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Abstract
Several tasks in control, robotics, and planning
can be specified through desired goal configura-
tions for entities in the environment. Learning
goal-conditioned policies is a natural paradigm to
solve such tasks. Current approaches, however,
struggle to learn and generalize as task complex-
ity increases, such as due to variations in number
of entities or compositions of goals. To overcome
these challenges, we first introduce the Entity-
Factored Markov Decision Process (EFMDP), a
formal framework for modeling the entity-based
compositional structure in control tasks. Subse-
quently, we outline policy architecture choices
that can successfully leverage the geometric prop-
erties of the EFMDP model. Our framework theo-
retically motivates the use of Self-Attention and
Deep Set architectures for control, and results in
flexible policies that can be trained end-to-end
with standard reinforcement and imitation learn-
ing algorithms. On a suite of simulated robot ma-
nipulation tasks, we find that these architectures
achieve significantly higher success rates with less
data, compared to the standard multilayer percep-
tron. Our structured policies also enable broader
and more compositional generalization, produc-
ing policies that extrapolate to different numbers
of entities than seen in training, and stitch to-
gether (i.e. compose) learned skills in novel ways.
Video results can be found at https://sites.
google.com/view/comp-gen-anon.

1. Introduction
Goal specification is a powerful abstraction for training and
deploying AI agents (Kaelbling, 1993; Schaul et al., 2015;
Andrychowicz et al., 2017). For instance, object reconfig-
uration tasks (Batra et al., 2020), like loading plates in a
dishwasher or arranging pieces on a chess board, can be
described through spatial (6DOF pose) and semantic (on vs
off) goals for various objects. Furthermore, a broad goal for
a scene can be naturally described through compositions of
goals for individual entities. In this work, we introduce a
framework for modeling tasks with this entity-centric com-
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Figure 1. A family of tasks where the agent is trained to re-arrange
three cubes (top-left), but tested zero-shot to re-arrange anywhere
from three to six cubes (bottom-left). Reinforcement learning (RL)
with standard MLPs fails to even learn the 3-cube task. Our self-
attention based policy can learn the three cube task, and also solve
tasks with more cubes using no additional data.

positional structure, and study policy architectures that can
utilize such structural properties. Our framework and de-
signs are broadly applicable for goal-conditioned reinforce-
ment and imitation learning. Through experiments in a suite
of simulated robot manipulation environments, we find that
our policy architectures learn substantially faster compared
to standard multi-layer perceptrons (MLPs) and demonstrate
significantly improved generalization capabilities, a preview
of which is depicted in Figure 1.

Consider the motivating task of arranging pieces on a chess
board using a robot arm. A naive specification would pro-
vide goal locations for all 32 pieces simultaneously. How-
ever, we can immediately recognize that the task is a com-
position of 32 sub-goals involving the rearrangement of
individual pieces. This understanding of compositional
structure can allow us to focus on one object at a time, dra-
matically reducing the size of effective state space and help
combat the curse of dimensionality that plagues RL (Sutton
& Barto, 1998; Bertsekas & Tsitsiklis, 1996). Moreover,
such a compositional understanding would make an agent
invariant to the number of objects, enabling generalization
to fewer or more objects. Most importantly, it can enable
reusing shared skills like pick-and-place, enhancing learn-
ing efficiency. Finally, we also note that a successful policy
cannot completely decouple the sub-tasks and must consider
their interactions. For example, if a piece must be moved to

https://sites.google.com/view/comp-gen-anon
https://sites.google.com/view/comp-gen-anon
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a square currently occupied by another piece, the piece in
the destination square must be moved first.

Standard policy architectures based on MLPs lack the induc-
tive biases and structure to exhibit the aforementioned com-
positional properties. To overcome these deficiencies, we
turn to the general field of “geometric deep learning” (Bron-
stein et al., 2021) which is concerned with the study of
structures, symmetries, and invariances exhibited by func-
tion classes. We first introduce the Entity-Factored MDP
as a formal model of decision making in environments
with multiple entities (e.g. objects), and characterize its
geometric properties relative to the generic MDP. We sub-
sequently show how set-based invariant architectures like
Deep Sets (Zaheer et al., 2017) and relational architectures
like Self-Attention (Vaswani et al., 2017) are well suited to
leverage the geometric properties of the EFMDP. Through
experiments, we demonstrate that policies and critics pa-
rameterized by these architectures can be trained to solve
complex tasks using standard RL and IL algorithms, without
assuming access to any options or action primitives.

Our Contributions. This paper is organized into sections
that present our three main contributions:

1. We develop the Entity-Factored MDP (EFMDP) frame-
work, a formal model for decision making in tasks com-
prising of multiple entities (e.g. objects), and character-
ize its geometric properties.

2. We show how policies and critics parameterized by set-
based invariance models (e.g. Deep Sets) and relational
models (e.g. Self-Attention) can leverage the geometric
properties of the EFMDP.

3. We empirically evaluate our theoretically inspired archi-
tectures on a suite of simulated robot manipulation tasks,
and find that they generalize more broadly compared to
the standard MLP, while also learning more efficiently.

Although invariant and relational policy designs have been
explored in the literature, this work represents the first direct
comparison of both architecture classes in a standard suite
of complex entity-centric environments. Furthermore, our
experiments evaluate both extrapolation to varying num-
bers of entities in the environment, as well as stitching: the
ability to solve unseen tasks by composing together learned
skills in novel ways.

2. Related Work
We describe and study a class of learning problems where an
agent must learn in an environment containing several enti-
ties. Prior works have explored solving such problems with
relational models such as graph neural networks (Huang
et al., 2019; Bapst et al., 2019; Li et al., 2020; Veerapa-
neni et al., 2020; Lin et al., 2022), transformers (Zambaldi
et al., 2018; Carvalho et al., 2021; Tang & Ha, 2021), or

other means (Goyal et al., 2019). In contrast, simple in-
variant architectures like Deep Sets (Zaheer et al., 2017)
remain relatively underexplored in RL outside of basic 2D
environments (Karch et al., 2020). We compare both trans-
former and Deep Set approaches on a suite of complex
entity-centric robot tasks. We also introduce the EFMDP
framework for entity-based compositionality in RL which
theoretically motivates both architecture types via their in-
herent relational and invariant properties.

3. Problem Formulation and Architectures
In this section, we first formalize our problem setup by
introducing the entity-factored MDP. Then we introduce
policy architectures that can enable efficient learning and
generalization by utilizing the unique structural properties
of the entity-factored MDP.

3.1. Problem Setup

We study a learning paradigm where the agent can interact
with many entities in an environment. The task for the agent
is specified in the form of goals for some subset of entities
(including the agent). We formalize this learning setup with
the Entity-Factored Markov Decision Process (EFMDP).

Definition 1 (Entity-Factored MDP). An EFMDP with
N entities is described through the tuple: ME :=
⟨U , E , g,A,P,R, γ⟩. Here U and E are the agent and entity
state spaces, g is the subgoal space and A is the agent’s
action space. The overall state space S := U × EN has
elements s = (u, e1, · · · , eN ) and the overall goal space
G := gN has elements g = (g1, . . . , gN ). The reward and
dynamics are described by:

R (s, g) := R
(
{r̃(ei, gi, u)}N

i=1
)

(1)

P(s′|s, a) := P
((

u′, {e′
i}N

i=1
)
|
(
u, {ei}N

i=1
)

, a
)

(2)

for s, s′ ∈ S, a ∈ A, and g ∈ G.

A wide variety of tasks involve an agent interacting with
different entities in the environment, and can be cast as
EFMDPs. At the same time, the EFMDP contains more
structure compared to the standard MDP model, because the
ordering of the entity-subgoal pairs is arbitrary. In fact, we
prove that any optimal policy and the optimal value function
are permutation invariant (proof in Appendix A):

Proposition 1 (Policy and Value Invariance). In any
EFMDP with N entities, any optimal policy π⋆ : S×G → A
and optimal action-value function Q⋆ : S × A × G → R
are both invariant to permutations of the entity-subgoal
pairs. That is, for any σ ∈ SN , π⋆(σs, σg) = π⋆(s, g) and
Q⋆(σs, a, σg) = Q⋆(s, a, g).

This invariance property motivates us to design invariant
architectures for reinforcement and imitation learning on



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Policy Architectures for Compositional Generalization in Control

EFMDPs.

Multilayer Perceptrons (MLPs). Standard RL and IL
approaches assume they are solving a generic MDP, and do
not use any additional structure. The generic approach is
thus to parameterize the learned policy by an MLP, which
takes a fixed size input vector and applies alternating layers
of affine transforms and pointwise nonlinearities to produce
a fixed size output vector. To implement π(s, g) with an
MLP we concatenate the contents of (s, g) into a single long
vector which forms the MLP input. Since MLPs expect
input vectors of a fixed dimension, testing on tasks with
more entities requires zero padding during training.

Deep Sets. Recall that the optimal policy in an EFMDP
should be permutation invariant (Prop. 1). The MLP policy
fails to guarantee this invariance, but we can use the Deep
Sets (Zaheer et al., 2017) architecture to guarantee permuta-
tion invariance to a set of input vectors x = {x1, · · · , xN}.
In EFMDPs we choose this set of vectors to be the entity-
subgoal pairs {(e1, g1), · · · , (e, gN )}, so that the learned
policy will have the invariance from Prop. 1. Figure 2 vi-
sualizes how the input is arranged and processed by Deep
Sets.

Self Attention. In tasks involving complex entity-entity in-
teraction Self-Attention (Vaswani et al., 2017) can provide a
superior inductive bias for modeling entity relationships. To
integrate Self Attention into a policy, we treat the input state
as a sequence of entity-subgoal pairs. We process this se-
quence using an encoder architecture described in Vaswani
et al. (2017), but do not use causal masking or positional
encodings so as to preserve self-attention’s permutation sym-
metry. The entire encoder SA(·) maps an input sequence to
another sequence of identical dimensions while modeling
relationships between the sequence elements.

Since the policy must produce a single vector as output, we
pool the zi’s together by summation and project the result
to an action using a small MLP. The entire self attention pol-
icy’s design is illustrated in Figure 2. Without the positional
encodings, the output is invariant to permutations of the en-
tities and subgoals, much like the Deep Set policy. However,
the self-attention mechanism produces intermediate repre-
sentations z that includes interactions between the inputs,
unlike Deep Set’s independent intermediate representations.

4. Experiments and Evaluation
In this section, we aim to study the following questions
through our experimental evaluation.

1. Can we learn more efficiently by using policies that
utilize the structures and invariances of the EFMDP?

2. Can the structured policies generalize better and enable
extrapolation to more or fewer entities?

3. Can the structured policies solve tasks containing novel
combinations of subtasks, by stitching together (i.e.
composing) learned skills?

Extrapolation and stitching are particularly interesting as
they require generalization to novel tasks with no additional
training. This is particularly useful when deploying agents
in real world settings with enormous task diversity.

Environment Description. We seek to answer our exper-
imental questions in a suite of simulated robotic manipu-
lation environments, where the policy provides low level
continuous actions to control a Fetch robot and interact with
any number of cubes and switches. There are three subtasks:
to push a cube to a desired location on the table, to flip a
switch to a specified setting, or to stack one cube on top of
another. The higher level tasks can involve multiple cubes
or switches and compose many subtasks together.

We organize the environments into families to test learn-
ing and generalization. Environments in the N-Push family
require re-arranging N cubes by pushing each one to its
corresponding subgoal. The N-Switch family requires flip-
ping each of N switches to its specified setting, and the
N-Switch + N-Push family involves re-arranging N cubes
and flipping N switches. We test extrapolation by varying
N within a family at test time, which changes the number
of entities: for example we train a policy in 3-Switch and
evaluate it in 6-Switch. As another example, we test stitch-
ing by training a single policy on 2-Switch and 2-Push, then
evaluate it on 2-Switch + 2-Push which requires combining
the switch and pushing skills together in a single trajectory.
Appendix B gives a full description of our environments.

Baselines and Comparisons. Our main comparisons are
with: (a) a baseline MLP that models the task as a regular
MDP, and (b) an “oracle” that manually coordinates solving
one subtask at a time (Appendix B).

4.1. Efficiency of Learning

To evaluate the learning efficiency of different architectures,
we train RL and IL algorihtms on the N-Switch, N-Push,
and N-Switch + N-Push environment families. We use N =
1, 2, 3 for the first two families and N = 1, 2 for the latter,
with larger N corresponding to more entities and more
complex tasks within a family. See Appendix C for full RL
and IL training details.

Results. Appendix Fig. 4 shows full RL and IL training
curves. MLP policies struggle to learn complex tasks with
many entities, likely due to the lack of entity-centric pro-
cessing that the Deep Set and Self Attention policies em-
ploy. Overall, this experiment suggests that architectures
that utilize the structure and invariances in EFMDPs learn
substantially faster than black box architectures like the
MLP.
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Figure 2. Visualizations of implementing an entity-based goal conditioned policy using either Deep Sets (left) or Self Attention (right).
The policy π : (s, g) 7→ a receives state s = (u, e1, · · · , eN ) containing agent state u and entity states ei. The goal (g1, · · · , gN )
contains subgoals for each entity. Both policies arrange the input into N vectors yi = (u, ei, gi), one per entity. The Deep Set policy
processes each yi independently with MLP ϕ(·), aggregates the outputs, and maps the result to an action using MLP ρ(·). The self
attention encoder SA(·) produces output z1, · · · , zN and uses self-attention to model interactions between the entities/subgoals. The zi

are mapped to an action by summation and an MLP ρ(·).

4.2. Zero-Shot Extrapolation Capabilities

Here we test whether trained policies can extrapolate and
solve test tasks containing more or fewer entities than seen
in training.

Results and Observations Appendix figure 5 shows the test
performance of these policies on each environment family
as the number of entities N varies. The MLP only success-
fully learns the training task in the N-Switch environments,
and it generalizes decently to fewer than 3 switches, but fails
completely in environments with more than 3 switches. In
contrast, the Deep Set and Self Attention policies generalize
well and achieve zero-shot success rates comparable to or
exceeding the Oracle in most test environments. The Deep
Set policy extrapolates better than the Self Attention policy
on most environments. Overall, we find that by using archi-
tectures capable of utilizing the EFMDP structure, agents
can perform very effective extrapolation.

4.3. Zero-Shot Stitching to solve novel tasks

When evaluating policies for stitching behavior, we use test
tasks that combine subtasks from training in novel ways. In
our first setting, we train a policy on 2-Push and 2-Switch,
and then test this policy on 2-Switch + 2-Push, which re-
quires both pushing cubes and flipping switches. In our
second setting, we train a single policy on 2-Push and Stack,
which requires stacking one cube on top of another. The
test environment is Push + Stack, which requires pushing
one cube into position and then stacking the other block on
top. This setting is especially difficult because it requires
zero-shot stitching of skills in a particular order (push, then
stack). Appendix figure 6 (left) shows the train-test task
relationships we use to test stitching.

Results and Observations. Appendix figure 6 (right) shows
that the MLP policy fails to jointly learn the training tasks in
the first setting, leading to poor performance in 2-Switch + 2-
Push. The MLP averages above a 35% success rate on both
training tasks in the second setting, but still only manages a
5% success rate on Push + Stack. This suggests that even

when MLP policies are capable of learning the training tasks,
they are unable to combine them to solve new ones.

The Deep Set and Self Attention architectures show sub-
stantially better stitching capabilities compared to the MLP,
though they are not as competent as the Oracle. It is partic-
ularly surprising that the Self Attention policy achieves a
60% zero-shot success rate on Push + Stack, which requires
understanding that the push and stack subtasks must be exe-
cuted in a specific order. Poor performance in 2-Switch + 2-
Push is again likely due to difficulties in training one policy
on two different tasks, which suggests that improving joint
training could further improve stitching performance.

5. Conclusion
In this work, we introduced the EFMDP framework for the
learning paradigm where an agent can interact with many
entities in an environment. We explore the structural prop-
erties of this framework like invariance of the reward and
dynamics under permutation symmetry. Using this structure,
we showed that the optimal policy and value function in the
EFMDP are also invariant to permutations of the entities.

Building on the above result, we introduced policy archi-
tectures based on Self-Attention and Deep Sets that can
leverage the symmetries and invariances in the EFMDP.
More specifically, these policy architectures decompose
goal-conditioned tasks into their constituent entities and
subgoals. These architectures are flexible, do not require
any manual task annotations or action primitives, and can
be trained end-to-end with standard RL and IL algorithms.

Experimentally, we find that our policy architectures that
utilize the EFMDP structure can: (a) learn substantially
faster than black-box architectures like the MLP; (b) per-
form zero-shot extrapolation to new environments with
more of fewer entities than observed in training; and (c)
perform zero-shot stitching of learned behaviors to solve
novel task combinations never seen in training.
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A. Permutation invariance
We start by formally defining the permutation symmetry that EFMDPs have:

Property 1 (EFMDP Permutation Symmetry). For any permutation σ ∈ SN (the group of all permutations of N items), the
reward satisfiesR(σs, σg) = R(s, g) and the transition dynamics satisfy P(σs′|σs, a) = P(s′|s, a) for any s, s′ ∈ S and
a ∈ A, where:

σs := (u, eσ(1), · · · , eσ(N)) (3)
σg := (gσ(1), · · · , gσ(N)) (4)

We now want to show Proposition 1:

Proposition 1 (Policy and Value Invariance). In any EFMDP with N entities, any optimal policy π⋆ : S × G → A and
optimal action-value function Q⋆ : S ×A× G → R are both invariant to permutations of the entity-subgoal pairs. That is,
for any σ ∈ SN , π⋆(σs, σg) = π⋆(s, g) and Q⋆(σs, a, σg) = Q⋆(s, a, g).

We want to show that any optimal policy π⋆ : S × G → A and the optimal action-value function Q⋆ : S ×A× G → R are
both permutation invariant, that is for any σ ∈ SN :

π⋆(σs, σg) = π⋆(s, g) (5)
Q⋆(σs, a, σg) = Q⋆(s, a, g) (6)

Recall that in an EFMDP the reward and dynamics have permutation symmetry:

R(s, a, g) = R(σs, a, σg)
P(s′|s, a) = P(σs′|σs, a)

where σs and σg are defined in Eq. 3 and Eq. 4. We assume for simplicity that the agent space U and entity space E are
discrete, so that the state space S = U × EN is also discrete.

We begin with Q⋆, which can be obtained by value iteration, where Q⋆
k denotes the k’th iterate. We initialize Q⋆

0 ≡ 0, which
is (trivially) permutation invariant. Permutation invariance is then preserved during each step of value iteration Q⋆

k 7→ Q⋆
k+1:

Q⋆
k+1(σs, a, σg) = R(σs, a, σg) + γ max

a′

∑
s′∈S

P(s′|σs, a)Q⋆
k(s′, a′) (7)

= R(s, a, g) + γ max
a′

∑
s′∈S

P(σ−1s′|s, a)Q⋆
k(σ−1s′, a′) (8)

= R(s, a, g) + γ max
a′

∑
s′∈S

P(s′|s, a)Q⋆
k(s′, a′) (9)

= Q⋆
k+1(s, a, g) (10)

Hence Q⋆
k is permutation invariant for all k = 0, 1, · · · , with Q⋆

k −−−−→
k→∞

Q⋆. Line 8 follows from the permutation invariance

of the reward, transition probability, and the previous iterate Q⋆
k. Line 9 uses the fact that summing over σ−1s′ for all s′ ∈ S

is the same as simply summing over all states s′ ∈ S. This can be seen more explicitly by expanding a sum over arbitrary
function f(·): ∑

s∈S
f(σ−1s) =

∑
u∈U

∑
e1∈E
· · ·

∑
eN ∈E

f(u, eσ−1(1), · · · , eσ−1(N)) =
∑
s∈S

f(s)

The permutation invariance of Q⋆ leads to the permutation invariance of π⋆:

π⋆(σs, σg) = arg max
a

Q⋆(σs, a, σg) = arg max
a

Q⋆(s, a, g) = π⋆(s, g)

B. Environments
Our environments are modified from OpenAI Gym’s Fetch environments (Brockman et al., 2016), with our stacking
environment in particular being modified from the Fetch stacking environments of Lanier (2019). They have a 4D continuous
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action space with 3 values for end effector displacement and 1 value for controlling the distance between the gripper fingers.
The final action is disabled when the neither the training or test tasks involve stacking, since gripping is not required for block
pushing or switch flipping. Input actions are scaled and bounded to be between [−1, 1]. We set the environment episode
length based on the number of entities and subtasks involved. Each switch added 20 timesteps, and each cube pushing or
stacking task added 50 timesteps. For example, 2-Switch + 2-Push had a max episode length of 2× 50 + 2× 20 = 140
timesteps.

For non-stacking settings such as N-Push and N-Switch + N-Push, we disable cube-cube collision physics to make training
easier for all methods. Note that subgoals may still interfere with each other since the gripper can interact with all cubes, so
the agent may accidentally knock one cube away when manipulating another one. We repeat the extrapolation experiments
for N-Push with collisions in Appendix D.2.

State and goals. The agent state describe the robot’s end effector position and velocity the gripper finger’s positions and
velocities. The entity state for cubes include the cube’s pose and velocity, and for switches include the switch setting
θ ∈ [−0.7, 0.7] and the position of the switch base on the table. The switch entity state is padded with zeros to match the
shape of the cube entity state, and all entity states include an extra bit to distinguish cubes from switches. Subgoals specify a
target position for cubes and a target setting θ⋆ ∈ {−0.7, 0.7} for switches.

Reward. The dense reward is defined as the average distance between each entity and its desired state as specified by the
subgoal. For cubes, this is the L2 distance between current and desired position. For switches, this is |θ− θ⋆|, where θ is the
current angle of the switch and θ⋆ is the desired setting. The sparse reward is 0 if all entities are within a threshold distance
of their subgoals, and −1 otherwise.

Oracle. We construct subpolicies for the oracle by training one policy on each distinct subtask (pushing, flipping switches,
and stacking). The oracle chooses an initial entity and subgoal arbitrarily, and uses the corresponding subpolicy until that
subtask is solved. The oracle then selects the appropriate subpolicy for the next entity-subgoal pair and continues until the
entire task is complete. The oracle is not guaranteed to achieve a 100% success rate since it does not consider entity-entity
interactions. An example failure mode is pushing one cube into position but knocking another one off the table while doing
so.

C. Training details
C.1. Reinforcement learning

We train RL agents using a publicly available implementation1 of DDPG (Lillicrap et al., 2015) and Hindsight Experience
Replay (HER) (Andrychowicz et al., 2017). Table 1 contains the default hyperparameters shared across all experiments. Our
modified implementation collects experience from 16 environments in parallel into a single replay buffer, and trains the
policy and critic networks on a single GPU. We collect 2 episodes for every 5 gradient updates, and for HER we relabel the
goals in 80% of sampled minibatches (the “relabel prob”). The reward scale is simply a multipler of the collected reward
used during DDPG training. For exploration we use action noise η and random action probability ϵ; the output action is:

ã ∼

{
a +N (0, η), with prob 1− ϵ

Uniform(−1, 1), with prob ϵ

Table 2 shows environment specific RL hyperparameters. “Epochs” describes the total amount of RL training done, with 1
epoch corresponding to 50× PARALLEL ENVS episodes. Sparse reward is used for the simpler environments, and dense
reward for the harder ones. For some environments we decay the exploration parameters η, ϵ by a ratio computed per-epoch.
Lin(.01, 100, 150) means that η, ϵ are both decayed linearly from η0 and ϵ0 to .01× η0 and .01× ϵ0 between epochs 100
and 150. The constant exploration decay schedule maintains the initial η0, ϵ0 values throughout training. The target network
parameters are updated as θtarget ← (1− τ)θ + τθtarget, where τ is the target update speed.

We use the same RL hyperparameters regardless of architecture type except that the learning rate is lower for Self Attention
and the exploration decay schedule may vary. Where Table 1 lists “Fast” and “Slow” decay schedules, we sweep over both
options for each architecture and use the schedule that works best. In each case, the Self Attention policy prefers the slower
exploration schedule and Deep Sets prefers the faster one, while the MLP typically fails to learn with either exploration

1https://github.com/TianhongDai/hindsight-experience-replay

https://github.com/TianhongDai/hindsight-experience-replay


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Policy Architectures for Compositional Generalization in Control

Table 1. General shared RL hyperparameters
Hyperparameter Value

Discount γ 0.98
Parallel envs 16

Replay buffer size 106

Relabel prob 0.8
Ratio of episodes : updates 2 : 5

Optimizer Adam
Learning rate MLP, Deep Set: 0.001

Self Attention: 0.0001
Reward Scale Sparse: 1; Dense: 5

Action noise η0 (initial) 0.2
Random action prob ϵ0 (initial) 0.3

Table 2. Environment specific RL hyperparameters
Environment Reward Epochs Exploration decay Target update speed τ

1-Push Sparse 50 Constant(1) 0.95
2-Push Dense 150 Lin(.01, 75, 125) 0.99
3-Push Dense 250 Fast: Lin(.01, 30, 80) 0.99

Slow: Lin(.01, 100, 175)
{1,2,3}-Switch Sparse {10, 50, 100} Constant(1) 0.95

1-Switch + 1-Push Dense 150 Lin(.01, 60, 100) 0.99
2-Switch + 2-Push Dense 250 Fast: Lin(.01, 75, 150) 0.99

Slow: Lin(.01, 100, 150)

schedule on the more complex environments.

Architectures. The exact actor and critic architectures uses for each architecture family is shown in Table 3. Linear(256)
represents an affine layer with 256 output units. ReLU activations follow every layer except the last. The final actor layer is
followed by a Tanh nonlinearity, and the critic has no activation function after the final layer. A represents the action space
dimension, and Block(N, M, H) represents a Transformer encoder block (Vaswani et al., 2017) with embedding size N ,
feedforward dimension M , and H heads. We disable dropout within the Transformer blocks for RL training.

C.2. Imitation Learning

The IL dataset is generated using the best performing RL agent in that environment–we record M ∈
{1000, 2000, 3000, 4000, 5000} demonstration trajectories. This creates a dataset of M ×T transitionsD = {(si, ai)}M×T

i=1
for behavior cloning. However, in practice we filter the dataset slightly by discarding the transitions corresponding to
trajectories that are not successful.

Table 3. RL architectures
Family Actor Critic

MLP Linear(256)×3, Linear(A) Linear(256) ×3, Linear(1)
Deep Set ϕ: Linear(256) ×3 ϕ: Linear(256) ×2

ρ: Linear(A) ρ: Linear(256), Linear(1)
Self Attention SA: Linear(256), Block(256, 256, 4)×2 SA: Linear(256), Block(256, 256, 4)×2

ρ: Linear(A) ρ: Linear(A)
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We use the same policy architectures shown in Table 3 and optimize mean squared error loss over the dataset:

arg min
π

J(π) := 1
|D|

∑
(s,a)∼D

||π(s)− a||2

We use the Adam (Kingma & Ba, 2014) optimizer with learning rate 0.001 (MLP, Deep Sets) or 0.0001 (Self Attention).
Each policy is trained for 60, 000 gradient steps with a batch size of 128.

C.3. Training and inference speed

Here we consider the computational complexity of using different architecture classes (MLPs, Deep Sets, and Self Attention),
as we scale the number of entities N . We consider the number of parameters, activation memory, and computation time
(for a forward pass). For MLPs with fixed hidden layer sizes, the number of parameters and computation time increase
linearly with N while the memory required for activations stays fixed (due to fixed hidden layer sizes). In Deep Sets and Self
Attention, the number of parameters does not depend on the number of entities N . The activation memory and computation
time grow linearly in Deep Sets, and quadratically for the pairwise interactions of Self Attention. In practice, the number of
entities N is modest in all our environments (e.g., fewer than 10), but computational complexity may be relevant in more
complex scenes with lots of entities.

For a more holistic real-world comparison of execution and training speed, Figure 3 shows both inference time and training
time in the N-Push environments for N ∈ {1, 2, 3}. The inference time is the number of milliseconds it takes an actor
do a single forward pass (using a GPU) on a single input observation. The Self Attention policy involves more complex
computations and is significantly slower than Deep Set and MLP policies. The RL training time is the actual number of
hours required to run the reinforcement learning algorithms of Figure 4, for each architecture. Not surprisingly, we see that
3-Push takes significantly longer to train than 1-Push, since it is a harder environment. For a fixed environment, however, all
three architecture types are comparable in speed, with the Self Attention version being slightly slower than the others. The
surprising similarity in RL training time (despite much slower inference time for the Self Attention policy) suggests that
most of the RL time is spent on environment simulation rather than policy or critic execution. Hence, the difference between
architectures presented in this paper has only a minor effect on reinforcement learning speeds in practice.

Inference and training speed on N-Push

Figure 3. Left: the time (in milliseconds) it takes for each policy architecture to execute a single forward pass on a single input observation
from the N-Push environments, where N ∈ {1, 2, 3}. The self attention policy is significantly slower, while the Deep Set and MLP
policies are comparable. Right: Real world reinforcement learning times (in hours) training each policy/critic architecture on the N-Push
environments. Although the Self Attention policy is slightly slower, all policies train at comparable speeds in the same environment. This
suggests that environment simulation, not policy execution, is the dominant time consuming element.

D. Further results
D.1. Deep set architecture size

Recall that our Deep Set policy architecture involves two MLPs ϕ and ρ, where ϕ produces intermediate representations for
each entity, those intermediate representations are summed, and then ρ produces the final output. In full generality, both
ϕ and ρ may have two or more layers with nonlinearities in between. While our ϕ is a 3-layer MLP, we use a linear ρ
throughout the main paper because we found that it often works comparably or better than using a larger 2-layer MLP ρ.
Here we repeat the N-Push extrapolation and Push + Stack stitching experiments from the main paper using a 2-layer ρ,
which we call “Deep Set (large).” The results from the main paper uses a 1-layer ρ which we refer to here as “Deep Set
(small).”
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Reinforcement learning Imitation learning

Figure 4. Training on environments of varying complexity using either reinforcement or imitation learning. Each row corresponds to a
single environment family (N-Push, N-Switch, and N-Switch + N-Push), where environments with larger N contain more entities and
are more complex. For RL (left), each plot is a training curve of success rate vs the number of steps taken in the environment. RL with
standard MLPs can solve the simpler tasks such as 1-Push, but Deep Set and Self Attention policies are superior on the more complex
environments. For IL (right), we show success rates of behavior cloning against number of expert demonstrations in the dataset. Both
Deep Set and Self Attention policies far outperform the MLP even when given less data. Shaded regions indicate 95% CIs over 5 seeds.

Figure 7 shows the results. In N-Push, the larger Deep Set model achieves higher training success rates in the 3-cube
environment, but has worse extrapolation success rates for large numbers of cubes. For example, the smaller Deep Set
model is significantly better at solving 6-Push. Meanwhile, the large and small Deep Sets achieve very similar results in
the pushing and stacking training environments. However, the larger Deep Set model achieves a higher success rate in the
Push + Stack environment, indicating superior stitching capability. This suggests that simpler Deep Set architectures may be
better for extrapolating to a large number of entities, but more complex architectures may be superior for solving complex
tasks with a fixed number of entities.

D.2. N-Push with cube-cube collisions

As noted in Appendix B, we disable cube-cube collisions in the N-Push and N-Switch+N-Push experiments of the main
paper (of course, the stacking settings require cube-cube collisions to be enabled). Here we repeat the N-Push extrapolation
experiments with cube-cube collisions enabled. Figure 8 shows the results, which are qualitatively similar to when
collisions are disabled. All methods observe a decrease in success rates of about 15%, with the Self Attention method often
outperforming the Deep Set policy. This is likely because N-Push involves more interaction between entities once cube-cube
collisions are enabled, and Self Attention’s relational inductive biases are better suited for modeling these interactions.
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Train Test

Figure 5. Extrapolation capabilities of RL-trained policies with different architectures. Each row is an environment family that contains
environments with a varying number of entities. Policies are trained on a single environment from each family before being tested on all
the others, with no additional training. Bar charts show success rates in each environment, with the hatched bars corresponding to training
environments. The Self Attention and Deep Set policies extrapolate beyond the training environment to solve tasks with more or fewer
entities than seen in training, while MLP policies struggle on more complex testing environments. Error bars are 95% CIs on 5 seeds.

Train Test

2–Push

2–Push Stack Push + Stack

2–Switch 2–Push + 2–Switch

Figure 6. Left: each row corresponds to a setting where policies are evaluated on test tasks that require stitching together skills learned in
training, with no additional data. In the top setting, a single agent is trained on 2-Switch and 2-Push, and must solve 2-Switch+2-Push at
test time. In the bottom setting, a single agent is trained on 2-Push and Stack, and must solve Push + Stack at test time. Right: average
success rates of policies with different architectures in each setting. Deep Set and Self Attention policies are moderate successful at
solving the test tasks, and are comparable to the Oracle in Push + Stack. The MLP fails to achieve nontrivial success rates on both test
environments. Error bars indicate 95% CIs over 5 seeds.
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Effect of Deep Set size on Extrapolation and Stitching

Figure 7. Comparison of N-Push extrapolation and Push + Stack stitching performance when using small and large variants of the Deep
Set policy architecture. The small version implements ρ with a 1-layer linear map, while the large version implements ρ with a 2-layer
MLP. For N-Push, the larger network achieves greater success rates in the training environment (3 cubes) but is actually worse when
extrapolating to 5 or 6 cubes. On the other hand, the larger Deep Set displays superior stitching capability and achieves a higher average
success rate when generalizing to Push + Stack from 2-Push and Stack.

Figure 8. N-Push extrapolation with cube-cube collisions enabled. All methods observe some drop in performance relative to Figure 5,
where N-Push has cube-cube collisions disabled. Self Attention tends to outperform Deep Sets when collisions enabled, likely because its
relational inductive biases are better suited to handling interactions between entities that arise from collisions.


