
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

ASSESSING DIALECT FAIRNESS AND ROBUSTNESS
OF LARGE LANGUAGE MODELS IN REASONING TASKS

Fangru Lin1∗, Shaoguang Mao2, Emanuele La Malfa1,3, Valentin Hofmann4,5

Adrian de Wynter6,7, Xun Wang6, Si-Qing Chen6

Michael Wooldridge1,3, Janet B. Pierrehumbert1, Furu Wei2
1University of Oxford, 2Microsoft Research, 3Alan Turing Institute, 4Allen Institute for AI,
5University of Washington, 6Microsoft Corporation, 7University of York

ABSTRACT

Language is not monolithic. While benchmarks, including those designed for
multiple languages, are often used as proxies to evaluate the performance of Large
Language Models (LLMs), they tend to overlook the nuances of within-language
variation, and thus fail to model the experience of speakers of non-standard di-
alects. Focusing on African American Vernacular English (AAVE), we present
the first study aimed at objectively assessing the fairness and robustness of LLMs
in handling dialects in canonical reasoning tasks, including algorithm, math, logic,
and integrated reasoning. We introduce ReDial (Reasoning with Dialect Queries),
a benchmark containing 1.2K+ parallel query pairs in Standardized English and
AAVE. We hire AAVE speakers, including experts with computer science back-
grounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K.
With ReDial, we evaluate widely used LLMs, including GPT, Claude, Llama,
Mistral, and the Phi model families. Our findings reveal that almost all of these
widely used models show significant brittleness and unfairness to queries in
AAVE. Our work establishes a systematic and objective framework for analyz-
ing LLM bias in dialectal queries. Moreover, it highlights how mainstream LLMs
provide unfair service to dialect speakers in reasoning tasks, laying a critical foun-
dation for relevant future research.1

1 INTRODUCTION

Over the last few decades, linguistic research has firmly established that language naturally varies
along social, geographic, and demographic dimensions (Chambers & Trudgill, 1998). Such dialec-
tal variation is one of the most salient forms of linguistic diversity. Speakers of “non-standard”
dialects are known to experience implicit and explicit discrimination in everyday situations, includ-
ing housing, education, employment, and the criminal justice system (Baugh, 2005; Adger et al.,
2014; Rickford & King, 2016; Drożdżowicz & Peled, 2024). As Large Language Models (LLMs)
increasingly serve a broad and rapidly expanding user base (Milmo, 2023; La Malfa et al., 2024), it
is critical to understand how they interact with diverse linguistic communities.

In this work, we examine LLMs’ dialect robustness and fairness. For robustness, adversar-
ial robustness provides a consolidated framework to test LLMs on slight variations of existing
tasks (Moradi & Samwald, 2021; Jin et al., 2023). Dialects reformulate a problem while maintaining
its semantics, i.e., they test what has been referred to as semantic robustness (Malfa & Kwiatkowska,
2022). For fairness, recent research has demonstrated that LLMs exhibit biases against non-standard
dialect queries, predominantly assessed in language and social analysis tasks (Sap et al., 2019; Ziems
et al., 2023; Hofmann et al., 2024). Equally relevant, yet less studied, are tasks that require reason-
ing abilities for problem-solving, decision-making, and critical thinking (Wason, 1972; Huth, 2004;
Huang & Chang, 2022; Qiao et al., 2022). For instance, algorithm-related tasks (e.g., generation,
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1Code and data can be accessed here.

1

https://anonymous.4open.science/r/redial_eval-0A88


Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Logic

Consider the following premises:  
“All bears in zoos are not wild. Some bears are in zoos.” 
Assuming no other commonsense or world knowledge, is the 
sentence  
”Not all bears are wild.” necessarily true, necessarily false, or 
neither?

Math

John is raising money for a school trip. He has applied for help 
from the school, which has decided to cover half the cost of the 
trip.  
How much money is John missing if he has $50 and the trip costs 
$300?

Algorithm

Write a function  
python_function(numbers: List[float], threshold:float) -> bool  
to realize the following functionality:  
[…]

Aight, so here you gonna write a function called  
python_function(numbers: List[float], threshold: float) − > bool  
that gon’ do this following functionality:  
[…]

Aight, check this. You got 'em premises right here:  
“All bears in zoos ain't considered wild. There are some bears 
livin' in zoos.”  
Ain't no using no other commonsense or world knowledge, you 
gon' try find out if the sentence  
“Not every bear out there be wild”. necessarily true, necessarily 
false, or neither?

John been raisin' money fo' a school trip. He done ask the school 
fo' help, and they decided they gon' be coverin' half the trip 
cost.  
How much money John be missin' if he got $50, and the trip cost 
$300.

Standardized AAVERewritten

Integrated

To try fishing for the first time, here are the steps and the times 
needed for each step 
Step 1. drive to the outdoor store (10 minutes) 
[…]

If you finna go fish for the first time, here’s what you got to 
know and the times you need for each step. 
Step 1. To kick things off, pull up to the outdoor store (10 minutes) 
[…]

Figure 1: ReDial is a dialect reasoning benchmark composed of 1, 200+ SE-AAVE parallel queries.
Its source data comes from existing benchmarks in SE. AAVE speakers are hired to rewrite each
instance in their dialect but preserve their original intent, meaning, and ground truth output label to
form their AAVE counterparts.

Category Algorithm (25.7%) Logic (29.8%) Math (24.7%) Intergrated (19.7%) Total
Source HumanEval MBPP LogicBench Folio GSM8K SVAMP AsyncHow -

Size 164 150 200 162 150 150 240 1,216

Table 1: ReDial contains 1, 216 fully-annotated parallel prompts for four categories, drawn from
seven data sources. Each category contribution to the total amount is reported in percentage points
in brackets.

debugging, etc.) figure prominently in real user queries, as reflected by their first place on the Are-
naHard quality board (Li et al., 2024) and their third place on the WildChat frequency board (Zhao
et al., 2024).

However, existing dialectal benchmarks (e.g., Ziems et al., 2023) do not cover these tasks, and cur-
rent popular reasoning benchmarks such as HumanEval (Chen et al., 2021) and GSM8K (Cobbe
et al., 2021) are constructed in Standardized English (SE). This could disadvantage dialect speakers
in real-world applications like educational assessment (González-Calatayud et al., 2021), personal-
ized recommendation (Kantharuban et al., 2024), and even multimodal tasks (e.g., voice assistant)
Martin & Wright (2022), ultimately forcing them to shift their language styles to SE (Cunningham
et al., 2024) in order to access the full benefits of modern technologies.

We present the first study that systematically and objectively evaluates LLM fairness and robustness
in reasoning tasks expressed in a non-standard dialect. We choose AAVE since around 33 million
people worldwide and approximately 80% of African Americans in the United States speak AAVE,
with reports of discriminative behaviors in various scenarios (Lippi-Green, 1997; Purnell et al., 1999;
Massey & Lundy, 2001; Grogger, 2011; Rickford & King, 2016), and some Standardized English
speakers have difficulty processing AAVE (Rickford & King, 2016). We hire AAVE speakers to
manually rewrite instances from seven popular SE reasoning benchmarks into AAVE (Section 2.1).
Our approach has unique advantages compared with prior works which either (i) rely on predefined
lexical or morphosyntactic transformation rules (Ziems et al., 2022; 2023), which may overlook
subtle contextual nuances, or (ii) use LLM as translators (Gupta et al., 2024), which may have the
very biases that our research wants to unveil (Fleisig et al., 2024; Smith et al., 2024).

We introduce ReDial (Reasoning with Dialect Queries), the first high-quality, end-to-end human-
annotated SE-AAVE parallel dataset for reasoning tasks (Section 2). ReDial contains over 1.2K
SE-AAVE prompt pairs covering four canonical reasoning categories: algorithm, math, logic, and
integrated reasoning (tasks that require composing multiple reasoning skills). By anchoring these
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queries to known correct answers and employing human-based rewriting, ReDial furnishes an objec-
tive measure of dialect fairness and robustness. It also avoids the pitfalls of LLM-based evaluations,
which can be inherently biased (Zheng et al., 2023; Chen et al., 2024; Shi et al., 2024).

Using ReDial, we benchmark widely used LLMs, including GPT-o1, GPT-4o, Claude-3.5-Sonnet,
LLaMA-3.1-70B-Instruct, and others (Section 3). We find that almost all models experience sta-
tistically significant performance drops on AAVE prompts, despite their semantic equivalence to
their SE counterparts. On average, we observe a relative performance reduction of more than 10%.
This discrepancy persists even with advanced prompting techniques like Chain-of-Thought (CoT)
prompting (Kojima et al., 2022; Wei et al., 2022), indicating that current LLMs are both brittle and
unfair with dialectal inputs.

To understand these gaps, we further analyze potential causes. Our analysis reveals that the brittle-
ness of LLMs with AAVE prompts arises from a combination of dialect-specific morphosyntactic
features and nuanced conversational norms. Experiments with synthetic perturbations and AAVE-
specific feature injections show that while these factors contribute to performance degradation, they
fail to replicate the severity observed with human-annotated data. This highlights the limitations of
rule-based transformations and the critical need for high-quality, context-rich datasets like ReDial
to evaluate LLM fairness and robustness effectively.

In summary, in this paper:

1. We introduce ReDial, the first high-quality, end-to-end human-annotated AAVE-SE paral-
lel reasoning benchmark spanning four foundational reasoning tasks.

2. We show that leading LLMs exhibit significant unfairness and brittleness on AAVE prompts
compared to their SE counterparts.

3. We identify that the brittleness of LLMs with AAVE prompts stems from a combination of
dialect-specific morphosyntactic features and nuanced conversational norms, which cannot
be captured by synthetic transformations and highlight the critical importance of human
annotation.

2 DATASET

ReDial (Reasoning with Dialect Queries) is a benchmark of more than 1.2K parallel Standard En-
glish – African American Vernacular English (SE-AAVE) query pairs. Table 1 provides an overview
of the distribution, and Figure 1 along with Appendix A.2 present illustrative examples.

Following Zhu et al. (2023a), ReDial includes four canonical reasoning tasks—algorithm, logic,
math. We additionally consider integrated reasoning as a compositional task requiring multiple
skills. The task formulation of ReDial is linguistically diverse, addresses cornerstone problems in
human reasoning, and is of particular interest as it is challenging for LLMs.

We first describe the data sources and sampling strategies (Section 2.1), and then detail the AAVE
rewriting and validation processes that ensure high data quality (Section 2.2).

2.1 DATA SOURCING

We construct a highly curated dataset by drawing upon seven established benchmarks covering dif-
ferent aspects of reasoning. For each source, we provide key references, task descriptions, and
sample sizes. Additional examples can be found in Appendix A.1.

Algorithm HumanEval (Chen et al., 2021) consists of 164 human-written code completion in-
stances. We convert and include all these code completion headings into instruction-following nat-
ural language queries following the paradigm of InstructHumanEval.2

Algorithm MBPP Austin et al. (2021) includes 1, 000 code generation queries. We randomly
sample 150 instances from its sanitized test set (Liu et al., 2023).

2https://huggingface.co/datasets/codeparrot/instructhumaneval
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Logic
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Integrated
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Figure 2: Annotation and cross-validation of ReDial instances. We first sample instances from
datasets of four canonical reasoning tasks to compose the source data, then we hire AAVE speakers
to rewrite the instances in their dialect. To ensure the quality, we conduct naturalness check by
AAVE speakers and correctness check by non-AAVE speakers and LLMs. We reannotate instances
that do not pass the quality checks and iterate the process until the data meet our criteria. Finally,
we combine the source data and AAVE rewriting to obtain ReDial.

Math GSM8K (Cobbe et al., 2021) is a graduate-level math word problem dataset containing
8, 790 instances. We randomly sample 150 instances from its test set.

Math SVAMP (Patel et al., 2021) is a collection of 1, 000 elementary-school math problems. We
randomly sample 150 instances from its test set.

Logic LogicBench (Parmar et al., 2024) comprises various logic questions in both binary clas-
sification and multiple-choice formats. We sample 100 binary and 100 multiple-choice questions,
collecting 200 samples in total.

Logic Folio (original+perturbed) (Han et al., 2022; Wu et al., 2023) Original Folio is a manually
curated logic benchmark. We select 81 instances along with their manually perturbed versions from
Wu et al. (2023), yielding 162 instances.

Intergrated AsyncHow (Lin et al., 2024) is a planning reasoning benchmark. LLMs must interpret
natural language descriptions (i.e., logic), find different possible paths in the graph (i.e., algorithm),
and then calculate and compare the time cost for these paths (i.e., math) to reach the correct answer.
We use stratified sampling based on the dataset’s complexity metrics and include 240 instances.

2.2 ANNOTATION AND QUALITY ASSURANCE

After data sourcing, we hire AAVE speakers to rewrite each instance in AAVE. We schematize our
annotation and validation in Figure 2 and describe them below, by which we ensure the consistency,
representativeness, and neutrality of our dataset.

Annotation. We hire and ask AAVE speakers to rewrite each SE query so that it sounds natural
to AAVE speakers while retaining all critical information (e.g., numerical values, logical condi-
tions, and technical details). For algorithm-related tasks involving code, we hire annotators with a
background in computer science to keep the logic and semantics of the code tasks.3

Validation. We then perform a careful quality check to ensure both naturalness and correctness.
First, we ask annotators to cross-check and edit each others’ annotations to make sure that the
annotations are natural to AAVE speakers. Second, to ensure correctness, we first have non-AAVE

3Details on annotator compensation, qualifications, guidelines, and demographic distribution are presented
in Appendix A.3.
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speakers manually check the essential information, then conduct a sanity check with GPT-4o for
the correctness of rewriting (details in Appendix A.4). We manually check data that GPT-4o flags
as invalid to see if all essential information is preserved. No instance is rejected solely based on
the LLM’s judgment. We return invalid instances to AAVE speakers for correction and iterate the
process until all data pass the check.

After these efforts, we obtain ReDial: a high-quality, end-to-end human-annotated SE–AAVE par-
allel dataset comprising over 1.2K instances spanning four canonical reasoning tasks. In the rest of
this paper, we refer to the SE portion of the dataset as SE ReDial and the AAVE portion as AAVE
ReDial.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

3.1.1 MODELS

We test five families of models, two proprietary and three open-source. The rationale is to bench-
mark widely used LLMs with impressive reasoning performance. All experiments were conducted
between September and December 2024.

GPT. We use GPT-o1 (OpenAI), GPT-4o (OpenAI, 2024), GPT-4 (Achiam et al., 2023), GPT-
3.5-turbo (Achiam et al., 2023),4 as a family of closed-source models to compare with open-source
models for dialect robustness. In particular, o1 is trained using large-scale reinforcement learning
(RL) to reason through a chain of thoughts and scales inference time computation to achieve highly
complex reasoning paths. It has demonstrated significant improvements in reasoning tasks (Ope-
nAI). We use GPT-o1 model to understand how RL reasoning post-training affects LLMs’ dialect
robustness and fairness.

Claude. Developed by Anthropic, the Claude 3 model family represents a widely-used proprietary
LLM. For our experiments, we utilize the Claude 3.5 Sonnet model (Anthropic).

LLaMA. We use LLaMA-3-8B / 70B-Instruct and LLaMA-3.1-70B-instruct (Dubey et al., 2024)
which are reported for comparable performance with proprietary GPT models.

Mistral / Mixtral. We use Mistral-7B-Instruct-v0.3 (Jiang et al., 2023) and Mixtral-8x7B-
Instruct-v0.1 (Jiang et al., 2024). Mistral-7B-Instruct-v0.3 is reported to be outstanding in reasoning;
with Mixtral-8x7B-Instruct-v0.1, we can understand whether Mixture-of-Expert (MoE) architec-
tures enhance dialect robustness.

Phi. We use Phi-3-Mini / Small / Medium-128K-Instruct (Abdin et al., 2024; Gunasekar et al.,
2023) in our experiment. Phi-3 models, pre-trained on carefully designed “textbook” data, are
reported for impressive performance in reasoning despite their small sizes (3.8/7/14B parameters
each). We use these models to understand how highly curated pre-training data affect LLMs’ dialect
robustness and fairness.

3.1.2 IMPLEMENTATION AND EVALUATION

Implementation. We set the temperature to zero for the main experiments to ensure maximum
reproducibility. We report two prompting methods in our main results: (i) direct prompting LLMs
with task instances, which resembles general real-life use cases the most (Direct) and (ii) zero-shot
Chain of Thought (Wei et al., 2022; Kojima et al., 2022) (CoT, i.e., adding instructions in the spirit
of “Let’s think step by step” on top of task descriptions, which resembles expert user

4Proprietary model API version information: o1: GPT-o1-preview; gpt-4o: 2024-05-13; gpt-4: 2024-05-03;
gpt-3.5-turbo: 2023-11-06.
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Model Setting
Algorithm Logic Math Integrated All
SE AAVE SE AAVE SE AAVE SE AAVE SE AAVE ∆

GPT-o1 Direct 0.818 0.825 0.947 0.923 0.878 0.815 0.942 0.925 0.892 0.866 -0.026

GPT-4o
Direct 0.790 0.761 0.933 0.930 0.818 0.768 0.783 0.312 0.832 0.716 -0.116
CoT 0.771 0.761 0.950 0.920 0.815 0.771 0.762 0.662 0.826 0.784 -0.043

GPT-4
Direct 0.742 0.723 0.840 0.713 0.796 0.749 0.217 0.133 0.678 0.612 -0.067
CoT 0.723 0.608 0.920 0.813 0.793 0.743 0.283 0.058 0.706 0.590 -0.115

GPT-3.5-turbo
Direct 0.653 0.631 0.667 0.443 0.533 0.544 0.200 0.129 0.531 0.460 -0.072
CoT 0.646 0.551 0.753 0.543 0.503 0.425 0.075 0.067 0.517 0.416 -0.101

Claude-3.5-Sonnet
Direct 0.771 0.806 0.970 0.930 0.851 0.776 0.879 0.717 0.865 0.810 -0.055
CoT 0.774 0.736 0.953 0.940 0.859 0.796 0.900 0.771 0.868 0.811 -0.058

LLaMA-3.1-70B
Direct 0.726 0.653 0.767 0.893 0.702 0.630 0.392 0.112 0.663 0.599 -0.064
CoT 0.723 0.653 0.880 0.870 0.809 0.768 0.579 0.500 0.759 0.711 -0.049

LLaMA-3-70B
Direct 0.682 0.643 0.907 0.887 0.663 0.552 0.158 0.067 0.628 0.562 -0.066
CoT 0.697 0.646 0.923 0.887 0.616 0.561 0.517 0.350 0.693 0.622 -0.072

LLaMA-3-8B
Direct 0.535 0.510 0.827 0.800 0.478 0.464 0.025 0.067 0.489 0.480 -0.009
CoT 0.532 0.478 0.827 0.800 0.475 0.492 0.029 0.025 0.488 0.472 -0.016

Mixtral-8x7B
Direct 0.452 0.401 0.520 0.340 0.414 0.240 0.100 0.075 0.388 0.274 -0.114
CoT 0.468 0.411 0.687 0.567 0.384 0.285 0.133 0.071 0.431 0.345 -0.086

Mistral-7B
Direct 0.331 0.255 0.400 0.213 0.315 0.271 0.096 0.075 0.297 0.214 -0.083
CoT 0.312 0.245 0.453 0.347 0.323 0.293 0.083 0.083 0.305 0.252 -0.053

Phi-3-Medium
Direct 0.545 0.433 0.867 0.790 0.500 0.470 0.050 0.038 0.513 0.454 -0.059
CoT 0.548 0.455 0.860 0.827 0.492 0.439 0.067 0.029 0.513 0.458 -0.055

Phi-3-Small
Direct 0.615 0.252 0.820 0.760 0.530 0.525 0.058 0.062 0.530 0.421 -0.109
CoT 0.570 0.194 0.893 0.843 0.544 0.522 0.096 0.079 0.549 0.429 -0.119

Phi-3-Mini
Direct 0.557 0.427 0.520 0.550 0.605 0.525 0.021 0.042 0.456 0.410 -0.046
CoT 0.576 0.443 0.773 0.750 0.622 0.528 0.017 0.021 0.528 0.461 -0.067

Table 2: We report model pass rates using direct and CoT prompting on ReDial, including individual
performances on subtasks and overall performance/gap (in column all). We follow the recommenda-
tions from Dror et al. (2018) and test the statistical significance of performance differences between
SE and AAVE on all results using the McNemar’s test for binary data (McNemar, 1947). We correct
p-values for multiple measurements using the Holm-Bonferroni method (Holm, 1979). Statistically
significant drops are in bold. Details in Appendix A.7.

prompts to improve model performance). For GPT-o1, we only test the direct prompting as its
inherent CoT reasoning pattern.5 We report further implementation details in Appendix A.5.6

Evaluation. To unify evaluation metrics, we consider the pass rate for all tasks. For Algorithm, we
consider Pass@1 using all base and extra unit test cases in EvalPlus (Liu et al., 2023), which results
in either pass or fail for every code generation. We convert all other task measures of correctness or
incorrectness to pass or fail.

3.2 EXPERIMENTAL RESULTS

We report pass rates for ReDial in Table 2 and 3, and summarize the main results of our experiments.

5We also test non-zero temperatures and report results in Appendix A.6.
6We deliberately avoid testing advanced prompting methods, such as Tree of Thought (Yao et al., 2024)

and Self-Refine (Madaan et al., 2024). Our focus is on evaluating how LLMs perform when prompted for
everyday use by dialect users, which is critical for assessing fairness in LLMs. Similarly, we do not fine-tune
any models, as our study aims to investigate biases inherent in base models. The effects of fine-tuning are
beyond the scope of this study.

6



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Algorithm Math Logic Integrated All

SE 0.632 0.622 0.768 0.302 0.597
AAVE 0.563 0.564 0.706 0.212 0.529

∆ -0.069 -0.058 -0.062 -0.090 -0.068

Table 3: Pass rates by task averaged across responses from all
models with direct prompting. In bold, results statistically de-
viate according to McNemar’s tests applied to AAVE and SE
(i.e., models have significant drops in AAVE). We also report
the SAE-AAVE absolute delta in performance.

Models SE AAVE

LLaMA-3.1
-70B-Instruct 9.4 17.5

Phi-3-Medium
-128K-Instruct 5.9 12.5

Phi-3-Mini
-128K-Instruct 7.1 15.9

Table 4: Averaged perplex-
ities across instances calcu-
lated by different models on
SE/AAVE ReDial.

All Models are Brittle. All models experience performance drops in AAVE compared to SE Re-
Dial, and these drops are statistically significant in all cases, with the sole exception of LLaMA-3-
8B-Instruct. This indicates that our benchmark poses huge challenges to models, both in terms of
absolute performance and with respect to their dialect robustness and fairness.

The absolute performance gaps commonly range from around 5% to over 10% (∆ in table 2). Specif-
ically, GPT-4o (zero-shot) shows an absolute gap of 11.6%, dropping from an average of 0.832 to
0.716. GPT-4 (CoT) exhibits an 11.5% drop. Mixtral-8x7B-Instruct-v0.1 (zero-shot) shows a par-
ticularly large difference of 11.4% points as well. Interestingly, we found that although the per-
formance drop of GPT-o1 is smaller than other GPT models, but still significant. It indicates that
although further RL post-training on general reasoning and inference scaling can systematically
enhance dialect robustness and fairness, they cannot completely solve the problem.

In short, dialect unfairness and brittleness are identified in all the models we examined, including the
MoE and large reasoning models. This finding indicates that the problem is widespread, non-trivial,
and cannot be easily mitigated by naively changing model architecture or proposing more complex
reasoning paths.

All Tasks are Brittle. When aggregated by task type, AAVE queries cause a statistically signif-
icant performance drop across all these categories (Table 3). For instance, when averaging results
across all models: direct prompting leads to an average 10% relative performance drop.

Interestingly, integrated reasoning tasks, which require multiple reasoning skill compositions, show
some of the largest relative drops (about 30%). This suggests that compositionally complex task
may be more prone to dialect brittleness.

Prompting and Inference Scaling are Brittle. While CoT prompting can slightly reduce the
discrepancy for some models, it fails to close it entirely. For example, GPT-4o’s performance gap
decreases from about 0.116 (zero-shot) to 0.055 (CoT). This suggests that even when models are
given additional reasoning “scaffolding,” their understanding and performance in AAVE remain
comparatively weaker than in SE, which is also in line with our observation of GPT-o1 results. We
also try to bridge the gap by telling the LLMs to rephrase in Standard English then answer the
question, but this does not cancel the performance gap, while only introduces more inference cost
(details in Section A.9).

Model Scaling is Brittle. All model families display some degree of dialect-related performance
degradation. A notable observation is that simply using larger models does not inherently improve
robustness to AAVE. For example, even LLaMA-3.1-70B-Instruct, among the largest and most capa-
ble tested models, suffers from significant performance drops on AAVE queries. This pattern holds
across the board, indicating that scaling model size alone is insufficient to address dialect-related
performance disparities.

4 DISCUSSIONS

This section investigates the potential reasons for AAVE’s brittleness. We show that LLMs’ brit-
tleness with AAVE reasoning queries cannot be simply attributed to the lack of understanding of
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this dialect or simple lexical features. The nuanced conversational norms of AAVE also play an
important role in the problems for LLMs.

4.1 GENERAL UNDERSTANDING AND MORPHOSYNTACTIC FEATURES

One possible explanation for the performance drop is that LLMs cannot process AAVE dialect. We
thus computed perplexities on ReDial AAVE vs. SAE prompts. Indeed, Table 4 confirms that LLMs
exhibit higher perplexities on dialect than SE.

However, is the insufficient understanding the only reason that is causing LLMs’ performance to
drop? To answer it, we gradually inject typos in SE ReDial by replacing/deleting/adding word-
s/characters, such that we make the input texts more difficult for LLMs (i.e., the measured perplex-
ity goes up). We find that while these perturbations degrade model performance, the drop does not
reach the severity observed with natural AAVE data on large-scale models (see full results in Sec-
tion A.8). This discrepancy suggests that AAVE brittleness is not solely due to the general difficulty
in processing. There are some dialect-specific reasons for the performance drop.

If language-agnostic processing ability cannot explain LLMs’ brittleness, can we attribute the prob-
lem to morphosyntactic AAVE features? Following Ziems et al. (2022; 2023), we use morphosyn-
tactic transformation rules to inject AAVE features into SE ReDial. We find that performance degra-
dation generally intensifies as the density of AAVE-specific features increases when we gradually
inject AAVE features into standard ReDial (see full results in Section A.10). This suggests that these
features play a significant role in diminishing model performance.

However, even under the most extreme synthetic perturbations, performance drops are notably less
severe than those observed with human-rewritten prompts. This underscores the critical impor-
tance of our high-quality human-annotated dialect data ReDial for evaluating LLM fairness and
robustness. Synthetic rule-based transformations provide valuable insights, yet fail to capture the
contextual depth of real-world dialect usage.

4.2 AAVE CONVERSATIONAL NORMS

We use the mutual information between the token distributions of SE and AAVE ReDial to find that
the top 5 most informative AAVE features in terms of distinguishing them from SE are ’, up, in,
gon, and gotta. We note that many of these features are not well-known AAVE-specific features
(e.g., up). Through a further investigation of our dataset, we find that these lexicons are associated
with phrase-level AAVE constructions. For instance, instead of saying ...encode the answer... in
Standard English, AAVE instruction says ...wrap it up.... This finding is particularly interesting
as we find that, in addition to previous linguistic observations of AAVE-specific morphosyntactic
features, there are conversational norms of the dialect such as nuanced uses of phrases.

We compute Spearman’s correlation between the frequency of the features we find in each instance
and their corresponding performance drop. Indeed, these features play a significant role in predict-
ing GPT-4o’s performance degradation (r=-0.318, p<0.001). We further implement and analyze 12
rule-based AAVE features following Ziems et al. (2022) (details in Appendix A.11), which are well
documented in linguistic literature such as ”finna” as a maker of immediate future Nguyen & Grieve
(2020). We notice that the influential lexical features are a subset of the feature set discovered by
mutual information (i.e., some of the actual influential features are not encoded in synthetic transfor-
mation rules). Consequently, the influence of synthetic features is not as strong as those discovered
by mutual information (r=-0.256, p<0.001). This means that simple rule-based transformations
that implement the most salient morphosyntactic AAVE features may not be able to capture
rich, context-dependent use of the dialect and, therefore fall short in predicting LLMs’ perfor-
mance in real workflows.

Aided by GPT-o1 preview to filter the vast amount of data, we conducted a linguistically informed
analysis of LLMs’ most frequent errors on AAVE. For the algorithmic tasks, grammatical construc-
tions and non-standard verb forms (e.g., finna’, ’em), omission of articles and auxiliary verbs may
cause the model to misinterpret references and function naming conventions. For example, GPT-4o
interprets you gon’ write a python function, python function as a general statement rather than a di-
rective to name the function. On logic tasks, the frequent use of double negatives, zero copula, and
inverted conditionals introduces structural ambiguities. For example, the construct He don’t take no
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breaks can invert intended meanings, leading the model to misunderstand conditional statements.
On math, informal expressions, unclear quantity references, and non-standard comparative cause er-
roneous parsing of numerical information and confusion over collective versus individual quantities.
Informal phrasings like half as much as he be runnin’ and ambiguous comparative expressions (4
fewer boxes of apple pie than on Sunday) can cause the model to misinterpret numerical relation-
ships, resulting in errors when calculating totals, differences, or fractions. On the integrated task,
phonetic spellings, colloquial connectors, and inverted word orders limit the model’s understand-
ing of concurrency and stepwise instructions. Such dialectal nuances highlight the necessity of our
dataset and also call for more efforts to collect more human data for relevant purposes.7

5 RELATED WORK

Dialect studies in natural language processing. Previous works on AAVE studies in natural
language processing mostly focus on non-reasoning-heavy tasks such as POS tagging (Jørgensen
et al., 2015; 2016), language identification and dependency parsing (Blodgett et al., 2016), automatic
captioning (Tatman, 2017), and general language generation (Deas et al., 2023). AAVE is also found
to be more likely to trigger false positives in hate speech identifiers (Davidson et al., 2019; Sap
et al., 2019) due to specific word choices (Harris et al., 2022), be considered negative by automatic
sentiment classifier (Groenwold et al., 2020), and cause covert biases in essential areas of social
justice (Hofmann et al., 2024). Relevant studies (Ziems et al., 2022; Gupta et al., 2024) also find
that rule-based AAVE feature perturbations can downgrade language model performance in a wide
range of tasks covered by GLUE (Wang, 2018).

More generally, dialects in world languages pose challenges to natural language processing systems.
Ziems et al. (2023) find that auto-encoder models are brittle on rule-based English dialect feature
perturbations. Fleisig et al. (2024) report that English dialect speakers perceive responses generated
by chatbots to be more negative than Standardized English (SE) prompts. Faisal et al. (2024) find
that world dialects cause problems in tasks including dependency parsing (Scherrer et al., 2019) and
machine translation (Mirzakhalov, 2021) on mBERT and XLM-R (Conneau et al., 2020).

Fairness and Robustness of Large Language Models. LLMs are widely testified to be both unfair
and brittle. They introduce unfair performance (Huang et al., 2023; Dong et al., 2024) and cost
(Petrov et al., 2024) to users across different languages, exacerbate social imbalance by marginaliz-
ing minority groups in various aspects including gender (Kotek et al., 2023; Fraser & Kiritchenko,
2024), race (Hofmann et al., 2024; Wang et al., 2024), and culture (Naous et al., 2023; Tao et al.,
2024). They also show different performance to reasoning tasks in different languages (Huang et al.
2023; 2024; Ranaldi et al. 2024; inter alia). For the first time, our study provides extensive empirical
evidence that LLMs exhibit unfairness in reasoning tasks. This bias specifically affects speakers of
certain dialects within a single language.

Previous works report that LLMs are very sensitive to slight variations of prompts by introducing
typos or paraphrasing in SE (Elazar et al., 2021; Liang et al., 2022; Raj et al., 2022; Zhu et al.,
2023b; Lin et al., 2024). In this work, we consider a novel application of using human-written
perturbations in AAVE by asking humans to rewrite instances to their dialect and evaluate LLM
robustness towards these natural perturbations, which have proven to cause LLMs to be more brittle
than synthetic typo-style (Section 4.1) or linguistic-rule-based (Appendix A.10) perturbations.

6 CONCLUSION

Our study is the first attempt to objectively evaluate the dialect robustness and fairness of LLMs
across reasoning tasks. We introduce ReDial, a dataset comprising over 1.2K parallel prompts in
Standardized English and African American Vernacular English (AAVE) tailored to reasoning tasks:
algorithm, logic, math, and integrated reasoning. Extensive empirical evidence on ReDial demon-
strates that LLMs exhibit significant unfairness and brittleness when reasoning tasks are expressed
in AAVE. These findings underscore the unfairness to dialect users and LLMs’ brittleness with nat-
ural prompt variations with the same semantics. We advocate for further research to enhance dialect
fairness and robustness of LLMs, ensuring equal service for all linguistic groups and demographics.

7We also provide more analysis comparing reasoning chains in AAVE/SE ReDial in Section A.12.
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A APPENDIX

A.1 SOURCE DATASET ILLUSTRATION

A.1.1 ALGORITHM

Original HumanEval

from typing import List

def has_close_elements(numbers:
List[float], threshold: float)
-> bool:

""" Check if in given list of
numbers, are any two numbers
closer to each other than
given threshold.
>>> has_close_elements([1.0,
2.0, 3.0], 0.5)
False
>>> has_close_elements([1.0,
2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

InstructHumanEval Used in the Paper

Write a function has close elements(numbers: List[float], threshold: float) -> bool to solve
the following problem:
Check if in given list of numbers, are any two numbers closer to each other than given
threshold.
>>> has close elements([1.0, 2.0, 3.0], 0.5)
False
>>> has close elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True

MBPP

Write a python function to remove first and last occurrence of a given character from the
string.
Your code should pass these tests:
assert remove Occ(“hello”,“l”) == “heo”
assert remove Occ(“abcda”,“a”) == “bcd”
assert remove Occ(“PHP”,“P”) == “H”
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A.1.2 LOGIC

LogicBench

If an individual consumes a significant amount of water, they will experience a state of
hydration. Conversely, if excessive amounts of sugar are ingested, a sugar crash will ensue.
It is known that at least one of the following statements is true: either the Jane consumes
ample water or she will not experience a sugar crash. However, the actual veracity of either
statement remains ambiguous, as it could be the case that only the first statement is true,
only the second statement is true, or both statements are true.
Can we say at least one of the following must always be true? (a) she will feel hydrated and
(b) she doesn’t eat too much sugar

Folio

Consider the following premises: “People in this club who perform in school talent shows
often attend and are very engaged with school events. People in this club either perform in
school talent shows often or are inactive and disinterested community members. People in
this club who chaperone high school dances are not students who attend the school. All peo-
ple in this club who are inactive and disinterested members of their community chaperone
high school dances. All young children and teenagers in this club who wish to further their
academic careers and educational opportunities are students who attend the school. Bonnie
is in this club and she either both attends and is very engaged with school events and is a
student who attends the school or is not someone who both attends and is very engaged with
school events and is not a student who attends the school.”
Assuming no other commonsense or world knowledge, is the sentence “Bonnie performs
in school talent shows often.” necessarily true, necessarily false, or neither? Answer either
“necessarily true”, “necessarily false”, or “neither”.

A.1.3 MATH

GSM8K

Given a mathematics problem, determine the answer. Simplify your answer as much as pos-
sible and encode the final answer in <answer></answer> (e.g., <answer>1</answer>).
Question: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?
Answer:

SVAMP

Given a mathematics problem, determine the answer. Simplify your answer as much as pos-
sible and encode the final answer in <answer></answer> (e.g., <answer>1</answer>).
Question: Winter is almost here and most animals are migrating to warmer countries. There
are 41 bird families living near the mountain. If 35 bird families flew away to asia and 62
bird families flew away to africa How many more bird families flew away to africa than
those that flew away to asia?
Answer:
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A.1.4 COMPREHENSIVE

AsyncHow

To create a video game, here are the steps and the times needed for each step.
Step 1. Learn the basics of programming (180 days)
Step 2. Learn to use a language that is used in games (60 days)
Step 3. Learn to use an existing game engine (30 days)
Step 4. Program the game (90 days)
Step 5. Test the game (30 days)

These ordering constraints need to be obeyed when executing above steps:
Before starting step 2, complete step 1.
Before starting step 3, complete step 1.
Before starting step 4, complete step 2.
Before starting step 4, complete step 3.
Before starting step 5, complete step 4.

Question: Assume that you need to execute all the steps to complete the task and that infinite
resources are available. What is the shortest possible time to create a video game? Answer
the time in double quotes.
Answer:

A.2 REDIAL SAMPLES

Algorithm
Standardized

Write a function python function(numbers: List[float], threshold: float) − > bool to realize
the following functionality:
Check if in given list of numbers, are any two numbers closer to each other than given
threshold.
>>> python function([1.0, 2.0, 3.0], 0.5)
False
>>> python function([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
Generate a Python function to solve this problem. Ensure the generated function is named
as python function.
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Algorithm
AAVE

Aight, so here you gonna write a function called python function(numbers: List[float],
threshold: float) − > bool that gon’ do this following functionality:
Aight, Listen. Say you got a list of numbers yeah? Now, we trynna see if any two of ’em
numbers is closer to each other than a number you give, feel me?So, this is what we ’bout to
do:
>>> python function([1.0, 2.0, 3.0], 0.5)
False
That’s gon’ give you False cuz ain’t none of ’em numbers close enough.But, if you hit it
like:
>>> python function([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
Bet you gettin’ True, cuz this time some of ’em numbers real tight.
You gotta whip up a Python function to handle this problem. You gon’ make sure the func-
tion name right, which gotta python function.

Math
Standardized

Given a mathematics problem, determine the answer. Simplify your answer as much as
possible and encode the final answer in < answer >< /answer > (e.g., < answer >
1 < /answer >).
Question: John is raising money for a school trip. He has applied for help from the school,
which has decided to cover half the cost of the trip. How much money is John missing if he
has $50 and the trip costs $300?
Answer:

Math
AAVE

Bet, so here’s whatsup. Youn finna get a math problem, and you gon’ tryna find the
answer out. You gotta simplify that answer as much as possible tehn wrap it up inside
< answer >< /answer > (somethin’ like this:, < answer > 1 < /answer >).
Question: John been raisin’ money fo’ a school trip. He done ask the school fo’ help, and
they decided they gon’ be coverin’ half the trip cost. How much money John be missin’ if
he got $50, and the trip cost $300.
Answer:

Logic
Standardized

Consider the following premises: ”All bears in zoos are not wild.
Some bears are in zoos. ”
Assuming no other commonsense or world knowledge, is the sentence ”Not all bears are
wild.” necessarily true, necessarily false, or neither? Answer either ”necessarily true”,
”necessarily false”, or ”neither”. Encode the final answer in < answer >< /answer >
(e.g., < answer >necessarily true< /answer >).
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Logic
AAVE

Aight, check this. You got ’em premises right here: ”All bears in zoos ain’t considered wild.
There are some bears livin’ in zoos. ”
Ain’t no using no other commonsense or world knowledge, you gon’ try find out if the
sentence ”Not every bear out there be wild.” necessarily true, necessarily false, or neither?
Pick either ”necessarily true”, ”necessarily false”, or ”neither”. Then wrap that answer up in
< answer >< /answer > (e.g., < answer >necessarily true< /answer >).

Comprehensive
Standardized

To try fishing for the first time, here are the steps and the times needed for each step
Step 1. drive to the outdoor store (10 minutes)
Step 2.compare fishing poles (30 minutes)
Step 3. buy a fishing pole (5 minutes)
Step 4. buy some bait (5 minutes)
Step 5. drive to a lake (20 minutes)
Step 6. rent a small boat (15 minutes)

These ordering constraints need to be obeyed when executing above steps:
Step 1 must precede step 2.
Step 2 must precede step 3.
Step 2 must precede step 4.
Step 3 must precede step 5.
Step 4 must precede step 5
Step 5 must precede step 6.

Question: Assume that you need to execute all the steps to complete the task and that infinite
resources are available. What is the shortest possible time to complete this task? What is
the shortest possible time to complete this task? Encode the final answer in < answer ><
/answer > (e.g., < answer >1 min< /answer >).
Answer:
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Comprehensive
AAVE

If you finna go fish for the first time, here’s what you got to know and the times you need
for each step.
Step 1. To kick things off, pull up to the outdoor store (10 minutes)
Step 2. Check out which one of them fishing poles is good and which one is not (30 minutes)
Step 3. Cop a fishing pole (5 minutes)
Step 4.Get yourself some bait as well (5 minutes)
Step 5. Head out to a lake (20 minutes)
Step 6.rent yourself a small boat (15 minutes)

These ordering constraints gotta be followed when you doin’ ’em steps above: You gotta
deal with 1 before hittin’ the 2.
You gotta deal with 2 before hittin’ the 3.
You gotta deal with 2 before hittin’ the 4.
You gotta deal with 3 before hittin’ the 5.
You gotta deal with 4 before hittin’ the 5.
You gotta deal with 5 before hittin’ the 6.

Question: Assumin’ you outta do all ’em steps to finish up the task, and you got infinite
resources. What the shortest time be to knock this task out? Wrap that answer up in <
answer >< /answer > (e.g., < answer >1 min< /answer >).
Answer:

A.3 RUBRICS

A.3.1 EMPLOYMENT INFORMATION

We work with data vendors to employ 13 annotators in total for our task. For algorithm instance
annotation, we specifically hire annotators with computer science backgrounds. Annotators are self-
identified as proficient speakers of African American Vernacular English. We do not pose any hard
constraints in verifying dialect identity as previous studies do (e.g., Ziems et al. (2023)). We note
even within a dialect there can be significant variations on the individual level and that we want
to avoid homogenization and over-simplification of the dialect (King, 2020). Instead, we ask self-
identified annotators to cross-check each other’s annotations and modify if they sound unnatural.

Details of employment are shown below.

Information Collected We do not force disclosure of personal information from our annotators
(e.g., name, age, etc). We only make it mandatory that we collect the annotators’ responses to our
consent form and their annotations of our data.

Demographic information We report information of those (11 annotators) willing to disclose more
demographic information. Annotators’ ages range between 23 and 35 years old, with 2 female and
9 male annotators. 4 of them have Master’s degrees and others have Bachelor’s degrees.

Risk and Consent We note that our base datasets are from publicly available, widely used, peer-
reviewed datasets that adhere to peer-review regulations. Moreover, our tasks are mainly centered
around reasoning, which does not concern sensitive information per se. In addition, we make sure
that annotators understand the risks of the annotation (i.e., although we have tried our best to ensure
the safety of the data, it is still possible that they may feel uncomfortable in the annotation) and their
right to exit the task during the process by signing a consent form prior to the start of the task.

Compensation We offer payment to annotators with hourly rates higher than the U.S. federal mini-
mum wage.

No AI Assistant We explicitly inform our annotators that they should not reply on any AI assistant
tools to help them complete the task. To further ensure this, we design our annotation platform to
disallow copy and paste. The default annotation area for annotators is the original text, which means
that it is easier for annotators to simply edit the text than querying AI assistants.
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A.3.2 ANNOTATION GUIDELINE

You need to translate/rephrase/localize the task input in a way that is natural to the speakers of
your dialect without changing the intention of the prompts. You should not change named entities,
numbers, equations, variable names and other formal devices that are not natural language per se or
those that would affect the intention of the prompts. The translation does not need to be grammatical
or acceptable in standard English. Rather, it should accurately reflect the features of their dialects.
You can add or delete some functional content to make the prompts sound more natural (e.g., adding
fillers). However, you should keep the vital information complete and unchanged.

You should NOT change information that would invalidate the output given the question. If you
are unsure about any specific parts, leave them unchanged. Especially, you should not change the
following parts:

(i) numbers (e.g. 180 in 180 days)

(ii) units (e.g. days in 180 days)

(iii) equations and symbols (e.g., \[f(x) = \left \{ \begin{array}{cl} ax+3, & \text{ if }x > 2 in
Let \[f(x) = \left \{ \begin{array}{cl} ax+ 3, & \text{ if }x > 2)

(iv) proper nouns (e.g., Natalia in Natalia sold clips to 48 of her friends)

(v) function names, variables, data types, and input-output examples (e.g., >>>
has close elements([1.0, 2.0, 3.0], 0.5) False >>> has close elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0],
0.3) True in Check if in given list of numbers, are any two numbers closer to each
other than given threshold. >>> has close elements([1.0, 2.0, 3.0], 0.5) False >>>
has close elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) True)

A.4 DATA QUALITY VERIFICATION

After we conduct human validations for naturalness and correctness of prompts, we conduct the
final round sanity check with GPT-4o. We prompt GPT-4o with temperature 0.7 and sample three
instances for each query. We manually inspect instances again where all of the answers suggest that
they are invalid paraphrases of the original prompts.

User prompt
You will be given two prompts, one in Standard English and one in African American En-
glish. Determine whether the African American English prompt is a valid paraphrase of the
Standard English prompt. Ignore the semantic validaty of the Standard English prompt.
Standard English: ”[SAE PROMPT]”
African American English: ”[AAVE PROMPT]”
Is the African American English prompt a valid paraphrase of the Standard English prompt?

A.5 IMPLEMENTATION DETAILS

A.5.1 DATASET IMPLEMENTATION

For Algorithm, we unify the prompts by substituting all function names as python function to avoid
as much memorization as possible. We also manually corrected instances in HumanEval where
the task descriptions were not precise enough (e.g., when the output data structure specified in the
docstring is different from the one specified in the function heading). We also slightly modified
some instructions in algorithm datasets without changing their intention to make sure our prompts
are coherent (e.g., changing to solve the following problem to to realize the following functionality).

For other tasks, we unify the task output by asking LLMs to encode answers in < answer ><
/answer > to enable easy parsing. All details can be found in ReDial dataset files.
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A.5.2 INFERENCE IMPLEMENTATION

We set temperature=0 and max new token as 4096 for all models at inference time unless specified
in the main paper. We run experiments on GPT-4o/4/3.5 via Azure OpenAI service. We evaluate
all other models via Azure Machine Learning Studio API for main results. Experiments run in the
analysis part are hosted on 4 A100 with 80GB memory each.

A.6 RESULTS FOR NON-ZERO TEMPERATURE

We vary the temperature by 0, 0.5, 0.7, and 1 on GPT-4o/4/3.5-turbo and Phi-3-Mini/Medium-128K-
Instruct. When the temperature is not 0, we sample 3 answers per query and take average pass rates
as results for corresponding settings. Results are in Figure 3.

Figure 3: We vary the temperature by 0, 0.5, 0.7, 1 and report the performance gap between Stan-
dardized and AAVE ReDial.

We find that increasing temperature reduces the gap for GPT-4o in general, but does not affect other
models’ performance as much. Even when the performance gap is reduced, increasing temperature
cannot cancel the gap.

A.7 FULL RESULTS ON REDIAL

we present the complete results on Redial. Specifically, Table 5 provides the detailed results for
Algorithm, Table 6 covers the results for Logic, Table 7 reports the results for Math, and Table 8
reports the results for Integrated Tasks.

A.8 PERPLEXITY OF TYPOS VS. NATURAL AAVE TEXT

We gradually inject typos in SE ReDial by replacing/deleting/adding words/characters, such that we
make the input texts more difficult for LLMs (i.e., the measured perplexity goes up). We find that
while these perturbations degrade model performance, the drop did not reach the severity observed
with natural AAVE data on large-scale models (see full results in Section A.8). This discrepancy
suggests that AAVE brittleness is not solely due to the general difficulty in processing. Interest-
ingly, larger models such as LLaMA-3.1-70B-Instruct and Phi-3-Medium-128K-Instruct degrade
less on synthetic noise yet still struggle disproportionately with authentic AAVE data. This suggests
their brittleness stems from reliance on SE priors and limited encoding of AAVE-specific discourse
structures.

A.9 REPHRASE IN STANDARDIZED ENGLISH

Since LLMs generally show superior performance in Standardized ReDial, we experiment with
instructing models to standardize and then answer the question to mitigate the AAVE bias, which
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Model Setting HumanEval MBPP
Original AAVE Original AAVE

GPT-o1 µ Vanilla 0.860 0.860(+)0.000 0.773 0.787(+)0.013

GPT-4o µ
Vanilla 0.872 0.811(−)0.061 0.700 0.707(+)0.007

CoT 0.841 0.805(−)0.037 0.693 0.713(+)0.02

GPT-4 µ
Vanilla 0.780 0.744(−)0.037 0.700 0.700(−)−0.0

CoT 0.750 0.707(−)0.043 0.693 0.500(−)0.193

GPT-3.5-turbo µ
Vanilla 0.640 0.622(−)0.018 0.667 0.640(−)0.027

CoT 0.616 0.591(−)0.024 0.680 0.507(−)0.173

Claude-Sonnet µ
Vanilla 0.787 0.848(+)0.061 0.753 0.760(+)0.007

CoT 0.793 0.726(−)0.067 0.753 0.747(−)0.007

LLaMA-3.1-70B-Instruct
Vanilla 0.744 0.726(−)0.018 0.707 0.573(−)0.133

CoT 0.738 0.689(−)0.049 0.707 0.613(−)0.093

LLaMA-3-70B-Instruct
Vanilla 0.689 0.671(−)0.018 0.673 0.613(−)0.06

CoT 0.720 0.665(−)0.055 0.673 0.627(−)0.047

LLaMA-3-8B-Instruct
Vanilla 0.530 0.524(−)0.006 0.540 0.493(−)0.047

CoT 0.537 0.512(−)0.024 0.527 0.440(−)0.087

Mixtral-8x7B-Instruct-v0.1
Vanilla 0.402 0.390(−)0.012 0.507 0.413(−)0.093

CoT 0.396 0.396(−)−0.0 0.547 0.427(−)0.12

Mistral-7B-Instruct-v0.3
Vanilla 0.268 0.268(−)−0.0 0.400 0.240(−)0.16

CoT 0.262 0.274(+)0.012 0.367 0.213(−)0.153

Phi-3-Medium-128K-Instruct
Vanilla 0.530 0.518(−)0.012 0.560 0.340(−)0.22

CoT 0.530 0.573(+)0.043 0.567 0.327(−)0.24

Phi-3-Small-128K-Instruct
Vanilla 0.598 0.329(−)0.268 0.633 0.167(−)0.467

CoT 0.585 0.293(−)0.293 0.553 0.087(−)0.467

Phi-3-Mini-128K-Instruct
Vanilla 0.549 0.482(−)0.067 0.567 0.367(−)0.2

CoT 0.567 0.530(−)0.037 0.587 0.347(−)0.24

Table 5: All results for Algorithm.

Figure 4: Model performance on misspelled SE compared to human-written AAVE data. We grad-
ually add noise to SE ReDial to increase its perplexities until they surpass the perplexity of AAVE
ReDial and report the models’ performance on every perturbation level. Horizontal and vertical lines
refer to model pass rates/perplexities on AAVE ReDial respectively. Larger LLMs (i.e., LLaMA-
3.1-70B-Instruct and Phi-3-Medium-128K-Instruct) perform worse on AAVE than on perturbed text
with a similar perplexity level.

we refer to as standardization. Specifically, we suffix ‘Let’s rephrase the query in Standard English
first, then answer the question’ to every query. Results are reported in Figure 5 (bar plot).

Indeed, LLM performance generally increases with standardization. Surprisingly, standardization
improves model performance even when the prompt input is already in Standard English. Despite
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Model Setting Folio LogicBench
Original AAVE Original AAVE

GPT-o1 µ Vanilla 0.963 0.938(−)0.025 0.810 0.715(−)0.095

GPT-4o µ
Vanilla 0.938 0.870(−)0.068 0.720 0.685(−)0.035

CoT 0.938 0.926(−)0.012 0.715 0.645(−)0.070

GPT-4 µ
Vanilla 0.858 0.796(−)0.062 0.745 0.710(−)0.035

CoT 0.864 0.759(−)0.105 0.735 0.730(−)0.005

GPT-3.5-turbo µ
Vanilla 0.605 0.519(−)0.086 0.475 0.565(+)0.090

CoT 0.519 0.506(−)0.012 0.490 0.360(−)0.130

Claude-Sonnet µ
Vanilla 0.914 0.895(−)0.019 0.800 0.680(−)0.120

CoT 0.907 0.877(−)0.031 0.820 0.730(−)0.090

LLaMA-3.1-70B-Instruct
Vanilla 0.642 0.593(−)0.049 0.750 0.660(−)0.090

CoT 0.870 0.827(−)0.043 0.760 0.720(−)0.040

LLaMA-3-70B-Instruct
Vanilla 0.673 0.623(−)0.049 0.655 0.495(−)0.160

CoT 0.883 0.809(−)0.074 0.400 0.360(−)0.040

LLaMA-3-8B-Instruct
Vanilla 0.667 0.617(−)0.049 0.325 0.340(+)0.015

CoT 0.599 0.660(+)0.062 0.375 0.355(−)0.020

Mixtral-8x7B-Instruct-v0.1
Vanilla 0.327 0.401(+)0.074 0.485 0.110(−)0.375

CoT 0.370 0.284(−)0.086 0.395 0.285(−)0.110

Mistral-7B-Instruct-v0.3
Vanilla 0.481 0.537(+)0.056 0.180 0.055(−)0.125

CoT 0.475 0.506(+)0.031 0.200 0.120(−)0.080

Phi-3-Medium-128K-Instruct
Vanilla 0.543 0.568(+)0.025 0.465 0.390(−)0.075

CoT 0.698 0.574(−)0.123 0.325 0.330(+)0.005

Phi-3-Small-128K-Instruct
Vanilla 0.580 0.531(−)0.049 0.490 0.520(+)0.030

CoT 0.728 0.568(−)0.160 0.395 0.485(+)0.090

Phi-3-Mini-128K-Instruct
Vanilla 0.420 0.352(−)0.068 0.755 0.665(−)0.090

CoT 0.481 0.370(−)0.111 0.735 0.655(−)0.080

Table 6: All results for Logic.

Figure 5: Model pass rate and average response token count before and after being prompted for
standardization. Standardization prompting generally improves LLM performance in both Stan-
dardized and AAVE ReDial (bar plot). However, even AAVE ReDial with standardization prompt-
ing cannot reach LLMs’ vanilla performance in Standardized ReDial, despite that they also tend to
result in more tokens generated (scatter plot).

this, their performance on AAVE ReDial with standardization promoting still cannot reach
their vanilla performance on Standardized ReDial.
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Model Setting GSM8K SVAMP
Original AAVE Original AAVE

GPT-o1 µ Vanilla 0.953 0.927(−)0.027 0.940 0.920(−)0.020

GPT-4o µ
Vanilla 0.933 0.947(+)0.013 0.933 0.913(−)0.020

CoT 0.967 0.933(−)0.033 0.933 0.907(−)0.027

GPT-4 µ
Vanilla 0.840 0.640(−)0.200 0.840 0.787(−)0.053

CoT 0.947 0.867(−)0.080 0.893 0.760(−)0.133

GPT-3.5-turbo µ
Vanilla 0.587 0.287(−)0.300 0.747 0.600(−)0.147

CoT 0.780 0.480(−)0.300 0.727 0.607(−)0.120

Claude-Sonnet µ
Vanilla 0.973 0.947(−)0.027 0.967 0.913(−)0.053

CoT 0.973 0.960(−)0.013 0.933 0.920(−)0.013

LLaMA-3.1-70B-Instruct
Vanilla 0.680 0.920(+)0.240 0.853 0.867(+)0.013

CoT 0.867 0.927(+)0.060 0.893 0.813(−)0.080

LLaMA-3-70B-Instruct
Vanilla 0.933 0.920(−)0.013 0.880 0.853(−)0.027

CoT 0.947 0.907(−)0.040 0.900 0.867(−)0.033

LLaMA-3-8B-Instruct
Vanilla 0.847 0.800(−)0.047 0.807 0.800(−)0.007

CoT 0.820 0.800(−)0.020 0.833 0.800(−)0.033

Mixtral-8x7B-Instruct-v0.1
Vanilla 0.427 0.193(−)0.233 0.613 0.487(−)0.127

CoT 0.673 0.573(−)0.100 0.700 0.560(−)0.140

Mistral-7B-Instruct-v0.3
Vanilla 0.367 0.147(−)0.220 0.433 0.280(−)0.153

CoT 0.420 0.320(−)0.100 0.487 0.373(−)0.113

Phi-3-Medium-128K-Instruct
Vanilla 0.893 0.833(−)0.060 0.840 0.747(−)0.093

CoT 0.893 0.853(−)0.040 0.827 0.800(−)0.027

Phi-3-Small-128K-Instruct
Vanilla 0.840 0.793(−)0.047 0.800 0.727(−)0.073

CoT 0.880 0.873(−)0.007 0.907 0.813(−)0.093

Phi-3-Mini-128K-Instruct
Vanilla 0.520 0.573(+)0.053 0.520 0.527(+)0.007

CoT 0.800 0.807(+)0.007 0.747 0.693(−)0.053

Table 7: All results for Math.

Moreover, we notice that standardization introduces a computational overhead in terms of token
count of LLMs’ responses (Figure 5, scatter plot), especially in GPT-4o and GPT-4. This means
that even if dialect users pay more, they might still not be able to receive the same quality
service as users who use Standardized English.

A.10 MULTIVALUE PERTURBATION

Since the unfamiliarity of data cannot explain the whole picture, how much can we attribute the
failure to AAVE-specific features? We use the rule-based transformation method in Ziems et al.
(2023) to inject AAVE features into our dataset for synthetic probing. We compare GPT-4o/4/3.5 and
Phi-3-Medium/Mini-128k-Instruct performance in feature densities of {0, 0.25, 0.5, 0.75, 1} and run
the same setting as the main experiment.

Results are shown in Figure 6. On the one hand, we find that models generally show increasing
performance drops with increasing feature density, which means that AAVE-specific features do
contribute to model performance drops. On the other hand, even drops caused by the strongest
perturbation are generally far from the drops caused by human-rewritten prompts. This shows the
limitation of previous methods in revealing LLM robustness based on synthetic data as there can be
more influential factors than what lexico-syntactic rules can capture. Phi-3-Mini-128K-Instruct is
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Model Setting Original AAVE

GPT-o1 µ Vanilla 0.942 0.925(−)0.017

GPT-4o µ
Vanilla 0.783 0.312(−)0.471

CoT 0.762 0.662(−)0.1

GPT-4 µ
Vanilla 0.217 0.133(−)0.083

CoT 0.283 0.058(−)0.225

GPT-3.5-turbo µ
Vanilla 0.200 0.129(−)0.071

CoT 0.075 0.067(−)0.008

Claude-Sonnet µ
Vanilla 0.879 0.717(−)0.162

CoT 0.900 0.771(−)0.129

LLaMA-3.1-70B-Instruct
Vanilla 0.392 0.113(−)0.279

CoT 0.579 0.500(−)0.079

LLaMA-3-70B-Instruct
Vanilla 0.158 0.067(−)0.092

CoT 0.517 0.350(−)0.167

LLaMA-3-8B-Instruct
Vanilla 0.025 0.067(+)0.042

CoT 0.029 0.025(−)0.004

Mixtral-8x7B-Instruct-v0.1
Vanilla 0.100 0.075(−)0.025

CoT 0.133 0.071(−)0.062

Mistral-7B-Instruct-v0.3
Vanilla 0.096 0.075(−)0.021

CoT 0.083 0.083(−)−0.0

Phi-3-Medium-128K-Instruct
Vanilla 0.050 0.037(−)0.013

CoT 0.067 0.029(−)0.037

Phi-3-Small-128K-Instruct
Vanilla 0.058 0.062(+)0.004

CoT 0.096 0.079(−)0.017

Phi-3-Mini-128K-Instruct
Vanilla 0.021 0.042(+)0.021

CoT 0.017 0.021(+)0.004

Table 8: All results for Integrated.

Figure 6: Perturbation with AAVE features. We control perturbation feature densities at
{0, 0.25, 0.5, 0.75, 1} to gradually inject AAVE features using rule-based transformations.

again an outlier here, being that it is the only model that has a stronger performance drop in feature
injections compared to human-written dialect data.
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A.11 SYNTHETIC LEXICAL FEATURE LIST

Following Ziems et al. (2022), we implement a feature list with distinct AAVE lexicons: [’got’,
’ain’t’, ’no’, ”’”, ’gonna’, ’wanna’, ’gotta’, ’done’, ’been’, ’finna’, ’gunna’, ’gon’,], and compute
the Spearman’s correlation between their frequencies in AAVE ReDial and the performance drop.

A.12 REASONING CHAIN COMPARISON

We qualitatively compared GPT-4o’s reasoning chain in SE and AAVE ReDial. We focus on the
math subset of ReDial and identify two key error patterns: (1) distraction by irrelevant information
and (2) failure to execute all steps. Below, we briefly sketch our findings.

Distraction by irrelevant information. GPT-4o gets distracted by task-irrelevant information in
AAVE ReDial, while we do not observe the same in SE ReDial. For instance, in ‘Say we got 8
different books and 10 different movies in the crazy silly school series. How many more movies
than books is there gon be in the crazy silly school series if you read 19 books and watched 61
movies?’, books that have been read and movies that have been watched are not associated with the
answer. Although GPT-4o ignores irrelevant information in SE ReDial prompts, it cannot do so in
AAVE, showing its reasoning ability’s brittleness.

Failure to compose the program and execute all steps. GPT-4o sometimes simulates an algorithm
to solve math problems. However, it gets stuck in one step of its reasoning chain where it confuses
the reference of comparison. For instance, in a question ’On Saturday, he sold . . . 4 fewer boxes
of apple pie, than on Sunday. Come Sunday he done sold 5 more boxes of gingerbread than on
Saturday and 15 more boxes of apple pie.’ GPT-4o reasons by starting with ’Let As be the number
of boxes of apple pie sold on Saturday...Let Au be the number of boxes of apple pie sold on Sunday’.
Then, it realizes there is a contradiction between the correct formula As = Au − 4 and the wrong
formula Au = As + 15 , where it wrongly considers the number of apple pies sold on Sunday to
be 15 more than that on Saturday. This indicates that reasoning with queries expressed in dialects
limits a model’s reasoning ability.

A.13 LIMITATIONS

First, as the first systematic framework for analyzing LLM bias in dialectal queries for reasoning
tasks, we selected AAVE due to its linguistic significance and cultural impact. However, we recog-
nize the vast diversity of dialects worldwide. The insights derived from AAVE may not generalize
to other dialects. To ensure annotation quality and maintain the focus of our study, we concentrated
on AAVE with high-quality human annotations. Also, we only have one annotator to annotate each
instance and another AAVE annotator for naturalness check due to the limited budget. While we try
to ensure diversity by hiring more annotators (13 vs. 3 in previous literature (Ziems et al., 2022)))
and spreading annotation over more instances, we are aware that this might still bring minor subjec-
tivity into our benchmark. Future research could expand on our framework to encompass a wider
range of dialects, hiring a more diverse range of annotators, and generating more broadly applicable
conclusions.

Second, our benchmark, ReDial, evaluates LLM performance across four categories of reasoning
tasks using queries sampled from seven popular and well-documented benchmarks. While these
tasks are representative of common reasoning challenges in both fundamental (e.g., the logic task)
and practical areas (e.g., code generation and complex planning for multi-agent systems in the in-
tegrated task), we acknowledge that reasoning is a multifaceted domain with many additional cate-
gories and tasks that fall outside the scope of this study (e.g., medical/financial reasoning).

Third, we evaluated five representative LLM families in this study, including widely used and sota
models. However, given the rapid proliferation of new LLMs, testing every model is infeasible.
We hope that future research will use the ReDial benchmark to investigate fairness and reasoning
robustness across a broader range of LLMs as they emerge.

Fourth, due to the difficulty of gathering large-scale dialect data for training, we cannot perform
additional analysis on how supervised fine-tuning/reinforcement learning with relevant data might
help models bridge the dialect gap, which makes it difficult to draw conclusions about how different
training methods affect dialect robustness. Although it might be technically possible to generate
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high-quality synthetic data (with known difficulties discussed in Sections 1 and 4), we consider
it to be out of the scope of our paper. Despite so, we do observe that general supervised fine-
tuning/reinforcement learning do not bridge the gap as can be observed in comparing models in the
GPT family. We hope that future research can develop a reliable and scalable way to gather more
high-quality dialect data.

Last but not least, while we present extensive empirical evidence demonstrating the performance
drop of LLMs on dialectal queries, our study does not deeply investigate the underlying causes of
these performance discrepancies or propose systematic methods to mitigate this bias. These topics
exceed the scope of our work but are critical for addressing the inequities we have identified. Despite
this limitation, we believe that ReDial provides a robust and systematic tool to help researchers
explore these issues. The absence of immediate solutions should not detract from the significance
of our findings, which lay the groundwork for future efforts to address fairness and robustness in
LLMs.

A.14 ETHIC STATEMENT

ReDial is a collection of high-quality human-annotated translations: obtaining such data requires
making clear design choices and poses ethical questions that we hereby address.

For data collection, we deliberately do not set hard constraints for annotator identity and demo-
graphic verification, recognizing there are no definite boundaries to identify dialects and their speak-
ers (King, 2020). The authors further elaborate that the term “AAVE” itself is contested, with alter-
natives that could be used instead; in employing the term “AAVE”, we adhere to the widely used
terminology in related works on dialects and NLP (Ziems et al., 2022; Gupta et al., 2024). We
corroborate the data quality by asking self-identified dialect speakers to cross-validate each others’
answers.

We do not force annotators to disclose their personal information; while we firmly commit to this
rule to protect annotators’ privacy, it makes it difficult to draw conclusions about how annotators’
backgrounds shape their writing/individual-level variations. Further on the ethical aspect of data
collection, we work with a data vendor that makes sure the recruitment and annotation adhere to
high standards for and from the annotators. However, although we have a legal contract and we try
our best to convey our guidelines and requirements, we admit that we do not have full control over
how the vendor recruits people and conducts data annotation.

We also stress that the LLM validation stage in our quality control process is not completely
trustworthy as even they are prone to hallucinations (Ji et al., 2023) and biases against minority
groups (Xu et al., 2021; Fleisig et al., 2024; Smith et al., 2024; Wang et al., 2024). To mitigate this
issue, we conduct full manual checks of every instance identified as invalid by an LLM so that no
instance is rejected purely because of LLM decisions.

A.15 STATEMENT OF CONTRIBUTION

All co-authors contributed to discussions, provided input on various aspects of the project, and
assisted with writing, editing, and advising. In addition to these contributions, FL developed the
initial idea, designed and conducted the experiments, contributed significantly to data collection,
drafted the paper, and performed all analyses unless otherwise specified. As FL’s mentors during
her internship at Microsoft, SM and AW contributed significantly by coordinating resources, guiding
the overall direction of the project including data collection, managing the ethical review process,
and serving as the primary corresponding authors. XW conducted experiments on Claude and GPT-
o1. On top of advising and paper writing, ELM developed some of the initial experiments for the
ablation study and VH contributed to ideation and experiment design.
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