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Abstract

Efficient computation of graph diffusion equations (GDEs), such as Personalized
PageRank, Katz centrality, and the Heat kernel, is crucial for clustering, training
neural networks, and many other graph-related problems. Standard iterative meth-
ods require accessing the whole graph per iteration, making them time-consuming
for large-scale graphs. While existing local solvers approximate diffusion vectors
through heuristic local updates, they often operate sequentially and are typically
designed for specific diffusion types, limiting their applicability. Given that dif-
fusion vectors are highly localizable, as measured by the participation ratio, this
paper introduces a novel framework for approximately solving GDEs using a lo-
cal diffusion process. This framework reveals the suboptimality of existing local
solvers. Furthermore, our approach effectively localizes standard iterative solvers
by designing simple and provably sublinear time algorithms. These new local
solvers are highly parallelizable, making them well-suited for implementation on
GPUs. We demonstrate the effectiveness of our framework in quickly obtaining
approximate diffusion vectors, achieving up to a hundred-fold speed improvement,
and its applicability to large-scale dynamic graphs. Our framework could also
facilitate more efficient local message-passing mechanisms for GNNs.

1 Introduction

Graph diffusion equations (GDEs), such as Personalized PageRank (PPR) [41, 44, 62], Katz centrality
(Katz) [46], Heat kernel (HK) [21], and Inverse PageRank (IPR) [51], are fundamental tools for
modeling graph data. These score vectors for nodes in a graph capture various aspects of their impor-
tance or influence. They have been successfully applied to many graph learning tasks including local
clustering [2, 81], detecting communities [49], semi-supervised learning [78, 80], node embeddings
[63, 67], training graph neural networks (GNNs) [10, 16, 19, 31, 75], and many other applications
[32]. Specifically, given a propagation matrix M associated with an undirected graph G(V, E), a
general graph diffusion equation is defined as

f ≜
∞∑

k=0

ckM
ks, (1)

where f is the diffusion vector computed from a source vector s, and the sequence of coefficients ck
satisfies ck ≥ 0. Equation (1) represents a system of linear, constant-coefficient ordinary differential
equation, ẋ(t) = Mx(t), with an initial condition x(0) and t ≥ 0. Standard solvers [34, 57] for
computing f require access to matrix-vector product operations Mx, typically involving O(m)
operations, where m is the total number of edges in G. This could be time-consuming when dealing
with large-scale graphs [42].
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A key property of f is the high localization of its entry magnitudes, which reside in a small portion of
G. Figure 1 demonstrates this localization property of f on PPR, Katz, and HK. Leveraging this local-
ity property allows for more efficient approximation using local iterative solvers, which heuristically
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Figure 1: The maximal participation ra-
tio p(f)=(

∑n
i=1 |fi|2)2/(n

∑n
i=1 |fi|4) of exam-

ple diffusion vectors f over 18 graphs, or-
dered from small (cora) to large (ogbn-
papers100M). The ratio p(f) is normalized
by the number of nodes n.

avoid O(m) operations. Local push-based methods
[2, 7, 49] or their variants [4, 12] are known to be
closely related to Gauss-Seidel [49, 18]. However,
current local push-based methods are fundamentally
sequential iterative solvers and focused on specific
types such as PPR or HK. These disadvantages limit
their applicability to modern GPU architectures and
their generalizability.

By leveraging the locality of f , we propose, for the
first time, a general local iterative framework for solv-
ing GDEs using a local diffusion process. A novel
component of our framework is to model local diffu-
sion as a locally evolving set process inspired by its
stochastic counterpart [58]. We use this framework
to localize commonly used standard solvers, demon-
strating faster local methods for approximating f . For
example, the local gradient descent is simple, prov-
ably sublinear, and highly parallelizable. It can be
accelerated further by using local momentum. Our contributions are

– By demonstrating that popular diffusion vectors, such as PPR, Katz, and HK, have strong localiza-
tion properties using the participation ratio, we propose a novel graph diffusion framework via a
local diffusion process for efficiently approximating GDEs. This framework effectively tracks most
energy during diffusion while maintaining local computation.

– To demonstrate the power of our proposed framework, we prove that APPR [2], a widely used local
push-based algorithm, can be treated as a special case. We provide better diffusion-based bounds
Θ̃(vol(St)/(α · γt)) where vol(St)/γt is a lower bound of 1/ϵ. This bound is effective for both
PPR and Katz and is empirically smaller than Θ(1/(αϵ)), previously well-known for APPR.

– We design simple and fast local methods based on standard gradient descent for APPR and Katz,
which admit runtime bounds of min(vol(St)/(α · γt), 1/(αϵ)) for both cases. These methods
are GPU-friendly, and we demonstrate that this iterative solution is significantly faster on GPU
architecture compared to APPR. When the propagation matrix M is symmetric, we show that this
local method can be accelerated further using the local Chebyshev method for PPR and Katz.

– Experimental results on GDE approximation of PPR, HK, and Katz demonstrate that these local
solvers significantly accelerate their standard counterparts. We further show that they can be
naturally adopted to approximate dynamic diffusion vectors. Our experiments indicate that these
local methods for training are twice as fast as standard PPR-based GNNs. These results may
suggest a novel local message-passing approach to train commonly used GNNs.
All proofs, detailed experimental settings, and related works are postponed to the appendix. Our
code is publicly available at https://github.com/JiaheBai/Faster-Local-Solver-for-GDEs.

2 GDEs, Localization, and Existing Local Solvers

Table 1: Example GDEs with their corresponding
propagation matrix M , coefficients ck, and source s.

Equ. M ck s
PPR [62] AD−1 α(1− α)k es
Katz [46] A αk es
HK [21] AD−1 e−ττk/k! es

IPR [51] AD−1 θk

(θk+θ10)2
es

APPNP [30] D− 1
2AD− 1

2 α(1− α)k x

Notations. We consider an undirected graph
G(V, E) where V = {1, 2, . . . , n} is the
set of nodes, and E is the edge set with
|E| = m. The degree matrix is D =
diag(d1, d2, . . . , dn), and A is the adja-
cency matrix of G. The volume of subset
nodes S is vol(S) =

∑
v∈S dv. The set of

neighbors of node v is denoted byN (v). The
standard basis for node s is es. The support
of x is defined as supp(x) = {u : xu ̸= 0}.
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Many graph learning tools can be represented as diffusion vectors. Table 1 presents examples widely
used as graph learning tools. The coefficient ck usually exhibits exponential decay, so most of the
energy of f is related to only the first few ck. We revisit these GDEs and existing local solvers.

Personalized PageRank. Given the weight decaying strategy ck = α(1 − α)k and a predefined
damping factor α ∈ (0, 1) with M = AD−1, the analytic solution for PPR is

fPPR = α(I − (1− α)AD−1)−1es. (2)

These vectors can be used to find a local graph cut or train GNNs [8, 10, 25, 79]. The well-known
approximate PPR (APPR) method [2] locally updates the estimate-residual pair (x, r) as follows

APPR : x← x+ αru · eu, r ← r− ru · eu + (1− α)ru ·AD−1 · eu.
Here, each active node u has a large residual ru ≥ ϵαdu with initial values x ← 0 and r ← αes.
The runtime bound for reaching ru < ϵαdu for all nodes is graph-independent and is Θ(1/(αϵ)),
leveraging the monotonicity property. Previous analyses [49, 18] suggest that APPR is a localized
version of the Gauss-Seidel (GS) iteration and thus has fundamental sequential limitations.

Katz centrality. Given the weight ck = αk+1 with α ∈ (0, 1/∥A∥2) and a different propagation
matrix M = A. The solution for Katz centrality can then be rewritten as:

fKatz = (I − αA)−1es. (3)

The goal is to approximate the Katz centrality ((I − αA)−1 − I)es. Similar to APPR, a local solver
[11] for Katz centrality, denoted as AKatz, can be designed as follows

AKatz : x← x+ rueu, r ← r − rueu + αruAeu.

AKatz is a coordinate descent method [11]. Under the nonnegativity assumption of r (i.e., α ≤
1/dmax), a convergence bound for the residual ∥rt+1∥1 is provided.

Heat Kernel. The heat kernel (HK) [21] is useful for finding smaller but more precise local graph
cuts. It uses a different weight decaying ck = τke−τ/k! and the vector is then defined as

fHK = exp {−τ (I −M)} es,

where τ is the temperature parameter of the HK equation and M = AD−1. Unlike the previous
two, this equation does not admit an analytic solution. Following the technique developed in [48, 49],
given an initial vector s and temperature τ , the HK vector can be approximated using the first N terms
of the Taylor polynomial approximation: define xN =

∑N
k=0 vk with v0 = es and vk+1 = Mvk/k

for k = 0, . . . , N . It is known that ∥fHK − xN∥1 ≤ 1/(N !N). This is equivalent to solving the
linear system (IN+1 ⊗ In − SN+1 ⊗M)v = e1 ⊗ es, where ⊗ denotes the Kronecker product.
Then, the push-based method, namely AHK, has the following updates

AHK : v ← v + ru (ek ⊗ eu) , r ← r − ru (IN+1 ⊗ In − SN+1 ⊗M) (ek ⊗ eu) .

There are many other types of GDEs, such as Inverse PageRank [51], which generalize PPR. Many
GNN propagation layers, such as SGC [69] and APPNP [30], can be formulated as GDEs. For all
these f , we use the participation ratio [54] to measure its localization ability, defined as

p(f) =
( n∑

i=1

|fi|2
)2

/
(
n ·

n∑

i=1

|fi|4
)
.

When the entries in f are uniformly distributed, such that fi ∼ O(1/n), then p(f) = O(1). However,
in the extremely sparse case where f is a standard basis vector, p(f) = 1/n indicates the sparsity
effect. Figure 1 illustrates the participation ratios, showing that almost all vectors have ratios below
0.01. Additionally, larger graphs tend to have smaller participation ratios.

APPR, AKatz, and AHK all have fundamental limitations due to their reliance on sequential Gauss-
Seidel-style updates, which limit their parallelization ability. In the following sections, we will
develop faster local methods using the local diffusion framework for solving PPR and Katz.
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3 Faster Solvers via Local Diffusion Process

We introduce a local diffusion process framework, which allows standard iterative solvers to be
effectively localized. By incorporating this framework, we show that the computation of PPR and
Katz defined in (2) and (3) can be locally approximated sequentially or in parallel on GPUs.

3.1 Local diffusion process

To compute fPPR and fKATZ, it is equivalent to solving the linear systems, which can be written as

Qx = s, (4)

where Q is a (symmetric) positive definite matrix with eigenvalues bounded by µ and L, i.e.,
µ ≤ λ(Q) ≤ L. For PPR, we solve (I − (1− α)AD−1)x = αes, which is equivalent to solving
(I − (1 − α)D−1/2AD−1/2)D−1/2x = αD−1/2es. For Katz, we compute (I − αA)x = es.
The vector s is sparse, with supp(s)≪ n. We define local diffusion process, a locally evolving set
procedure inspired by its stochastic counterpart [58] as follows
Definition 3.1 (Local diffusion process). Given an input graph G, a source distribution s, precision
tolerance ϵ, and a local iterative methodA with parameter θ for solving (4), the local diffusion process
is defined as a process of updates {(x(t), r(t),St)}0≤t≤T . Specifically, it follows the dynamic system

(
x(t+1), r(t+1),St+1

)
= ϕ

(
x(t), r(t),St; s, ϵ,G,Aθ

)
, 0 ≤ t ≤ T. (5)

where ϕ is a mapping via some iterative solver Aθ. For all three diffusion processes (PPR, Katz,
and HK), we set S0 = {s}. We say this process converges when ST = ∅ if there exists such T ; the
generated sequence of active nodes are St. The total number of operations of the local solver Aθ is

TAθ
=

T−1∑

t=0

vol(St) = T · vol(ST ),

where we denote the average of active volume as vol(ST ) = T−1
∑T−1

t=0 vol(St).

Intuitively, we can treat this local diffusion process as a random walk on a Markov Chain defined on
the space of all subsets of V , where the transition probability represents the operation cost. More
efficient local solvers try to find a shorter random walk from S0 to ST . The following two subsections
demonstrate the power of this process in designing local methods for PPR and Katz.

3.2 Sequential local updates via Successive Overrelaxation (SOR)

Given the estimate x(t) at t-th iteration, we define residual r(t) = s−Qx(t) and Q be the matrix
induced by A and D. The typical local Gauss-Seidel with Successive Overrelaxation has the
following online estimate-residual updates (See Section 11.2 of [34]): at each time t = 0, 1, . . . , T−1,
for each active node ui ∈ St = {u1, u2, . . . , u|St|} with i = 1, 2, . . . , |St|, we update each ui-th
entry of x and corresponding residual r as the following

LocalSOR : x(t+ti+1) = x(t+ti)+ω · ẽ(t+ti)
ui

, r(t+ti+1) = r(t+ti)−ω ·Q · ẽ(t+ti)
ui

, (6)

where ti ≜ (i − 1)/|St| is the current time, and update unit vector is ẽ
(t+ti)
ui ≜ r

(t+ti)
ui eui

/quiui
.

Note that each update of (6) is Θ(dui). If St = V , it reduces to the standard GS-SOR [34]. Therefore,
APPR is a special case of (6), a local variant of GS-SOR with ω = 1. Figure 2 illustrates this
procedure. APPR updates x at some entries and keeps track of large magnitudes of r per iteration,
while LocalSOR allows for a better choice of ω; hence, the total number of operations is reduced. We
establish the following fundamental property of LocalSOR.

Theorem 3.2 (Properties of local diffusion process via LocalSOR). Let Q ≜ I − βP where
P ≥ 0n×n and Puv ̸= 0 if (u, v) ∈ E; 0 otherwise. Define maximal value Pmax = maxu∈V ∥Peu∥1.
Assume that r(0) ≥ 0 is nonnegative and Pmax, β are such that βPmax < 1, given the updates of
(6), then the local diffusion process of ϕ

(
x(t), r(t),St; s, ϵ,G,Aθ = (LocalSOR, ω)

)
with ω ∈ (0, 1)

has the following properties

1. Nonnegativity. r(t+ti) ≥ 0 for all t ≥ 0 and ti = (i− 1)/|St| with i = 1, 2, . . . , |St|.
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Figure 2: The first row illustrates the local diffusion process of APPR [2] over a toy network topology
adopted from [40]. It uses TAPPR = 6 local iterations with TAPPR = 42 operations and additive
error ≈ 0.29241. The second row shows the process of LocalSOR (ω = 1.19 ≈ ω∗). It uses
TLocalSOR = 5 local iterations with TLocalSOR = 28 operations and additive error ≈ 0.21479.
LocalSOR uses fewer local iterations, costs less total active volume, and obtains better approximate
solutions. We choose the source node s = 0 with ϵ = 0.02 and α = 0.25.

2. Monotonicity property. ∥r(0)∥1 ≥ · · · ∥r(t+ti)∥1 ≥ ∥r(t+ti+1)∥1 · · · .

If the local diffusion process converges (i.e., ST = ∅), then T is bounded by

T ≤ 1

ωγT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

, where γT ≜
1

T

T−1∑

t=0

{
γt ≜

∑|St|
i=1 r

(t+ti)
ui

∥r(t)∥1

}
.

Based on Theorem 3.2, we establish the following sublinear time bounds of LocalSOR for PPR.

Theorem 3.3 (Sublinear runtime bound of LocalSOR for PPR). Let IT = supp(r(T )). Given an
undirected graph G and a target source node s with α ∈ (0, 1), ω = 1, and provided 0 < ϵ ≤ 1/ds,
the run time of LocalSOR in Equ. (6) for solving (I − (1 − α)AD−1)fPPR = αes with the stop
condition ∥D−1r(T )∥∞ ≤ αϵ and initials x(0) = 0 and r(0) = αes is bounded as the following

TLocalSOR ≤ min

{
1

ϵα
,
vol(ST )
αγT

ln
CPPR

ϵ

}
, where

vol(ST )
γT

≤ 1

ϵ
. (7)

where CPPR = 1/((1− α)|IT |). The estimate x(T ) satisfies ∥D−1(x(T ) − fPPR)∥∞ ≤ ϵ.
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Figure 3: Parameter tuning of ω.

The above theorem demonstrates the usefulness of our frame-
work. It shows a new evolving bound where vol(ST )/αT ≤
1/ϵ as long as Q satisfying certain assumption (It is true for
PPR and Katz). Similarly, applying Theorem 3.2, we have the
following result for approximating fKatz.
Corollary 3.4 (Runtime bound of LocalSOR for Katz). Let
IT = supp(r(T )) and CKatz = 1/((1 − α)|IT |). Given an
undirected graph G and a target source node s with α ∈
(0, 1/dmax), ω = 1, and provided 0 < ϵ ≤ 1/ds, the run time
of LocalSOR in Equ. (6) for solving (I−αA)x = es with the

stop condition ∥D−1r(T )∥∞ ≤ ϵ and initials x(0) = 0 and r(0) = es is bounded as the following

TLocalSOR ≤ min

{
1

ϵ(1− αdmax)
,

vol(ST )
(1− αdmax)γT

ln
CKatz

ϵ

}
, where

vol(ST )
γT

≤ 1

ϵ
. (8)

The estimate f̂Katz = x(T ) − es satisfies ∥f̂Katz − fKatz∥2 ≤ ∥(I − αA)−1D∥1 · ϵ.

Accerlation when Q is Stieltjes matrix (ω∗ = 2/(1 +
√

1− (α− 1)2)). It is well-known that
when ω ∈ (1, 2], GS-SOR has acceleration ability when Q is Stieltjes. However, it is fundamentally
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difficult to prove the runtime bound as the monotonicity property no longer holds. It has been
conjectured that a runtime of Õ(1/(√αϵ)) can be achieved [27]. Incorporating our bound, a new
conjecture could be Õ(vol(ST )/(

√
αγT )): If Q is Stieltjes, then with the proper choice of ω, one

can achieve speedup convergence to Õ(vol(ST )/(
√
ααT ))? We leave it as an open problem.

3.3 Parallelizable local updates via GD and Chebyshev

The fundamental limitation of LocalSOR is its reliance on essentially sequential online updates,
which may be challenging to utilize with GPU-type computing resources. Interestingly, we developed
a local iterative method that is embarrassingly simpler, highly parallelizable, and provably sublinear
for approximating PPR and Katz. First, one can reformulate the equation of PPR and Katz as 2

x∗
t = argmin

x∈Rn

f(x) ≜
1

2
x⊤Qx− s⊤x, (9)

A natural idea for solving the above is to use standard GD. Hence, following a similar idea of local
updates, we simultaneously update solutions for St. We propose the following local GD.

LocalGD : x(t+1) = x(t) + r
(t)
St

, r(t+1) = r(t)−Qr
(t)
St

(10)

Theorem 3.5 (Properties of local diffusion process via LocalGD). Let Q ≜ I−βP where P ≥ 0n×n

and Puv ̸= 0 if (u, v) ∈ E; 0 otherwise. Define maximal value Pmax = maxSt⊆V ∥PrSt
∥1/∥rSt

∥1.
Assume that r(0) = s ≥ 0 and Pmax, β are such that βPmax < 1, given the updates of (10), then the
local diffusion process of ϕ

(
St,x(t), r(t);G,Aθ = (LocalGD, µ, L)

)
has the following properties

1. Nonnegativity. r(t) ≥ 0 for all t ≥ 0.

2. Monotonicity property. ∥r(0)∥1 ≥ · · · ∥r(t)∥1 ≥ ∥r(t+1)∥1 · · · .

If the local diffusion process converges (i.e., ST = ∅), then T is bounded by

T ≤ 1

γT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

, where γT ≜
1

T

T−1∑

t=0

{
γt ≜

∥r(t)St
∥1

∥r(t)∥1

}
.

Indeed, the above local updates have properties that are quite similar to those of SOR. Based on
Theorem 3.5, we establish the sublinear runtime bounds of LocalGD for solving PPR and Katz.

Corollary 3.6 (Convergence of LocalGD for PPR and Katz). Let IT = supp(r(T )) and C =
1

(1−α)|IT | . Use LocalGD to approximate PPR or Katz by using iterative procedure (10). Denote TPPR

and TKatz as the total number of operations needed by using LocalGD, they can then be bounded by

TPPR ≤ min

{
1

αPPR · ϵ
,
vol(ST )
αPPR · γT

ln
C

ϵ

}
,

vol(ST )
γT

≤ 1

ϵ
(11)

for a stop condition ∥D−1r(t)∥∞ ≤ αPPR · ϵ. For solving KATZ, then the toal runtime is bounded by

TKatz ≤ min

{
1

(1− αKatz · dmax)ϵ
,

vol(ST )
(1− αKatz · dmax)γT

ln
C

ϵ

}
,

vol(ST )
γT

≤ 1

ϵ
(12)

for a stop condition ∥D−1r(t)∥∞ ≤ ϵdu. The estimate of equality is the same as that of LocalSOR.

Remark 3.7. Note that LocalGD is quite different from iterative hard-thresholding methods [43] where
the time complexity of the thresholding operator is O(n) at best, hence not a sublinear algorithm.

Accerlerated local Chevbyshev. One can extend the Chebyshev method [39], an optimal iterative
solver for (9). Following [24], Chebyshev polynomials Tn are defined via following recursions

Tt(x) = 2xTt−1(x)− Tt−2(x), for k ≥ 2, with T0(t) = 1, T1(t) = x. (13)

2For the PPR equation, (I − (1− α)AD−1)x = αes, we can symmetrize this linear system by rewriting it
as (I − (1− α)D−1/2AD−1/2)D−1/2x = αD−1/2es. The solution is then recovered by D1/2x(t).
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Given δ1 = L−µ
L+µ ,x1 = x0 − 2

L+µ∇f (x0), the standard Chevyshev method is defined as

xk = xk−1 −
4δk

L− µ
∇f (xk−1) +

(
1− 2δk

L+ µ

L− µ

)
(xk−2 − xk−1) , δk =

1

2L+µ
L−µ − δk−1

,

where µ ≤ λ(Q) ≤ L. For example, for approximating PPR, we propose the following local updates

LocalCH : π(t+1) = π(t) + 2δt+1

1−α D1/2r
(t)
St

+ δt:t+1(π
(t) − π(t−1))St

, δt+1 =
(

2
1−α − δt

)−1

D1/2r(t+1) = D1/2r(t) − (π(t+1) − π(t)) + (1− α)AD−1(π(t+1) − π(t)).

The sublinear runtime analysis for LocalCH is complicated since it does not follow the monotonicity
property during the updates. Whether it admits, an accelerated rate remains an open problem.

4 Applications to Dynamic GDEs and GNN Propagation

Our accelerated local solvers are ready for many applications. We demonstrate here that they can
be incorporated to approximate dynamic GDEs and GNN propagation. We consider the discrete-
time dynamic graph [47] which contains a sequence of snapshots of the underlying graphs, i.e.,
G0,G1, . . . ,GT . The transition from Gt−1 to Gt consists of a list of eventsOt involving edge deletions
or insertions. The graph Gt is then represented as: G0 O1−−→ G1 O2−−→ G2 O3−−→ · · · GT−1

OT−−→ GT . The
goal is to calculate an approximate ft for the PPR linear system Qtft = αes at time t. That is,

(
I − (1− α)AtD

−1
t

)
ft = αes. (14)

The key advantage of updating the above equation (presented in Algorithm 3) is that the APPR
algorithm is used as a primary component for updating, making it much cheaper than computing
from scratch. Consequently, we can apply our local solver LocalSOR to the above equation, and we
found that it significantly sped up dynamic GDE calculations and dynamic PPR-based GNN training.

5 Experiments

Datasets. We conduct experiments on 18 graphs ranging from small-scale (cora) to large-scale
(papers100M), mainly collected from Stanford SNAP [45] and OGB [42] (see details in Table 3).
We focus on the following tasks: 1) approximating diffusion vectors f with fixed stop conditions
using both CPU and GPU implementations; 2) approximating dynamic PPR using local methods and
training dynamic GNN models based on InstantGNN models [75]. 3

Baselines and Experimental Setups. We consider four methods with their localized counter-
parts: Gauss-Seidel (GS)/LocalGS, Successive Overrelaxation (SOR)/LocalSOR, Gradient De-
scent (GD)/LocalGD, and Chebyshev (CH)/LocalCH.4 Specifically, we use the stop condition
∥D−1r(t)∥∞ ≤ ϵα for PPR and ∥D−1r(t)∥∞ ≤ ϵ for Katz, while we follow the parameter settings
used in [49] for HK. For LocalSOR, we use the optimal parameter ω∗ suggested in Section 3.2. We
randomly sample 50 nodes uniformly from lower to higher-degree nodes for all experiments. All
results are averaged over these 50 nodes. We conduct experiments using Python 3.10 with CuPy and
Numba on a server with 80 cores, 256GB of memory, and two 28GB NVIDIA-4090 GPUs.

5.1 Results on efficiency of local GDE solvers

Local solvers are faster and use fewer operations. We first investigate the efficiency of the proposed
local solvers for computing PPR and Katz centrality. We set (αPPR = 0.1, ϵ = 1/n) for PPR and
(αKatz = 1/(∥A∥2 + 1), ϵ = 1/m) for Katz. We use a temperature of τ = 10 and ϵ = 1/

√
n for

HK. All algorithms for HK estimate the number of iterations by considering the truncated error of
Taylor approximation. Table 2 presents the speedup ratio of four local methods over their standard
counterparts. For five graph datasets, the speedup is more than 100 times in terms of the number of
operations in most cases. This strongly demonstrates the efficiency of these local solvers. Figure

3More detailed experimental setups and additional results are in the appendix.
4Note that the approximate local solvers of APPR, AHK, and AKatz will be referred to as GS.
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4 presents all such results. Key observations are: 1) All local methods significantly speed up their
global counterparts on all datasets. This strongly indicates that when ϵ is within a certain range,
local solvers for GDEs are much cheaper than their global counterparts. 2) Among all local methods,
LocalGS and LocalGD have the best overall performance. This may seem counterintuitive since
LocalSOR and LocalCH are more efficient in convergence rate. However, the number of iterations
needed for ϵ = 1/n or ϵ = 1/m is much smaller. Hence, their improvements are less significant.

Table 2: Speedup ratio of computing PPR vectors. Let TA and TLocalA be the number of operations of
the standard algorithmA and the local solver LocalA, respectively. The speedup ratio = TA/TLocalA.

Graph SOR/LocalSOR GS/LocalGS GD/LocalGD CH/LocalCH
Citeseer 86.21 114.89 157.41 5.86

ogbn-arxiv 183.43 392.26 528.03 101.88
ogbn-products 667.39 765.97 904.21 417.41

wiki-talk 169.67 172.95 336.53 30.45
ogbn-papers100M 243.68 809.47 1137.41 131.30
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Figure 4: Number of operations required for four representative methods and their localized counter-
parts over 18 graphs. The graph index is sorted according to the performance of LocalGS.

1/n2−17 2−20 2−23 2−26 2−29 2−32

ε

105

106

107

108

#
of

O
p

er
at

io
ns

(∑
t
vo

l(
S t

)) LocalSOR

LocalGS

Speedup Ratio

1

1.5

2.0

2.5

3.0

S
p

ee
du

p
R

at
io

PPR

1/m2−17 2−21 2−25 2−29 2−33

ε

103

105

107

109

#
of

O
p

er
at

io
ns

(∑
t
vo

l(
S t

)) LocalSOR

LocalGS

Speedup Ratio

1

2

3

4

5

6

S
p

ee
du

p
R

at
io

Katz

Figure 5: The number of operations as a function of
ϵ for comparing LocalSOR and LocalGS.

Which local GDE solvers are the best un-
der what settings? In the lower precision set-
ting, previous results suggest that LocalSOR
and LocalGD perform best overall. To test
the proposed LocalSOR efficiency, we use the
ogbn-arxiv dataset to evaluate the local algo-
rithm efficiency under a high precision setting.
Figure 5 illustrates the performance of Local-
SOR and LocalGS for PPR and Katz. As ϵ
becomes smaller, the speedup of LocalSOR
over LocalGS becomes more significant.
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Figure 6: Running time (seconds) as a function of ϵ for HK, Katz, and PPR GDEs on the wiki-talk
dataset. We use αPPR = 0.1, αKatz = 1/(∥A∥2 + 1), and τHK = 10 with 50 sampled source nodes.

When do local GDE solvers (not) work? The next critical question is when standard solvers can
be effectively localized, meaning under which ϵ conditions we see speedup over standard solvers.
We conduct experiments to determine when local GDE solvers show speedup over their global
counterparts for approximating Katz, HK, and PPR on the wiki-talk graph dataset for different ϵ
values, ranging from lower precision (2−17) to high precision (2−32). As illustrated in Figure 6,
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when ϵ is in the lower range, local methods are much more efficient than the standard counterparts.
As expected, the speedup decreases and becomes worse than the standard counterparts when high
precision is needed. This indicates the broad applicability of our framework; the required precisions
in many real-world graph applications are within a range where our framework is effective.

5.2 Local GDE solvers on GPU-architecture

We conducted experiments on the efficiency of the GPU implementation of LocalGD and GD,
specifically using LocalGD’s GPU implementation to compare with other methods. Figure 7 presents
the running time of global and local solvers as a function of ϵ on the wiki-talk dataset. LocalGD is
the fastest among a wide range of ϵ. This indicates that, when a GPU is available and ϵ is within the
effective range, LocalGD (GPU) can be much faster than standard GD (GPU) and other methods
based on CPUs. We observed similar patterns for computing Katz in Figure 11.
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Figure 7: Comparison of running time (seconds) for CPU and GPU implementations.

5.3 Dynamic PPR approximating and training GNN models
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Figure 8: InstantGNN model using local iterative solver (LocalSOR) to do propagation.
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Figure 9: Acculmulated total number
of operations of local solvers on the
ogbn-arxiv dataset.

To test the applicability of the proposed local solvers, we ap-
ply LocalSOR to GNN propagation and test its efficiency on
ogbn-arxiv and ogbn-products. We use the InstantGNN [75]
model (essentially APPNP [30]), following the experimental
settings in [75]. Specifically, we set α = 0.1, ϵ = 10−2/n,
and ω = ω∗ to the optimal value for our cases. For ogbn-
arxiv, we randomly partition the graph into 16 snapshots
(each snapshot with 59,375 edges), where the initial graph
G0 contains 17.9% of the edges. With a similar performance
on testing accuracy, as illustrated in Figure 8, the Instant-
GNN model with LocalSOR (Algo. 7) has a significantly
shorter training time than its local propagation counterpart
(Algo. 6). Figure 9 presents the accumulated operations

over these 16 snapshots. The faster local solver is LocalSOR (Dynamic), which dynamically updates
(x, r) for (14) according to Algo. 5 and Algo. 3, whereas LocalSOR (Static) updates all approximate
PPR vectors from scratch at the start of each snapshot for (14). We observed a similar pattern for
LocalCH, where the number of operations is significantly reduced compared to static ones.
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6 Limitations and Conclusion

When ϵ is sufficiently small, the speedup is insignificant, and it is unknown whether more efficient
local solvers can be designed under this setting. Although we observed acceleration in practice, the
accelerated bounds for LocalSOR and LocalCH have not been proven. Another limitation of local
solvers is that they inherit the limitations of their standard counterparts. This paper mainly develops
local solvers for PPR and Katz, and it remains interesting to consider other types of GDEs.

We propose the local diffusion process, a local iterative algorithm framework based on the locally
evolving set process. Our framework is powerful in capturing existing local iterative solvers such as
APPR for GDEs. We then demonstrate that standard iterative solvers can be effectively localized,
achieving sublinear runtime complexity when monotonicity properties hold in these local solvers.
Extensive experiments show that local solvers consistently speed up standard solvers by a hundredfold.
We also show that these local solvers could help build faster GNN models [31, 13, 14, 20]. We
expect many GNN models to benefit from these local solvers using a local message passing strategy,
which we are actively investigating. Several open problems are worth exploring, such as whether
these empirically accelerated local solvers admit accelerated sublinear runtime bounds without the
monotonicity assumption.
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A Related Work

Disclaimer: The local diffusion process introduced in this paper shares a similar conceptual founda-
tion with our concurrent work [77], where we propose the locally evolving set process. However,
these two approaches address distinct problems. In this work, our focus is on investigating a different
class of equations and exploring whether the local diffusion process can accelerate the training of
Graph Neural Networks (GNNs).

Graph diffusion equations (GDEs) and localization. Graph diffusion vectors can either be exactly
represented as a linear system or be approximations of an underlying linear system. The general form
defined in Equation (1) has appeared in various literature [49, 51] (see more examples in [68]) or
can be found in the survey works of [32]. The locality and localization properties of the diffusion
vector f , including the PPR vector, have been explored in [64, 2, 59, 33, 60]. Inspired by methods
for measuring the dynamic localization of quantum chaos [35, 22], which are also used for analyzing
graph eigenfunctions [11, 26, 54], we use the inverse participation ratio to measure the localization
ability of f . However, there is a lack of a local framework for solving GDEs efficiently.

Standard solvers for GDEs. The computation of a graph diffusion equation approximates the
exponential of a propagation matrix, either through an inherently Neumann series or as an analytic
system of linear equations. Well-established iterative methods, such as those approximating via the
Neumann series or Padé approximations, exist (see more details in the surveys [57, 6, 61] and [34]).
Each iteration requires computing the matrix-vector dot product, requiring O(m) operations for all
the above methods. This is the computation we aim to avoid.

Local methods for GDEs. The most well-known local solver for solving PPR was initially proposed
in [2] for local clustering. PPR, as a fundamental tool for graph learning, has been applied to many
core problems, including graph neural networks [8, 17, 69, 15], graph diffusion [31, 74], and its
generalizations [51, 19] for GNNs or clustering [50, 71]. Many variants have been proposed for
solving such equations in different forms using local methods that couple local methods with Monte
Carlo sampling strategies, achieving sublinear time [5, 53]. The work of [55] attempts to accelerate
PPR computation via the Gauss-Southwell method, but it does not work well in practice [48]. A
notable finding from [70] is that the local computation of PPR is equivalent to power iteration when
the precision is high. There are also works on temporal PPR vector computation [66, 36, 56, 52], and
our work can be immediately applied to these. Some local variants of APPR have been proposed for
Katz and HK [11, 49]. However, these local solvers are sequential and lack the ability to be easily
implemented on GPUs. Our local framework addresses this challenge.

PPR on dynamic graphs. Ranking on dynamic graphs has many applications [65], including motif
clustering [71, 29], embedding on large-scale graphs [63, 23, 37, 38, 76, 18], and designing graph
neural networks [75, 72]. The local computation via forward push (a.k.a. APPR algorithm [2])
or reverse push (a.k.a. reverse APPR [1]) is widely used in GNN propagation and bidirectional
propagation algorithms [16, 28]. Our framework helps to design more efficient dynamic GNNs.

B Missing Proofs

B.1 Notations

We list all notations used in our proofs here.

• eu: The indicator vector where the u-th entry is 1, and 0 otherwise.
• N (u): Set of neighbors of node u.
• du: The degree of node u.
• G(V, E): The underlying graph with the set of nodes V and set of edges E .
• A: Adjacency matrix of G.
• D: Degree matrix of G when G is undirected.

• Π: Personalized PPR matrix, defined as Π = α
(
I − (1− α)AD−1

)−1
.

• αPPR: Damping factor αPPR ∈ (0, 1) for the PPR equation.
• αKatz: Parameter αKatz ∈ (0, 1) for the Katz equation.
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• ϵ: The error tolerance.
• ∥D−1r∥∞ ≤ αPPRϵ: The stop condition for local solvers of PPR.
• ∥D−1r∥∞ ≤ ϵ: The stop condition for local solvers of Katz.

B.2 Formulation of PPR and Katz

In this section, we restate all theorems and present all missing proofs. We first restate the two
target linear systems we aim to solve, as introduced in Section 3. Recall PPR is defined as(
I − (1− αPPR)AD−1

)
fPPR = αPPRes. It can be equivalently written as

PPR: Qx = s, Q =
(
I − (1− αPPR)D

−1/2AD−1/2
)
x = αPPRD

−1/2es, (15)

where αPPR ∈ (0, 1) and x∗ = αQ−1D−1/2es. Hence, fPPR = D1/2x∗. The Katz centrality can be
written as

Katz: Qx = s, (I − αKatzA)x = es, (16)
where αKatz ∈ (0, 1/∥A∥2). Then fKatz = x∗ − es. 5

Proposition B.1 ([3, 53]). Let G(V, E) be an undirected graph and u and v be two vertices in V .
Denote fs := α(I − (1− α)AD−1)es as the PPR vector of a source node s. Then

du · fu[v] = dv · fv[u].

Proof. We directly follow the proof strategy in [53] for completeness. For path P =
{s, v1, v2, . . . , vk, t} in G, we denote its length as ℓ(P ) (here ℓ(P ) = k + 1 ), and define its re-
verse path to be P̄ = {t, vk, . . . , v2, v1, s}− note that ℓ(P ) = ℓ(P̄ ). Moreover, we know that a
random walk starting from s traverses path P with probability P[P ] = 1

ds
· 1
dv1
· · · · · 1

dvk
, and thus,

it is easy to see that we have
P[P ] · ds = P[P̄ ] · dt.

Now let Pst denote the paths in G starting at s and terminating at t. Then, we can re-write fs[t] as:

fs[t] =
∑

P∈Pst

α(1− α)ℓ(P )P[P ]

=
∑

P∈Pst

α(1− α)ℓ(P ) dt
ds

P[P̄ ]

=
dt
ds

∑

P̄∈Pts

α(1− α)ℓ(P̄ )P[P̄ ]

=
dt
ds

ft[s],

Algo 1 APPR(G, ϵ, α, s) [2] adopted from [8]

1: x← 0, r ← αes
2: while ∃u, ru ≥ ϵαdu do
3: r,x← PUSH(u, r,x)
4: Return x

1: PUSH(u, r,x):
2: r̃u ← ru
3: xu ← xu + r̃u
4: ru ← 0
5: for v ∈ N (u) do
6: rv ← rv +

(1−α)r̃u
du

7: Return (r,x)

We adopt the typical implementation of APPR as presented in Algo. 1.
5We will arbitrarily write αPPR and αKatz as α when the context is clear.
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B.3 Missing proofs of LocalSOR

Theorem 3.2 (Properties of local diffusion process via LocalSOR). Let Q ≜ I − βP where
P ≥ 0n×n and Puv ̸= 0 if (u, v) ∈ E; 0 otherwise. Define maximal value Pmax = maxu∈V ∥Peu∥1.
Assume that r(0) ≥ 0 is nonnegative and Pmax, β are such that βPmax < 1, given the updates of
(6), then the local diffusion process of ϕ

(
x(t), r(t),St; s, ϵ,G,Aθ = (LocalSOR, ω)

)
with ω ∈ (0, 1)

has the following properties

1. Nonnegativity. r(t+ti) ≥ 0 for all t ≥ 0 and ti = (i− 1)/|St| with i = 1, 2, . . . , |St|.

2. Monotonicity property. ∥r(0)∥1 ≥ · · · ∥r(t+ti)∥1 ≥ ∥r(t+ti+1)∥1 · · · .

If the local diffusion process converges (i.e., ST = ∅), then T is bounded by

T ≤ 1

ωγT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

, where γT ≜
1

T

T−1∑

t=0

{
γt ≜

∑|St|
i=1 r

(t+ti)
ui

∥r(t)∥1

}
.

Proof. At each step t and ti = (i− 1)/|St| where i = 1, 2, . . . , |St| , recall LocalSOR for solving
Qx = s has the following updates

x(t+ti+1) = x(t+ti) +
ω · r(t+ti)

ui

quiui

eui , r(t+ti+1) = r(t+ti) − ω · r(t+ti)
ui

quiui

Q · eui .

Since we define Q as Q = I − βP , where Puu = 0 for all u ∈ V , and using quiui
= 1, we continue

to have the updates of r as follows

r(t+ti+1) = r(t+ti) − ω · r(t+ti)
ui

quiui

·Qeui

= r(t+ti) − ω · r(t+ti)
ui

eui + ωβr(t+ti)
ui

· Peui .

By using induction, we show the nonnegativity of r(t). First of all, r(0) ≥ 0 by our assumption. Let
us assume r(t+ti) ≥ 0, then the above equation gives r(t+ti+1) ≥ 0 since ω ≤ 1 and P ≥ 0n×n

by our assumption. Since we assume ω ≤ 1 and P ≥ 0n×n, the above equation can be written as
r(t+ti+1) + ω · r(t+ti)

ui eui
= r(t+ti) + ωβr

(t+ti)
ui · Peui

. By taking ∥ · ∥1 on both sides, we have

∥r(t+ti+1)∥1 + ωr(t+ti)
ui

= ∥r(t+ti)∥1 + ωβr(t+ti)
ui

∥Peui∥1
To make an effective reduction, β should be such that β∥Peui

∥1 < 1 for all ui ∈ V . Summing over
i = 1, 2, . . . , |St| of the above equation, we then have the following

∥r(t+1)∥1 =

(
1− ω

∑|St|
i=1 r

(t+ti)
ui (1− β∥Peui∥1)
∥r(t)∥1

)
∥r(t)∥1

≤ (1− ωγt (1− βPmax)) ∥r(t)∥1. (17)

Note that we defined γt =
∑|St|

i=1 r
(t+ti)
ui

∥r(t)∥1 and (1 − βPmax) ≤ (1 − βPui
) for all ui ∈ St. The

inequality of (17) leads to the following bound

∥r(T )∥1 ≤
T−1∏

t=0

(1− ωγt (1− βPmax)) ∥r(0)∥1.

To further simply the above upper bound, since each term 1 − ωγt (1− βPmax) ≥ 0 during the
updates, it follows that ωγt (1− βPmax) ∈ (0, 1). If there exists T such that ST = ∅, then we can
obtain an upper bound of T as

ln
∥r(T )∥1
∥r(0)∥1

≤
T−1∑

t=0

ln (1− ωγt (1− βPmax))

≤ −
T−1∑

t=0

ωγt (1− βPmax) ,
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which leads to

T ≤ 1

ωγT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

.

Theorem 3.3 (Sublinear runtime bound of LocalSOR for PPR). Let IT = supp(r(T )). Given an
undirected graph G and a target source node s with α ∈ (0, 1), ω = 1, and provided 0 < ϵ ≤ 1/ds,
the run time of LocalSOR in Equ. (6) for solving (I − (1 − α)AD−1)fPPR = αes with the stop
condition ∥D−1r(T )∥∞ ≤ αϵ and initials x(0) = 0 and r(0) = αes is bounded as the following

TLocalSOR ≤ min

{
1

ϵα
,
vol(ST )
αγT

ln
CPPR

ϵ

}
, where

vol(ST )
γT

≤ 1

ϵ
. (18)

where CPPR = 1/((1− α)|IT |). The estimate x(T ) satisfies ∥D−1(x(T ) − fPPR)∥∞ ≤ ϵ.

Proof. Recall St = {u1, u2, . . . , u|St|} be the set of active nodes processed in t iteration. For
convenience, we denote |St| = k. By LocalSOR defined in (6) for solving

(
I − (1− α)AD−1

)
︸ ︷︷ ︸

Q

fPPR = αes︸︷︷︸
s

.

We have the following online iteration updates for each active node ui ∈ St (recall quiui = 1).

x(t+ i
k ) = x(t+ i−1

k ) + ω · r(t+
i−1
k )

ui · eui
, for i = 1, . . . , k and ui ∈ St,

r(t+
i
k ) = r(t+

i−1
k ) − ω · r(t+

i−1
k )

ui · eui + ω · (1− α) · r(t+
i−1
k )

ui ·AD−1eui .

Note for each active node ui, we have r
(t+ i−1

k )
ui ≥ ϵαdui

. The total operations for LOCSOR is

TLocalSOR :=

T−1∑

t=0

vol(St)

=

T−1∑

t=0

k∑

i=1

dui

≤
T−1∑

t=0

k∑

i=1

r
(t+(i−1)/k))
ui

ϵα

=

T−1∑

t=0

k∑

i=1

∥r(t+ i−1
k )∥1 − ∥r(t+

i
k )∥1

ωϵα2

=
∥r(0)∥1 − ∥r(T )∥1

ωϵα2

≤ ∥r
(0)∥1

ωϵα2

=
1

ϵα
,

where the last equality follows from ω = 1 and ∥r(0)∥1 = α. Next, we focus on the proof of our
newly derived bound Õ(vol(ST )/(αγT )). To check the upper bound of T , from Theorem 3.2 by
noticing β = (1− α) and Pmax = 1, this leads to the following

T ≤ 1

ωγT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

=
1

αγT

ln
∥r(0)∥1
∥r(T )∥1

.

19



Next, we try to give a lower bound of r(T ). Note that after the last iteration T , for each nonzero
residual r(T )

u ̸= 0, u ∈ IT , there is at least one possible update that happened at node u: 1) Node u has
a neighbor vu ∈ N (u), which was active. This neighbor vu pushed some residual (1− α)r

(t′)
vu /dvu

to u where the time t′ < T . Hence, for all u ∈ IT , we have

∥r(T )∥1 =
∑

u∈IT

r(T )
u

≥
∑

u∈IT

(1− α)r
(t′)
vu

dvu

≥
∑

u∈IT

(1− α)ϵαdvu
dvu

=
∑

u∈IT

(1− α)ϵα

≥ αϵ(1− α)|IT |,
where the first equality is due to the nonnegativity of r guaranteeing by Theorem 3.2 and the second
inequality is due to the fact that r(t

′)
u was active residuals before the push operation. Applying the

above lower bound of ∥r(T )∥1, we obtain

∥r(0)∥1
∥r(T )∥1

≤ ∥r(0)∥1
αϵ(1− α)|IT |

=
1

ϵ(1− α)|IT |

:=
CPPR

ϵ
,

where CPPR = 1/((1− α)|IT |) and IT = supp(r(T )). Combine the above inequality and the upper
bound T , we obtain our new local diffusion-based bounds. The rest is to show a lower bound of 1/ϵ.
By using the active node condition, for ui ∈ St, we have

αϵ vol(St) ≤
|St|∑

i=1

r(t+ti)
ui

=⇒ αϵ

T−1∑

t=0

vol(St) ≤
T−1∑

t=0

|St|∑

i=1

r(t+ti)
ui

. (19)

We continue to have

vol(ST )
γT

=

∑T−1
t=0 vol (St)∑T−1

t=0 γt

≤
∑T−1

t=0 vol (St)
∑T−1

t=0

∑|St|
i=1 r

(t+ti)
ui

∥r(0)∥1

= α

∑T−1
t=0 vol (St)∑T−1

t=0

∑|St|
i=1 r

(t+ti)
ui

≤ 1

ϵ
,

where the first inequality follows from the fact that
∑|St|

i=1 r
(t+ti)
ui

∥r(0)∥1
≤

∑
i=1|St|r

(t+ti)
ui

∥r(t)∥1
for t =

0, 1, . . . , T − 1, due to the monotonicity property of ∥r(t)∥1. The last inequality is from (19).
Combining these, we finish the proof of the sublinear runtime bound. The rest is to prove the
estimation quality. Note ∥D−1r(T )∥∞ ≤ αϵ directly implies ∥D−1(x(T ) − fPPR)∥∞ ≤ ϵ by using
Proposition B.1 and the corresponding stop condition.
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Remark B.2. The above theorem shares the proof strategy we provided in [77]. Here, we use a
slightly different formulation of the linear system.
Corollary 3.4 (Runtime bound of LocalSOR for Katz). Let IT = supp(r(T )) and CKatz = 1/((1−
α)|IT |). Given an undirected graph G and a target source node s with α ∈ (0, 1/dmax), ω = 1, and
provided 0 < ϵ ≤ 1/ds, the run time of LocalSOR in Equ. (6) for solving (I − αA)x = es with the
stop condition ∥D−1r(T )∥∞ ≤ ϵ and initials x(0) = 0 and r(0) = es is bounded as the following

TLocalSOR ≤ min

{
1

ϵ(1− αdmax)
,

vol(ST )
(1− αdmax)γT

ln
CKatz

ϵ

}
, where

vol(ST )
γT

≤ 1

ϵ
. (20)

The estimate f̂Katz = x(T ) − es satisfies ∥f̂Katz − fKatz∥2 ≤ ∥(I − αA)−1D∥1ϵ.

Proof. The linear system (I − αA)x = s using LocalSOR updates can be written as

x(t+ti+∆t) = x(t+ti) +
ωr

(t+ti)
ui

quiui

eui
,

r(t+ti+∆t) = r(t+ti) − ωr
(t+ti)
ui

quiui

eui + ωr(t+ti)
ui

αA
eui

quiui

,

where quiui
= 1. The updates of r(t+ti) can be simplified as the following

r(t+ti+∆t) = r(t+ti) − ωr(t+ti)
ui

eui
+ ωr(t+ti)

ui
αAeui

.

The proof of nonnegativity of r(t) follows the similar induction as in previous theorem by noticing
the spectral radius of A is |λ(A)| ≤ dmax. Hence, we have

r(t+1) = r(t) − ω

|St|∑

i=1

r(t+ti)
ui

eui + ω

|St|∑

i=1

r(t+ti)
ui

αAeui ,

Move the negative term to left and take ℓ1-norm on both sides, we have

ω

|St|∑

i=1

r(t+ti)
ui

= ∥r(t)∥1 − ∥r(t+1)∥1 + ω

|St|∑

i=1

r(t+ti)
ui

αdui

∥r(t+1)∥1 =

(
1− ω

∑|St|
i=1 r

(t+ti)
ui − ω

∑|St|
i=1 r

(t+ti)
ui αdui

∥r(t)∥1

)
∥r(t)∥1

≤
(
1− ω(1− αdmax)

∑|St|
i=1 r

(t+ti)
ui

∥r(t)∥1

)
∥r(t)∥1.

It leads to the following

ω

|St|∑

i=1

r(t+ti)
ui

− ω

|St|∑

i=1

r(t+ti)
ui

αdui
= ∥r(t)∥1 − ∥r(t+1)∥1

Since each r
(t+ti)
ui ≥ ϵdui , vol(St) ≤

∑|St|
i=1 r

(t+ti)
ui /ϵ, we continue have

ω

|St|∑

i=1

r(t+ti)
ui

− ω

|St|∑

i=1

r(t+ti)
ui

αdui
= ω

|St|∑

i=1

r(t+ti)
ui

(1− αdui
)

≥ ω

|St|∑

i=1

r(t+ti)
ui

(1− αdmax) .

Finally, the above inequality gives the following upper runtime bound as
T−1∑

t=0

vol(St) ≤
T−1∑

t=0

∥r(t)∥1 − ∥r(t+1)∥1
ωϵ(1− αdmax)

=
∥r(0)∥1 − ∥r(T )∥1
ωϵ(1− αdmax)

≤ 1

ωϵ(1− αdmax)
.
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By letting β = α and P = A with Pmax = dmax, we apply Theorem 3.2, to obtain the local
diffusion-based bound as

∥r(t+1)∥1 ≤ (1− ω(1− αdmax)βt) ∥r(t)∥1

∥r(T )∥1 ≤
T−1∏

t=0

(1− ω(1− αdmax)βt) ∥r(0)∥1

=

T−1∏

t=0

(1− ω(1− αdmax)βt) .

Using the similar technique provided in the previous case, and letting ω = 1 we can have

TKatz ≤
vol(ST )

(1− αdmax)γT

ln
CKatz

ϵ
.

To check the estimate equality, we have

r(T ) = es − (I − αA)x(T )

=⇒ (I − αA)−1r(T ) =
(
(I − αA)−1 − I

)
es + es − x(T )

= fKatz + es − x(T ).

Let f̂Katz := x(T ) − es This leads to

∥f̂Katz − fKatz∥2 = ∥(I − αA)−1DD−1r(T )∥2
≤ ∥(I − αA)−1D∥1 · ∥D−1r(T )∥∞
≤ ∥(I − αA)−1D∥1ϵ.

B.4 Missing proofs of LocalGD

Theorem 3.5 (Properties of local diffusion process via LocalGD). Let Q ≜ I−βP where P ≥ 0n×n

and Puv ̸= 0 if (u, v) ∈ E; 0 otherwise. Define maximal value Pmax = maxSt⊆V ∥PrSt
∥1/∥rSt

∥1.
Assume that r(0) = s ≥ 0 and Pmax, β are such that βPmax < 1, given the updates of (10), then the
local diffusion process of ϕ

(
St,x(t), r(t);G,Aθ = (LocalGD, µ, L)

)
has the following properties

1. Nonnegativity. r(t) ≥ 0 for all t ≥ 0.

2. Monotonicity property. ∥r(0)∥1 ≥ · · · ∥r(t)∥1 ≥ ∥r(t+1)∥1 · · · .

If the local diffusion process converges (i.e., ST = ∅), then T is bounded by

T ≤ 1

γT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

, where γT ≜
1

T

T−1∑

t=0

{
γt ≜

∥r(t)St
∥1

∥r(t)∥1

}
.

Proof. At each step t, recall LocalGD for solving Qx = (I − βP )x = s has the following updates

x(t+1) = x(t) + r
(t)
St

, r(t+1) = r(t) −Qr
(t)
St

.

Since Q = I − βP , we continue to have the updates of r as the following

r(t+1) = r(t) − (I − βP )r
(t)
St

= r(t) − r
(t)
St

+ βPr
(t)
St

.

By using induction, we show the nonnegativity of r(t). First of all, r(0) ≥ 0 by our assumption. Let
us assume r(t) ≥ 0. Then, the above equation gives r(t+1) ≥ 0 since β ≥ 0 and P ≥ 0n×n by our
assumption. The above equation can be written as

r(t+1) + r
(t)
St

= r(t) + βPr
(t)
St
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Taking ∥ · ∥1 on both sides, we have

∥r(t+1)∥1 + ∥r(t)St
∥1 = ∥r(t)∥1 + β∥Pr

(t)
St
∥1.

To make an effective reduction, β should be such that β∥Pr
(t)
St
∥1 < ∥r(t)St

∥1 for all St ⊆ V . For this,
we then have the following

∥r(t+1)∥1 =

(
1−
∥r(t)St

∥1 − β∥Pr
(t)
St
∥1

∥r(t)∥1

)
∥r(t)∥1

≤ (1− γt (1− βPmax)) ∥r(t)∥1, (21)

where note we defined γt =
∥r(t)

St
∥1

∥r(t)∥1
and assumed ∥Pr

(t)
St
∥1 ≤ Pmax∥r(t)St

∥1. Apply (21) from t = 0

to T , it leads to the following bound

∥r(T )∥1 ≤
T−1∏

t=0

(1− γt (1− βPmax)) ∥r(0)∥1

Note each of the term 1− γt (1− βPmax) ≥ 0 during the updates, then γt (1− βPmax) ∈ (0, 1). To
check the upper bound of T , we have

ln
∥r(T )∥1
∥r(0)∥1

≤
T−1∑

t=0

ln (1− γt (1− βPmax))

≤ −
T−1∑

t=0

γt (1− βPmax) ,

which leads to

T ≤ 1

γT (1− βPmax)
ln
∥r(0)∥1
∥r(T )∥1

.

Corollary 3.6 (Convergence of LocalGD for PPR and Katz). Let IT = supp(r(T )) and C =
1

(1−α)|IT | . Use LocalGD to approximate PPR or Katz by using iterative procedure (10). Denote TPPR

and TKatz as the total number of operations needed by using LocalGD, they can then be bounded by

TPPR ≤ min

{
1

αPPR · ϵ
,
vol(ST )
αPPR · γT

ln
C

ϵ

}
,

vol(ST )
γT

≤ 1

ϵ
(22)

for a stop condition ∥D−1r(t)∥∞ ≤ αPPR · ϵ. For solving KATZ, then the toal runtime is bounded by

TKatz ≤ min

{
1

(1− αKatz · dmax)ϵ
,

vol(ST )
(1− αKatz · dmax)γT

ln
C2

ϵ

}
,

vol(ST )
γT

≤ 1

ϵ
(23)

for a stop condition ∥D−1r(t)∥∞ ≤ ϵdu. The estimate equality is the same as of LocalSOR.

Proof. We first show graph-independent bound O(1/(αϵ)) for PPR computation. Since r(t+1) =

r(t) −Qr
(t)
St

, then rearrange it to6

r(t+1) + r
(t)
St

= r(t) + (1− α)AD−1r
(t)
St

.

Note that entries in r(t) are nonnegative. It leads to

∥r(t+1)∥1 + ∥r(t)St
∥1 = ∥r(t)∥1 + ∥(1− α)AD−1r

(t)
St
∥1,

6To simplify the proof, here r represents D1/2r.
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where note ∥(1− α)AD−1r
(t)
St
∥1 = (1− α)∥r(t)St

∥1, then we have

∥r(t)St
∥1 = (∥r(t)∥1 − ∥r(t+1)∥1)/α.

At step t, LocalGD accesses the indices in St. By the active node condition ϵαdui
≤ r

(t)
ui , we have

vol(St) =
k∑

i=1

dui

≤
k∑

i=1

r
(t)
ui

ϵα

=
∥r(t)St

∥1
ϵα

=
∥r(t)∥1 − ∥r(t+1)∥1

ϵα2
.

Then the total run time of LocalGD is

TPPR :=

T−1∑

t=0

vol(St)

≤ 1

ϵα2

T−1∑

t=0

(
∥r(t)∥1 − ∥r(t+1)∥1

)

=
∥r(0)∥1 − ∥r(T )∥1

ϵα2

≤ 1

ϵα
,

where the last inequality is due to ∥r(t)∥1 = α. Therefore, the total run time is O(1/(αϵ)). Follow
the similar technique, we have sublinear runtime bound for Katz, i.e., TKata ≤ 1

(1−αKatz·dmax)ϵ
. Next,

we show the local diffusion bound for PPR. Recall LocalGD has the initial x(0) = 0, r(0) = αes and
the following updates

x(t+1) = x(t) + r
(t)
St

, r(t+1) = r(t) −Qr
(t)
St

, St =
{
u : r(t)u ≥ ϵαdu, u ∈ V

}
.

Since β = 1− α and P = AD−1, by applying Theorem 3.5, we have the upper bound of T

∥r(T )∥1 =

T−1∏

t=0

(1− αγt) ∥r(0)∥1 ⇒ T ≤ 1

αγT

ln
∥r(0)∥1
∥r(T )∥1

.

Note that each nonzero r
(T )
u has at least part of the magnitude from the push operation of an active

node. This means each nonzero of r(T ) satisfies

r(T )
u ≥ (1− α)r

(t̃)
v

dv

≥ (1− α)αϵdv
dv

= (1− α)αϵ, for u ∈ IT

⇒ ∥r(T )∥1 ≥ (1− α)αϵ|IT |,
where t̃ ≤ T . Hence, we have

T ≤ 1

αγT

ln
∥r(0)∥1
∥r(T )∥1

≤ 1

αγT

ln
∥r(0)∥1

αϵ(1− α)|IT |

:=
1

αγT

ln
C

ϵ
,
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where C = 1
(1−α)|IT | . To see the additive error, note that r(T ) := b − Qx(T ) = αes −(

I − (1− α)AD−1
)
x(T ). It has the following equality

fs − x(T ) =
(
I − (1− α)AD−1

)−1
r(T )

To estimate the bound |fs[u]−x(T )
u |, we need to know (

(
I − (1− α)AD−1

)−1
r(T ))u. Specifically,

the u-th entry of the above is

fs[u]− x(T )
u =

1

α

∑

v∈V
fv[u]r

(T )
v

By Proposition B.1, we know dufu[v] = dvfv[u], then we continue to have

fs[u]− x(T )
u =

1

α

∑

v∈V

dufu[v]

dv
r(T )
v

≤ 1

α

∑

v∈V
dufu[v]ϵα

= ϵdu
∑

v∈V
fu[v]

= ϵdu,

where the first inequality is due to r
(T )
v < ϵαdv , and the last equality follows from

∑
v∈V fu[v] = 1.

Combining all inequalities for u ∈ V , we have the estimate |D−1(f̂ − fPPR)|1 ≤ ϵ. We omit the
proof of the sublinear runtime bound of LocalGD for Katz, as it largely follows the proof technique
in Corollary 3.4. For the two lower bounds of 1/ϵ, i.e., vol(ST )/γT ≤ 1

ϵ , it directly follows from the
monotonicity and nonnegativity properties stated in Theorem 3.2 and Theorem 3.5.

Remark B.3. The part of the theorem shares the similar proof strategy we provided in [77]. Here, we
use a slightly different formulation of the linear system.

B.5 Implementation Details

• Chebyshev for PPR. Let Q = I − (1 − α)D−1/2AD−1/2 and b = αD−1/2es. Then f (t) =
D1/2x(t). The eigenvalue of Q is in range [α, 2− α]. So, we let L = 2− α and µ = α.

1. δ1 = 1− α,x(0) = 0,D1/2r(0) = αes.
2. When t = 1, we have

D1/2x(1) = D1/2x(0) −D1/2∇f(x(0))

= αes

D1/2r(1) = αes − (I − (1− α)AD−1)D1/2x(1)

= α(1− α)AD−1es.

3. When t ≥ 1, we have

δt+1 =
(

2
1−α − δt

)−1

f̂ (t) = 2δt+1

1−α D1/2r(t) + δtδt+1D
1/2∆(t)

f (t+1) = f (t) + f̂ (t)

D1/2r(t+1) = D1/2r(t) −
(
I − (1− α)AD−1

)
f̂ (t).

For LocalCH, we change the update f̂ (t) to the update f̂
(t)
St

. The final estimate f̂ := D1/2x(T ).

• Chebyshev for Katz. We want to solve (I − αA)x = es. We assume µ = 1− αλmax(A), L =
1− αλmin(A). Then, the updates of LocalCH for Katz centrality are

1. When t = 0, x(0) = 0, r(0) = es. To obtain an initial value δ1, we have δ1 = αdmax
7

7This is because |λ(A)| ≤ dmax.
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2. When t = 1, we have

x(1) = x(0) +
2

L+ µ
r(0) =

2

L+ µ
es

r(1) = b− (I − αA)x(1)

= es − (I − αA)
2

L+ µ
es, r

(1)

= (1− 2
L+µ )es +

2α

L+ µ
Aes.

3. When t ≥ 1, it updates the estimate-residual pair as

δt+1 =
(

2
αdmax

− δt

)−1

x̂(t) = 4δt+1

L−µ r(t) + δtδt+1∆
(t)

x(t+1) = x(t) + x̂(t)

r(t+1) = r(t) − (I − αA) x̂(t).

For LocalCH, we change the update x̂(t) to the update x̂
(t)
St

. The final estimate is then f̂ :=

x̂(T ) − es.

We omit the details of LocalSOR and LocalGD for PPR and Katz as they can directly follow from
(6) and (10), respectively. We implement all our proposed local solvers via the FIFO Queue data
structure.

B.6 FIFO-QUEUE and PRIORITY-QUEUE

We examine the different data structures of local methods and explore two types: the First-In-First-
Out (FIFO) Queue, which requires constant time O(1) for updates, and the Priority Queue, which
is used to implement the Gauss-Southwell algorithm as described in [48, 7]. We test the number
of operations needed using these two data structures on five small graphs, including CORA (n =
19793,m = 126842), CORA-ML (n = 2995,m = 16316), CITESEER (n = 4230,m = 10674),
DBLP (n = 17716,m = 105734), and PUBMED (n = 19717,m = 88648) as used in [9] and
downloaded from https://github.com/abojchevski/graph2gauss.

Figure 10 presents the ratio of the total number of operations needed by APPR-FIFO and APPR-
Priority-Queue. We tried four different settings; the performance of one does not dominate the other,
and the Priority Queue is suitable for some nodes but not all nodes.
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Figure 10: The number of operations ratio between the APPR (FIFO-Queue) and Gauss-
Southwell (Priority-Queue). The number of operations of APPR is defined as TFIFO-Queue =∑T−1

t=0 St, TPriority-Queue =
∑K

k=0

(
duk

+ log2 | supp(r(k))|
)

where K is the total number of push
operations used in Gauss-Southwell iteration and supp(r(k)) = {u : r

(k)
u ̸= 0, u ∈ V} and

log2 | supp(r(k))| is the number of operations needed by the priority queue for maintaining all resid-
uals in r(k).
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B.7 LocalGS(Dynamic) and LocalSOR(Dynamic)

The dynamic PPR algorithm based on LocalGS is presented in Algo. 2 and 3, initially proposed in
[73]. Specifically, Algo. 2 and 3 are the components of LocalGS(Dynamic) for updating the edge
event (u, v) while Algo. 4 and 5 are the components of LocagSOR(Dynamic) for update the edge
event (u, v). In practice, we follow the batch updates strategy proposed in InstantGNN [75], which
we call Algo. 3 and 5 for list of edge events then call Algo. 2 and 4 once after this batch update of
edge events.

Algo 2 LocalGS(G,ps, rs, ϵ, α, s)

1: while maxu rs[u] ≥ ϵdout[u] do
2: Push(u)
3: while minu rs[u] ≤ −ϵdout[u] do
4: Push(u)
5: return (ps, rs)

6: procedure Push(u):
7: ps[u]← ps[u] + rs[u]
8: for v in Nout(u) do
9: rs[u]← 0

10: rs[v]← rs[v] +
(1−α)·rs[u]

dout[u]

Algo 3 LOCALGS(DYNAMIC)(G,ps, rs, ϵ, α, s, (u, v))

1: Apply Insert/Delete of (u, v) to (ps, rs).
2: return LocalGS(G,ps, rs, ϵ, α, s)

3: procedure Insert(u, v)
4: ps[u]← ps[u] ∗ dout[u]/(dout[u]− 1)
5: rs[u]← rs[u]− ps[u]/dout[u]
6: rs[v]← rs[v] + (1− α) · ps[u]/dout[u]
7: procedure Delete(u, v)
8: ps[u]← ps[u] ∗ dout[u]/(dout[u] + 1)
9: rs[u]← rs[u] + ps[u]/dout[u]

10: rs[v]← rs[v]− (1− α) · ps[u]/dout[u]

Algo 4 LocalSOR(G,ps, rs, ϵ, α, s, ω)

1: while maxu rs[u] ≥ ϵdout[u] do
2: Push(u)
3: while minu rs[u] ≤ −ϵdout[u] do
4: Push(u)
5: return (ps, rs)

6: procedure Push(u):
7: ps[u]← ps[u] + ωrs[u]
8: rs[u]← rs[u]− ωrs[u]
9: for v in Nout(u) do

10: rs[v]← rs[v]+ω · (1−α)·rs[u]
dout[u]

Algo 5 LOCALSOR(DYNAMIC)(G,ps, rs, ϵ, α, ω, s, (u, v))

1: Apply Insert/Delete of (u, v) to (ps, rs).
2: return LocalSOR(G,ps, rs, ϵ, α, s, ω)

3: procedure Insert(u, v)
4: ps[u]← ps[u] ∗ dout[u]/(dout[u]− 1)
5: rs[u]← rs[u]− ps[u]/dout[u]
6: rs[v]← rs[v] + (1− α) · ps[u]/dout[u]
7: procedure Delete(u, v)
8: ps[u]← ps[u] ∗ dout[u]/(dout[u] + 1)
9: rs[u]← rs[u] + ps[u]/dout[u]

10: rs[v]← rs[v]− (1− α) · ps[u]/dout[u]

B.8 InstantGNN(LocalGS) and InstantGNN(LcalSOR)

We present InstantGNN(LocalGS) and InstantGNN(LcalSOR) in Algo. 6 and Algo. 7, respectively.
Additional parameter β is used; in practice, we choose β = 1/2 for all our experiments.

Algo 6 InstantGNN(LocalGS)(G,p, r, ϵ, α, s, β)
1: while maxu |r[u]| ≥ ϵd1−β

out [u] do
2: Push(u)
3: return (p, r)

4: procedure Push(u):
5: p[u]← p[u] + α · r[u]
6: r[u]← 0
7: for v in Nout(u) do
8: rs[v]← r[v] + (1−α)·r[u]

d1−β
out [u]dβ

out[v]

Algo 7 InstantGNN(LocalSOR)(G,p, r, ϵ, α, s, β, ω)
1: while maxu |r[u]| ≥ ϵd1−β

out [u] do
2: Push(u)
3: return (p, r)

4: procedure Push(u):
5: p[u]← p[u] + α · ω · r[u]
6: r[u]← r[u]− ω · r[u]
7: for v in Nout(u) do
8: r[v]← r[v] + ω · (1−α)·r[u]

d1−β
out [u]dβ

out[v]
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Table 3: Dataset Statistics sorted by n+m

Dataset ID Dataset Name n m n + m

G1 Citeseer 3279 9104 12383
G2 Cora 2708 10556 13264
G3 pubmed 19717 88648 108365
G4 ogbn-arxiv 169343 2315598 2484941
G5 com-youtube 1134890 5975248 7110138
G6 wiki-talk 2388953 9313364 11702317
G7 as-skitter 1694616 22188418 23883034
G8 cit-patent 3764117 33023480 36787597
G9 ogbl-ppa 576039 42463552 43039591
G10 ogbn-mag 1939743 42182144 44121887
G11 ogbn-proteins 132534 79122504 79255038
G12 soc-lj1 4843953 85691368 90535321
G13 reddit 232965 114615892 114848857
G14 ogbn-products 2385902 123612606 125998508
G15 com-orkut 3072441 234370166 237442607
G16 wiki-en21 6216199 321647594 327863793
G17 ogbn-papers100M 111059433 3228123868 3339183301
G18 com-friendster 65608366 3612134270 3677742636

C Datasets and More Experimental Results

C.1 Datasets Collected

We collected 18 graph datasets listed in Table 3. To test LocalSOR on GNN propagation, we use
three graphs with feature data from [75].

C.2 Detailed experimental setups.

For all experiments, the maximum runtime limit is set to 14,400 seconds. All methods will terminate
when this time limit is reached. Specifically, we use the following parameter settings for drawing
Figure 1 and Figure 3.

• Experimental settings for Figure 1. For computing PPR, we use a high precision parameter
of ϵ = 10−10/m and set αPPR = 0.1. For calculating Katz centrality, we use αKatz =
1/(|A|2 + 1). The temperature for the Heat Kernel equation is set to τ = 10.

• Experimental settings Figure 3. We use the wiki-talk graph and α = 0.1 for PPR
calculation.

Table 4: Parameters of InstantGNN
Dataset β α ϵ lr batchsize dropout hidden size layers
ogbn-arxiv 0.5 0.1 1e-7 1e-4 8192 0.3 1024 4
ogbn-products 0.5 0.1 1e-8 1e-4 10000 0.5 1024 4

Table 4 presents parameter settings of InstantGNN model training in our experiments. The GDE
in InstantGNN is defined as f =

∑∞
k=0 α(1− α)k(DβAD1−β)kx. It is the same as APPNP [30]

when we set β = 0.5.

C.3 More experimental results

Figure 11 presents the results of GPU-implemented methods for Katz. Table 5-7 presents more details
of participation ratios for PPR, Katz, and HK. The ratios in tables are without normalization. Figure
12-15 present more results of Figure 6 on different datasets and settings. Figure 16 and 17 present
dynamic PPR approximating and training GNN model results on different datasets.
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Figure 11: Comparison of running time (seconds) for CPU and GPU implementations for Katz.

Table 5: Unnormalized participation ratios for PPR (α = 0.1)

Graph Vertices Avg.Deg. Participation Ratios
Min Mean Median Max

Cora 2708 3.90 1.11 2.57 2.60 5.68
Citeseer 3279 2.78 1.14 2.76 2.63 5.22
pubmed 19717 4.50 1.04 2.10 2.12 4.19
ogbn-proteins 132534 597.00 1.00 1.26 1.01 2.01
ogbn-arxiv 169343 13.67 1.03 1.84 1.65 4.12
reddit 232965 491.99 1.00 1.27 1.03 2.25
ogbl-ppa 576039 73.72 1.00 1.34 1.06 2.88
com-youtube 1134890 5.27 1.01 1.85 1.99 3.39
as-skitter 1694616 13.09 1.04 2.02 2.19 4.99
ogbn-mag 1939743 21.75 1.01 1.70 1.57 2.84
ogbn-products 2385902 51.81 1.00 1.46 1.19 2.84
wiki-talk 2388953 3.90 1.00 1.61 1.68 2.87
com-orkut 3072441 76.28 1.00 1.29 1.05 2.19
cit-patent 3764117 8.77 1.01 1.67 1.55 2.99
soc-lj1 4843953 17.69 1.00 1.68 1.73 3.73
wiki-en21 6216199 51.74 1.00 1.34 1.11 2.22
com-friendster 65608366 55.06 1.00 1.46 1.20 2.23
ogbn-papers100M 111059433 29.10 1.00 1.45 1.19 2.15

Table 6: Unnormalized participation ratios for Katz(α = 1/(1 + ∥A∥2))

Graph Vertices Avg.Deg. Participation Ratios
Min Mean Median Max

Cora 2708 3.90 1.01 7.62 3.34 30.24
Citeseer 3279 2.78 1.01 7.03 2.09 40.77
pubmed 19717 4.50 1.01 25.71 2.23 173.21
ogbn-proteins 132534 597.00 1.00 2181.89 2997.35 3397.70
ogbn-arxiv 169343 13.67 1.00 18.06 6.04 47.12
reddit 232965 491.99 1.00 3364.93 4412.49 4757.13
ogbl-ppa 576039 73.72 1.00 507.92 43.88 2984.20
com-youtube 1134890 5.27 1.00 10.86 8.65 42.78
as-skitter 1694616 13.09 1.00 52.56 5.07 702.30
ogbn-mag 1939743 21.75 1.00 8.24 6.71 182.96
ogbn-products 2385902 51.81 1.00 100.53 27.33 649.78
wiki-talk 2388953 3.90 1.00 404.15 587.18 701.41
com-orkut 3072441 76.28 1.00 637.67 50.15 1824.24
cit-patent 3764117 8.77 1.00 37.49 6.01 315.39
soc-lj1 4843953 17.69 1.00 358.72 5.00 2122.33
wiki-en21 6216199 51.74 1.00 110.88 156.60 189.79
com-friendster 65608366 55.06 1.00 8475.52 9.02 36776.54
ogbn-papers100M 111059433 29.10 1.00 97.53 7.93 726.71
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Table 7: Unnormalized participation ratios for HK(τ = 10)

Graph Vertices Avg.Deg. Participation Ratios
Min Mean Median Max

cora 2708 3.90 1.65 8.43 6.62 34.85
citeseer 3279 2.78 1.82 7.69 5.81 35.71
pubmed 19717 4.50 1.15 26.02 7.09 242.95
ogbn-proteins 132534 597.00 437.31 5743.38 5712.33 12874.41
ogbn-arxiv 169343 13.67 1.95 15.48 10.61 109.58
reddit 232965 491.99 30.26 2697.53 2468.45 5395.28
ogbl-ppa 576039 73.72 2.02 1052.49 766.77 3860.21
com-youtube 1134890 5.27 1.06 8.66 4.73 58.02
as-skitter 1694616 13.09 1.51 13.04 7.18 45.05
ogbn-mag 1939743 21.75 1.50 2.63 1.96 16.90
ogbn-products 2385902 51.81 2.16 124.51 72.87 775.54
wiki-talk 2388953 3.90 1.00 8.19 1.43 65.72
com-orkut 3072441 76.28 6.02 655.85 367.02 7942.79
cit-patent 3764117 8.77 1.76 30.51 21.03 273.80
soc-lj1 4843953 17.69 2.29 59.08 24.23 573.48
wiki-en21 6216199 51.74 3.00 34.05 32.49 164.69
com-friendster 65608366 55.06 2.05 323.12 83.67 3092.69
ogbn-papers100M 111059433 29.10 1.44 51.49 21.40 275.48

2−342−302−262−222−182−142−102−6

ε

10−3

6× 10−4

2× 10−3

3× 10−3

R
un

ni
ng

T
im

e
(s

)

0

5

10

15

20

25

30

35

40

S
p

ee
du

p
R

at
io

LocalSOR

SOR

Speedup
Ratio

1/n2−17 2−20 2−23 2−26 2−29 2−32

ε

10−1

100

R
un

ni
ng

T
im

e
(s

)

LocalSOR

SOR

Speedup
Ratio

1

5

15

25

35

45

55

S
p

ee
du

p
R

at
io

2−282−262−242−222−202−182−162−14

ε

10−2

10−1

R
un

ni
ng

T
im

e
(s

)

0

10

20

30

40

50

S
p

ee
du

p
R

at
io

LocalSOR

SOR

Speedup
Ratio

2−302−272−242−212−182−15

ε

10−1

100

R
un

ni
ng

T
im

e
(s

)

0

5

10

15

20

25

30

S
p

ee
du

p
R

at
io

LocalSOR

SOR

Speedup
Ratio

2−342−302−262−222−182−142−102−6

ε

10−3R
un

ni
ng

T
im

e
(s

)

0

5

10

15

20

25

30

S
p

ee
du

p
R

at
io

LocalGS

GS

Speedup
Ratio

1/n2−17 2−20 2−23 2−26 2−29 2−32

ε

10−1

100

101

R
un

ni
ng

T
im

e
(s

)

LocalGS

GS

Speedup
Ratio

1

5

10

15

20

25

S
p

ee
du

p
R

at
io

2−282−262−242−222−202−182−162−14

ε

10−2

10−1

100

R
un

ni
ng

T
im

e
(s

)

0

10

20

30

40

50

S
p

ee
du

p
R

at
io

LocalGS

GS

Speedup
Ratio

2−302−272−242−212−182−15

ε

10−1

100

101

R
un

ni
ng

T
im

e
(s

)

0

5

10

15

20

25

30

35

S
p

ee
du

p
R

at
io

LocalGS

GS

Speedup
Ratio

2−342−302−262−222−182−142−102−6

ε

10−3

10−2

R
un

ni
ng

T
im

e
(s

)

0

5

10

15

20

25

30

35

S
p

ee
du

p
R

at
io

LocalGD

GD

Speedup
Ratio

1/n2−17 2−20 2−23 2−26 2−29 2−32

ε

100

101

R
un

ni
ng

T
im

e
(s

)

LocalGD

GD

Speedup
Ratio

1

5

10

15

20

25

30

35

S
p

ee
du

p
R

at
io

2−282−262−242−222−202−182−162−14

ε

10−2

10−1

100

R
un

ni
ng

T
im

e
(s

)

0

20

40

60

80

S
p

ee
du

p
R

at
io

LocalGD

GD

Speedup
Ratio

2−302−272−242−212−182−15

ε

10−1

100

101

R
un

ni
ng

T
im

e
(s

)

0

5

10

15

20

25

30

35

S
p

ee
du

p
R

at
io

LocalGD

GD

Speedup
Ratio

2−342−302−262−222−182−142−102−6

ε

10−3

10−2

10−1

R
un

ni
ng

T
im

e
(s

)

LocalCH

CH

Speedup
Ratio

0

20

40

60

80

100

120

140

160

S
p

ee
du

p
R

at
io

Citeseer

1/n2−17 2−24 2−31 2−38 2−45

ε

100

101

R
un

ni
ng

T
im

e
(s

)

LocalCH

CH

Speedup
Ratio

1

5

10

15

20

25

30

S
p

ee
du

p
R

at
io

wiki-talk

2−392−352−312−272−232−192−15

ε

10−2

10−1

100

R
un

ni
ng

T
im

e
(s

)

LocalCH

CH

Speedup
Ratio

0

10

20

30

40

50

60

70

S
p

ee
du

p
R

at
io

ogbn-arxiv

2−372−342−312−282−252−222−192−16

ε

10−1

100

101

R
un

ni
ng

T
im

e
(s

)

LocalCH

CH

Speedup
Ratio

0

10

20

30

40

50

60

S
p

ee
du

p
R

at
io

com-youtube

Figure 12: Running time (seconds) as a function of ϵ for PPR on several datasets with α = 0.1.
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Figure 13: Running time (seconds) as a function of ϵ for Katz on several datasets with α =
1/(∥A∥2 + 1).
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Figure 14: Running time (seconds) as a function of ϵ for HK on several datasets with τ = 10.
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Figure 15: Running time (seconds) of SOR and LocalSOR as a function of ϵ for PPR on the wiki-talk
dataset with different α.
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Figure 16: Accumulated number of operations on some dynamic graphs.
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Figure 17: The performance of InstantGNN using SOR and GS propagation on ogbn-products.

C.4 The efficiency of local methods on different types of graphs (tested on grid graphs).
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Our local algorithms do not depend on graph types.
However, our key assumption is that diffusion vectors
are highly localizable, measured by the participation
ratio. As demonstrated in Figure 1, almost all diffusion
vectors have low participation ratios collected from 18
real-world graphs. These graphs are diverse, ranging
from citation networks and social networks to gene
structure graphs. To further illustrate this, we con-
ducted experiments where the graphs are grid graphs,
and the diffusion vectors have high participation ratios
(about 3.56× 10−6, with a grid size of 1000x1000, i.e.,
106 nodes and 1,998,000 edges). We set αPPR = 0.1.
The figure below presents the running time as a function
of ϵ over a grid graph with 50 sampled source nodes.
The results indicate that local solvers are more efficient than global ones even when ϵ is very
small.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect our
contributions and scope. We introduced a novel framework for approximately solving graph
diffusion equations (GDEs) using a local diffusion process.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed several limitations of our proposed work in the last section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper thoroughly presents theoretical results, including the full set of
assumptions necessary for each theorem and lemma. Each proof is detailed and follows
logically from the stated assumptions, ensuring correctness.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide comprehensive details on the experimental setup, including de-
scriptions of the datasets used, parameter settings, and the specific algorithms applied. We
also provided our code for review and will make it public upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the data and code, along with instructions in the
supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
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the training and testing settings used for InstantGNN with LocalSOR.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.
7. Experiment Statistical Significance
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Answer: [Yes]
Justification: The paper reports error bars and other relevant information about the statistical
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standard deviation of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments were conducted using Python 3.10 with CuPy and Numba
libraries on a server with 80 cores, 256GB of memory, and two NVIDIA-4090 GPUs with
28GB each.
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• The answer NA means that the paper does not include experiments.
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Answer: [Yes]
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Guidelines:
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• If the authors answer No, they should explain the special circumstances that require a
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10. Broader Impacts
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
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• The authors should consider possible harms that could arise when the technology is
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from (intentional or unintentional) misuse of the technology.
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11. Safeguards
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12. Licenses for existing assets
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not involve licenses for existing assets.
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• The answer NA means that the paper does not use existing assets.
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• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not involve new assets.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their
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limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve institutional review board (IRB) approvals or
equivalent for research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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