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Abstract

Instruction data is crucial for improving the capability of Large Language Models
(LLMs) to align with human-level performance. Recent research LIMA demon-
strates that alignment is essentially a process where the model adapts instructions’
interaction style or format to solve various tasks, leveraging pre-trained knowledge
and skills. Therefore, for instructional data, the most important aspect is the task
it represents, rather than the specific semantics and knowledge information. The
latent representations of instructions play roles for some instruction-related tasks
like data selection and demonstrations retrieval. However, they are always derived
from text embeddings, encompass overall semantic information that influences
the representation of task categories. In this work, we introduce a new concept,
instruction embedding, and construct Instruction Embedding Benchmark (IEB) for
its training and evaluation. Then, we propose a baseline Prompt-based Instruction
Embedding (PIE) method to make the representations more attention on tasks. The
evaluation of PIE, alongside other embedding methods on IEB with two designed
tasks, demonstrates its superior performance in accurately identifying task cate-
gories. Moreover, the application of instruction embeddings in four downstream
tasks showcases its effectiveness and suitability for instruction-related tasks1.

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable proficiency in generating responses
capable of addressing specific tasks according to provided instructions. Initially pre-trained for
wide-ranging capabilities, they are subsequently fine-tuned using instruction-following datasets to
enhance their ability to align with human preferences. LIMA has proved that alignment can be viewed
as a straightforward process in which the model just learns the style or format for interacting with
users to solve particular problems, where the knowledge and capabilities have already been acquired
during pre-training (Zhou et al., 2023).

Text embeddings play a crucial role in a variety of NLP tasks such as semantic textual similarity
(Agirre et al., 2012; Cer et al., 2017; Marelli et al., 2014) and information retrieval (Mitra et al., 2017;
Karpukhin et al., 2020). Similarly, as a type of text, the latent represent of instructions is also essential
for many tasks like data selection for instruction tuning (Wu et al., 2023a) and prompt retrieval for
in-context learning (Su et al., 2023). Previous studies (Gao et al., 2021; Wang et al., 2024) obtain
text embeddings by directly taking the token vector from language models. However, when it comes
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Sample1 - different tasks 

• Tell me the main idea of this article.
• Tell me the gender of the author of this blog post.

Similarity with text embedding: 0.9943  
Similarity with instruction embedding: -0.0254

Sample2 – similar tasks

• Create a poem with at least 5 lines, rhyming 
pattern aabb.

• Write a limerick based on the following noun.

Similarity with text embedding: 0.3239  
Similarity with instruction embedding: 0.8287

(a)

(b)

(c)

Figure 1: (a) Case about cosine similarity between instructions. Visualization of (b) text embeddings
and (c) instruction embeddings. The same color indicates the same task category.

to the embeddings of instructions, the key focus should lie in identifying task categories rather than
capturing overall semantic information. This is because, as mentioned earlier, instruction fine-tuning
helps models learn how to interact with users across different tasks, rather than specific capabilities
and knowledge imparted by the instructions. Therefore, task similarities is far more important than
semantic similarities for instructions. Figure 1 (a) shows the case where traditional text embedding
methods exhibit high overall semantic and syntactic similarity between two samples which actually
represent completely different tasks, but low similarity when they represent similar task.

In this work, we propose a new concept called instruction embedding, a specialized subset of text
embedding that prioritizes task identification for instructions over the extraction of sentence-level
semantic information. We construct a new benchmark for instruction embedding training and
evaluation. Different from previous text embedding benchmark that only considered the semantic
textual similarity, IEB is labeled by task categories of instructions. Inspired by that key instruction
words especially verbs are highlighted through instruction tuning (Wu et al., 2023b), we first extract
verb-noun pairs to clarify category, then manually select and label instructions with other syntactic
structures. Besides, we also conduct category merging and employ GPT-4 to generate complex
samples to make the benchmark more robust. IEB totally contains 47k samples dispersed across more
than 1k categories, which can also be used for embedding training and downstream tasks.

To stimulate language models to generate better instruction embedding, we propose a prompt-based
baseline method PIE. It leverages the template to obtain instruction embeddings by directing the
model’s attention towards the task type represented by the instructions. Despite PIE demonstrating
good practicality as it already performs well without training, we can further enhance it by fine-tuning
the model on IEB with contrastive learning. As a widely used method for training embedding models,
contrastive learning requires positive and hard negative samples to provide training signals, which
are hard to extract. In our study, the explicit category information available in IEB enables the
straightforward extraction of positive samples by directly selecting two instructions from the same
category. We can further construct hard negative samples by selecting samples from categories that
share identical verbs or nouns, enhancing the challenge of differentiation. Figure 1 shows that PIE
can effectively distinguish whether two instructions refer to the same task cluster.

We evaluate PIE and other embedding baselines on IEB with instruction clustering and intention
similarity tasks, which shows that PIE can largely outperform other baselines and precisely identify the
task categories. We also conduct four downstream tasks, where the superior results demonstrate that
the proposed instruction embeddings are more suitable for instruction-related tasks than traditional
text embeddings.
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2 The IEB Benchmark

We present instruction embedding benchmark, IEB, for assessing the quality of the latent representa-
tion of instructions. In contrast to current text embedding benchmarks that assess semantic similarity,
the primary focus for the space of instruction embeddings is task differentiation based on the given
instructions. Therefore, we annotate instructions with their respective tasks in IEB. We define task
as follows: a task of an instruction is a category of activities or work that we expect the LLM to
perform, which can be represented by a key phrase (mostly verb-noun phrases). The definition of
task is not influenced by specific content or knowledge. For example, "writing an article" is a task,
but the specific topic of the article is not important.

2.1 Data Extraction

For convenience and authenticity, we derive samples from established datasets. Specifically, we adopt
three extensively recognized instruction-tuning datasets: DatabricksDolly (Conover et al., 2023),
Alpaca data (Taori et al., 2023), and Self-instruct data (Wang et al., 2023). Labeling instructions
entirely through manual effort or large language models will incur significant costs. Therefore, it
is best to first conduct coarse-grained grouping and filtering based on rule-based policies. Wu et al.
(2023b) proves that instruction fine-tuning enables models to recognize key instruction words, which
leads to the generation of high-quality responses. Furthermore, it also encourages models to learn
word-word relations with instruction verbs. Inspired by these two findings, we argue that verbs and
other key words are crucial in identifying the task denoted by an instruction, where the types of
them can be effectively determined through syntactic analysis. Thus, we employ the Berkeley Neural
Parser1 (Kitaev and Klein, 2018; Kitaev et al., 2019) for parsing the instructions.
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Figure 2: The verb-noun distributions in IEB.

After manual observation and considering the
task category requirements, instructions can gen-
erally be divided into the following four groups
through corresponding parsing tag recognizer:

VP (VB+NN) denotes verb phrase structure
where the verb is closest to the root of the parse
tree and directly links to noun. Instructions with
this structure account for more than 80% of the
total number before filtering. We categorize
each instruction based on its verb-noun com-
bination, identifying it as a specific task type,
such as write story or generate sentence. After
restoring the verb tense and singular form of
nouns, we classify instructions with the same
verb-noun combination into the same category.
We plot the top most common root verbs and
their direct noun objects in Figure 2.

SBARQ is direct question introduced by a wh-
word or a wh-phrase. It can be divided into two
main categories: knowledge-based questions led by six interrogative pronouns (e.g., what, when,
where, ...) and math problems introduced by what. Unlike instructions in the VP (verb phrase) form,
we define categories in the form of interrogative pronoun combing knowledge/math. This is because,
considering they all involve asking about knowledge or math problems, further subdividing into noun
categories is not very meaningful. For each category, we manually select around 50 samples.

SQ is inverted yes/no question. It can also be divided into two main categories: knowledge-based
questions and task-oriented questions. Similarly, the task label is annotated as yes-no combing
knowledge/task and we select around 50 samples for each category.

Others There are some other structures: verb phrase that lacks a direct connection to a noun and
some rare cases which do not contain verbs, consisting only of noun phrases. We define these four

1https://parser.kitaev.io/
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categories:(1) Verb-led knowledge questions. For example, knowledge clauses guided by summarize
and describe. (2) Single verb for tasks, e.g., translate.(3) Verb-led mathematical problems. For
example, math problem clauses guided by multiply and simplify.(4) Noun phrase for knowledge
questions. For each type, we randomly select around 10-50 samples.

Finally, the annotated task categories cover the vast majority of the instruction data and are shown
with examples in Table 1.

Table 1: Task categories with examples of IEB.

Parsing Tag Task Annotation Examples

VP verb + noun Write an sessay about my favourite season.
Compose a song about the importance of computer science.

SBARQ

wh- + knowledge

What is the difference between machine learning and deep learning?
Why are matrices important in linear algebra?
How is a liquid chromatography differs from gas chromatography?
Who wrote the song House of Love?
When was the "No, They Can’t" book released?
Where was 52nd International Film Festival of India held?

what + math What is the result when 8 is added to 3?
What is the value of (x - y)(x + y) if x = 10 and y = 15?

SQ
yes/no + knowledge Was Furze Hill an established community in the 19th century?

Did Sir Winston Churchill win the Nobel Peace Prize?

yes/no + task Are the following two sentences grammatically correct?
Should this comma be included or omitted?

Others

verb + knowledge Summarize the Challenger Sales Methodology for me.
Describe the Three Gorges Dam of China.

verb Translate "Bonjour" into English.
You need to translate “I have been to Europe twice" into Spanish.

verb + math Multiply 12 and 11.
Simplify 2w+4w+6w+8w+10w+12.

noun + knowledge Short Summary about 2011 Cricket World Cup.
iPhone 14 pro vs Samsung s22 ultra.

2.2 Data Synthesis

In instruction data, we discover some complex sentences, e.g., Pretend you are a project manager
of a construction company. Describe a time when you had to make a difficult decision. Although
they make up only a small portion of the dataset, they can serve as particularly challenging samples
in the benchmark. However, due to their relative difficulty in identification, we employ GPT-4 to
generate samples based on existing task category names, including verbs and corresponding nouns.
The prompt and cases will be shown in the Appendix A.2. Subsequently, the generated compound
instructions will be integrated into the categories.

2.3 Quality Control

Automatic Filtering We find that low-frequency samples have a higher probability of being
noisy, so we discard categories with fewer than 10 samples. Further, we employ GPT-4 to check
whether samples belong to its annotated category. About 12.9% samples are filtered out during this
process.The prompt is shown in Appendix A.3.

Category Merging Considering that many verbs or nouns representing instructions are synonyms,
e.g., provide and give, it would be inappropriate to classify them into different categories. We utilize
WordNet 2 to extract the synonyms, where we merge every two categories where both nouns and
verbs are synonyms or same words. Details is shown in Appendix A.3.

2https://wordnet.princeton.edu/
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Human Evaluation While we have highlighted the quantity and diversity of the data in IEB, the
quality remains uncertain. To assess this, we randomly select 100 task categories and choose one
instance from each. An expert annotator, who is a co-author of this work, then evaluate whether each
instruction belongs to its annotated category. The instruction for judgement is the same as Automatic
Filtering. The results indicate that 93% of the sample categories are accurate, showing that most of
the annotated category labels are correct.

Table 2: Data statistics of IEB. EFT refers to embedding fine-tuning and IFT refers to instruction
fine-tuning.

Tasks Samples

EFT Train 608 20814
Test 145 3291

IFT Train 600 21720
Test 938 1336

Total 1353 47161

2.4 Statistics

After constructing and filtering, we collect totally 1353 task categories with 47161 samples. Given
the large volume of data, the benchmark data can also be used for training and testing instruction
embeddings and downstream tasks. Therefore, we have split it in a certain ratio, but it can be be
adjusted freely as needed. The EFT (embedding fine-tuning) subset is designed to facilitate models
in generating high-quality latent representations of instructions through embedding fine-tuning,
which involves a supervised contrastive learning process based on our task labels (details on the
embedding fine-tuning process can be found in Sections 3.2). The IFT (instruction fine-tuning) subset
is constructed to evaluate the effectiveness of our instruction embeddings in downstream tasks, such
as Data Selection for Instruction Tuning and Demonstration Retrieval (details available in Sections
4.3.1 and 4.3.2). Table 2 describes the statistics of the divided data. More statistics can be seen
in Appendix A.4. Note that there is no overlap among the samples in the four parts, but the task
categories in the training and test sets for IFT will overlap.

3 Instruction Embedding Method

Traditional text embeddings focus on capturing overall semantic information of text (Xu et al., 2023d).
However, Zhou et al. (2023) and Wu et al. (2023b) demonstrate that the essence of instruction data
lies in the tasks indicated by task words which are typically composed of a verb and a noun and
specify the task action and the task domain (or object of action) respectively. Therefore, we propose
instruction embedding method to capture task category information contained in instructions, rather
than general semantic information.

3.1 Prompt-based Instruction Embedding

As mentioned above, guiding the model to generate embeddings that focus on task categories is
critically important. LLMs have shown an impressive capacity to accomplish novel tasks solely by uti-
lizing in-context demonstrations or instructions (Brown et al., 2020). Inspired by PromptBERT(Jiang
et al., 2022), we present a prompt-based instruction embedding method (PIE) that employs a carefully
designed prompt to guide the model in extracting the tasks embedded within given instructions. The
hidden states of last input token will be represented for the embedding of instruction. The PIE-prompt
is shown in Figure 15. Besides, a Semantic-prompt as shown in Figure 16 is also applied to model
for comparison.
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Table 3: Results of basic evaluation for instruction embedding. We conduct instruction clustering
task and IIS test on each embedding method. Wiki refers to the train set of SimCSE (Xu et al., 2023c)
and PromptBERT (Jiang et al., 2022), and semantic-prompt is shown in Figure 16.

Method ARI CP Homo Silh IIS-Spearman

None-Fine-tuned

BERT 0.3113 0.4853 0.6777 0.0792 0.5522
BERT (semantic-prompt) 0.2840 0.4524 0.6570 0.0936 0.5335
BERT (PIE-prompt) 0.2474 0.4038 0.6210 0.0706 0.4724
Llama 0.1813 0.3151 0.5439 0.0995 0.1565
Llama2 (semantic-prompt) 0.4238 0.5947 0.7549 0.1298 0.5893
Llama2 (PIE-prompt) 0.4814 0.6305 0.8014 0.1611 0.7189
Vicuna 0.1198 0.2859 0.4828 0.0934 0.1211
Vicuna (semantic-prompt) 0.1871 0.3145 0.5133 0.1081 0.6934
Vicuna (PIE-prompt) 0.5305 0.6633 0.8242 0.1732 0.7534

Unsupervised Fine-tuned

Wiki
w/o prompt Llama2 0.3306 0.4877 0.6891 0.2185 0.1714

BERT 0.4741 0.6187 0.7741 0.1225 0.7460

semantic-prompt Llama2 0.1776 0.3087 0.5412 0.0818 0.1476
BERT 0.3371 0.5084 0.6974 0.1161 0.6804

Supervised Fine-tuned with hard negative sampling

EFT-train

w/o prompt Llama2 0.7541 0.8469 0.9143 0.3608 0.6038
BERT 0.8837 0.9392 0.9695 0.4574 0.8436

semantic-prompt Llama2 0.8651 0.9204 0.9619 0.4542 0.8433
BERT 0.8876 0.9377 0.9683 0.4946 0.8450

PIE-prompt Llama2 0.9125 0.9432 0.9697 0.4803 0.8450
BERT 0.8974 0.9453 0.9721 0.5180 0.8446

3.2 Embedding Fine-tuning

We further fine-tune PIE-model on EFT-train set following the contrastive learning (CL) framework
in SimCSE (Gao et al., 2021), where we replace the dropout-based positive sample pairs construction
method with a method based on instruction task labels from EFT-train.

Formally, let D = {ti}|D|
i=1 denotes EFT-train, where each ti = {ti1, ..., t|ti|} represents a specific

task category in D, and each tij is an instruction instance from ti. During training, we take a
cross-entropy objective with in-batch negatives (Chen et al., 2017; Henderson et al., 2017). For
a given instruction tij , we randomly sampled tik from ti where j ̸= k to make up a task-related
instruction pair. Let hij and hik denote the embeddings of tij and tik, the learning objective for (tij ,
tik) with a mini-batch of N pairs can be formulated as Eq 1

ℓi = −log
esim(hij ,hik)/τ∑N

m=1 e
sim(hij ,hmk′ )/τ

(1)

where τ is the temperature hyperparameter and sim(h1, h2) is the cosine similarity hT
1 h2

||h1||·||h2|| .

Hard negative sampling has been widely adopted in CL (Schroff et al., 2015). In this paper, we
propose a hard negative sampling strategy based on verb-noun style instruction task labels: for an
instruction tij whose task category is a verb-noun pair (vi, ni), another instruction ti′j′ whose task
category is either (vi, ni′ ) or (vi′ , ni) is considered as a hard negative sample of tij . When searching
for hard negative samples, we prioritize samples with the same verb but different nouns.
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4 Experiment

4.1 Experimental Setup

Based on IEB benchmark, we introduce instruction clustering task (ICT) and instruction intention
similarity (IIS) test to evaluate instruction embeddings. ICT aims to accurately group instructions
from different tasks. Specifically, instruction clustering is conducted using k-means clustering based
on embeddings of given instructions, where k is predefined and its value equals to the number of task
categories in EFT-test (i.e. k = 145 here). We utilize metrics such as Adjusted Rand Index (ARI)
(Hubert and Arabie, 1985), Clustering Purity (CP) (Schütze et al., 2008), Homogeneity Score (Homo)
(Rosenberg and Hirschberg, 2007) and Silhouette Score (Silh) (Rousseeuw, 1987) for evaluation. IIS
test is designed to align with STS (Agirre et al., 2012) task. The IIS test set is derived from IFT-train
set. First, we randomly sample 1.5k instruction pairs of the same task from IFT-train set and label
them as 1. Next, we sample another 1.5k pairs, labeling them as 1 if the task categories matched,
otherwise 0. This resulted in a rough 1:1 ratio of samples labeled 1 to those labeled 03. During testing,
we calculate cosine similarity of the instruction embeddings for each pair, and compute the Spearman
value with the labels across the entire dataset.

We implement our PIE method with Llama2 (Touvron et al., 2023b) and BERT (Devlin et al., 2019)
separately. For all BERT-based embedding methods, we take the hidden state of [CLS] token from
the last layer as instruction embedding. For all Llama2, we first conduct preliminary experiments to
select best pooling method and prompt. According to the results, we utilize the average of last token
hidden states across last 2 layers as the instruction embedding and choose the prompt. Details of this
preliminary experiment can be found in Appendix C.

We evaluate the instruction task representation capability of baseline models and compare their
performance with our PIE and corresponding supervised fine-tuning method. The baselines are as
follows:

None-Fine-Tuned baselines We employ Llama2, Vicuna-7b-v1.5 (Zheng et al., 2023) and BERT to
obtain instruction embeddings with three prompts: no prompt, semantic-prompt, and PIE-prompt.

Unsupervised Fine-Tuned baselines Unsupervised SimCSE (Gao et al., 2021) and unsupervised
PromptBERT (Jiang et al., 2022) are included as unsupervised fine-tuned baselines. To eliminate the
impact of model scale, we also re-implement them with Llama2.

Supervised Fine-Tuned baselines We supervised fine-tune Llama2 and BERT as mentioned in
Section 3.2. Detailed fine-tuning configurations can be found in Appendix D.

4.2 Results and Analyses

Main Findings The experimental results are shown in Table 3. For none-fine-tuned baselines,
our PIE-Prompt guides LLMs to extract task categories of instructions, enabling them to achieve
significant improvements in both ICT and IIS test compared to the same model without using prompt.
BERT failed to benefit from PIE-prompt, which may due to its limited instruction following capability.
Interestingly, Vicuna achieves better results than Llama2 with PIE-prompt despite performing worse
when prompt is not used. This is because Vicuna has been enhanced its instruction following
capability through instruction tuning, enabling it to better extract task-specific information under
the guidance of the PIE prompt. Although Llama2 and Vicuna achieve better performance in none-
fine-tuning setting with PIE prompt, BERT successfully bridges this gap and achieves comparable or
even better results after supervised fine-tuning on EFT-training. Additionally, for both Llama2 and
BERT, although the performance gap between models using PIE-prompt and those using semantic-
prompt or no prompt significantly narrows after supervised fine-tuning, models using PIE-prompt
still outperform the others. This demonstrates that the guidance provided by PIE-prompt remains
crucial even after supervised fine-tuning. To better illustrate the superiority of PIE and the impact of
supervised fine-tuning, we visualize instruction embeddings of various models. The visualization
analysis is presented in Appendix E.

3The IIS test set is not derived from EFT-test because each task in EFT-test mostly contains only 1 or 2
samples.
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Impact of Different Prompts To better understand the impact of different prompts, we print the
outputs of each model under various prompts. We find that without using prompts, Llama2 tends to
repeat the instruction, while Vicuna which has undergone instruction fine-tuning, will execute the
instruction. This explains why Llama2 outperforms Vicuna with no prompts since Llama2 retains
more original instruction information in its output. When prompts are added, the models behavior are
guided, enabling them to extract instruction information according to the prompt. However, when
using semantic prompts, models focus more on analyzing instruction semantic information rather
than task categories. Consequently, model performance with semantic prompts is not as good as
those with PIE prompts. The model inference examples can be found in Appendix F.
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Figure 3: Results of ablation studies.

Ablation Studies We conduct ablation studies
on hard negative sampling strategy. We com-
pare the performance of supervised fine-tuned
models with and without hard negative sampling
on embedding clustering task and IIS test, the
results are shown in Figure 3. After removing
hard negative sampling, the performance of mod-
els using different prompts all show a decline
on embedding clustering task and IIS test. Our
hard negatives are constructed through overlap
of verb or noun, which helps eliminate the short-
cut of distinguishing positives and negatives by
word overlap. This allows the model to better focus on the relationship between instruction tasks of
positive and negative samples during training.

4.3 Evaluation on Downstream Tasks

We conduct four downstream tasks for further evaluation. Our core objective is to validate that
instruction embeddings are more suitable for instruction-related downstream tasks compared to
traditional text embeddings that focus on the overall semantic information of sentences. Therefore,
we select the best-performing model we produced for each type of embedding, i.e., fine-tuned
PIE-Llama2 and Wiki fine-tuned Llama2.
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Figure 4: Results on (a) data selection for instruction tuning and (b) demonstrations retrieval for
in-context learning.

4.3.1 Data Selection for Instruction Tuning

Following previous work (Wu et al., 2023a; Zhou et al., 2023), we design a data selection experiment
based on embeddings for instruction diversity. First, we use k-means clustering to divide the IFT-
train set into 600 clusters, and extract the closest samples to the clustering centers to achieve data
compression. Then, we fine-tune Llama2 on that selected data. Training configurations can be found
in Appendix D. We evaluate the performance on our IFT-test set and AlpacaEval (Li et al., 2023c). We
use GPT-4 Turbo for judgment, and for IFT-test, its own output serves as the baseline for comparison.
We take 5 runs for each setting and calculate the mean score. The result from Figure 4 (a) indicates
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Table 4: Results of tiny benchmark. † denotes P-value < 0.05 and ‡ denotes < 0.01.

Model Instruction Embedding Text Embedding Random
10 50 100 10 50 100 10 50 100

Llama2-chat 18.40 6.89 3.17† 33.50 5.35 3.34 13.46 5.68 3.97
Vicuna 8.92† 3.76‡ 3.43‡ 13.22 8.56 3.61 11.53 5.88 4.61
Mistral 7.92‡ 4.27‡ 2.14‡ 2.98 5.05 3.29 10.94 5.67 3.35

Longchat 7.76‡ 4.69‡ 3.70 28.82 4.74 3.47 12.07 6.11 4.22

that instruction embedding can be a better substitution of text embedding for enhancing the diversity
of selected instructions. We additionally re-implement the data selection method DEITA with text
embedding and instruction embedding separately, and the details can be found in Appendix K.

4.3.2 Demonstrations Retrieval

LLMs have shown remarkable in-context learning (ICL) capability (Patel et al., 2023; Yuan et al.,
2024). Demonstrations related to the input instruction task are more conducive to model since
task-related data are more similar in terms of format and content. Thus in this experiment, we select 2
most related instruction data by calculating cosine similarities from IFT-train set for each instruction
in test set. The prompt template of ICL can be found in Appendix G. Similarly, we report evaluation
results on IFT-test set and AlpacaEval with four models: Vicuna-7B-v1.5, Llama2-7B-chat (Touvron
et al., 2023b), Mistral-7B-Instruct-v0.2 (Jiang et al., 2023), LongChat-7B-v1.5-32k (Li et al., 2023a).
For random selection, we take 10 runs and report the mean score. The results are shown in Figure 4
(b), which demonstrates instruction embedding helps to select more task-related demonstrations and
makes better ICL for LLMs.

4.3.3 Tiny Benchmark

Recently, some work has focused on testing models using fewer samples (Vivek et al., 2024; Polo
et al., 2024). The primary goal is to select a more balanced tiny benchmark that can lead to more
consistent performance compared to the original full benchmark. Similar to data selection for
instruction tuning, this process can also be accomplished through clustering. We select 10, 50, and
100 test samples respectively, and compare the estimation error (%) in performance between the tiny
and the original IFT-test benchmark. Following Vivek et al. (2024), we take 100 runs for each setting.
The results in Table 4 indicates that instruction embedding can obtain a smaller estimation error by
selecting more representative test samples.

4.3.4 Dataset Task Correlation Analysis

GSM8k

MATH
MBPP

Lim
a

Doll
y

OAssi
t

Alpa
ca

Wiza
rdL

M(A
lpa

ca)

Wiza
rdL

M(Sha
reG

PT)

Sha
reG

PT

GSM8k
MATH
MBPP

Lima
Dolly

OAssit
Alpaca

WizardLM(Alpaca)
WizardLM(ShareGPT)
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1.00 0.69 0.35 0.70 0.78 0.65 0.77 0.76 0.78 0.81
0.66 1.00 0.41 0.67 0.75 0.84 0.72 0.75 0.75 0.76
0.51 0.70 1.00 0.75 0.97 0.86 0.98 0.96 0.97 0.96
0.69 0.67 0.40 1.00 0.80 0.74 0.71 0.78 0.80 0.82
0.60 0.60 0.34 0.66 1.00 0.72 0.78 0.89 1.00 0.82
0.60 0.87 0.29 0.64 0.72 1.00 0.68 0.70 0.72 0.74
0.55 0.51 0.25 0.60 0.92 0.69 1.00 0.91 0.92 0.88
0.60 0.60 0.35 0.65 1.00 0.71 0.81 1.00 1.00 0.82
0.60 0.60 0.34 0.66 1.00 0.72 0.78 0.89 1.00 0.82
0.65 0.61 0.35 0.67 0.80 0.70 0.77 0.78 0.80 1.00

Figure 5: Correlation degree across various
datasets through instruction embedding.

We analyze the correlation degree between
instruction tasks across various open-source
datasets through instruction embedding. Let
D1, D2 denote two unique instruction datasets,
for each instruction ti in D1, we find its most
relevant instruction t′i′ in D2 and take the av-
erage of si (i.e. the similarity between ti and

t′i′) across D1 (i.e.
∑|D1|

i=1 si
|D1| ) as a measure of

the extent to which the tasks in D1 are encom-
passed in D2. We conduct task correlation anal-
ysis across GSM8k (Cobbe et al., 2021), MATH
(Hendrycks et al., 2021), MBPP (Austin et al.,
2021), Lima (Zhou et al., 2023), Dolly (Conover et al., 2023), OAssit (Köpf et al., 2023), Alpaca
(Taori et al., 2023), WizardLM (WizardLM(Alpaca), WizardLM(ShareGPT)(Chiang et al., 2023a).
As depicted in Figure 5, instruction embeddings succeed to distinguish between math tasks (GSM8k,
MATH) and code tasks (MBPP). The correlation degree within math task datasets is significantly
higher than the correlation degree between math task datasets and code dataset. Besides, larger and
more general instruction datasets exhibit a more significant correlation with other datasets.
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5 Related Work

Text Embeddings Text embeddings are pivotal in NLP. They encapsulate overall semantic infor-
mation and the quality of learned embeddings directly influences downstream tasks. Current research
on text embeddings primarily focuses on sentence semantic modeling (Gao et al., 2021; Jiang et al.,
2022; Li and Li, 2023). We argue that the essence of instructions lies in their task information and
instruction embeddings should prioritize modeling task-specific information instead of emphasizing
overall semantic information.

Embedding Benchmark Semantic Textual Similarity (STS) tasks (Agirre et al., 2012; Cer et al.,
2017; Marelli et al., 2014) are commonly employed to evaluate the quality of text embeddings,
complemented with transfer tasks and short text clustering tasks (Conneau and Kiela, 2018; Xu
et al., 2023d; Muennighoff et al., 2023) to further illustrate the superiority of learned sentence
representations. However, previous benchmarks are not tailored to instruction corpora and primarily
assess the semantic modeling abilities of text embeddings, rendering them less suitable for evaluating
instruction embeddings.

Instruction Tuning Instruction Fine-Tuning (IFT) is widely adopted to stimulate the instruction
following capability of pre-trained LLMs. Early approaches for IFT focused on fine-tuning LLMs
with large amounts of instruction data (Wang et al., 2022; Wei et al., 2022) manually aggregated
from large NLP task collections (Longpre et al., 2023). With the development of generative language
models, Wang et al. (2023) made their attempt to expand instruction data through synthetic data
generation, inspiring the following works to evolve instruction data in this automated manner (Taori
et al., 2023; Ding et al., 2023; Xu et al., 2023a). Zhou et al. (2023) proved that the quality and diversity
of instruction data are significantly more critical than its sheer quantity, motivating recent efforts in
instruction data selection to remove unnecessary IFT training costs by eliminating low-quality and
redundant data. Quality-based data selection methods typically employ a quality evaluator to predict
the quality scores of each instruction sample which are further used to select instruction data Chen
et al. (2023); Li et al. (2023b). Diversity-based data selection methods aims to maximize the distance
between selected instruction data which are measured by their embeddings Wu et al. (2023a); Liu
et al. (2024). However, due to the lack of instruction embedding, previous works relied on semantic
embedding which fails to emphasize the task-specific information of instructions data.

6 Conclusion

We introduce the concept of instruction embedding, which prioritizes task identification over tra-
ditional sentence-level semantic analysis. Alongside this, we release the publicly available IEB
benchmark for evaluating and further training instruction embeddings. To ensure instruction embed-
dings focus more on task specifics, we propose a prompt-based approach for generating instruction
embeddings, applicable in both learning-free and supervised fine-tuning settings. It has been demon-
strated on two basic evaluation tasks and four downstream tasks that instruction embedding is superior
for instruction-related tasks. The introduction of instruction embedding, along with the IEB bench-
mark and the PIE method, plays a crucial auxiliary role in instruction-related tasks for large language
models.

7 Limitations

One limitation of our approach is that, by not relying entirely on manual labeling or verification, not
all the data is guaranteed to be of high quality. Manual validation results indicate that 93% of the
sample categories are accurate, leaving a small portion that may still contain noise. Additionally,
we have not addressed multi-step instructions, where several serialized tasks are embedded within a
single instruction, as no such cases were manually identified in the selected dataset, and therefore,
these samples were neither handled nor supplemented. Lastly, the three popular instruction datasets
we selected consist solely of single-turn interactions, meaning that the benchmark does not include
multi-turn samples.
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A Appendix about Benchmark

A.1 Data Availability

Dataset: The whole benchmark along with four split parts can be found in https://github.com/
Yiwei98/instruction-embedding-benchmark.

Code: The code for experiments can be found in https://github.com/Yiwei98/
instruction-embedding-benchmark.

A.2 Details about Data Synthesis

The prompt for employing GPT-4 to generate samples based on task category names is shown in
Figure 6. We randomly selected 30% existing task categories and generate 3 samples for each
category. After filtering, we obtained a total of 633 synthetic samples.

Generate an instruction represents the {task category} task, which contains two sentences. Note 
that the second generated sentences must contain the task word.

Figure 6: The prompt for generating the complex instructions.

Here are some generated examples:

Table 5: Examples of generated complex instructions.

Task category Examples

Classify Animal You are a biologist studying a new species discovered in the Amazon rainforest.
Classify the animal based on its characteristics, habitat, and behavior.

Generate Rap Imagine you are a famous rapper who’s known for his/her unique style.
Generate a rap verse that showcases your creativity and lyrical prowess.

Give Title You have written an article about the impact of social media on mental health.
Give a title to your article that will reflect the content of your article.

Make Poem Imagine you are sitting by a serene lake during a beautiful sunset.
Make a poem that captures this tranquil moment and the emotions it evokes.

A.3 Details about Quality Control

The prompt for employing GPT-4 to check whether instructions belong to its annotated category is
shown in Figure 7.

Check if the given instruction represents the {task category} task. Instruction: {instruction}. 
Please answer 'yes' or 'no'.

Figure 7: The prompt for generating the complex instructions.

For category merging, we will provide additional details about the merging procedure. Firstly, we
select every two categories where both nouns and verbs are synonyms or same words. Then we
calculate the cosine similarities of each pair of them by using word embeddings. For two categories
where the values of both nouns and verbs pairs are above 0.5, we directly merge them as one category.
For categories with values between 0.3 and 0.5, we use GPT-4 to determine whether they describe
the same task. If they do, we merge them. For those below 0.3, we directly discard the merge. The
prompt for this process is shown in Figure 8.
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Generate an instruction represents the {task category} task, which contains two sentences. Note 
that the second generated sentences must contain the task word.

Are {task1} and {task2} represent the same task for instruction?. Please answer 'yes' or 'no'.

Figure 8: The prompt for generating the complex instructions.

A.4 More Statistics

Besides the dataset partitioning, we provide more information about the statistics of proposed
benchmark. We present the distribution of the number of instructions per category in Figure 9. Please
note that for categories with more than 100 samples, we randomly retained only 100. Additionally,
Figures 10 through 14 provide a more detailed view of the verb-noun distributions, where it is clear
that there is no category overlap between EFT and IFT, but there is some overlap between the training
and test sets within IFT.
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Figure 9: Distribution of the number of instructions per category.
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Figure 10: Verb-noun distributions of whole benchmark.
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Figure 12: Verb-noun distributions of EFT-test.
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Figure 13: Verb-noun distributions of IFT-train.
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Figure 14: Verb-noun distributions of IFT-test.

20



B Prompts

PIE Prompt The PIE Prompt is shown in Figure 15. Inspired by Zhang et al. (2024), we combine
the pretended chain of thought method and knowledge enhancement method in this prompt, which
effectively enhances the instruction task capturing capability of LLM. The prompt search preliminary
experiment is shown in Appendix C.2.

The essence of an instruction is its task intention. With this in mind, given the instruction below:

{Instruction}

after thinking step by step, the task of the given instruction is:

Figure 15: The PIE Prompt.

Semantic Prompt The semantic Prompt is shown in Figure 16.

This Sentence of {Instruction} means: 

Figure 16: The Semantic Prompt.

C Preliminary Experiments

C.1 Pooling Layer Selection

In LLM, the effectiveness and performance of extracting sentence representations across different
hidden layers may vary. To systematically assess the semantic information and representation
capabilities of various layers of Llama24, we employs pooling techniques on the last token hidden
states at different layers and conduct corresponding evaluations. Specifically, we select the last hidden
layer, last two hidden layers, middle hidden layer, and first and last hidden layers as pooling layers.
The experimental results are shown in Table 6. We finally select the last two layers as pooling layers
mainly due to its robustness. Although it does not achieve all the best results, it consistently maintains
competitiveness against the best scores in each metric.

Table 6: Results of pooling layer selection experiment. For all pooling layers, we take the average
pooling of last token hidden states in each chosen hidden layer as the instruction embedding.

Layer CP ARI Homo Silh IIS-Spearman

Last two 0.1813 0.3151 0.5439 0.0995 0.1565

Last one 0.1868 0.3096 0.5466 0.1085 0.1414

First-Last 0.1825 0.3157 0.5450 0.1121 0.1413

Mid 0.1260 0.2446 0.4601 0.1321 0.1051

C.2 Prompt Search

Prompt is a key part of our PIE . In this paper, we employed a manual approach to search for
appropriate prompt: we first manually crafted several prompts, then, for each manually crafted
prompt, we evaluated its effectiveness by the instruction clustering task. The human crafted prompts
are shown in Table 7, and the results are presented in Table 8. According to the result, we select #5
template for further experiments.

4The model here is none-fine-tuned.
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Table 7: Templates used in prompt search.
Index Template

#0
Below is an instruction that describes a task
{instruction}
The task of the given instruction is:

#1
The following instruction
{instruction}
wants you to:

#2
Given the following instruction
{instruction}
please identify its task type:

#3 What type of task does the following instruction represent?
{instruction}

#4 Indentify the task category associated with the following instruction:
{instruction}

#5

The essence of an instruction is its task intention. With this in mind, given the instruction below:
{instruction}
after thinking step by step, the task of the given instruction is:

Table 8: Result of prompt search. Index refers to the template index in Table 7.
Index ARI CP Homo Silh IIS-Spearman

#0 0.4825 0.6308 0.7942 0.1672 0.6736
#1 0.4233 0.5761 0.7504 0.1476 0.5897
#2 0.3231 0.4959 0.6980 0.1340 0.5309
#3 0.2512 0.4053 0.6227 0.1262 0.4054
#4 0.2723 0.4108 0.6383 0.1175 0.3427
#5 0.4814 0.6305 0.8014 0.1611 0.7189

D Additional Configuration

Instruction Embedding Fine-tuning Experiment Configurations We complete each embedding
fine-tuning on a single NVIDIA A100 GPU and adopt LoRA Hu et al. (2022) technique to fine-tune
Llama2 7B5 with lora-rank set to 32, lora-alpha set to 64, lora-dropout set to 0.05 and target modules
set to [’q_proj’,’v_proj’]6. During training, we set epochs to 1, batch size to 16, tokenize maxlength
to 256. Following Gao et al. (2021), the temperature hyperparameter τ in Eq 1 is set to 0.05. Notably,
to better focus on investigating the impact of our embedding train data on instruction embedding
training, we remove the data augmentation methods in SimCSE during the embedding training
process. Additionally, BERT refers to bert=base-uncased7 and Vicuna refers to vicuna-7b-v1.58

unless otherwise specified.

Configurations for Instructing Tuning. We complete instruction fine-tuning on 8 NVIDIA A100
GPU to fine-tune the LLM with the batch size set to 128 and the learning rate set to 2 ∗ 10−5. The
Alpaca-style template is applied to concatenate queries and responses during fine-tuning.

E Visualization Analysis

To better illustrate the superiority of PIE and the impact of supervised fine-tuning, we visualize
instruction embeddings of various mdoels in Figure 17. It is evident that embedding fine-tuning

5https://huggingface.co/meta-llama/Llama-2-7b-hf
6https://huggingface.co/docs/peft/developer_guides/lora
7https://huggingface.co/google-bert/bert-base-uncased
8https://huggingface.co/lmsys/vicuna-7b-v1.5
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successfully enhances the performance of both prompt-free models and PIE-models in terms of
instruction clustering. This suggests that supervised instruction embedding fine-tuning aids in
extracting task category more accurately from instructions. Additionally, fine-tuned PIE-models
exhibits a more dispersed inter-class distribution and a more compact intra-class distribution than the
fine-tuned prompt-free models, demonstrating the positive guiding effect of the prompt method on
extracting task category information from instructions.

(a) (b) (c)

(d) (e) (f)

Figure 17: Embedding visualization: (a) BERT (b) BERT(pie-prompt) (c) Sup BERT(pie-prompt) (d)
Llama2 (e) Llama2(pie-prompt) (f) Sup Llama2(pie-prompt)
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F Model Inference Output Examples

In this section, we present the examples of model inference outputs under guidance of different
prompts. The results of Llama9 Touvron et al. (2023a), Llama2, Vicuna v1.310 Chiang et al. (2023a),
Vicuna v1.5 are shown below. We remove the blank lines from the original model output and replaced
the repeatedly generated content with ellipses (...).

F.1 Model Inference Output Examples without Prompt.

Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
LLaMA output
<unk>Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Comment: @user3100112 I'm not sure what you mean by "output both numbers". Do you mean to print the numbers?
Comment: @user3100112 I've updated my answer to include the output.
… 

(a)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
LLaMA2 output
<s>Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
I have a problem with the following code.
…

(b)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Vicuna-v1.3 output
<s> Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Example:
Input: "The quick brown fox jumps over the lazy dog."
Output: 41 (words), 41 (characters)</s> 

(c)

Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Vicuna-v1.5 output
<s> Count how many words are there in the paragraph. also count how many characters are there. output both 
numbers.</s>

(d)

Figure 18: Model infer output examples (prompt-free).

9https://huggingface.co/yahma/llama-7b-hf
10https://huggingface.co/lmsys/vicuna-7b-v1.3
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F.2 Model Inference Output Examples with Semantic Prompt.

Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Semantic-Prompt LLaMA output
<unk>This sentence of "Count how many words are there in the paragraph. also count how many characters are there. 
output both numbers." means: 1. count how many words are there in the paragraph. 2. count how many characters are there. 
output both numbers.
Comment: @user3580874 I'm not sure what you mean by "output both numbers".  I'm not sure what you mean by "output 
both numbers".  I'm not sure what you mean by "output both numbers".  I'm not sure what you mean by "output both 
numbers".  I'm not sure what you mean by "output both numbers".  I'm not sure what you mean by "output both numbers".  
I'm not sure what you mean by "output both numbers".  I'm not sure what you mean by "output both numbers".  I'm not sure 
what you mean by "output both numbers".  I'm not sure what you mean by "output both numbers".
… 

(a)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Semantic-Prompt LLaMA2 output
<s>This sentence of "Count how many words are there in the paragraph. also count how many characters are there. output 
both numbers." means:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
"Count how many words are there in the paragraph. also count how many characters are there. output both numbers." 
means:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers. 1.
… 

(b)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Semantic-Prompt Vicuna-v1.5 output
<s> This sentence of "Count how many words are there in the paragraph. also count how many characters are there. output 
both numbers." means:
1. Count the number of words in the paragraph.
2. Count the number of characters in the paragraph.
3. Output both numbers.</s>

(c)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
Semantic-Prompt Vicuna-v1.3 output
<s> The essence of an instruction is its task intention. With this in mind, given the instruction below:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
after thinking step by step, the task of the given instruction is:
To count the number of words and characters in a given paragraph.</s> 

(d)

Figure 19: Model infer output examples (semantic prompt).
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F.3 Model Inference Output Examples with PIE Prompt.

Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
PIE-Prompt LLaMA output
<unk>The essence of an instruction is its task intention. With this in mind, given the instruction below:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
after thinking step by step, the task of the given instruction is:
\begin{code}
1. read the paragraph
2. count the words
3. count the characters
4. output both numbers
\end{code}
The given instruction is a \strong{task intention}.
… 

(a)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
PIE-Prompt LLaMA2 output
<s>The essence of an instruction is its task intention. With this in mind, given the instruction below:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
after thinking step by step, the task of the given instruction is:
1. Count how many words are there in the paragraph.
2. Count how many characters are there.
3. Output both numbers.
The instruction is not a task, but a task is the essence of an instruction.
Comment: I don't understand what you mean by "essence of an instruction".
Comment: @JonSkeet I have edited the question.
Comment: I'm not sure what you mean by "essence of an instruction".  I think you're trying to say that the task of the 
instruction is to count the number of words and characters in the paragraph.  But that's not the essence of the instruction. 
The essence of the instruction is to count the number of words and characters in the paragraph.
… 

(b)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
PIE-Prompt Vicuna-v1.3 output
<s> The essence of an instruction is its task intention. With this in mind, given the instruction below:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
after thinking step by step, the task of the given instruction is:
To count the number of words and characters in a given paragraph.</s> 

(c)
Instruction
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
PIE-Prompt Vicuna-v1.5 output
<s> The essence of an instruction is its task intention. With this in mind, given the instruction below:
Count how many words are there in the paragraph. also count how many characters are there. output both numbers.
after thinking step by step, the task of the given instruction is:
1. Read the paragraph.
2. Count the number of words in the paragraph.
3. Count the number of characters in the paragraph.
4. Output both numbers.
Therefore, the task intention of the instruction is to read a paragraph and count the number of words and characters in it, 
and then output both numbers.</s>

(d)

Figure 20: Model infer output examples (pie prompt).
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G Template of ICL Prompt

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{Instruction of Demonstrationi}
### Response:
{Response of Demonstrationi}

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:

{Instruction}

### Response:

× N

Figure 21: Template of ICL Prompt. Here N is the number of demonstrations.

H Datasets for Task Correlation Analysis

We specify the versions of datasets for task correlation analysis here.

• GSM8Khttps://huggingface.co/datasets/openai/gsm8k

• MATHhttps://github.com/hendrycks/math

• MBPPhttps://huggingface.co/datasets/google-research-datasets/mbpp

• Limahttps://huggingface.co/datasets/GAIR/lima

• Dollyhttps://huggingface.co/datasets/databricks/databricks-dolly-15k

• OAssithttps://huggingface.co/datasets/OpenAssistant/oasst1

• Alpacahttps://huggingface.co/datasets/yahma/alpaca-cleaned

• WizardLM(Alpaca) https://huggingface.co/datasets/cognitivecomputations/
WizardLM_alpaca_evol_instruct_70k_unfiltered

• WizardLM(ShareGPT)https://huggingface.co/datasets/WizardLMTeam/
WizardLM_evol_instruct_V2_196k)

• ShareGPThttps://huggingface.co/datasets/anon8231489123/ShareGPT_
Vicuna_unfiltered

I Licenses

Our IEB Benchmark is derived from databricks-dolly-15k11 (Conover et al., 2023), alpaca-cleaned12

(Taori et al., 2023), and self-instruct13 (Wang et al., 2023), which are licensed under CC BY-SA 3.0,
CC BY-NC 4.0, and Apache 2.0, respectively. We have built IEB-Benchmark based on these three
datasets and have appropriately cited the original authors in our paper. We plan to release our dataset
under the CC BY-NC-SA 4.0 license, intended for non-commercial use, which complies with the
requirements of the above licenses.

J Additional Discussion about Related Work

In this section, we will discuss the comparison with several related works.

Description based similarity (Ravfogel et al., 2024) proposes a task of sentence retrieval based on
abstract descriptions. Similar to our work, it chooses to disregard specific information (such as
time and location) and instead focuses on global abstract descriptions. The difference between
description-based similarity and our work lies in:

11https://huggingface.co/datasets/databricks/databricks-dolly-15k
12https://huggingface.co/datasets/yahma/alpaca-cleaned
13https://huggingface.co/datasets/yizhongw/self_instruct
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• Although description-based similarity also aims to avoid being influenced by non-essential
information, the extracted abstract descriptions still reflect the overall semantic content of
the text and operate at the sentence level. In contrast, our approach focuses on a coarser
level of granularity, concentrating solely on the task category represented by the instruction,
which can be effectively conveyed at the phrase level (mostly verb-noun groups).

• Description-based similarity is tailored for information retrieval tasks, where the training
objective is primarily focused on bringing the query (description) and document (sentence)
closer in terms of similarity. In contrast, instruction embedding is designed for instruction-
related tasks, including instruction clustering, instruction intent similarity, and several
downstream tasks, covering a broader range of task types.

• Description-based similarity requires LLMs to extract abstract descriptions, whereas our
approach primarily relies on rule-based methods to extract category labels. We only use
LLMs for quality control and data supplementation, making our approach more cost-effective
by comparison. We propose an optional learning free embedding method, while description
based embedding requires training.

For InstructIR (Oh et al., 2024) and FollowIR (Weller et al., 2024), they also provide benchmarks
about instructions but mainly focus on evaluating instruction-following ability in information retrieval
tasks. We will cite them and make a further discussion in updated version.

TASKWeb (Kim et al., 2023) explores the relationships between NLP tasks and proposes a method for
selecting related source tasks based on the target task for model initialization. This approach allows
the model, after training on the target task, to achieve better performance than directly fine-tuning on
the target task. In our paper, we utilize Instruction Embedding (IE) to encode key task information
within instructions. We conduct instruction data selection, benchmark compression based on task
diversity, demonstration retrieval based on similar tasks, and an analysis of task correlation ship
between instruction sets, validating that our method is applicable to the analysis of instruction-related
tasks. Although we did not employ IE to analyze the relationships between instruction tasks, we
acknowledge that this is indeed an interesting application of IE. We believe that IE can be used to
cluster unannotated instructions, which could then be analyzed for inter-cluster relationships. We
plan to investigate this direction further in our future work.

The concept of task embedding proposed by Vu et al. (2020) is closely related to our instruction
embedding. However, there is a significant difference between them: In task embedding, the task
associated with the data is known in advance, and the embedding is created based on the entire dataset,
representing the specific knowledge required for that task. In contrast, with instruction embedding,
the task associated with the instructions is unknown beforehand, and the embedding is generated
based on a single instruction to represent its intention.

Table 9: Comparison between Tart models and our models.

Model ARI CP Homo Silh IIS-sp

tart-full-flan-t5-xl 0.2850 0.4469 0.6593 0.1035 0.4018
tart-dual-contriever-msmarco 0.4984 0.6633 0.7994 0.1061 0.7592

Wiki w/o prompt BERT 0.4741 0.6187 0.7741 0.1225 0.7460
EFT-train PIE-prompt BERT (ours) 0.8974 0.9453 0.9721 0.5180 0.8446

EFT-train PIE-prompt Llama2 (ours) 0.9125 0.9432 0.9697 0.4803 0.8450

Finally, we experimented with the models from "Task-aware Retrieval with Instructions" (Asai et al.,
2023) on our dataset, and the results are presented in Table 9. Since tart-dual-contriever-msmarco is
also BERT-based, we compared it with our BERT-based models for detailed analysis. According to
the results, tart-dual-contriever-msmarco still falls within the category of semantic embedding, as
its performance is similar to that of unsupervised fine-tuned BERT. We attribute this to the domain
gap between TART and IE: TART is designed to retrieve target documents based on the instruction
task and query content. As a result, instruction task information alone is insufficient for this purpose,
necessitating the encoding of semantic information from the query into the TART embedding. In
other words, while TART is task-aware, it still incorporates essential semantic information, which
can divert its focus from the instruction task when evaluated with our benchmark. In contrast, IE is
more focused on the instruction task and thus performs better on our benchmark. However, since IE
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relies solely on the instruction as input and disregards semantic information, it cannot be directly
applied to Information Retrieval tasks.

K Additional Data Selection Experiment

We re-implement DEITA (Liu et al., 2024) with text embedding and instruction embedding separately.
We aggregate Alpaca (GPT-4) (Peng et al., 2023), ShareGPT (Chiang et al., 2023b) and WizardLM
(alpaca) (Xu et al., 2023b) as the instruction pool, and annotate the quality and complexity of each
instruction data with the scorers released by DEITA1415.

We replicate the experiment in Section 4.3.1 and the results are reported in Fig 22. DEITA imple-
mented with instruction embedding outperforms DEITA implemented with text embedding and the
random baseline, demonstrating the superiority of our instruction embedding.

87.95 

51.50 

87.33 

47.50 

89.57 

55.25 

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00 100.00

AlpacaEval

IFT-Test

Random Text Embedding Instruction Embedding

Figure 22: Instruction tuning results of DEITA implemented with instruction embedding and text
embedding.

14Quality Scorer: https://huggingface.co/hkust-nlp/deita-quality-scorer
15Complexity Scorer: https://huggingface.co/hkust-nlp/deita-complexity-scorer
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