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Abstract— Despite recent advancements in AI for robotics,
grasping remains a partially solved challenge. The lack of
benchmarks and reproducibility prevents the development of
robots that can interact with open environments autonomously.
The generalizing capabilities of foundation models are promis-
ing, but the computational cost is very high, and the adaptation
capabilities demonstrated on real robots are still limited. This
paper takes an opposite perspective by introducing a vision-
based grasping framework that can easily be transferred
across multiple manipulators. Leveraging Quality-Diversity
(QD) algorithms, the framework generates diverse repertoires
of open-loop grasping trajectories, enhancing adaptability while
maintaining a diversity of grasps. This framework addresses
two main issues: the lack of an off-the-shelf vision module for
detecting object pose and the generalization of QD trajectories
to the whole robot operational space. The proposed solution
combines multiple vision modules for 6DoF object detection and
tracking while rigidly transforming QD-generated trajectories
into the object frame. Experiments on a Franka Research 3
arm and a UR5 arm with an SIH Schunk hand demonstrate
comparable performance when the real scene aligns with the
simulation used for grasp generation. This work represents
a significant stride toward building a reliable vision-based
grasping module that is transferable to new manipulator
platforms and adaptable to diverse scenarios without further
training iterations.

I. INTRODUCTION

Recent advances in AI have made significant progress
toward building autonomous robots to release humans from
strenuous tasks. Those advances include natural language-
conditioned planning [1], foundation architectures [2], and
efficient optimization of controllers using generative models
[3]. This progress suggests that the research field is getting
closer to making robots operate in open-ended environments.
However, some basic skills are only partially solved, and de-
ploying them on a real robot requires significant engineering
efforts to make them work in a given context. Grasping is an
eloquent example of such a skill, as no off-the-shelf modules
allow to address vision-based grasping on several grippers.

Data-greedy approaches are becoming the main paradigm
in the field nowadays. Grasping is more and more addressed
with generative AI methods [4][5][6], while the training of
end-to-end controllers for mobile manipulators involves ex-
tremely large Transformers-based architecture [7][8]. Despite
their promising generalization capabilities, the cost of these
methods raises concerns about how to make such energy-
demanding approaches sustainable [9].
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de Robotique, ISIR, F-75005 Paris, France {helenon, huber,
benamar, doncieux}@isir.upmc.fr

Training

ME-scs

Robot URDF and
object meshes

grasping
repertoire

Deployment

RGB-D
camera

Targeted
object

pose
estimation

tracking

Repertoires
per object

grasp
selection

segmentation

grasp
adaptation

Detic

QD optimisation

MegaPoseICG

Moveit!

motion planner
real robot
actionning object mesh

RGB-D

RGB

Fig. 1. Overview of the proposed framework. It involves utilizing 3D
models of the robot, target objects, and RGB-D camera data. A diverse
grasping repertoire is generated with ME-scs [17] in simulation. The inte-
gration pipeline predicts the object pose through a sequence of perception
modules [30][31][32]. The selected grasping trajectory is transformed into
the object frame and fed to a motion planner to generalize the trajectory to
the whole operational space. This adaptable framework is compatible with
various manipulators with minimal need for engineering efforts.

The usage of data-greedy methods, however, is recent
in the history of Robotics [10]. For a long time, grasping
was addressed with analytic-based approaches and motion
planning [11]. The issue was the limited adaptation capa-
bilities that the data-greedy approach could circumvent. The
authors of the present work argue that many skills should
be addressable with significantly less energy cost than the
very large AI models, with enough generalization to provide
robots the capability to solve a wide range of tasks in open
environments while keeping a certain level of interpretability
and modularity for further extension.

This paper introduces a modular, adaptable, vision-based
grasping framework that can be leveraged to make robots
learn to grasp known objects with a limited computational
cost. Based on recent works in Quality-Diversity (QD) meth-
ods [17][18], the proposed framework builds repertoires of
diverse grasping trajectories for a given robotic manipulator
and a set of objects. At deployment time, a vision pipeline of
open-source modules predicts the targeted object state (6DoF
pose, including position and orientation). A trajectory is then
selected and adapted relatively to the predicted object pose.
Experiments conducted on two robotic platforms show that
this approach can efficiently be applied to different grippers
and robot arms. The presented pipeline will be made publicly
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Fig. 2. Object 6DoF pose detection pipeline. (a) The scene is first
segmented to isolate the targeted object using Detic [30]; (b) Megapose
[31] does a 3d model matching to predict the 6DoF pose; (c) ICG [32]
tracks the object pose to generalize the 6DoF tracking to any pose and
allow retrial after failure.

available. More details can be found on the project website1.

II. METHOD

Fig. 1 gives an overview of the proposed framework. It
consists of a training step in simulation and a deployment
step in the physical world. In the training step, a QD
optimization method generates a set of grasping trajectories
[17]. The deployment phase raises two key challenges: no
off-the-shelf algorithms can robustly do the 6DoF object pose
estimation, and the reach-and-grasps trajectories generated
with QD are limited to a fixed initial object pose.

A. Training

Quality-Diversity methods are algorithms that optimize
a set of diverse and high-performing solutions to a given
problem [29]. Recent works show that those methods can
be used to generate repertoires of diverse reach-and-grasp
trajectories [17] that can successfully be transferred in the
physical world [18]. Such an approach allows the generation
of a diversity of trajectories that can fit a large variety of
scenarios without new training iterations.

The training part is based on previous works in grasping
with QD: the input is the 3D model of the considered robotic
manipulator, as well as the 3D models of the targeted objects.
Both are included in a simulated scene, on which a QD
optimization method is applied to generate a repertoire of
diverse and robust grasping trajectories As [17]. The most
promising trajectories can be selected among the thousands
of generated ones using dedicated quality criteria [18]. The
output is, therefore, a set of repertoires containing hundreds
of grasping trajectories for each of the targeted objects.

B. Deployment

The deployment part of the grasping module takes as input
the data from an RGB-D camera, the name of a targeted
object, and the skill repertoires containing the 3D model of
the objects and the grasps.

6DoF pose estimation. The estimation of the object 6DoF
pose Xobj is conducted in 3 steps (Fig. 2). Given an object
name on a GUI, the targeted object is first localized on the
RGB image using an open-vocabulary segmentation module
[30]. The identified region is used to restrict the search space
of a 6DoF pose estimation module called MegaPose [31].
MegaPose matches the object 3D model projection in the
image with the current data acquired through the RGB-D

1https://qdgrasp.github.io/
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Fig. 3. Experimental setups. To demonstrate the framework flexibility to
platforms, experiments have been conducted on an FR3 arm with a parallel
gripper and on a UR5 arm with an SIH 5-fingers hand. The 3 RGB-D
cameras have been indifferently used to demonstrate both hardware and
point-of-view robustness. The 10 YCB objects [19] are used in both setups.

camera. As soon as the predicted pose converges, a low
processing tracking module [32] (running on CPU) is used
to follow the object 6DoF trajectory in the RGB-D image,
generalizing the detection to the whole robot field of view
and allowing retrial after failure. It results in an accurate and
fast estimation of the object’s 6DoF pose.

Trajectory adaptation. A grasping trajectory τ is then
selected with respect to the addressed scenario (e.g., higher
robustness, grasping a specific part of the object). In the
experiments were exploited the best-performing grasps w.r.t.
the fitness criterion proposed in [17]. The reach-and-grasp
trajectory is described as a succession of end-effector states.
However, those QD-generated trajectories are limited to
the initial condition of the simulated scene. Generating
trajectories for a new object pose would have a significant
computational cost. We circumvent this limitation by rigidly
adapting the trajectory τ to the object frame, making the
trajectory valid for any object state in the operational space.
The end-effector must reach the first step of the approach
phase and then follow the path until the object is grasped.
The approach trajectory is truncated if some states are
not reachable by the manipulator. Trajectories leading to
collisions are discarded. Details can be found in Appendix
I. The resulting τ ′ adapted trajectory can be provided to a
motion planner [33] to complete the grasp.

III. EXPERIMENTS

Robots and scene. To evaluate the proposed pipeline,
experiments are carried out on a 6-DoF Universal robot
(UR5) and a 7-DoF Franka Research 3 (FR3) (Fig. 3).
The FR3 is equipped with a parallel 2-fingers gripper. The
UR5 gripper is an SIH dexterous hand. Grasp learning and
control of the SIH hand are made with synergies primitives
(thumb-index, thumb-mid, thumb-index-mid, all-hand). ROS
is used to orchestrate the different modules: robot and gripper
control, the camera sensors, and perceptual modules. Each
robot is mounted on a table modeled as a collision plane.

Sensing Experiments with the FR3 was conducted with a
static Intel®RealsenseTM Depth Camera D435i. For the UR5
and the dexterous hand, a Realsense D455 and a Realsense
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L515 are alternatively used to assess the robustness to the
camera point-of-view. Cameras are fixed at various mounting
positions (from the top, at 45°, from the side – Fig. 3). All
cameras are hand-eye calibrated with an ArUco marker.

Hardware compute specifications Trajectory loading and
transformations, 6-DoF tracking processing, and control of
robots are made on a DELL laptop (a 12 cores IntelR CoreTM

i7-10850H). Deep learning perceptual modules are run on
a remote desktop PC with a dedicated GPU (Graphical
Processing Unit), an Nvidia TITAN X 12GB for the FR3,
and an NVIDIA RTX 2080 for the UR5.

Dataset generation Grasping repertoires are generated on
the Pybullet simulator [34]. ME-scs, a variant of MAP-
Elites [35], is used to generate the grasps, as it appeared
to be the most efficient QD method on this task [17]. The
experiments are conducted on a dozen of YCB objects [19].
As the YCB objects’ center of mass and inertia matrix are
not correctly specified in the original dataset, we computed
them by getting the average position of mesh vertices and
by assuming that the objects’ density was 1.5kg/m3.

Evaluating adaptation in simulation. To quantify the
augmentation potential of the adapted trajectories, the tra-
jectory adaptation was first simulated for three objects (mug,
power drill, and pudding box) in the FR3 scene. The FR3
working space is defined as a box in front of it. This space is
divided into equal-sized cells, defining different positions and
orientations for the objects. Five trajectories are randomly
sampled for each object and then adapted for each pose. For
each pose, the number of successfully adapted trajectories is
measured (i.e., the planner found a solution) – indicating the
ability to generate a diversity of grasping at several positions
in the working space.

Real world study. For each object, we randomly sampled
grasps among the best-performing ones with respect to Huber
et al. quality criterion [17], promoting diversity of object
states. Each trajectory was tested for different object states.
Overall, we collected about 300 trajectories.

For pose detection, we first give the name of the object
to the open-vocabulary semantic module, which then feeds
the 6-DoF pose estimation pipeline with the cropped RGB-D
data. Visual ambiguities can lead to the wrong initial pose
estimation depending on initialization and the current view
of the object. To mitigate this limitation, objects are oriented
so that several faces are in the camera’s field of view, and
the initial pose estimation is reinitialized until convergence.
Then, by leveraging the 6-DoF tracker, we placed the object
at the target location. A GUI was developed to monitor the
whole process2.

IV. RESULTS & DISCUSSION

Evaluating adaptation in simulation. Fig. 4 shows the
results obtained in simulation for the FR3 robot with the
2-finger gripper after applying a perturbation to the object
pose, either purely translated (upper row) or both translated
and rotated (lower row). Most randomly sampled trajectories

2https://cloud.isir.upmc.fr/s/sqXpAtrrkSiM3SX
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Fig. 4. Adaptation of diverse trajectories. Results obtained in simulation
on the FR3 robot by randomly picking 5 reach-and-grasp trajectories from a
learned repertoire and different object poses. (Upper row): 2500 positions in
the xy grid at z = 0 and for a fixed orientation. (Lower row): 625 positions
and 6 orientations per position - 2 rotations around the y axis and 3 around
the z axis. The maximum number of transferable trajectories per pose is
then 5x6=30. The rigid transform adaptation method generalizes the grasps
to the whole operational space. Failures occur when rotations prevent some
grasps (e.g. collisions or reachability constraints)
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Fig. 5. Successful sim2real transfer ratios on the FR3 robot.Results
are similar to those obtained in similar experimental conditions with objects
fixed at simulated pose [18], validating the proposed adaptation framework.

can successfully be adapted to grasp the object. The heatmap
shows that the failures occur more frequently when the object
is near the limits of the robot’s reachable space: being too
close results in self-collisions while being too far makes the
robot near its joint singularities. Translating the object is
likely to result in successful adaptations. It can be noticed
that variations along the z axis can more frequently lead to
a failure. Similarly, rotating the object can lead to an invalid
grasp because of self-occlusions (e.g. trying to grasp the
hidden handle of a mug) or object poses that are outside
of the collision-free and reachable space (e.g. a robot cannot
grasp a cup by inserting fingers in the containing part if
the object is flipped on the surface). This limitation can be
addressed by regrasping or trajectory selection.

Real world study. Fig. 5 shows the success rate of adapted
grasping trajectories for all the tested setups. Most objects,
even complex ones such as the power drill, show a grasp
success rate of over 50%. The average success ratio is around
60%, which is similar to the transferability ratio obtained
in the same experimental setups, except from the object
pose, which matches the one in the simulation [18]. Note
that the most challenging objects are the bowl, the orange,
and the spatula, primarily because of vision failure. Fig. 6
illustrates one example of failure modes that were observed

https://cloud.isir.upmc.fr/s/sqXpAtrrkSiM3SX


Fig. 6. Object pose ambiguities. Ambiguities appear depending on the
view, the object, and the distance to the camera. Here, the power drill is too
far from the camera. Depth measurements cannot solve ambiguities. The
predicted orientation is wrong over the z-axis.

Fig. 7. Examples of grasp diversity and trajectory adaptation. The
same trajectory adapted to two different object states for the panda parallel
gripper (top) and the SIH Schunk hand (bottom).

for the power drill. As we use a single view, the partial point
cloud is not always enough to disambiguate the pose. The
depth measurements might also be too noisy, especially for
objects small or far from the camera, making the 6-DoF pose
prediction modules fall into local optima.

Those experiments validate the proposed approach, as the
QD-generated trajectories are well generalized to the whole
operational space (Fig. 7) with results comparable to those
obtained at fixed object pose [17]. Moreover, the diversity of
the generated repertoire is preserved, allowing the exploita-
tion of the proposed framework in several scenarios without
further training iterations (Fig. 8).

Cross-plateform transferability. A key component of the
proposed framework is how easy it is to transfer to new plat-
forms. While the recent works on robotic learning suggest
that it might be possible to exploit foundation models to
do cross-platform transferability efficiently [2], the learning
methods that exploit such architectures require a tremendous
amount of computation [8]. The approach proposed in the
present paper generates the grasping repertoires offline and
adapts them without additional cost, while the modular
architecture eases human supervision of the grasping process.
Exploring how the repertoires can be zero-shot transferred
between robots and scenarios is also a promising perspective.

Computational cost. The training part requires build-
ing a repertoire per gripper and object once. It roughly
takes 20 minutes on a 40-core CPU to generate hundreds
of diverse trajectories. No further training is required at
inference time. The trajectory adaptation and the variety
of generated grasps provide adaptation capabilities to the
robots. At inference time, Detic and MegaPose are the most
computationally greedy modules. However, it works on an
affordable consumer GPUs. Overall, the computational needs

Fig. 8. Example of diverse grasps. The diversity produced by the QD
method is preserved in the proposed framework so that many different tasks
can be completed after having deployed the grasping trajectory.

are far from the large infrastructure required by large end-
to-end controllers [7][8].

Limitations. The most important bottleneck for adaptation
to a new scene is the vision pipeline, as some of the exploited
submodules have limitations. In our experience, the weakest
part of the vision pipeline is the 6-DoF pose estimation.
MegaPose and ICG are more robust on some objects (e.g.
the mug) than others (e.g. the spatula, orange). They struggle
in dense or noisy scenes. It can also require a few manual
iterations to converge to a valid pose. Lastly, the 3D model
matching part can make prohibitive errors in the object poses,
especially for objects with ambiguous shapes and far from
the camera (Fig. 6). The proposed modular framework can,
however, easily be updated with a more robust 6-DoF pose
estimator and tracker. This matter is a key challenge in the
computer vision community [36].

While easily generalizing to different robotic platforms,
the proposed framework requires a 3D model of the targeted
object. Nevertheless, the ability to grasp ”known” objects in
diverse manners opens many research paths for open-ended
robotics. This limitation can be addressed by integrating
vision-based surface reconstruction of unknown objects [37].

V. CONCLUSIONS

This paper proposes a framework to build a plug-and-play
vision-based grasping module. It can easily be adapted to
different robotic platforms and allows the robot to grasp
objects in a diverse manner robustly. In future work, we
plan to use dedicated quality metrics to improve the sim2real
transfer ratio [18] and extend to dynamic adaptations of
grasps. The pipeline will also be transferred to a mobile
robotic manipulator within human-in-the-loop processes. We
believe this modular framework to be an affordable alterna-
tive to the computationally greedy foundation-model-based
approaches and a promising path to make different kinds of
mobile manipulators interact with objects in the near future.
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Fig. 9. Notations and adaptation principle. The robot base frame B and
the world frame W are assumed equal. The robot has to grasp a mug (frame
O) with a pose estimated by a RGB-D camera (frame C) and perception
modules. The trajectory τ has been generated in simulation with the object
at Osim. The path followed by the end-effector is adapted from one pose
to another, resulting in the trajectory τ ′.

Supplementary Materials

APPENDIX I
TRAJECTORY ADAPTATION

Fig. 9 shows the used notations. Let B be the robot
frame and W be the world frame. Here, we assume that
B = W , as the robots considered in the experiments
are fixed manipulators. Let Osim be the object frame at
initial conditions in the deterministic simulation, and O be
the actual frame associated with the targeted object in the
physical world (indifferently noted Xobj).

Let τ ∈ Rm×n be a selected trajectory, where m is
the number of values to express a state pose, and n is
the number of considered time steps. State-of-the-art QD
methods generate open-loop trajectories conditioned on a
specific object pose (Osim). The trajectory is expressed as
a succession of end-effector Cartesian positions and Euler
orientations (m = 6). A QD method thus generates a
set of trajectories As = {τi∈N+∗}. Each trajectory can be
expressed as a sequence of end effector state through forward
kinematics, such that τ =

{
Xi∈[0,...,n−1]

}
.

The trajectories are projected in the object frame (O) to
generalize the generated repertoire to the whole operational
space. Each repertoire can thus be interpreted as bundles of
trajectories that can be reached to grasp the object in a certain
manner. Let W es be the end effector state in homogeneous
coordinates in W for a given 6D state X generated in
simulation. The adapted state on the real object W er is
defined such that:

Osimes =
Oer (1)

The adapted state in W can be computed as follow:
W er = W

C H C
OH

Oer

= W
C H C

OH
Osimes

W er = C
WH−1 O

CH
−1 Osim

W H W es (2)

where transformation matrices b
aH is the transformation

matrix from a to b. The equation (2) allows to compute the
adapted trajectory τ ′ from τ , considering that O

CH is obtained
using the proposed vision pipeline, C

WH comes from the
camera calibration, and Osim

W H is provided by the simulation.
Each trajectory is then filtered using the following criterion:

fc(τ
′) = fIK(τ ′) ∧ fcollision(τ

′) (3)

where ∧ is the logical and, fIK : Rm×n → {0, 1} assesses
that the trajectory is kinematically feasible with limited jump
in joint space, and fcollision : Rm×n → {0, 1} assesses that
no collisions happens between the robot and the environment
or itself. The resulting τ ′ adapted trajectory can be deployed
on the real platform using a motion planner [33].


	INTRODUCTION
	METHOD
	Training
	Deployment

	EXPERIMENTS
	RESULTS & DISCUSSION
	CONCLUSIONS
	References
	Appendix I: Trajectory adaptation

