Under review as a conference paper at ICLR 2026

LOBE-GS: LOAD-BALANCED AND EFFICIENT 3D
GAUSSIAN SPLATTING FOR LARGE-SCALE SCENE RE-
CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

3D Gaussian Splatting (3DGS) has established itself as an efficient representa-
tion for real-time, high-fidelity 3D scene reconstruction. However, scaling 3DGS
to large and unbounded scenes such as city blocks remains difficult. Existing
divide-and-conquer methods alleviate memory pressure by partitioning the scene
into blocks, but introduce new bottlenecks: (i) partitions suffer from severe load
imbalance since uniform or heuristic splits do not reflect actual computational de-
mands, and (ii) coarse-to-fine pipelines fail to exploit the coarse stage efficiently,
often reloading the entire model and incurring high overhead. In this work, we
introduce LoBE-GS, a novel Load-Balanced and Efficient 3D Gaussian Splat-
ting framework, that re-engineers the large-scale 3DGS pipeline. LoBE-GS intro-
duces a depth-aware partitioning method that reduces preprocessing from hours
to minutes, an optimization-based strategy that balances visible Gaussians—a
strong proxy for computational load—across blocks, and two lightweight tech-
niques, visibility cropping and selective densification, to further reduce training
cost. Evaluations on large-scale urban and outdoor datasets show that LoBE-GS
consistently achieves up to 2x faster end-to-end training time than state-of-the-
art baselines, while maintaining reconstruction quality and enabling scalability to
scenes infeasible with vanilla 3DGS.

1 INTRODUCTION

Recent advances in 3D scene reconstruction and novel view synthesis have shifted from classical
photogrammetry and Neural Radiance Fields (NeRFs) toward explicit, real-time representations.
While photogrammetry offers geometric precision but poor rendering efficiency, NeRFs achieve
photorealism but remain computationally expensive. 3D Gaussian Splatting (3DGS) addresses
these limitations by representing scenes with millions of anisotropic Gaussian primitives optimized
through a GPU-friendly rasterization pipeline, delivering both high fidelity and real-time perfor-
mance. Its efficiency has quickly established 3DGS as a leading representation for scalable 3D
content creation.

Despite its success in bounded scenes, scaling 3DGS to large and unbounded environments, such
as city-scale reconstructions, remains an open challenge. The memory and computational costs
scale with the number of Gaussian primitives, leading to optimization times and GPU usage that
quickly become prohibitive. To mitigate this, recent works such as CityGaussian (CityGS) (Liu et al.,
2025)), VastGaussian (VastGS) (Lin et al.,|2024), and DOGS (Chen & Leel |2024)) adopt a divide-and-
conquer strategy, partitioning large scenes into spatial blocks that can be processed in parallel. While
effective in reducing raw memory pressure, this paradigm introduces new bottlenecks as follows.

» Lack of load balancing: Current partitioning strategies do not explicitly account for com-
putational load balance. Heuristics such as uniform grid splits or block size normalization
often yield sub-regions with highly uneven optimization demands. As a result, the slowest
block dominates the total training time, creating a long-tail bottleneck.

* Inefficient coarse-to-fine pipelines: Methods employing a coarse-to-fine pipeline, such
as CityGS (Liu et al.l 2025), fail to fully exploit the coarse stage for accelerating fine-level



Under review as a conference paper at ICLR 2026

optimization. The coarse model is typically reloaded in full, incurring heavy computational
overhead.

To overcome these limitations, we introduce LoBE-GS, a novel framework that fundamentally re-
engineers the large-scale 3DGS pipeline for load-balanced and efficient parallel training. LOBE-GS
addresses the inefficiency of heuristic partitioning, improves the utilization of coarse models, and
establishes a standardized evaluation protocol. We first introduce a novel partitioning approach that
radically reduces the data partitioning time. Existing methods can result in a complex O(M X
N) projection problem, where M is the number of blocks and N is the number of camera views,
requiring up to several hours. Our method leverages depth information from a coarse model to
assign each camera to its corresponding block with a single, highly efficient projection per camera.
This reduces the projection complexity to a linear O(/N) time and shortens the preprocessing time
from hours to minutes.

To avoid unbalanced loading in each block for the parallel training, we employee an optimization
to scene partitioning that directly addresses the load-balancing problem. Our experiments revealed
a strong correlation between the initial number of visible Gaussians in the blocks and the subse-
quent optimization time. We therefore adopt the number of visible Gaussians as a reliable proxy for
computational load. By explicitly balancing this metric across blocks, our framework eliminates
long-tailed training bottlenecks and ensures more uniform computational demands. Moreover, we
propose two complementary techniques to reduce the computational load of each block. First, we
introduce visibility cropping, a technique applied after scene partitioning to prune irrelevant Gaus-
sians from each block, which reduces the training time without sacrificing the quality of the final
reconstruction. Second, we propose selective densification to further reduce the computational load
of each block by strategically adding or cloning Gaussians only when needed.

We evaluate LoBE-GS on diverse large-scale datasets, including urban and outdoor scenes spanning
hundreds of meters. Experimental results show that our method consistently delivers faster training
and more balanced computation than prior approaches, while maintaining or improving reconstruc-
tion quality. In particular, LoBE-GS reduces end-to-end training time by up to 2x over baselines
that use coarse models and achieves stable scalability on scenes that are otherwise infeasible for
vanilla 3DGS. The main contributions of this work are summarized as follows:

* We identify load-balancing limitations in prior approaches and introduce a proxy that more
closely correlates with fine-training runtime, enabling improved load balancing.

* We present LOBE-GS, featuring (i) load balance-aware scene partitioning for evenly dis-
tributed computational workloads, (ii) fast camera selection to minimize partition overhead,
and (iii) visibility cropping and selective densification for accelerated fine-training.

» Extensive experiments show that LOBE-GS achieves a 2x training speedup over existing
methods while preserving rendering quality.

2 RELATED WORK

2.1 NOVEL VIEW SYNTHESIS

Given a set of captured images, novel view synthesis seeks to render photorealistic 3D scenes from
previously unseen viewpoints. Neural Radiance Fields (NeRF) (Mildenhall et al.l [2020) model ra-
diance fields with an MLP and use volumetric ray marching to integrate color along camera rays.
NeRF delivers high fidelity but incurs substantial training time and inference latency due to dense
sampling and repeated neural evaluations. In contrast, 3D Gaussian Splatting (3DGS) (Kerbl et al.,
2023)) adopts Gaussian primitives, enabling differentiable rasterization for real-time rendering and
training that often converges within minutes. While 3DGS yields strong quality, open issues include
aliasing under wide baselines, semi-transparent geometry leakage, memory growth from millions of
primitives, and robustness under sparse views or imperfect calibration. These advances and limita-
tions motivate our design choices and evaluation, specially for large scale reconstruction.



Under review as a conference paper at ICLR 2026

2.2 LARGE-SCALE SCENE RECONSTRUCTION

For decades, reconstructing large-scale 3D scenes has been a central goal for researchers and engi-
neers (Snavely et al., [2006}; |Agarwal et al., [2011). At city and regional scales, such reconstruction,
especially for aerial views (Jiang et al., 2025} Tang et al.| [2025)), faces prohibitive memory demands
and computational performance, motivating scalable training and rendering strategies.

Distributed training approaches train a unified model jointly across multiple GPUs. NeRF-XL (Li
et al., |2024) shares NeRF parameters and activations across devices to maintain a single global
model, executing multi-GPU volume rendering and loss computation with low inter-GPU commu-
nication, while DOGS (Chen & Lee} [2024) and Grendel-GS (Zhao et al., [2024)) distribute Gaussian
primitives via consensus or sparse all-to-all routing. However, such systems typically require cus-
tomized multi-GPU infrastructure to support frequent synchronization and communication, which
limits their practicality on standard hardware setups.

Divide-and-conquer approaches partition a large scene into subregions, train submodels in par-
allel with multiple GPUs, and compose their outputs. Block-NeRF (Tancik et al., 2022)) partitions
a city into spatial blocks and assigns training views by camera position; Mega-NeRF (Turki et al.
20224a) decomposes space into grids and routes each pixel to the grids intersected by its ray; Switch-
NeRF (Mi & Xu, [2023)) learns the decomposition and routing end-to-end via a mixture-of-NeRF-
experts. Within 3DGS representations, VastGS (Lin et al., [2024) introduces a progressive spatial
partitioning strategy that divides a large scene into blocks and assigns training cameras and point
clouds using an airspace-aware visibility criterion. Each block is optimized in parallel and subse-
quently fused to a seamless global 3DGS reconstruction. CityGS (Liu et al.| 2025])) leverages a coarse
3DGS prior to guide scene partitioning and parallel 3DGS submodel training, improving coherence
and reconstruction quality across spatial partitions. They map unbounded scenes into a normalized
unit cube and then partition the contracted scenes with a uniform grid for parallel training. However,
most of the aforementioned works underemphasize load balancing of the submodels during parti-
tioning, which limits parallel scalability. Moreover, CityGS loads the entire coarse model during
the parallel stage, which is inefficient. To address these, LoBE-GS balances the 3DGS prior across
submodels within each subregion and trains them efficiently in parallel.

2.3 EFFICIENT GAUSSIAN SPLATTING RECONSTRUCTION

As new 3DGS methods emerge, many research efforts target efficient 3D Gaussian Splatting recon-
struction and rendering. With limited resources, 3DGS compression (Navaneet et al.| 2024} [Papan-
tonakis et al., [2024) reduces on-disk storage, while Taming 3DGS (Mallick et al., [2024) addresses
budget-constrained training and rendering via guided, purely constructive densification that steers
growth toward high-contribution Gaussians. For large-scale scenes, level-of-detail (LoD) 3DGS rep-
resentations enable efficient rendering (Ren et al., 2024; Kerbl et al., [2024). CityGaussianV2 (Liu
et al., 2024)) builds on CityGS (Liu et al., |2025) with an optimized parallel training pipeline that
incorporates 2DGS for accurate geometric modeling. Momentum-GS (Fan et al [2024) extends
Scaffold-GS (Lu et al., [2024)) to large-scale scenes by introducing scene momentum self-distillation
and reconstruction-guided block weighting, allowing scalable parallel training with improved recon-
struction quality. CityGS-X (Gao et al.,[2025)) proposes a scalable hybrid hierarchical representation
with multitask batch rendering and training, eliminating merge—partition overhead while achieving
efficient and geometrically accurate large-scale reconstruction. In this work, we focus on an effi-
cient 3DGS reconstruction for large-scale scenes with coarse 3DGS prior and load-balanced parallel
training.

3 ANALYSIS OF SCENE PARTITIONING AND LOAD BALANCING

In this section, we first show that existing scene partitioning strategies fail to achieve satisfactory
load balancing during the fine-training stage. We then provide a principled analysis to identify a
reliable proxy for estimating the per-block fine-training runtime.



Under review as a conference paper at ICLR 2026

Lo LoBE-GS

00:45
0.8
0.6 00:30
0.4

00:15
0.2

00:00
0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

max Tg,. = 46mins > max Tg,, = 34mins

Figure 1: Hlustration of per-block training time under different partitioning strategies. (Left)
The uniform area partitioning in CityGS. (Right) The load-balanced partitioning in LoBE-GS.

3.1 IMPACT OF SCENE PARTITION ON LOAD BALANCING

Large-scale 3DGS pipelines typically adopt a partition—and—-merge paradigm: the scene is divided
into B spatial blocks, each optimized independently in parallel, and then merged into a complete
model. Some methods further employ a coarse-to-fine strategy, where a coarse model is trained first,
followed by scene partitioning and parallel fine training before the final merging stage. Let T¢oarse

denote the coarse-stage optimization time, Tpartition the partitioning time, and Téz)e the fine-stage
runtime of block b € {1, ..., B}. Assuming sufficient computational resources to run all fine-stage
processes in parallel, the end-to-end runtime is defined as:

b)

Tiog = Teoarse + Tpartition + max o). 1
E2E coarse partition be{l,. B} fine ( )
Thus, an effective partitioning strategy must balance the workloads across blocks to minimize the
runtime of the slowest block while maintaining reconstruction quality. Prior work has relied on
heuristics such as equalizing area, camera counts, or point counts, yet their ability to predict fine-
stage runtime were underexplored.

As a motivational example, consider the CityGS pipeline, which partitions the scene by equalizing
block areas in contracted space. Figure|[T]illustrates the fine-stage runtime per block on the Building
dataset. Figure[Ia) shows that the strategy adopted by CityGS leads to significant load imbalance in
fine-stage training. In contrast, Figure[T(b) shows that LoBE-GS achieves a more balanced runtime
distribution by employing a different proxy. Similar patterns are observed across other datasets
(see Appendix [A.2), suggesting that existing heuristics are often suboptimal for actual fine-stage
runtimes. As a result, they lead to skewed per-block runtimes and longer end-to-end runtime Txog.

3.2 RUNTIME CORRELATION WITH PER-BLOCK PREDICTORS

To address this, we analyze the correlation between candidate proxy variables and observed fine-
stage runtimes to determine which predictors most accurately reflect the computational cost of each

block. For each block b, we computed the Pearson correlation between its fine-stage runtime Té?e
(in minutes) and the following quantities, all available prior to fine-stage optimization:

« A®: area of block b in contracted space.

+ C®): number of cameras assigned to block b.

Ggf{: initial number of Gaussians inside block b at the start of fine-stage optimization.
« G“): initial number of Gaussians visible across all cameras assigned to block b.

. ng,)gvis = fog /C®): initial average number of visible Gaussians per assigned camera.



Under review as a conference paper at ICLR 2026

e AD (p=-025)  coemee OO (p=012) e G (r=0.88) G (r=052) w0 GO (r=0.11)
(a) Area & Cameras vs Optimization Time 166 (b) Gaussian Stats vs Optimization Time
. . | 2500 @ 8
0.08 g +
20008 @ .|
0.06- 3 = . bo.
o 15000 § oy
o © 41 ...’ ] ‘o
= C w R %,
< 0.041 10005 © e
g 32 et s
2 L YRPPS yaeee
0.02 500 O G | eeeeeeeeenpaentt B S
§0 . v otk bl VHSAT RN L
0.00-% , , , ; . —0 G - . , , , .
0 10 20 30 40 50 60 0 10 20 30 40 50
Optimization Time (mins) Optimization Time (mins)

Figure 2: Correlation between per-block training time and block-level statistics under CityGS’s
partitioning. (a) Plots of block area A®) and camera count C®). (b) Plots of Gaussian-based

measures (Ggg{, G\(fi’i, Gg,)givis). GE}Q yields the strongest and most consistent correlation across
datasets.

Figure |Z|presents scatter plots across five representative datasets, Building, Rubble, Residence, Sci-
Art, and MatrixCity, evaluated under fixed hardware and hyperparameters. Each point is color-coded
by a candidate proxy variable, with fine-stage runtime on the x-axis and the corresponding proxy
value on the y-axis. For each proxy, a dashed line of the same color hue is fit using linear regression.

The legend also reports the Pearson correlation coefficients () between T and the respective

fine
block-level quantities.

The results indicate that the area proxy A(®), commonly adopted in prior works (Liu et al., 2025;
2024} |[Fan et al.l [2024])), exhibits relatively weak correlation with fine-stage runtime. Similarly, the

per-block Gaussian count G 82{ shows minimal correlation, implying that considering only Gaussians
physically contained within a block underestimates the effective optimization load. In contrast, the

visibility-augmented measure GE,Q achieves the strongest and most consistent correlation across
datasets, confirming its suitability as a reliable predictor of per-block training cost. Normalizing this

quantity by camera count, resulting in Gz(:\)/)g,vis’ weakens the correlation, while the camera count

alone, C'®_ also used in previous studies (Chen & Lee, |2024;|Yuan et al., |2025)), exhibits only weak
correlation. Overall, these findings suggest that balancing partitions by the number of initial visible

Gaussians Gf,?i, as implemented in the proposed LoBE-GS, provides a more principled strategy than

traditional equal-area or equal-camera approaches.

4 METHODOLOGY

Prior large-scale 3DGS systems have demonstrated strong results but continue to face challenges
with load imbalance and training efficiency. To address these limitations, we propose LoBE-GS, a
coarse-to-fine training framework where each block is fine-trained independently, following prior
works (Liu et al.| 2025} 2024). The overall pipeline is illustrated in Figure @ Sectionlﬂl introduces
load balance-aware scene partition that iteratively refines initial uniform cuts to minimize a proxy
for fine-stage runtime. In Section .2} fast camera selection is proposed to improve efficiency over
existing camera selection strategies. Finally, Section [4.3] describes visibility cropping and selective
densification, two techniques that further reduce memory and computation costs during fine-training.

4.1 LOAD BALANCE-AWARE SCENE PARTITION

To mitigate load imbalance, we propose load balance-aware scene partition that minimizes max-

imum fine-training time maxp Tég)e by leveraging proxy metrics max Gfﬁz which exhibit strong
correlation with fine-stage runtimes as analyzed in Section[3.2] For a grid partition with B = m x n

blocks, given a coarse model G . and a set of ¢ camera views, the objective is to optimize vertical



Under review as a conference paper at ICLR 2026

Coarse Model Training Uniform Grid Optimized Non-Uniform  Efficient Parallel Fine-grained full model
Scene Partition Grid Scene Partition Fine-tuning

Figure 3: Overview of our framework. Our approach begins with training a coarse 3DGS model.
Using our load balance—aware data partition, we optimize the grid cuts to achieve a more balanced
division of the scene. We then apply visibility cropping and selective densification before and during
the parallel fine-training stage, enabling faster and more efficient training. Finally, we prune regions
outside each block and merge the results into a unified, high-quality model.

and horizontal cut positions (v, k) such that:

(v*,h*) = arg mil? max Gsfi’i(v, h), ()
where v = (v1,...,,_1) € (0,1)™ L and b = (hy,...,h,_1) € (0,1)""! denotes monoton-

ically increasing cut positions in contracted space. The proxy G\(,li’i('u, h) denotes the number of

visible Gaussians in block b = (i —1)(n+1)+jfori € {1,...,m}and j € {1,...,n}, as defined
by the corresponding cut boundaries B for the i-th row, j-th column block.

Since the computation of GE};Z (v, h) is non-differentiable, we adopt Bayesian Optimization (BO)

with a Gaussian Process (GP) surrogate for iterative cut refinement. The process begins with an

initial uniform partition (v, ), where (vl[o], hg»o]) = (L, %) To preserve ordering, each cut is
[0]

constrained to move at most halfway toward its neighbors, i.e., v; € [3 (vz[o_}l +uv; ), %(vl[o] + vgl)]
with vg = 0 and v,,, = 1 (defined analogously for & ;). At each iteration [, BO proposes candidate
cuts (v[”,h[l]). The corresponding block regions are set to slightly enlarged grid cell, B®) =
[vz[lll — 0y, vl[” + 0y X [hg‘l]q — Op, hy] + 0], following prior works. Each block is then assigned
a camera set C(*) using standard view assignment strategies, and the number of visible Gaussians

GE}Q is calculated. The GP surrogate is updated to fit the observed max;, Gsfi’i(vm ,hll), and the
best solution is tracked. After L iterations, the best solution is returned. In practice, L. = 100 and
(85,0n) = (%L, %1) yield satisfactory results, eliminating the need for reinitialization or nested

search-space refinements.

4.2 FAST CAMERA SELECTION

Camera selection is performed to assign a subset of views C*) to each block for fine-training. The
goal is to reduce per-block fine-training cost by discarding views with negligible coverage of the
corresponding block region. This ensures that each block is optimized with only the most relevant
views, improving efficiency without compromising reconstruction quality.

Despite its importance, prior studies often overlook the computational burden of this process, which
can account for nearly half of the overall end-to-end runtime (see Section[5.3). For instance, given
M partitioned blocks and N camera views, CityGS assigns cameras by computing the SSIM be-
tween the full coarse render and each per-block render, where the latter is obtained by filtering
out Gaussians outside the block boundaries. This requires rendering every view for every block,
resulting in at least (M + 1) x N projections, which constitutes the main computational bottleneck.

To eliminate this overhead, we introduce fast camera selection, which reduces the computation to
only N projections. First, for each camera view, we compute the per-pixel depth D using the a-
blending equation: D =}, \- d;c; H;;ll (1 — o), where N is the ordered set of points along the
ray, d; the depth of point ¢, and «; its opacity determined by covariance and opacity. The resulting
depth map is then back-projected into 3D space, forming a dense point cloud P(¢) = {Pei | k=



Under review as a conference paper at ICLR 2026

1,..., K}, with Pek € R? and K denotes the total number of points for camera c. Next, for each
camera c and block b, we compute the visibility ratio of points inside the block:

K
1
_ ®)
Voo = 72 kgl 1[pcr € B, 3)

where 1 denotes the indicator function, and B is the spatial region of block b. Finally, the assigned
camera set for block b is defined as C(?) = {c¢| Vep > 7}, where 7 is a predefined threshold (with
7 = 0.15) to prune views with negligible block coverage. This makes the procedure substantially
faster, even enabling its use as a subroutine in BO, where the back-projection is computed once and
reused throughout all iterations.

4.3  VISIBILITY CROPPING AND SELECTIVE DENSIFICATION

Prior coarse-to-fine 3DGS pipelines load the entire coarse model during per-block fine-training.
This introduces both memory and runtime overhead. The memory overhead arises from storing the
entire coarse model in GPU memory, while the runtime overhead arises from the Adam optimizer
rather than rendering, as frustum culling already excludes non-visible points. Since Adam maintains
momentum terms, it still updates parameters of all Gaussians, including those not observed by any
camera in C(®). Similar effects have also been observed in Mallick et al|(2024).

As fine-trained models are cropped before being merged into the final model, one naive solution is
to retain only Gaussians strictly within each block QSI)( = {9 € Geouse | 9 € B®)}. However,
this leads to degraded results due to over-pruning of Gaussians that lie outside block boundaries
that remain visible in some views. To address this, we introduce visibility cropping that retain the
visible Gaussians Q\(,Z;S) = {g € G.onwe | g Visible from some ¢ € C)} for each block prior to
fine-training. This visibility-based filtering substantially reduces the number of Gaussians involved
in optimization. In addition, since Gslz = |g§’j2 | must be recomputed at every BO iteration, we
implement its evaluation entirely in NVIDIA Warp, achieving near-native CUDA performance and

significantly reducing partition time. More implementation details are presented in Appendix [A.1]

While visibility cropping preserves all visible Gaussians necessary for fine-training, it also includes
those outside the block, i.e., g“’> \ QSI’I)(, which are ultimately discarded prior to merging. Although

retaining these Gaussians is evslgential to prevent quality degradation, they need not participate in
densification. Motivated by this observation, we introduce selective densification, which restricts
densification to Gaussians strictly within the block. This approach reduces the number of new Gaus-
sians created during training, thereby lowering memory consumption and improving optimization

efficiency, while maintaining per-block fidelity.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We conducted experiments on five large-scale scenes, including four real-world datasets
and one synthetic dataset. For the real-world datasets, we used Building and Rubble from
Mill19 (Turki et al., [2022b)), and Residence and Sci-Art from UrbanScene3D (Lin et al., 2022). For
the synthetic dataset, we adopted Aerial, which represents a small city region from MatrixCity (Li
et al.| [2023). Following prior work (Liu et al., 2025)), all images in MatrixCity were resized to a
width of 1600 pixels. For a fair comparison on real-world datasets, we downsampled all images by
a factor of four, consistent with previous methods.

Baselines. We compare our framework against state-of-the-art large-scale 3DGS methods, includ-
ing CityGS (Liu et al.| 2025)), VastGS (Lin et al., |2024), and DOGS (Chen & Lee} [2024). We also
include 3DGS', which follows the original 3DGS pipeline but extends training to 60Kk iterations, sets
the densification interval to 200 iterations, and applies densification until 30k iterations. For VastGS
and DOGS, we directly adopt the metrics reported in DOGS paper, where VastGS was evaluated
without appearance modeling. For runtime analysis, we use an unofficial implementation of VastGS



Under review as a conference paper at ICLR 2026

MatrixCity-Aerial Mill19 UrbanScene3D
PSNR (1) SSIM (1) LPIPS ({) | PSNR (1) SSIM (1) LPIPS (}) | PSNR (1) SSIM (1) LPIPS ()

3DGS' 23.67 0.735 0.384 22.97 0.749 0.291 21.25 0.814 0.239
CityGS 27.46 0.865 0.204 23.66 0.796 0.237 21.70 0.825 0.221
Ours 27.74 0.875 0.186 23.87 0.797 0.240 21.33 0.826 0.213

Methods

Table 1: Quantitative comparison. Results on MatrixCity-Aerial, Mill19 (average of Rubble and
Building), and UrbanScene3D (average of Residence and Sci-Art).

Methods MatrixCity-Aerial Mill19 UrbanScene3D

C-PSNR (1) C-SSIM (1) C-LPIPS (}) | C-PSNR (1) C-SSIM (1) C-LPIPS ({) | C-PSNR (1) C-SSIM (1) C-LPIPS (])
VastGST 28.33 0.835 0.220 23.50 0.735 0.245 21.83 0.730 0.261
DOGS 28.58 0.847 0.219 24.26 0.762 0.231 23.18 0.772 0.232
Ours 28.91 0.879 0.187 24.68 0.795 0.241 23.55 0.832 0.213

Table 2: Quantitative comparison with color-corrected metrics (denoted by the “C-" prefix).
Results on MatrixCity-Aerial, Mill19 (average of Rubble and Building), and UrbanScene3D (aver-
age of Residence and Sci-Art).

(also without appearance modeling) to enable a fairer comparison of training efficiency. For consis-
tency, we denote both variants as VastGS' throughout our experiments. We do not report runtime
results for DOGS, as its distributed training setup involves interconnect communication overhead,
which is not directly comparable to our parallel but independent runtime setting.

Metrics. We evaluate reconstruction quality using PSNR, SSIM, and LPIPS. Since some prior
works, such as DOGS and VastGS, apply color correction before computing these metrics, we also
adopt the color-corrected versions to ensure fair comparison. In contrast, when comparing against
3DGS and CityGS, which do not apply color correction, we report the standard PSNR, SSIM, and
LPIPS values.

Efficiency metrics & runtime protocol. We use Tcoarse, Thartition, max Ty, ., and Tror (as de-
fined in Equation [I)) as our efficiency metrics. For all runtime analysis presented in this paper, we
adopt the same block configurations as CityGS: 36 blocks for MatrixCity-Aerial, 20 for Building,
20 for Residence, 9 for Rubble, and 9 for Sci-Art. All runtimes are measured on identical compute
hardware, with detailed specifications provided in Appendix

5.2 QUANTITATIVE RESULTS

From Table[T]and Table[2] our method achieves competitive or superior reconstruction quality across
datasets. Compared to CityGS, performance is largely on par, with modest gains (= 1.0—1.02x) in
PSNR/SSIM where applicable and consistently better LPIPS, at the cost of a slight PSNR drop on
one dataset in exchange for improved perceptual quality. Compared to 3DGST, we observe consis-
tent improvements, typically ~ 1.05—1.2x higher PSNR/SSIM and up to ~ 2x lower LPIPS. With
color-corrected metrics, our method also surpasses VastGSt and DOGS on most datasets, leading in
C-PSNR and C-SSIM. Overall, these results demonstrate parity with CityGS while clearly outper-
forming VastGST, DOGS, and 3DGST. Additional quantitative results are provided in Appendix

5.3 LOAD BALANCE AND RUNTIME ANALYSIS

As shown in Table[3] our method consistently achieves the lowest coarse-stage runtime and slowest-
block fine-stage runtime across all datasets, yields the best partition time on two of three datasets,
and achieves the best end-to-end runtime on MatrixCity-Aerial and UrbanScene3D; on Mill19, No-
tably, although our Tgop on Milll9 is slightly longer than the reported VastGS' runtime (which
omits T¢oarse), our method delivers higher reconstruction quality—surpassing VastGST on PSNR,
SSIM, and LPIPS (see Table [2)—highlighting a favorable quality—latency trade-off.



Under review as a conference paper at ICLR 2026

Methods MatrixCity-Aerial Mill19 UrbanScene3D

Teoarse Tpartition max I}me Tror | Teoarse Tpartition max T‘Iine Tror | Teoarse Tpartition max T‘ﬁne Tror
3DGST | 01:50 - - 01:50 | 01:20 - - 01:20 | 01:01 - - 01:01
VastGST - 00:48 01:13  02:01 - 00:05 00:42  00:47 - 00:17 00:40  00:57

CityGS | 00:52  01:39 01:00  03:31| 01:03  00:15 01:10  02:28 | 00:43  00:20 01:04  02:07
Ours 00:38  00:16 00:30  01:24 | 00:24  00:07 00:36  01:07 | 00:21  00:07 00:28  00:55

Table 3: End-to-end runtime comparison. A value of “~” indicates that the method does not
include the corresponding stage.

FCS LB-SP VC SD | MatrixCity-Aerial Residence Building
Max Tine Tpartition Max Tfine Tpartition Max Tfine Tpartilion

v 01:00 00:14 01:01 00:04 01:06 00:03
v v 00:52 00:14 00:47 00:04 00:45 00:03
v v v 00:47 00:16 00:36 00:07 00:34 00:08
v v v 00:32 00:14 00:33 00:04 00:39 00:03
v v v v 00:30 00:16 00:30 00:07 00:30 00:08

Table 4: Ablation on model components. Evaluate the effectiveness of individual components:
Fast Camera Selection (FCS), Load Balance-aware Scene Partition (LB-SP), Visibility Cropping
(VC), and Selective Densification (SD).

5.4 ABLATION STUDIES

To assess the contribution of each component in our framework, we conduct ablation experiments
on three representative datasets: MatrixCity-Aerial, Residence, and Building. We evaluate different
combinations of four components: (1) Fast Camera Selection (FCS), which accelerates camera-to-
block assignment with negligible accuracy loss; (2) Load Balance-aware Scene Partition (LB-SP),
which redistributes Gaussians across blocks based on proxy load metrics to mitigate imbalance; (3)
Visibility Cropping (VC), which prunes invisible Gaussians to reduce optimization time; and (4)
Selective Densification (SD), which restricts densification to block regions. As shown in Table
LB-SP consistently reduces the worst-block fine-stage runtime max T} : configurations with LB-
SP always outperform otherwise identical ones without it. Moreover, enabling all four components
halves the worst-block fine-stage runtime compared to the FCS-only baseline (~01:00 — ~00:30),
corresponding to a ~ 2x speedup in max 7T} . and substantially improved end-to-end efficiency.
These results highlight that LB-SP’s workload rebalancing complements the per-block reductions of
VC and SD, yielding the largest cumulative runtime gains when combined.

6 CONCLUSION

In this paper, we present LoOBE-GS, which addresses load balancing and efficiency in the parallel
training of 3DGS models. At the core of LoBE-GS is a computational-load proxy that enables an
optimization for the scene partition of a coarse 3DGS model. We further introduce fast camera
selection to accelerate the scene partitioning, as well as visibility cropping and selective densifica-
tion to reduce loading in each block. LoBE-GS achieves up to 2x training speedup over existing
methods using coarse models for large-scale scene reconstruction while preserving the quality of
the 3DGS models. In future work, we plan to experiment with larger and more complex scenes that
would benefit from partitioning into a greater number of blocks for fine-training, and to explore the
integration of level-of-detail (LoD) and 2DGS representations. We also plan to evaluate the frame-
work on more diverse datasets, including those with sparse camera views in specific regions, and to
investigate alternative partitioning strategies beyond the current grid-based approach.

REFERENCES

Sameer Agarwal, Yasutaka Furukawa, Noah Snavely, lan Simon, Brian Curless, Steven M Seitz, and
Richard Szeliski. Building rome in a day. Communications of the ACM, 54(10):105-112, 2011.



Under review as a conference paper at ICLR 2026

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Advances in Neural Information Processing Systems 33, 2020. URL
http://arxiv.org/abs/1910.06403.

Yu Chen and Gim Hee Lee. DOGS: Distributed-oriented gaussian splatting for large-scale 3d re-
construction via gaussian consensus. Advances in Neural Information Processing Systems, 37:

34487-34512, 2024.

Jixuan Fan, Wanhua Li, Yifei Han, and Yansong Tang. Momentum-GS: Momentum gaussian self-
distillation for high-quality large scene reconstruction. arXiv preprint arXiv:2412.04887, 2024.

Yuanyuan Gao, Hao Li, Jiaqi Chen, Zhengyu Zou, Zhihang Zhong, Dingwen Zhang, Xiao Sun, and
Junwei Han. CityGS-X: A scalable architecture for efficient and geometrically accurate large-
scale scene reconstruction, 2025. URL https://arxiv.org/abs/2503.23044.

Lihan Jiang, Kerui Ren, Mulin Yu, Linning Xu, Junting Dong, Tao Lu, Feng Zhao, Dahua Lin,
and Bo Dai. Horizon-GS: Unified 3d gaussian splatting for large-scale aerial-to-ground scenes.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 26789-26799,
2025.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (SIGGRAPH), 42(4):
1-14, 2023.

Bernhard Kerbl, Andreas Meuleman, Georgios Kopanas, Michael Wimmer, Alexandre Lanvin, and
George Drettakis. A hierarchical 3d gaussian representation for real-time rendering of very large
datasets. ACM Transactions on Graphics, 43(4), July 2024. URL https://repo-sam.
inria.fr/fungraph/hierarchical-3d-gaussians/.

Ruilong Li, Sanja Fidler, Angjoo Kanazawa, and Francis Williams. NeRF-XL: Scaling nerfs with
multiple GPUs. In European Conference on Computer Vision (ECCV), 2024.

Yixuan Li, Lihan Jiang, Linning Xu, Yuanbo Xiangli, Zhenzhi Wang, Dahua Lin, and Bo Dai.
MatrixCity: A large-scale city dataset for city-scale neural rendering and beyond. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 3205-3215, 2023.

Jiaqi Lin, Zhihao Li, Xiao Tang, Jianzhuang Liu, Shiyong Liu, Jiayue Liu, Yangdi Lu, Xiaofei Wu,
Songcen Xu, Youliang Yan, and Wenming Yang. VastGaussian: Vast 3d gaussians for large scene
reconstruction. In CVPR, 2024.

Ligiang Lin, Yilin Liu, Yue Hu, Xingguang Yan, Ke Xie, and Hui Huang. Capturing, reconstructing,
and simulating: the urbanscene3d dataset. In ECCV, 2022.

Yang Liu, Chuanchen Luo, Zhongkai Mao, Junran Peng, and Zhaoxiang Zhang. CityGaus-
sianV2: Efficient and geometrically accurate reconstruction for large-scale scenes. arXiv preprint
arXiv:2411.00771, 2024.

Yang Liu, Chuanchen Luo, Lue Fan, Naiyan Wang, Junran Peng, and Zhaoxiang Zhang. CityGaus-
sian: Real-time high-quality large-scale scene rendering with gaussians. In European Conference
on Computer Vision, pp. 265-282. Springer, 2025.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-GS:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20654-20664, 2024.

Miles Macklin. Warp: A high-performance python framework for gpu simulation and graphics.
https://github.com/nvidia/warp, March 2022. NVIDIA GPU Technology Confer-
ence (GTC).

Saswat Subhajyoti Mallick, Rahul Goel, Bernhard Kerbl, Markus Steinberger, Francisco Vicente
Carrasco, and Fernando De La Torre. Taming 3DGS: High-quality radiance fields with limited
resources. In SIGGRAPH Asia 2024 Conference Papers, SA ’24, New York, NY, USA, 2024.
Association for Computing Machinery. ISBN 9798400711312. doi: 10.1145/3680528.3687694.
URLhttps://doi.org/10.1145/3680528.3687694.

10


http://arxiv.org/abs/1910.06403
https://arxiv.org/abs/2503.23044
https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/
https://repo-sam.inria.fr/fungraph/hierarchical-3d-gaussians/
https://github.com/nvidia/warp
https://doi.org/10.1145/3680528.3687694

Under review as a conference paper at ICLR 2026

Zhenxing Mi and Dan Xu. Switch-NeRF: Learning scene decomposition with mixture of experts
for large-scale neural radiance fields. In International Conference on Learning Representations
(ICLR), 2023. URL https://openreview.net/forum?id=PQ2zoIlZqgvm.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In European
Conference on Computer Vision (ECCV), pp. 405-421. Springer, 2020.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
CompGS: Smaller and faster gaussian splatting with vector quantization. ECCV, 2024.

Miles Olson, Elizabeth Santorella, Louis C. Tiao, Sait Cakmak, David Eriksson, Mia Garrard, Sam
Daulton, Maximilian Balandat, Eytan Bakshy, Elena Kashtelyan, Zhiyuan Jerry Lin, Sebastian
Ament, Bernard Beckerman, Eric Onofrey, Paschal Igusti, Cristian Lara, Benjamin Letham, Cesar
Cardoso, Shiyun Sunny Shen, Andy Chenyuan Lin, and Matthew Grange. Ax: A Platform for
Adaptive Experimentation. In AutoML 2025 ABCD Track, 2025.

Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Dret-
takis. Reducing the memory footprint of 3d gaussian splatting. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(1), May 2024. URL https://repo-sam.
inria.fr/fungraph/reduced_3dgs/.

Kerui Ren, Lihan Jiang, Tao Lu, Mulin Yu, Linning Xu, Zhangkai Ni, and Bo Dai. Octree-
GS: Towards consistent real-time rendering with lod-structured 3d gaussians. arXiv preprint
arXiv:2403.17898, 2024.

Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: exploring photo collections in
3d. In ACM siggraph 2006 papers, pp. 835-846. 2006.

Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srini-
vasan, Jonathan T Barron, and Henrik Kretzschmar. Block-NeRF: Scalable large scene neural

view synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8248-8258, 2022.

Jiadong Tang, Yu Gao, Dianyi Yang, Liqi Yan, Yufeng Yue, and Yi Yang. Dronesplat: 3d gaussian
splatting for robust 3d reconstruction from in-the-wild drone imagery. In Proceedings of the
Computer Vision and Pattern Recognition Conference, pp. 833—843, 2025.

Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-NERF: Scalable construction
of large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 12922-12931, June 2022a.

Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-NeRF: Scalable construction
of large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 12922-12931, June 2022b.

Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari,
Jianbo Ye, Jeffrey Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An open-source library
for gaussian splatting. Journal of Machine Learning Research, 26(34):1-17, 2025.

Zhensheng Yuan, Haozhi Huang, Zhen Xiong, Di Wang, and Guanghua Yang. Robust and efficient
3d gaussian splatting for urban scene reconstruction. arXiv preprint arXiv:2507.23006, 2025.

Hexu Zhao, Haoyang Weng, Daohan Lu, Ang Li, Jinyang Li, Aurojit Panda, and Saining Xie. On
scaling up 3d gaussian splatting training, 2024. URL https://arxiv.org/abs/2406.
18533,

11


https://openreview.net/forum?id=PQ2zoIZqvm
https://repo-sam.inria.fr/fungraph/reduced_3dgs/
https://repo-sam.inria.fr/fungraph/reduced_3dgs/
https://arxiv.org/abs/2406.18533
https://arxiv.org/abs/2406.18533

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Scene Partition. Bayesian Optimization (BO) with Gaussian Process (GP) surrogate modeling
(Section @ is implemented using Ax (Olson et al., [2025)) with BoTorch (Balandat et al., 2020)
backend for GPU-accelerated optimization. Block load computation (Section |4.1), fast cam-
era selection (Section [A.2), and visibility cropping (Section [A.3)), are implemented in NVIDIA
Warp (Macklin| [2022), which enables kernel-based programming in Python with performance com-
parable to native CUDA. In preliminary benchmark on the MatrixCity-Aerial scene, the Warp im-
plementation on a single GPU achieves speedups of approximately 450 x over sequential CPU code
and 5x over Numba-parallelized CPU code executed on 128 logical CPU cores. These performance
improvements are enabled by low-level optimizations not exposed in PyTorch, including bitsets,
atomics, and Warp tiles, with the latter providing functionality analogous to shared memory and
cooperative groups in CUDA C++.

3DGS Training. The coarse-training stage employs the Sparse Adam optimizer to accelerate train-
ing, which has minimal impact on final performance. In contrast, the fine-training stage continues to
use the standard Adam optimizer, as Sparse Adam was found to degrade performance in this setting.
Aside from selective densification, fine-training details follows the standard vanilla 3DGS procedure
(as in CityGS), with additional code-level optimizations through the gsplat library (Ye et al.l 2025)
and fused-ssim (Mallick et al.,2024) for SSIM loss evaluation.

Experimental Setup. For consistency, all CityGS runtimes reported in Section[3|are measured using
a modified version of CityGS with gsplat, fused-ssim, and visibility cropping enabled. Moreover,
since selective densification shortens per-block fine-training time, we disable it in LoBE-GS when
reporting results in Section[3] A comparison against the unmodified CityGS with the full LoBE-GS
pipeline (including selective densification) is provided in Figure[A.T] In Section [5] since the official
implementation of VastGS' is unavailable, we report performance results based on an unofficial
implementation available at https://github.com/kangpeilun/VastGaussianl

System Configuration. All experiments are conducted on a cluster consisting of 10 compute nodes,
each equipped with 8 NVIDIA L40 GPUs and 128 logical CPU cores (Intel Xeon Platinum 8362),
amounting to a total of 80 GPUs across the cluster. The fine-training stage is parallelized across
blocks with one GPU per block, whereas all other stages are executed on a single GPU.

Reproducibility. Source code along with a pre-built Docker image will be released upon paper ac-
ceptance to ensure reproducibility. All reported runtimes are measured within the Docker environ-
ment to eliminate potential discrepancies caused by library mismatches or system-level variations.

Declaration of LLM usage. Large Language Models (LLMs) are only used for editing grammar.

A.2 LOAD BALANCE ACROSS DATASETS

As shown in Figure [A.1} our method yields a noticeably more uniform per-block workload distri-
bution across the evaluated datasets. In particular, the load balance-aware partitioning combined
with visibility cropping and selective densification systematically reduces the worst-case per-block
fine-stage runtime, i.e., the slowest straggler blocks are much faster than under the baselines. This
reduction in the tail of the runtime distribution leads to fewer stragglers and improved end-to-end ef-
ficiency. These gains are consistent across datasets, demonstrating the robustness of our partitioning
strategy in mitigating workload skew.

12


https://github.com/kangpeilun/VastGaussian

Under review as a conference paper at ICLR 2026

4

242 1.0 1.0 01430
650 01:15
651 01:00
652
- 00:45
654 00:30
655 00:15
656
657 00:00
658
659 [01:30
660 01:15
661
662 01:00
663 00:45
664 00:30
665
666 00:15
667 00:00
668
669 (701:30
670
671 01:15
672 01:00
673
- 00:45
675 00:30
676 00:15
677
- 00:00
679
680 (701:30
681 01:15
682
- 01:00
684 00:45
685 00:30
686
687 00:15
688 00:00
689
690 (701:30
691
692 01:15
693 01:00
694 00:45
695
696 00:30
697 00:15
698

00:00
699 0. ; : X . 0 0. . . 0.6 08 1.0
700

701 Figure A.1: Comparison of load balance and partitioning between CityGS (Left) and LoBE-GS
(Right) across five datasets: Building, Rubble, Residence, Sci-Art, and MatrixCity-Aerial.

13



Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL CORRELATION ANALYSIS ACROSS DATASETS

In Section [3] we observed a strong correlation with G\(,li’i when using the original CityGS pipeline
combined with visibility cropping. In the fine-training stage, however, both visibility cropping and
selective densification were enabled to further reduce the per-block load in LoBE-GS. To ensure that
the correlation still remains strong under these settings, we additionally conducted experiments with
both visibility cropping and selective densification enabled.

. ® (r= AP, ®) (= (b) (.= . ® (r=
= CO (r=0.22) e G (r=091) G (r=0.76) + GY) (r=0.07)
(a) Cameras vs Optimization Time 166 (b) Gaussian Stats vs Optimization Time
N 84 *
)
2000 g
. 26
3 ] a
8 1500 2
04
& . < vy
1000 - I
£ L 32 -“'} ’
) =T P PP Pern
© 5001 £ e e < 3
Zo] o - -oonst W Bt 8 e Bilbee + 1oh et
0
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Optimization Time (mins) Optimization Time (mins)

Figure A.2: Correlation between per-block training time and block-level statistics under
CityGS’s partitioning with both visibility cropping and selective densification enabled. (a)

Plots camera count C'®). (b) Plots of Gaussian-based measures (G](ﬁf{, G‘(f;g, Ggl:;)g,vis)' G\(f:g yields

the strongest and most consistent correlation across datasets even when selective densification is
enabled.

A.4 EXTENDED QUANTITATIVE COMPARISON

This appendix collects the full numerical results omitted from the main text for space reasons. Ta-
ble[A.T]and Table [A-2]report per-dataset qualitative results and their color-corrected counterparts to
ensure fair comparison with baselines that apply post-hoc color alignment. Table [A73] summarizes
end-to-end timing Tror (Teoarses Ipartition, max Ty, ) and Table E compares load balance aware
data partition times for CPU vs GPU implementations across five datasets.

Residence Rubble Building Sci-Art
PSNR (1) SSIM (1) LPIPS (}) |PSNR (1) SSIM (1) LPIPS (}) |PSNR (1) SSIM (1) LPIPS (})|PSNR (1) SSIM (1) LPIPS (})
3DGS 21.44 0.791 0.236 25.47 0.777 0.277 20.46 0.720 0.305 21.05 0.837 0.242
CityGS 22.00 0.813 0.211 25.77 0.813 0.228 21.55 0.778 0.246 21.39 0.837 0.230
Ours 21.41 0.808 0.206 25.78 0.811 0.234 21.96 0.783 0.245 21.24 0.843 0.219

Methods

Table A.1: Quantitative comparison on Mill19 and UrbanScene3D datasets. We report PSNR, SSIM,
and LPIPS.

Methods Residence Rubble Building Sci-Art

C-PSNR (1) C-SSIM (1) C-LPIPS (]) |C-PSNR (1) C-SSIM (1) C-LPIPS (1)|C-PSNR (1) C-SSIM (1) C-LPIPS (})|C-PSNR (1) C-SSIM (1) C-LPIPS (})
VastGS 21.01 0.699 0.261 25.20 0.742 0.264 21.80 0.728 0.225 22.64 0.761 0.261
DoGS 21.94 0.740 0.244 25.78 0.765 0.257 22.73 0.759 0.204 24.42 0.804 0.219
Ours 22.94 0.822 0.206 26.55 0.810 0.235 22.80 0.779 0.247 24.71 0.853 0.217

Table A.2: Quantitative comparison on Mill19 and UrbanScene3D datasets. We report color-
corrected (denoted by the “C- prefix) PSNR, SSIM, and LPIPS.

14



Under review as a conference paper at ICLR 2026

Methods Residence Rubble Building Sci-Art

Teoarse  Tpariition Max Thine  Te2e | Teourse  Tparition Max Thne  Ti2k | Teoarse  Tpartition Max Thne  Tiok | Teoarse  Tparition Max Thne  Tiop
3DGS 01:22 - - 01:22 | 01:10 - - 01:10 | 01:30 - - 01:30 | 00:40 00:40
VastGS 00:08 00:49  00:57 00:04 00:39  00:43 00:05 00:44  00:49

- - - - 00:25 00:31  00:56
CityGS | 00:43  00:31 01:22  02:36 | 01:06  00:09 01:14  02:29 | 00:59  00:21 01:06  02:26 | 00:42  00:08 00:45  01:35

Ours 00:26  00:08 00:30  01:04 | 00:23  00:05 00:41  01:09 | 00:25  00:08 00:30  01:03 | 00:16  00:05 00:26  00:47

Table A.3: End-to-end runtime comparison on Mill19 and UrbanScene3D dataset. For each dataset

we report coarse time Tgoarse, partition time Tpanition, Max fine time (Max Tfpe), and total Tgp. A
value of “~” indicates that the method does not include the corresponding stage.

Methods | MatrixCity-Aerial | Residence | Rubble | Building | SciArt
LB-SP (CPU) 00:47 00:18 00:03 00:15 | 00:10
LB-SP (GPU) 00:16 00:06 00:05 00:06 | 00:05

Table A.4: Partition time (hh : mm) comparison across CPU and GPU methods for five datasets.

15



	Introduction
	Related Work
	Novel View Synthesis
	Large-Scale Scene Reconstruction
	Efficient Gaussian Splatting Reconstruction

	Analysis of Scene Partitioning and Load balancing
	Impact of Scene Partition on Load Balancing
	Runtime Correlation with Per-Block Predictors

	Methodology
	Load balance-aware scene partition
	Fast Camera Selection
	Visibility Cropping and Selective Densification

	Experiments
	Experimental Setup
	Quantitative Results
	Load Balance and Runtime Analysis
	Ablation Studies

	Conclusion
	Appendix
	Implementation Details
	Load Balance Across Datasets
	Additional Correlation Analysis Across Datasets
	Extended Quantitative Comparison


