size of
vocabulary is chosen on a per dataset basis to balance between accuracy and compute time. For tabular
datasets, categorical features are one-hot encoded and numerical features are normalized.

Each component of the feature engineering pipeline uses scikit-learn’s implementation.

B.3 Details regarding machine learning models

Two families of models are used through the benchmark, kernelized linear models (KLM) and gradient
boosted trees (GBT), two of the most popular approaches for machine learning on tabular data.

To have scalable KLMs, we chose to use the Random Kitchen Sinks approach (Rahimi & Recht, 2007) to
approximate kernel computations on large-scale datasets. We used the Gaussian RBF kernel (Broomhead
& Lowe, 1988) for tabular datasets and linear (or no) kernel for text datasets. Then, the linear model is
trained by minimizing the log-loss on training samples thanks to Stochastic Gradient Descent. All KLMs
components use scikit-learn’s implementation.

For GBTs, we chose the CatBoost (Prokhorenkova et al., 2018) implementation mainly because of its fast
training time on GPUs.

B.4 Hyperparameters Sampling

We summarize the search space used in random search of the main hyperparameters of each family of models
described in section B.3 in the following table:

On top of that models from both families are trained for a maximum of a thousand iteration (number of
epochs for KLM, number of trees for GBT), ensuring convergence in most cases. Yet, models can be early
stopped if their log-loss on an holdout dataset does not decrease for more than 5 iterations. This specific
holdout dataset corresponds to 10% of the training data.

37

Under review as submission to TMLR

Hyperparameter Search space

K
LM

kernel bandwith { 1
ϕ(d)V(Φ(x)) }

ℓ2 regularization log-uniform [1e − 5, 1e − 1]
learning rate log-uniform [1e − 3, 1]

G
B

T ℓ2 regularization uniform [0, 100]
learning rate log-uniform [1e − 5, 1e − 1]

Table 3: Table of hyperparameters.

C Additional results

C.1 Relabeling

ran
do

m
AUM

(G
BT)

VoS
G

(G
BT)

Fo
rge

t sco
res

(G
BT)

Clea
nla

b (G
BT)

Fo
rge

t sco
res

(K
LM

)

Con
sen

su
s (G

BT)

Sm
all

los
s (G

BT)
VoS

G
(K

LM
)

Clea
nla

b (K
LM

)

In
flu

en
ce

(K
LM

)

Con
sen

su
s (K

LM
)

Rep
res

en
ter

(K
LM

)
Tr

ac
In

(K
LM

)
AUM

(K
LM

)

Sm
all

los
s (K

LM
)

AGRA
(K

LM
)

0

50

100

150

200

250

300

no
rm

al
iz

ed
te

st
lo

ss

NNAR | 10% relabeling | GBT Classifier | HP tuned on noise free validation

Figure 18: Distribution (boxplot) of the normalized (base 100=training on correctly labeled examples only,
base 200=training on all examples including mislabeled ones) test loss of relabeling 10% less trusted examples
with varying detectors using a GBT model as estimator on tasks (dots) corrupted by NNAR. Hyperparam-
eters are tuned using a clean validation set. Same as figure 6 but with a GBT estimator.

38

Under review as submission to TMLR

ran
do

m
gb

_vo
sg

gb
_for

ge
t

klm
_for

ge
t

klm
_vo

sg
gb

_co
ns

en
su

s
klm

_co
ns

en
su

s
gb

_cle
an

lab
gb

_au
m ag
ra

klm
_au

m
tra

cin
klm

_rep
res

en
ter

klm
_cle

an
lab

0

50

100

150

200

250

300
no

rm
al

iz
ed

te
st

lo
ss

NCAR | 10% relabeling | Linear Classifier | HP tuned on noise free validation

Figure 19: Distribution (boxplot) of the normalized (base 100=training on correctly labeled examples only,
base 200=training on all examples including mislabeled ones) test loss of relabeling 10% less trusted examples
with varying detectors using a linear model as estimator on tasks (dots) corrupted by NCAR. Hyperparam-
eters are tuned using a clean validation set. Same as figure 6 but with a NCAR noise.

C.2 All detectors

woo
d

no
ne

ran
do

m
gb

_vo
sg

gb
_for

ge
t

klm
_for

ge
t

klm
_vo

sg
gb

_co
ns

en
su

s
gb

_au
m

gb
_cle

an
lab ag
ra

klm
_cle

an
lab

klm
_au

m
sil

ve
r

klm
_rep

res
en

ter
tra

cin go
ld

klm
_co

ns
en

su
s

0

50

100

150

200

250

300

no
rm

al
iz

ed
te

st
lo

ss

NCAR | Filtering | Gradient Boosting Classifier | HP tuned on noise free validation

39

Under review as submission to TMLR

Figure 20: Normalized test loss of detect + filter pipelines with varying detectors with GBT final estimator
on tasks corrupted by NCAR. Hyperparameters are tuned using a clean validation set. (same as figure 7 but
using a GBT final classifier)

VoS
G

(G
BT)

Rep
res

en
ter

(K
LM

)

Con
sen

su
s (K

LM
)

Fo
rge

t sco
res

(G
BT)

AUM
(G

BT)
VoS

G
(K

LM
)

Con
sen

su
s (G

BT)

Clea
nla

b (G
BT)

Clea
nla

b (K
LM

)

Sm
all

los
s (G

BT)

Sm
all

los
s (K

LM
)

AGRA
(K

LM
)

AUM
(K

LM
)

Tr
ac

In
(K

LM
)

Fo
rge

t sco
res

(K
LM

)
no

ne

In
flu

en
ce

(K
LM

)
ran

do
m

sil
ve

r
go

ld

0

50

100

150

200

250

300

no
rm

al
iz

ed
te

st
lo

ss

NNAR | Filtering | Linear Classifier | HP tuned on noisy validation

Figure 21: Normalized test loss of detect + filter pipelines with varying detectors with linear final estimator
on tasks corrupted by NNAR. Hyperparameters are tuned using a noisy validation set. (same as figure 7
but using a noisy validation set for hyperparameter selection)

C.3 Filtering threshold - noisy validation set vs oracle

Figure 22: For each detector/dataset pair (a blue circle), we
compare the split quantile obtained by cross-validation on a
noisy validation set (y-axis) to the oracle (best) split quan-
tile (x-axis). Choosing the split threshold using a noisy val-
idation set consistently underestimates the optimal thresh-
old. In fact, the 0 threshold (no filtering at all) is chosen
most of the time. (same as figure 10 but using a GBT final
estimator)

0.0 0.2 0.4 0.6 0.8 1.0
Filtering quantile

Oracle

0.0

0.2

0.4

0.6

0.8

1.0

Fi
lte

rin
g

qu
an

til
e

Tu
ne

d
us

in
g

no
isy

va
lid

.
se

t

40

Under review as submission to TMLR

C.4 Regularization of none vs pipelines

Figure 23: For each detector/dataset pair, we compare the
oracle regularization (ℓ2 regularization in a GBT model)
chosen in detect + filter pipeline, to the oracle regulariza-
tion chosen when using the whole corrupted training set.
Most of the time, detect + filter pipelines obtained a smaller
regularization, meaning that filtering noisy examples allows
for less regularized classifiers. (same as figure 8 using a dif-
ferent final estimator)

0 50 100
ℓ2 regularization of none baseline

0

20

40

60

80

100

ℓ 2
re

gu
la

riz
at

io
n

of
de

te
ct

+
fil

te
r

88
above

/ 52
≈

/ 164
below

D Other data modalities

While we mainly focus on text and tabular data as these represent an important use case of machine
learning techniques, we include the following additional experiments, where we showcase our library applied
to different data types.

D.1 Results on a regression task on tabular data

We experiment on the California Housing regression task, that consists in predicting the price in the housing
market (a real number) using several features of the sold house. Here the same framework of section 3 can
be used provided that we use a regression probe. We use a model-probing detector with a random forest
regressor as base model, bootstrapping as the ensemble strategy, the ℓ2 loss as the probe and the mean across
out-of-bag examples as the aggregation method. As illustrated by the bottom-5 trusted examples circled in
red in figure D.1, the detector correctly identifies some examples with suspicious labels.

41

Under review as submission to TMLR

0.0 2.5 5.0 7.5 10.0 12.5 15.0
MedInc

1

2

3

4

5

6

7

8

Av
eO

cc
up

1

2

3

4

5

Pr
ice

Figure 24: Bottom-5 trust scores on the California housing dataset

D.2 Results on an image classification task with features from a pre-trained ResNet

We use the 50.000 images of the CIFAR10 classification task. We extract features before the classification
layer of a ResNet50 model, pre-trained on the ImageNet dataset. Using these features, we choose a Logis-
ticRegression model from scikit-learn with default hyperparameters as our base model, and TracIn as our
detector.

In figure 25, for each class, we show the less trusted image (in red), as well as 4 other images of the same
class. As expected, the most untrusted image often looks less representative of the observed class, or even
mislabeled (e.g. a windsurfer in class “ship”, a dog that looks like a cat, or a zoomed-in image of the front
of a truck whereas other images of trucks often display full trucks with their trailer).

ai
rp

la
ne

au
to

m
ob

ile

bi
rd ca
t

de
er

do
g

42

Under review as submission to TMLR

fro
g

ho
rs

e

sh
ip

tru
ck

Figure 25: On CIFAR10, for each class we display the less trusted training set image (red frame), compared
to 4 other representative images from the same class.

D.3 Results on an image classification task with confusing classes

We use 10.000 images from the Animal-10N classification task (Song et al., 2019). The setup is similar
to the previous section D.2, where we extract features before the classification layer of a ResNet50 model,
pre-trained on the ImageNet dataset. Using these features, we choose a LogisticRegression model from
scikit-learn with default hyperparameters as our base model, and TracIn as our detector.

In figure 26, for each class, we show the less trusted image (in red), as well as 4 other images of the same
class. Each row represents very similar classes (e.g. cats often look like lynxes, wolves like coyotes, etc).
In this setup, less trusted images correspond to very unusual pictures, such as drawings of a cheetah and
a wolf. In contrast, other images are real photographs, or a coyote seating in a bus whereas other coyote
images have more usual backgrounds.

ca
t

ly
nx

wo
lf

co
yo

te

ch
ee

ta
h

ja
gu

ar

ch
im

pa
nz

ee

or
an

gu
ta

n

ha
m

st
er

gu
in

ea
 p

ig

Figure 26: On Animal10N, for each class we display the less trusted training set image (red frame), compared
to 4 other representative images from the same class.. Left and right classes correspond to similar-looking
classes that are more likely to be confused.

43

	Introduction
	Supervised learning and mislabeled examples: concepts and strategies
	Definitions and problem statement
	Deterministic case: the true concept is a function
	Stochastic case: the true concept is defined as a probability distribution

	Detecting mislabeled examples using trust scores
	Assumptions regarding the noise generating process
	A taxonomy of data regions
	Use cases
	Fully automated learning in the presence of mislabeled examples: detect + handle strategies

	Model-probing detection of mislabeled examples
	Using trained models to detect mislabeled examples
	A general framework for model-probing methods with examples
	Base model
	Model probe
	Ensemble strategy
	Aggregation method

	Bag of (clever) tricks
	Iterative refinement
	Surely mislabeled pseudo-class
	Class-balancing mechanisms
	Reducing epistemic uncertainty

	Library
	Detection of mislabeled examples by computing trust scores
	A versatile API
	A common API for progressive ensembles
	Full pipelines

	Benchmarks
	Benchmark design
	Benchmark observations
	Lessons learned

	Other related works
	Conclusion
	Implementation details and comments regarding specific detection methods
	Variance of gradients
	Finite differences

	Benchmark details
	Generating noisy label from labeling rules
	Feature engineering
	Details regarding machine learning models
	Hyperparameters Sampling

	Additional results
	Relabeling
	All detectors
	Filtering threshold - noisy validation set vs oracle
	Regularization of none vs pipelines

	Other data modalities
	Results on a regression task on tabular data
	Results on an image classification task with features from a pre-trained ResNet
	Results on an image classification task with confusing classes

