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ABSTRACT

Test-time adaptation (TTA) aims to adapt a pre-trained model to the target do-
main using only unlabeled test samples. Most existing TTA approaches rely on
definite pseudo-labels, inevitably introducing false labels and failing to capture
uncertainty for each test sample. This prevents pseudo-labels from being flexi-
bly refined as the model adapts during training, limiting their potential for per-
formance improvement. To address this, we propose the Progressive Adaptation
with Selective Label Enhancement (PASLE) framework. Instead of definite labels,
PASLE assigns candidate pseudo-label sets to uncertain ones via selective label
enhancement. Specifically, PASLE partitions data into confident/uncertain sub-
sets, assigning one-hot labels to confident samples and candidate sets to uncertain
ones. The model progressively trains on certain/uncertain pseudo-labeled data
while dynamically refining uncertain pseudo-labels, leveraging increasing target
adaptation monitored throughout training. Experiments on various benchmark
datasets validate the effectiveness of the proposed approach. The source code is
available at https://github.com/palm-ml/PASLE.

1 INTRODUCTION

Deep neural networks often experience performance degradation when the training and testing data
are drawn from different distributions. Test-time adaptation (TTA), an emerging paradigm that
adapts a pre-trained model to a different domain using only unlabeled data during testing, aims
to alleviate this problem. As the practicality of TTA, it has been successfully applied across various
fields, including autonomous driving (Wang et al., 2022; Volpi et al., 2022), medical image seg-
mentation (He et al., 2021; Karani et al., 2021), and speech processing (Kim et al., 2022; Lin et al.,
2022).

Most TTA approaches utilize pseudo-labeling-based methods, which first assign pseudo-labels to
the unlabeled target data and then adapt the pre-trained model to the target domain through train-
ing on those pseudo-labeled samples. Some approaches utilize non-parametric classifiers to gen-
erate pseudo-labels by measuring the distance between samples and prototypical representations
(Iwasawa & Matsuo, 2021) or leveraging neighboring feature similarities without model adaptation
(Zhang et al., 2023). Other methods rely on the consistency between prototype-based pseudo-labels
or nearest-neighbor-based pseudo-labels to guide model updates during adaptation (Jang et al., 2023;
Wang et al., 2023; Sun et al., 2024). These approaches aim to improve the robustness and perfor-
mance of TTA by directly using definite pseudo-labels.

Due to distribution shifts, most previous approaches inevitably introduce false pseudo-labels by
adopting definite pseudo-labels. These approaches may experience significant performance dete-
rioration. The definite pseudo-labels lose the uncertainty information of each class corresponding
to the test sample, leading to the fact that the unreliable pseudo-labels cannot be flexibly tuned ac-
cording to the model’s increasing adaptation during the learning process. Therefore, despite making
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efforts in pseudo-labeling, including prototype-based or nearest-neighbor-based methods, previous
approaches usually do not fully unleash the potential of pseudo-labels for improving the performance
of TTA.

To address this issue, instead of assigning definite pseudo-labels to test samples, we propose a novel
framework named PASLE, i.e., Progressive Adaptation with Selective Label Enhancement. PASLE
selectively assigns one-hot pseudo-labels to confident test samples or assigns candidate pseudo-
label sets to uncertain test samples in a label enhancement process (Xu et al., 2019; 2020). Specif-
ically, PASLE partitions test samples into confident and uncertain subsets based on the selective
label enhancement strategy, where confident samples receive one-hot pseudo-labels, and uncertain
samples are assigned candidate pseudo-label sets. The model is then iteratively trained on certain
pseudo-labeled target data and uncertain pseudo-labeled target data in a progressive manner while
dynamically refining the candidate pseudo-label sets of uncertain samples by exploiting the model’s
evolving adaptation capability to the target domain, which is monitored during the training process.
Our contributions can be summarized as follows:

• We propose a selective label enhancement strategy, where PASLE partitions test samples into
confident and uncertain subsets based on the model’s predictive confidence scores, with confident
samples receiving one-hot pseudo-labels and uncertain samples being assigned candidate pseudo-
label sets.

• We introduce a progressive learning framework that trains the model on certain pseudo-labeled
target data and uncertain pseudo-labeled target data in a progressive manner while dynamically
refining the candidate pseudo-label sets of uncertain samples by exploiting the model’s evolving
adaptation capability to the target domain, which is monitored during the training process.

• We theoretically establish a generalization bound for TTA and assess the effectiveness of pseudo-
labels by quantifying them through the pseudo-label error term.

2 RELATED WORK

Test-time adaptation. Domain shifts often cause machine learning systems to suffer substantial
drops in performance. To address this challenge, numerous techniques have been developed to
enhance model robustness against distribution shifts. Domain generalization (Zhou et al., 2022)
attempts to train a model on data from one or more source domains, enabling it to generalize effec-
tively to unseen target domains. Domain adaptation (Kouw & Loog, 2021) relies on transductive
learning, where knowledge from a labeled source domain is transferred to an unlabeled target do-
main. Test-time adaptation (Liang et al., 2025) differs by allowing a pre-trained model to adapt
to a target domain using only unlabeled test data. Our research centers on online test-time adap-
tation (OTTA) (Wang et al., 2024), a scenario where test data from the target domain is presented
sequentially, requiring real-time adaptation.

Recent advancements in OTTA have explored various strategies. Some methods (Wang et al., 2021;
Gong et al., 2022; Mirza et al., 2022; Zhao et al., 2023) focus on batch normalization (BN) calibra-
tion since BN layers can incorporate domain-specific knowledge through the normalization statistics
they learn (Li et al., 2017b). Several strategies (Zhang et al., 2022; Jing et al., 2022; Niu et al., 2023;
Lee et al., 2024) place emphasis on entropy minimization, aiming to encourage more confident and
distinct predictions by reducing the uncertainty in the model’s output. Numerous approaches focus
on pseudo-labeling, where the model generates pseudo labels for unlabeled data and performs self-
training to improve its performance. Iwasawa & Matsuo (2021) create a pseudo-prototype for each
class and classify new samples based on the distances. Goyal et al. (2022) introduce a self-training
method that utilizes a specialized soft label known as the conjugate pseudo label. Shin et al. (2022)
introduce a selective fusion strategy to ensemble predictions from multiple modalities. Meanwhile,
Yang et al. (2022) generate soft pseudo labels by averaging the predictions of neighboring samples
stored in a memory bank. Döbler et al. (2023) use symmetric cross-entropy loss to enforce predic-
tion consistency between the teacher and student model. Similarly, Jang et al. (2023) aim to reduce
divergence between predictions from prototype-based and neighbor-based classifiers. Wang et al.
(2023) propose test-time self-distillation for feature uniformity and memorized spatial local cluster-
ing for feature alignment. Sun et al. (2024) combine prototype-based and nearest-neighbor methods
through a prototype graph model to enhance pseudo-label generation.
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Uncertainty modeling. The previous methods within unsupervised domain adaptation or source-
free domain adaptation build up the uncertainty at the model or sample level. For example, at the
model level, Zhan et al. (2023) leverage Monte Carlo dropout, and Lao et al. (2021) apply deep
ensembles. At the sample level, Liang et al. (2020b); Roy et al. (2022) generate weights using
prediction entropy, while Litrico et al. (2023) derive them by analyzing consensus among neigh-
boring samples. Tan et al. (2024) capture both model uncertainty and sample uncertainty using
a sub-network. Our proposed method models the uncertainty at the label level through candidate
pseudo-label sets, where the uncertainty is directly manifested through the cardinality of the can-
didate pseudo-label set. Compared to existing approaches, our method imposes no constraints on
pre-trained models and does not require additional computations during inference, making it partic-
ularly suitable for OTTA scenarios.

3 PROPOSED METHOD

3.1 PRELIMINARIES

To begin with, some necessary notations are briefly introduced. Let X = Rq denote the q-
dimensional instance space, Y = {1, 2, . . . , c} be the label space with c class labels, and ∆c−1 be
the c-dimensional probability simplex. A pre-trained predictive model f : X 7→ ∆c−1 with param-
eters Θ is initialized to Θ0 on a dataset from the source domain S, i.e., DS = {(xi, yi)|1 ≤ i ≤ n}
where xi ∈ X denotes the q-dimensional instance, yi ∈ Y denotes the correct label annotated to
xi and each example (xi, yi) is sampled from the distribution pS(x, y). During test-time inference,
the predictive model f(·;Θ) streamingly receives R mini-batch datasets from the target domain T .
At the r-th step, the received dataset is denoted by Dr

T = {xr
i |1 ≤ i ≤ mr} where the received

instance xr
i ∈ X and its unobserved correct label yri are from the misaligned distribution pT (x, y)

with pS(x, y), i.e., pT (x, y) ̸= pS(x, y). The goal of OTTA is to continuously update the parame-
ters Θ of the pre-trained predictive model f to obtain the maximization of the following cumulative
accuracy on R mini-batch datasets from the target domain T :

Acc(f, T ) =
∑R

r=1

∑mr

i=1 I[yri = argmaxj∈Y fj(x
r
i ;Θ

r)]∑R
r=1 m

r
, (1)

where Θr is the updated parameters of the model f at the r-th step, and I[·] is the indicator function.
To achieve this goal, the process of progressive label enhancement in our framework introduces
pseudo-labels through soft labels output by the predictive model to handle the absence of correct
labels during adaptation. The pseudo-label of the testing instance xr

i is denoted by a logical label
vector lri = [lr,1i , lr,2i , . . . , lr,ci ]⊤ ∈ {0, 1}c, and the corresponding soft label is denoted by a vec-
tor dr

i = [dr,1i , dr,2i , . . . , dr,ci ]⊤ = [f1(x
r
i ;Θ

r), f2(x
r
i ;Θ

r), . . . , fc(x
r
i ;Θ

r)] ∈ [0, 1]c satisfying∑c
j=1 d

r,j
i = 1. When

∑c
j=1 l

r,j
i = 1, the pseudo-label of the testing instance xr

i is a one-hot
pseudo-label. When 1 <

∑c
j=1 l

r,j
i < c, the pseudo-label of the testing instance xr

i is a candidate
pseudo-label set. Besides, we prepare a buffer Br initialized by B0 = ∅ with maximum size K to
save the received instances not used at the r-th step.

3.2 OVERVIEW

Our framework trains the predictive model with the optimization objective on the split confident sub-
set with one-hot pseudo-labels and the uncertain subset with candidate pseudo-label sets, which are
constructed by a selective enhancement strategy using a dynamic threshold. This strategy follows
the derived proposition about uncertainty information. Also, we select and incorporate the received
instances that are not used at the current optimization step into the prepared buffer for subsequent
use. Finally, as the predictive model becomes increasingly aligned with the target domain distribu-
tion, the threshold will decrease to progressively refine the pseudo-labels. In this way, we unleash
the power of pseudo-labels in OTTA and improve the performance of the predictive model. Theoret-
ically, we demonstrate that our framework achieves a tighter generalization bound by incorporating
more target domain instances and evaluates the effectiveness of pseudo-labels by quantifying them
through the pseudo-label error term.
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3.3 THE PASLE FRAMEWORK

First of all, we introduce the overall objective L of the PASLE framework employed to optimize the
predictive model parameters Θr−1 at r-th step:

L =
1

|Dr
H |

∑
x∈Dr

H

ℓ(f(x;Θr−1), l) +
1

|Dr
M |

∑
x′∈Dr

M

ℓ′(f(x′;Θr−1), l′), (2)

where ℓ(·, ·) is the loss function to handle each instance x from the confident subset Dr
H with its

one-hot pseudo-label l while ℓ′(·, ·) is the loss function to handle each instance x′ from the uncertain
subset Dr

M with its candidate pseudo-label l′, and | · | represents the cardinality of a set. Practically,
ℓ(·, ·) is instantiated as the cross-entropy loss, which has been widely used in supervised learning
tasks, while ℓ′(·, ·) is instantiated as the classifier-consistent loss proposed by Feng et al. (2020):

ℓ′(f(x′;Θr−1), l′) = − log

c∑
j=1

l′jfj(x
′;Θr−1), (3)

which has been validated to deal with candidate labels effectively.

Note that Eq. (2) model the uncertainty information based on the confident subsetDr
H and uncertain

subsetDr
M , which are split from the received datasetDr

T and the buffer dataset Br−1. The confident
set Dr

H contains the instances whose correct labels could be determined, while the uncertain set
Dr

M contains the instances whose correct labels could be only determined among some candidate
labels. Hence, we assign the one-hot pseudo-label l to each instance x ∈ Dr

H , and the candidate
pseudo-label l′ to each instance x′ ∈ Dr

M .

Then, a selective label enhancement strategy is induced by the following proposition to construct
the confident subset Dr

H and uncertain subset Dr
M by utilizing soft pseudo-labels, generating the

one-hot pseudo-label l for each instance x ∈ Dr
H and candidate pseudo-label l′ for each instance

x′ ∈ Dr
M .

Let Θ⋆ be the optimal parameters learned from supervised data from the target domain T , i.e.,
Θ⋆ = argminΘ E(x,y)∼pT (x,y)I[argmaxj∈Y fj(x;Θ) ̸= y)], f(x;Θ⋆) be the class-posterior
probabilities for the instance x on the target domain T , i.e., fj(x;Θ⋆) = pT (y = j|x), p rep-
resent the class the highest score of the soft label dr

i , i.e., p = argmaxj∈Y dr,ji , and q denote the
class with the second-highest score of the soft label dr

i , i.e., q = argmaxj∈Y,j ̸=p d
r,j
i . We provide

the following proposition.

Proposition 1 Assume that at adaptation step r, the difference between f(·;Θr) and f(·;Θ⋆) on
the instance xr

i is bounded by 1
2τ(r), i.e., |fj(xr

i ;Θ
r) − fj(x

r
i ;Θ

⋆)| ≤ 1
2τ(r),∀j ∈ Y . For any

xr
i in the unlabeled data batch Dr

T , if dr,pi − dr,ji > τ(r), then j cannot be the correct label of xr
i .

Furthermore, if dr,pi − dr,qi > τ(r), then p is the correct label of xr
i .

The detailed proof can be found in the Appendix A. On the one hand, Proposition 1 provides a
condition under which the label with the highest predicted score is guaranteed to be correct, allowing
for the accurate assignment of a pseudo-single label to a part of the unlabeled samples. Hence, we
could split a confident subset Dr

H from the received dataset Dr
T and the buffer dataset Br−1 based

on the soft label of each instance and the threshold τ(r) at the r-th step:

Dr
H = {x|x ∈ Dr

T ∪ Br−1, dp − dq > τ(r)}. (4)

After splitting the confident subset Dr
H , we generate the one-hot pseudo-label l for each instance

x ∈ Dr
H as follows:

lj =

{
1, if j = p and dp − dq > τ(r),

0, otherwise.
(5)

On the other hand, Proposition 1 provides a condition under which the label with the low predicted
score is guaranteed to be incorrect, allowing for the ambiguous assignment of candidate pseudo-
labels to a part of the unlabeled samples. Hence, we could split an uncertain subset Dr

M from the
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Algorithm 1 PASLE Algorithm

Require: The pre-trained predictive model f(·;Θ0), total adaption steps R, initial threshold τstart,
end threshold τend, threshold descend constant τdes, buffer maximum size K;

1: τ(1)← τstart;
2: Initialize the buffer B0 as empty;
3: for r = 1, 2, ...R do
4: Obtain the confident subset Dr

H and uncertain subset Dr
M according to Eq. (4) and Eq. (6);

5: Generate the one-hot pseudo-label l for each instance x ∈ Dr
H using Eq. (5) and the candidate

pseudo-label l′ for each instance x′ ∈ Dr
M using Eq. (7);

6: Optimize the predictive model parameters Θr−1 to Θr based on Eq. (2);
7: Update the buffer Br−1 to Br following Eq. (8);
8: Adjust the threshold according to Eq. (9);
9: end for

Ensure: The predictive model f(·;Θ).

received dataset Dr
T and the buffer dataset Br−1 based on the soft label of each instance and the

threshold τ(r) at the r-th step:

Dr
M = {x′|x′ ∈ Dr

T ∪ Br−1,∃j ∈ Y, d′p − d′j > τ(r)}. (6)

After splitting the uncertain subset Dr
M , we generate the candidate pseudo-label l′ for each instance

x′ ∈ Dr
M based on the corresponding soft label d′ and the threshold τ(r) at the r-th step as follows:

l′j =

{
0, if d′p − d′j > τ(r),

1, otherwise.
(7)

Besides, for the received instances which are not used in Eq. (2), i.e., (Dr
T ∪Br−1)\(Dr

H∪Dr
M ), we

intend to store them in the new buffer Br. If the number of samples to be stored exceeds the buffer’s
maximum size during the algorithm’s operation, we prioritize retaining the samples with the top-K
largest margins, as these are likely to contribute to the model’s updates earlier. The margin of an
instance x is defined as ρ(x) = dp − dq . Denote ρK the top-K largest margin of the instance
x ∈ (Dr

T ∪ Br−1) \ (Dr
H ∪ Dr

M ) at adaptation step r. Then, the sample selection process can be
formulated as follows:

Br = {x|x ∈ (Dr
T ∪ Br−1) \ (Dr

H ∪ Dr
M ), ρ(x) > ρK}, (8)

where the buffer’s maximum capacity K is restricted to a quarter of the target domain batch size in
practice, considering resource consumption.

Finally, since the model becomes increasingly aligned with the target domain distribution as adap-
tation progresses, the gap between the scoring function f(·;Θr) and the class-posterior probability
f(·;Θ⋆) is supposed to gradually decrease. Hence, to improve the reliability of pseudo-labels, the
threshold τ(r) is manually reduced over time. In practice, τ(r) is initialized at a starting value τstart
when r = 1 and is gradually decreased by a constant value τdes each step. This process continues
until τ(r) reaches a predefined lower bound τend. The adjustment of τ(r) can be formulated as:

τ(r) = max{τ(r − 1)− τdes, τend}. (9)

In this way, the PASLE framework successfully leverages the uncertainty information and flexibly
tunes pseudo-labels according to the model’s evolving adaptation capability, thereby unleashing the
potential of pseudo-labels and improving the performance of TTA. The algorithmic description of
PASLE is presented in Algorithm 1.

3.4 THEORETICAL ANALYSIS

3.4.1 A GENERALIZATION BOUND FOR TTA

We theoretically establish a generalization bound for TTA that by incorporating a greater number
of target domain samples with effective supervision, a tighter generalization bound can be achieved.
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Suppose that at the r-th step of adaptation, the classifier h receives mr samples. Given the possibility
of overlap between the source domain and the target domain, we assume (1 − β)mr samples are
drawn from S, and the remaining βmr samples are drawn from T . The goal of the classifier is
to find a hypothesis that minimizes the target error ϵT (h). We focus on classifiers that minimize a
convex combination of the empirical errors from the source and target domains (Ben-David et al.,
2010), defined as:

ϵ̂α(h) = αϵ̂T (h) + (1− α)ϵ̂S(h), (10)
where α ∈ [0, 1]. The corresponding weighted combination of the true source and target errors is
denoted by ϵα(h). To quantify the distributional difference between the source domain and target
domain, we use the disparity discrepancy introduced by Zhang et al. (2019).

Definition 1 Given a hypothesis spaceH and a specific classifier h ∈ H, the Disparity Discrepancy
induced by h′ ∈ H is defined by

dh,H(S, T ) ≜ sup
h′∈H

(dispT (h′, h)− dispS (h′, h))

= sup
h′∈H

(ET I [h′ ̸= h]− ESI [h′ ̸= h]) .
(11)

Based on the above assumptions and definition, we derive the following theorem.

Theorem 1 Let H be a hypothesis space of VC dimension d. Let Ŝ and T̂ be unlabeled sample
sets of size m′ each, drawn from S and T respectively. A batch of samples of size mr is generated
by random sampling at the r-th step of adaptation. Given the possibility of overlap between the
source domain and the target domain, we assume (1 − β)mr samples are drawn from S, and the
remaining βmr samples are drawn from T , which are then labeled with the true labeling function.
For simplicity in theoretical analysis, we allocate the loss weight proportionally to the number of
samples from each domain, specifically setting α and β to be equal. If ĥ ∈ H is the empirical
minimizer of ϵ̂α(h) on this batch and h∗

T = minh∈H ϵT (h) is the target error minimizer, then for
any δ > 0, with probability at least 1− 2δ,

ϵT (ĥ) ≤ ϵT (h∗
T ) + 4

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ 2(1− β)

dh,H(Ŝ, T̂ ) + 2

√
2d log em′

4d

m′ + 2

√
log 2

δ

2m′ + λ

 ,

(12)

where λ = errS (h∗) + errT (h∗) and h∗ ≜ argmin
h∈H

{errS(h) + errT (h)}.

The proof of Theorem 1 is provided in Appendix B. Theorem 1 provides a generalization bound
on the target domain for the empirical minimizer on the given batch. Suppose we also have some
target domain samples annotated with effective supervisory information provided alongside the well-
annotated current data batch to guide the model’s adaptation. In that case, the empirical minimizer’s
generalization bound on the target domain becomes tighter. Since the growth rate of the upper

bound’s second term is O(
√

logm
m ), it decreases as more samples are incorporated into training.

Moreover, as the number of target domain samples increases, β will also increase, resulting in a
reduction of the third term in the upper bound.

3.4.2 PSEUDO-LABEL EFFECTIVENESS QUANTIFICATION

Next, we assess the effectiveness of pseudo-labels by quantifying them through pseudo-label error
terms for TTA. Assume that during test-time inference, the predictive model streamingly receives R
mini-batch data from the target domain T , accumulating a dataset DR

T over R mini-batches, with a
total sample size of NR. For a target domain sample x, let its Bayes class-probability distribution be
denoted as p = [P (y1 | x) , P (y2 | x) , . . . , P (yc | x)], and its supervision information provided
by the algorithm be denoted as q (here it refers to the label distribution). We have the following
theorem.
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Theorem 2 Suppose the loss function ℓ is bounded by M , i.e., M = supx∈X ,f∈F,yj∈Y ℓ(f(x), y).
Fix a hypothesis class F of predictors f : X 7→ Rc, with induced class H ⊂ [0, 1]X of functions
h(x) = ℓ (f (xi) , q). Suppose H has uniform covering number Ninf . Then for any δ ∈ (0, 1), with
probability at least 1− δ,

R(f)− R̂(f) ≤M
√
c · (E [∥q − p∥2]) +O


√

V(f) ·
log

MNR

δ

NR
+

log
MNR

δ

NR

 , (13)

whereMNR = Ninf

(
1

NR ,H, 2NR
)
, and V(f) is the empirical variance of the loss values.

The proof of Theorem 2 is provided in Appendix C. Theorem 2 demonstrates that as the target
domain samples’ label distribution q provided by the algorithm becomes closer to the Bayes class-
probability distribution p, the gap between the empirical risk and the expected risk on the accu-
mulated dataset DR

T will decrease. The effectiveness of the supervision information can be quan-
tified by the degree of closeness between its corresponding label distribution and the Bayes class-
probability distribution and the pseudo-label error term is E [∥q − p∥2]. Our algorithm provides
one-hot pseudo-labels when it is more certain about the samples and a candidate pseudo-label set
when it is uncertain. These actions can make the corresponding pseudo-labels’ label distribution
closer to the Bayes class-probability distribution, thereby making the empirical risk more closely
aligned with the expected risk and thus better guiding the model toward adaptation to the target
domain.

4 EXPERIMENTS

4.1 DATASETS

Following recent works in OTTA (Jang et al., 2023; Wang et al., 2023; Sun et al., 2024), we use do-
main generalization datasets and image corruption datasets to evaluate our method. We employ four
domain generalization datasets including PACS (Li et al., 2017a), VLCS (Torralba & Efros, 2011),
OfficeHome (Venkateswara et al., 2017), and DomainNet (Peng et al., 2019). DomainNet is
a large-scale dataset with 586,575 images across 345 classes, covering six domains: clipart, info-
graph, painting, quickdraw, real, and sketch. For source training, we designate one domain as the
target and use the remaining domains as source domains. We allocated 20% of the data from the
source domains for validation purposes.

Additionally, we employ two image corruption datasets: CIFAR-10-C and CIFAR-100-C
(Hendrycks & Dietterich, 2019). Both datasets introduce 15 types of common image corruptions,
categorized into four types: noise, blur, weather, and digital, to the test sets of CIFAR-10 and
CIFAR-100 (Krizhevsky, 2009). We use the training sets of CIFAR-10 and CIFAR-100 as
source domains and the highest level of corruption in CIFAR-10-C and CIFAR-100-C as tar-
get domains. The validation set partition follows the same approach as that used for the domain
generalization datasets.

4.2 BASELINES

We compare the performance of PASLE with ten OTTA approaches.

• ERM (Vapnik, 1998): A standard approach that directly outputs the model’s predictions without
adaptation.

• BN (Schneider et al., 2020): A BN calibration approach that replaces the activation statistics
estimated by BN layers on the training set with the statistics of the target domain images.

• TENT (Wang et al., 2021): An entropy minimization approach that optimizes channel-wise affine
transformations by reducing the entropy of model predictions on target domain data.

• PL (Lee, 2013): A pseudo-labeling approach that fine-tunes a pre-trained classifier by leveraging
confident pseudo-labels derived from the model’s predictions.

• SHOT-IM (Liang et al., 2020a): An information maximization approach that refines the source
encoding module by maximizing the mutual information between intermediate feature represen-
tations and the classifier’s outputs.
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Table 1: Classification accuracy of comparing methods on domain generalization datasets.

Methods BackBone PACS VLCS OfficeHome DomainNet Avg.

ERM

ResNet-18

79.37 75.14 62.43 35.76 63.18
BN 83.08 68.79 62.29 34.95 62.28
TENT 83.23 69.28 62.51 35.37 62.60
PL 85.66 74.68 62.71 35.24 64.57
SHOT-IM 83.02 70.80 63.91 35.92 63.41
T3A 81.70 75.83 63.90 36.31 64.44
TAST 84.31 71.69 63.96 35.71 63.92
TAST-BN 86.35 75.17 62.43 35.82 64.94
TSD 87.88 75.47 63.42 35.86 65.66
PROGRAM 83.57 71.64 63.35 35.97 63.63
DEYO 86.26 74.91 63.30 35.37 64.96
PASLE 88.16 77.91 63.99 36.89 66.74
ERM

ResNet-50

85.84 76.06 67.84 43.16 68.23
BN 86.00 67.76 66.82 41.50 65.52
TENT 86.51 68.41 67.27 42.38 66.14
PL 85.66 73.80 67.31 42.38 67.29
SHOT-IM 85.27 68.49 67.89 43.41 66.27
T3A 86.54 76.59 68.85 44.00 69.00
TAST 86.94 67.32 68.70 42.84 66.45
TAST-BN 89.47 75.59 67.97 43.03 69.02
TSD 91.13 74.77 68.97 42.44 69.33
PROGRAM 86.16 68.85 68.03 43.34 66.60
DEYO 88.23 71.59 68.08 42.47 67.59
PASLE 91.36 78.70 69.37 44.91 71.09

Table 2: Classification accuracy of comparing methods on image corruption datasets.

Methods CIFAR-10-C CIFAR-100-C

ERM 20.66 5.84
BN 75.33 43.88
TENT 75.41 43.93
PL 75.70 44.24
SHOT-IM 75.85 44.36
T3A 23.52 6.74
TAST 74.13 39.21
TAST-BN 74.56 31.84
TSD 75.14 44.19
PROGRAM 75.00 44.06
DEYO 75.74 44.28
PASLE 76.67 45.32

• T3A (Iwasawa & Matsuo, 2021): A pseudo-labeling approach that predicts test data labels by
measuring the distances between the test samples and pseudo-prototypes.

• TAST (Jang et al., 2023): A pseudo-labeling approach that updates the model by matching the
nearest neighbor-based pseudo label and a prototype-based class distribution for the test data.

• TAST-BN (Jang et al., 2023): A pseudo-labeling approach, which is a modified version of TAST
and refines the model by adjusting the parameters of the BN layers.
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Table 3: Classification accuracy (mean ±
std) of PASLE and its variant on target do-
mains of the OfficeHome dataset. The best
performance is shown in boldface.

Domain PASLE PASLE-NC

A 57.25±0.75 56.11±0.92
C 51.30±0.41 50.85±0.68
P 73.31±1.04 72.13±1.43
R 74.10±0.20 73.87±0.45
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Figure 1: Sample utilization during testing.

• TSD (Wang et al., 2023): A pseudo-labeling approach that employs a dynamic memory bank to
compute class prototypes and generate pseudo-labels for refining the model.

• PROGRAM (Sun et al., 2024): A pseudo-labeling approach that leverages a graph structure that
connects prototypes with test samples, allowing information to flow between them and enhancing
the generation of pseudo-labels.

• DEYO (Lee et al., 2024): An entropy minimization approach that updates the model by minimiz-
ing the model output’s entropy of samples with low entropy and high PLPD value concurrently.

We evaluate all methods on domain generalization benchmarks using ResNet-18 and ResNet-50
models (He et al., 2016), both equipped with batch normalization (Ioffe & Szegedy, 2015). For
image corruption benchmarks, we employ ResNet-18 as the backbone model.

For source training, the models are trained using the Adam optimizer with a learning rate of 5e−5

for domain generalization benchmarks and 1e−3 for image corruption benchmarks. All weights are
initialized from ImageNet-1K (Russakovsky et al., 2015) pre-trained models. We select the final
pre-trained model with the highest validation accuracy.

During testing, we also utilize the Adam optimizer to update all trainable layers without the need
for a specific selection. The batch size for the online target domain data is set to 128, with the buffer
capacity K set to one-fourth of the batch size, i.e., 32. The learning rate is selected from the range
between 1e−3 and 1e−6. The value of τstart is determined by the number of classes in each dataset:
for example, VLCS contains 5 classes, while DomainNet has 345 classes, leading to different
τstart values for each dataset. The threshold gap, represented as |τstart − τend|, is consistently set at
0.1. Furthermore, τdes is uniformly set to 1e−3 for all datasets, except for the large-scale dataset
DomainNet, where it is adjusted to 1e−4. It is essential to highlight that all hyperparameters for
the OTTA setting are finalized prior to accessing any test samples. We meticulously select the most
suitable hyperparameters for each algorithm based on their performance on the training domain
validation datasets (Gulrajani & Lopez-Paz, 2021; Wang et al., 2023).

4.3 EXPERIMENTAL RESULTS

We conduct 3 trials with different random seeds, reporting both the mean and standard deviation of
the metrics, with full results detailed in Appendix E. Each method’s classification accuracy across
datasets’ target domains is summarized in Table 1 and Table 2. The best performance is shown in
boldface, and the second-best result is underlined. It is impressive to observe that:

• PASLE achieves the best performance across all benchmark datasets and network architectures,
outperforming all the compared approaches.

• PASLE consistently enhances the performance of the classifier on domain generalization bench-
marks, achieving an average improvement of 5.63% for ResNet-18 and 4.19% for ResNet-50.

• PASLE outperforms the second-best methods on image corruption benchmarks, with an average
performance gain of 1.08% on CIFAR-10-C and 2.16% on CIFAR-100-C.

9



Published as a conference paper at ICLR 2025

τstart

0.75
0.80

0.85
0.90

τ en
d

0.55

0.60

0.65

0.70

Te
st

A
cc

ur
ac

y(
%

)

76

77

7878

(a) The sensitivity of τstart and τend on CIFAR-10-C.

16 32 64 128 256

Batch Size

73

74

75

76

77

78

Te
st

A
cc

ur
ac

y
(%

)

TSD

PROGRAM

DEYO

PASLE

(b) The sensitivity of batch size on CIFAR-10-C.

Figure 2: The parameter sensitivity analysis for PASLE.

• Especially, we find that PASLE significantly improves the performance of the pre-trained classifier
on the DomainNet benchmark, which is a large-scale dataset, indicating that PASLE holds strong
potential for real-world applications.

4.4 FURTHER ANALYSIS

To demonstrate the effectiveness of the candidate pseudo-labels in PASLE, we conduct an abla-
tion study using a vanilla variant, PASLE-NC. In PASLE-NC, all samples annotated with candidate
pseudo-labels are excluded from model updates. As shown in Table 3, PASLE outperforms PASLE-
NC on all target domains of the OfficeHome dataset with ResNet-18, highlighting the importance
of candidate pseudo-labels in further improving performance during the testing phase.

Furthermore, Figure 1 shows the sample utilization during the testing process for both PASLE and
PASLE-NC on the clipart domain of OfficeHome dataset. It is evident that PASLE utilizes more
effectively labeled samples than PASLE-NC as testing progresses, which further explains PASLE’s
better test-time adaptation performance.

Besides, we perform a parameter sensitivity analysis to examine the impact of two hyperparameters
τstart and τend on our algorithm using the shot noise corruption of CIFAR-10-C dataset. τstart and
τend are assigned various values as illustrated in Figure 2(a), with τdes being set to τstart−τend

R specifi-
cally for the purpose of sensitivity analysis. Clearly, the performance of PASLE remains relatively
stable across a broad range of each hyperparameter. This robustness is highly desirable, as the
PASLE framework consistently delivers reliable test-time adaptation performance.

Figure 2(b) presents the average accuracy of various methods across different batch sizes on shot
noise corruption of CIFAR-10-C dataset. As depicted in the figure, our approach consistently
outperforms the other methods under varying batch sizes. This robust performance makes PASLE
well-suited for deployment in practical scenarios, where the batch size of real-world data streams
can fluctuate significantly.

More discussions of PASLE can be found in the appendix D.

5 CONCLUSION

In this paper, we focus on test-time adaptation and introduce a novel framework, PASLE, which
selectively assigns one-hot pseudo-labels to confident test samples and candidate pseudo-label sets to
uncertain test samples through a label enhancement process. The model is then progressively trained
on both certain and uncertain pseudo-labeled target data. Throughout this process, the candidate
pseudo-label sets for uncertain samples are dynamically refined by leveraging the model’s evolving
adaptation to the target domain, which is continuously monitored during training. Experiments on
various benchmark datasets demonstrate the effectiveness and robustness of the proposed approach.
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A PROOFS OF PROPOSITION 1

According to the assumption of Proposition 1, we have the following bounds for fp(xr
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Subtract inequality 15 from inequality 14, we can deduce that:

dr,pi − dr,ji = fp(x
r
i ;Θ

r)− fj(x
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r) ≤ fp(x
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⋆)− fj(x
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⋆) + τ(r). (16)

Now, if dr,pi − dr,ji > τ(r), then it follows that:

τ(r) < fp(x
r
i ;Θ

⋆)− fj(x
r
i ;Θ

⋆) + τ(r), (17)

which simplifies to:
fj(x

r
i ;Θ

⋆) < fp(x
r
i ;Θ

⋆) (18)

Therefore, j cannot be the true label of xr
i .

If dr,pi − dr,qi > τ(r), then q cannot be the true label of xr
i . Moreover, for any j ∈ Y \ {p, q}, it

follows that dr,pi − dr,ji > τ(r), since dr,ji < dr,qi . As a result, none of the labels in Y\{p} can be
the true label of xr

i . Therefore, given dr,pi − dr,qi > τ(r), p must be the true label of xr
i . The proof

is completed.

B PROOFS OF THEOREM 1

Suppose that at the r-th step of adaptation, the classifier h receives mr samples. Given that the
source domain and target domain may overlap, we assume (1 − β)mr samples are drawn from S,
and the remaining βmr samples are drawn from T . The goal of the classifier is to find a hypothesis
that minimizes the target error ϵT (h). We focus on classifiers that minimize a convex combination
of the empirical errors from the source and target domains (Ben-David et al., 2010), defined as:

ϵ̂α(h) = αϵ̂T (h) + (1− α)ϵ̂S(h), (19)

where α ∈ [0, 1]. The corresponding weighted combination of the true source and target errors is
denoted by ϵα(h).

To quantify the distributional difference between the two domains, we use the disparity discrepancy
introduced by Zhang et al. (2019).

Definition 1 Given a hypothesis spaceH and a specific classifier h ∈ H, the Disparity Discrepancy
induced by h′ ∈ H is defined by

dh,H(S, T ) ≜ sup
h′∈H

(dispT (h′, h)− dispS (h′, h))

= sup
h′∈H

(ET I [h′ ̸= h]− ESI [h′ ̸= h]) .
(20)

In domain adaptation theory (Ben-David et al., 2010), the symmetric difference hypothesis space is
commonly defined as follows:

Definition 2 DefineH∆H ≜ {h | h = h1 ⊗ h2, h1, h2 ∈ H} as the symmetric difference hypothe-
sis space ofH, where ⊗ stands for the XOR operator.

We begin by establishing an upper bound on the difference between the target error ϵT (h) and the
weighted error ϵα(h).
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Lemma 1 Suppose ϵS(h) ≤ ϵT (h). For any classifier h, we have:

|ϵα(h)− ϵT (h)| ≤ (1− α) [dh,H(S, T ) + λ] , (21)

where λ = errS (h∗) + errT (h∗) and h∗ ≜ argmin
h∈H

{errS(h) + errT (h)}.

Proof.

|ϵα(h)− ϵT (h)| = (1− α) |ϵS(h)− ϵT (h)|
≤ (1− α) [(ET I [h∗ ̸= h]− ESI [h∗ ̸= h]) + (ϵS (h∗) + ϵT (h∗))]

≤ (1− α)

[
sup
h′∈H

(dispT (h′, h)− dispS (h′, h)) + λ

]
= (1− α) [dh,H(S, T ) + λ]

(22)

Then, we introduce an upper bound on the difference between the empirical and expected disparity
discrepancy.

Lemma 2 Denote Ŝ and T̂ the empirical distributions of datasets with m and n instances sampled
from S and T , respectively. For any δ > 0 and binary classifier h ∈ H, with probability 1− 2δ,

sup
h∈H

(
dh,H(S, T )− dh,H(Ŝ, T̂ )

)
≤ 2Rm,S(H∆H)+

√
log 2

δ

2m
+2Rn,T (H∆H)+

√
log 2

δ

2n
. (23)

Proof.

dh,H(S, T )− dh,H(Ŝ, T̂ )

= sup
h′∈H

(dispT (h′, h)− dispS (h′, h))− sup
h′′∈H

(
dispT̂ (h′′, h)− dispŜ (h′′, h)

)
≤ sup

h′∈H
(dispT (h′, h)− dispS (h′, h) −dispT̂ (h′, h) + dispŜ (h′, h)

)
≤ sup

h′∈H

(
dispT (h′, h)− dispT̂ (h′, h)

)
+ sup

h′′∈H

(
dispŜ (h′′, h)− dispS (h′′, h)

)
(24)

Take supremum over h ∈ H, we have:

sup
h∈H

(
dh,H(S, T )− dh,H(Ŝ, T̂ )

)
≤ sup

h,h′∈H

∣∣dispT (h′, h)− dispT̂ (h′, h)
∣∣+ sup

h,h′′∈H

∣∣dispŜ (h′′, h)− dispS (h′′, h)
∣∣

= sup
h,h′∈H

∣∣ET I [h′ ̸= h]− ET̂ I [h
′ ̸= h]

∣∣+ sup
h,h′∈H

∣∣ESI [h′ ̸= h]− EŜI [h
′ ̸= h]

∣∣
= sup

g∈H∆H

∣∣ET I[g ̸= 1]− ET̂ I[g ̸= 1]
∣∣+ sup

g′∈H∆H

∣∣ESI[g′ ̸= 1]− EŜI[g
′ ̸= 1]

∣∣
= sup
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∣∣ET g − ET̂ g
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∣∣ESg
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≤ 2Rm,S(H∆H) +

√
log 2

δ

2m
+ 2Rn,T (H∆H) +

√
log 2

δ

2n
.

(25)

The following lemma provides a probabilistic bound on the difference between the empirical and
true error rates of the classifier h.

Lemma 3 A batch of samples of size m is generated by taking βm samples from T and (1 − β)m
samples from S, and then labeling them with the true labeling function g(x). Then we can have:

Pr [|ϵ̂α(h)− ϵα(h)| ≥ ϵ] ≤ 2 exp

(
−2mϵ2

α2

β + (1−α)2

1−β

)
. (26)
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Proof. Let x1, . . . , xβm represent random variables corresponding to the βm samples x ∈ T , taking
values:

α

β
|h(x)− g(x)| . (27)

Similarly, for the remaining (1− β)m samples x ∈ S, let xβm+1, . . . , xm be random variables that
take on the values:

1− α

1− β
|h(x)− g(x)| . (28)

The empirical weighted error ϵ̂α(h) can be expressed as:

ϵ̂α(h) = αϵ̂T (h) + (1− α)ϵ̂S(h)

= α
1

βm

∑
x∈T

|h(x)− g(x)|+ (1− α)
1

(1− β)m

∑
x∈S

|h(x)− g(x)| = 1

m

m∑
i=1

xi.
(29)

Applying the linearity of expectation, we have:

E [ϵ̂α(h)] =
1

m

(
βm · α

β
ϵT (h) + (1− β)m · 1− α

1− β
ϵS(h)

)
= αϵT (h) + (1− α)ϵS(h) = ϵα(h).

(30)

It is important to note that x1, . . . , xβm ∈ [0, α
β ] and xβm+1, . . . , xm ∈ [0, 1−α

1−β ]. Thus, Hoeffding’s
Inequality can be applied as follows:

Pr [|ϵ̂α(h)− ϵα(h)| ≥ ϵ] ≤ 2 exp

(
−2m2ϵ2∑m

i=1 range 2 (xi)

)

= 2 exp

 −2m2ϵ2

βm
(

α
β

)2
+ (1− β)m

(
1−α
1−β

)2
 = 2 exp

(
−2mϵ2

α2

β + (1−α)2

1−β

)
.

(31)

Building on the above definition and lemma, we derive the following theorem:

Theorem 1 Let H be a hypothesis space of VC dimension d. Let Ŝ and T̂ be unlabeled sample
sets of size m′ each, drawn from S and T respectively. A batch of samples of size mr is generated
by random sampling at the r-th step of adaptation. Given the possibility of overlap between the
source domain and the target domain, we assume (1 − β)mr samples are drawn from S, and the
remaining βmr samples are drawn from T , which are then labeled with the true labeling function.
For simplicity in theoretical analysis, we allocate the loss weight proportionally to the number of
samples from each domain, specifically setting α and β to be equal. If ĥ ∈ H is the empirical
minimizer of ϵ̂α(h) on this batch and h∗

T = minh∈H ϵT (h) is the target error minimizer, then for
any δ > 0, with probability at least 1− 2δ,

ϵT (ĥ) ≤ ϵT (h∗
T ) + 4

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ 2(1− β)

dh,H(Ŝ, T̂ ) + 2

√
2d log em′

4d

m′ + 2

√
log 2

δ

2m′ + λ

 ,

(32)

Proof. According to Lemma 1, we have:

ϵT (ĥ) ≤ ϵα(ĥ) + (1− α) (dh,H(S, T ) + λ) . (33)
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By applying Lemma 3, we deduce that:

ϵT (ĥ) ≤ ϵ̂α(ĥ) + 2

√
α2

β
+

(1− α)2

1− β

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ (1− α) (dh,H(S, T ) + λ)

≤ ϵ̂α (h∗
T ) + 2

√
α2

β
+

(1− α)2

1− β

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ (1− α) (dh,H(S, T ) + λ)

≤ ϵα (h∗
T ) + 4

√
α2

β
+

(1− α)2

1− β

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ (1− α) (dh,H(S, T ) + λ) .

(34)

Based on Lemma 2, we obtain:

ϵT (ĥ) ≤ ϵT (h∗
T ) + 4

√
α2

β
+

(1− α)2

1− β

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ 2(1− α)

dh,H(Ŝ, T̂ ) + 2Rm′,S(H∆H) +

√
log 2

δ

2m′ + 2Rm′,T (H∆H) +

√
log 2

δ

2m′ + λ

 .

(35)

According to Lemma 3 and Mohri et al. (2012), it follows that:

ϵT (ĥ) ≤ ϵT (h∗
T ) + 4

√
α2

β
+

(1− α)2

1− β

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ 2(1− α)

dh,H(Ŝ, T̂ ) + 2

√
2d log em′

4d

m′ + 2

√
log 2

δ

2m′ + λ

 .

(36)

If we allocate the loss weight according to the number of samples, that is, setting α = β, we can
conclude:

ϵT (ĥ) ≤ ϵT (h∗
T ) + 4

√
2d log(2(mr + 1)) + 2 log

(
4
δ

)
mr

+ 2(1− β)

dh,H(Ŝ, T̂ ) + 2

√
2d log em′

4d

m′ + 2

√
log 2

δ

2m′ + λ

 .

(37)

This completes the proof.

C PROOFS OF THEOREM 2

First, let R̃V (f) = E
[
R̂V (f)

]
. Then, following the results in Maurer & Pontil (2009), which

provides a uniform convergence form of Bennett’s inequality (Bennett, 1962), we can derive:

R̃V (f)− R̂V (f) ≤ O


√
V(f) ·

log
MNR

δ

NR
+

log
MNR

δ

NR

 (38)

Moreover, the following holds:

∣∣∣R̃V (f)−RV (f)
∣∣∣ = ∣∣∣E [R̂V (f)

]
− E

[
R̂⋆

V (f)
]∣∣∣ ≤ E[∥q − p∥2 ·

√√√√ c∑
j=1

ℓ2 (f (xi) , eyj )]. (39)
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Table 4: Running time of different methods on
the clipart domain of the DomainNet dataset.

Methods Time (s)

ERM 19.54
BN 21.03
TENT 57.23
PL 77.94
SHOT-IM 77.02
T3A 46.57
TAST 86.89
TAST-BN 128.46
TSD 105.55
PROGRAM 113.58
DEYO 92.49
PASLE 99.28

Table 5: Classification accuracy of PASLE under
broader parameter range on the CIFAR-10-C
dataset.

τstart τend Acc

0.9 0.8 77.90
0.8 0.7 77.97
0.7 0.6 77.96
0.6 0.5 77.99
0.5 0.4 77.89
0.4 0.3 77.84
0.3 0.2 77.84
0.2 0.1 77.79

Table 6: Classification accuracy of PASLE and its variants (PASLE-NB and PASLE-NR) on the
OfficeHome dataset. The best performance is shown in boldface.

Methods A C P R

PASLE 57.25±0.75 51.30±0.41 73.31±1.04 74.10±0.20
PASLE-NB 56.98±0.82 51.14±0.44 73.14±0.87 73.00±0.25
PASLE-NR 57.02±0.76 51.11±0.39 73.09±1.21 72.98±0.33

Thus, we have

RV (f)− R̃(f) ≤M
√
c · E [∥q − p∥2] . (40)

Finally, combining Eq.38 and Eq.40 completes the proof.

D FURTHER ANALYSIS (APPENDIX)

Running Time Analysis. To evaluate the computational cost, experiments were carried out on the
clipart domain of the DomainNet dataset, using ResNet-18 as the backbone with a batch size of 128
on an NVIDIA TITAN Xp GPU. The reported runtime excludes data loading time, ensuring fairness
by using torch.cuda.synchronize to accurately measure the computational overhead. The
results are shown in Table 4. Our method has a similar time complexity to PL in pseudo-label
generation. It is a bit slower than PL because our sample utilization rate is high, and as a result,
better performance has been achieved.

Performance over a Broader Parameter Range. We conducted a parameter sensitivity analysis
experiment on the CIFAR-10-C dataset under shot noise with a broader range of hyperparameters.
The value of τstart was selected from a wider range, specifically between 0.2 and 0.9. The threshold
gap represented as |τstart − τend|, was fixed at 0.1. For testing purposes, τdes was set to τstart−τend

R .
The results are summarized in Table 5. The results indicate that the algorithm achieves optimal
performance when τ is within the range of 0.5 to 0.8. Within a reasonable range of τ , the algorithm
also delivers comparable results. However, when τ is set too low (e.g., within the range of 0.1 to
0.2), many samples with incorrect supervision are introduced, leading to a decline in performance.

Ablation Study of Modules in PASLE. We additionally conducted ablation studies using two sim-
plified variants of our framework: PASLE-NB and PASLE-NR. In PASLE-NB, the buffer is removed
from the framework, while in PASLE-NR, the strategy of threshold reduction is excluded. For this
study, we utilized the OfficeHome dataset and employed ResNet-18 as the backbone. The results

19



Published as a conference paper at ICLR 2025

Table 7: Classification accuracy of PASLE with different candidate label selection strategies on the
OfficeHome dataset. The best performance is shown in boldface.

Methods A C P R

PASLE 57.25±0.75 51.30±0.41 73.31±1.04 74.10±0.20
PASLE-TB 57.07±0.63 51.13±0.45 73.11±0.94 73.92±0.34
PASLE-KB 56.31±0.59 50.69±0.35 72.82±0.69 73.56±0.21
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(b) The sensitivity of τstart and τend on DomainNet.

Figure 3: The parameter sensitivity of τstart and τend for PASLE.

are shown in Table 6, highlighting that the buffer mechanism and threshold reduction strategy, as
pluggable modules in our framework, further improve its performance.

Different Candidate Labels Generation Methods. We further explored two approaches for gen-
erating candidate labels. The first is a threshold-based approach (PASLE-TB), where a threshold is
set, and all classes with prediction probabilities exceeding this threshold are selected as candidate
labels. This method generates both one-hot pseudo-labels and candidate pseudo-label sets. The sec-
ond approach is top-k based (PASLE-KB), where prediction probabilities are sorted in descending
order, and the top-k classes are chosen as candidate labels. Unlike the first method, this approach
only produces candidate pseudo-label sets. The threshold and k are dynamically adjusted during the
adaptation process. Experiments were conducted on the OfficeHome dataset using ResNet-18 as
the backbone, and the results are presented in Table 7. It can be observed that PASLE-TB achieves
performance comparable to PASLE, while PASLE-KB, which lacks sample selection and directly
uses the top-k predicted classes of all samples as candidate labels, performs significantly worse than
PASLE.

More Parameter Sensitivity Analysis Results We additionally conducted sensitivity analyses on
τstart and τend using the clipart domain of the OfficeHome dataset and the clipart domain of the
DomainNet dataset as target domains. We also compared the performance of our method and the
baseline methods under varying batch sizes, using the sketch domain of DomainNet and the shot
noise corruption in CIFAR-100-C as target domains. The results are shown in Figure 3 and Figure
4. It can be observed that PASLE is robust to hyperparameter selection and consistently outperforms
other methods across different batch sizes.

E FULL EXPERIMENTAL RESULTS
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Table 8: Full results on the PACS dataset.

Methods BackBone A C P S Avg.

ERM

ResNet-18

78.73±1.69 74.84±0.54 95.03±0.31 68.87±3.36 79.37
BN 82.03±0.55 81.09±0.45 96.08±0.33 73.12±0.44 83.08
TENT 82.19±0.59 81.27±0.47 95.85±0.33 73.62±0.68 83.23
PL 85.29±1.19 83.72±0.97 95.99±0.42 77.65±2.51 85.66
SHOT-IM 84.75±0.66 81.83±1.27 96.33±0.78 69.18±0.55 83.02
T3A 80.75±1.45 78.16±0.61 95.89±0.55 72.01±2.99 81.70
TAST 83.32±0.88 82.44±0.92 96.27±0.54 75.19±0.89 84.31
TAST-BN 87.09±0.32 83.89±1.37 96.69±0.39 77.74±1.45 86.35
TSD 87.81±0.64 87.09±0.50 96.71±0.57 79.89±0.32 87.88
PROGRAM 84.72±0.55 80.36±0.60 96.05±0.39 73.14±0.40 83.57
DEYO 85.84±1.10 83.39±0.56 96.13±0.48 79.67±0.80 86.26
PASLE 88.19±1.42 87.09±0.24 96.83±0.48 80.51±1.28 88.16

ERM

ResNet-50

85.84±0.78 79.78±2.15 96.47±0.37 81.27±2.12 85.84
BN 86.73±0.82 84.13±1.98 96.79±0.07 76.36±1.53 86.00
TENT 87.00±0.92 84.51±1.89 96.89±0.10 77.65±1.53 86.51
PL 88.80±0.88 82.94±4.90 95.35±2.32 75.53±5.04 85.66
SHOT-IM 85.68±1.56 83.52±0.47 95.05±0.63 76.83±1.93 85.27
T3A 86.51±0.41 81.67±1.64 96.85±0.18 81.12±2.03 86.54
TAST 87.84±0.53 84.56±2.21 97.35±0.19 78.00±1.13 86.94
TAST-BN 89.94±0.31 86.68±1.01 97.49±0.48 83.77±1.77 89.47
TSD 91.06±0.56 90.67±0.68 97.70±0.15 85.09±1.21 91.13
PROGRAM 87.21±1.30 84.09±1.86 96.89±0.06 76.44±1.64 86.16
DEYO 88.36±0.94 85.24±1.61 97.05±0.12 82.26±0.54 88.23
PASLE 91.57±0.48 89.88±1.53 97.74±0.28 86.25±0.78 91.36

Table 9: Full results on the VLCS dataset.

Methods BackBone V L C S Avg.

ERM

ResNet-18

95.66±1.31 63.09±1.59 69.17±0.88 72.62±3.70 75.14
BN 82.71±2.46 58.83±1.55 62.20±0.86 71.42±2.13 68.79
TENT 83.30±2.36 59.26±1.57 62.77±1.02 71.80±1.91 69.28
PL 92.32±1.63 63.87±1.41 69.47±0.97 73.05±1.42 74.68
SHOT-IM 88.06±3.50 58.58±1.62 63.50±1.94 73.06±2.02 70.80
T3A 98.49±1.27 64.02±1.60 68.90±0.82 71.92±4.00 75.83
TAST 94.74±2.04 56.63±2.07 63.97±0.62 71.41±2.61 71.69
TAST-BN 97.34±0.84 65.02±1.57 65.71±0.87 72.61±5.40 75.17
TSD 96.30±0.47 65.47±0.14 67.84±0.53 72.25±2.88 75.47
PROGRAM 95.87±1.45 58.71±0.81 60.12±1.43 71.85±2.47 71.64
DEYO 95.16±1.35 63.93±0.37 67.20±0.97 73.33±1.80 74.91
PASLE 96.04±1.53 66.48±0.51 72.64±0.45 76.48±0.29 77.91

ERM

ResNet-50

97.15±0.43 63.08±0.65 70.63±0.76 73.37±1.14 76.06
BN 77.90±4.52 56.66±2.09 63.36±1.14 73.11±0.37 67.76
TENT 79.15±4.67 57.05±2.06 63.92±1.09 73.50±0.18 68.41
PL 91.31±3.18 61.60±3.90 70.97±0.05 71.32±2.66 73.80
SHOT-IM 80.60±3.95 55.78±2.63 63.51±1.94 74.06±0.73 68.49
T3A 98.18±0.11 64.13±1.10 72.04±2.37 71.99±0.81 76.59
TAST 81.70±4.20 52.10±0.42 62.29±1.45 73.20±1.04 67.32
TAST-BN 96.77±1.42 61.33±0.06 68.96±4.14 75.30±0.19 75.59
TSD 93.92±1.28 58.03±1.04 69.65±2.52 77.49±0.99 74.77
PROGRAM 85.05±4.15 58.42±0.40 60.12±1.43 71.82±1.50 68.85
DEYO 84.38±1.70 60.92±1.97 67.20±0.97 73.85±0.21 71.59
PASLE 96.01±0.89 66.20±1.98 76.01±0.91 76.59±0.88 78.70
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Table 10: Full results on the OfficeHome dataset.

Methods BackBone A C P R Avg.

ERM

ResNet-18

55.76±0.80 48.66±0.43 71.46±0.67 73.84±0.23 62.43
BN 54.96±0.58 49.74±0.37 70.95±0.91 73.50±0.43 62.29
TENT 55.13±0.65 50.00±0.21 71.27±0.89 73.63±0.43 62.51
PL 55.09±0.36 50.74±0.19 71.17±1.25 73.83±0.39 62.71
SHOT-IM 56.75±1.12 52.03±0.57 72.77±0.05 74.10±0.33 63.91
T3A 56.52±1.12 50.62±0.67 73.45±0.71 74.99±0.33 63.90
TAST 55.75±0.89 51.71±0.49 73.93±0.95 74.46±0.34 63.96
TAST-BN 55.28±0.65 50.49±0.64 71.89±1.46 72.07±0.44 62.43
TSD 57.27±0.71 50.60±1.59 72.24±0.85 73.55±0.21 63.42
PROGRAM 56.69±1.45 50.94±0.51 71.80±0.40 73.98±0.47 63.35
DEYO 56.50±0.30 50.80±0.15 71.97±1.02 73.92±0.41 63.30
PASLE 57.25±0.75 51.30±0.41 73.31±1.04 74.10±0.20 63.99

ERM

ResNet-50

63.04±0.48 53.88±0.18 76.55±0.41 77.89±0.19 67.84
BN 62.00±0.81 53.45±0.47 75.08±0.66 76.76±0.74 66.82
TENT 62.44±0.72 54.11±0.48 75.68±0.67 76.84±0.57 67.27
PL 63.32±0.39 54.73±0.99 73.89±1.22 77.30±0.46 67.31
SHOT-IM 62.95±1.15 54.56±0.44 76.37±0.95 77.66±0.29 67.89
T3A 63.26±0.23 55.30±0.32 78.13±0.44 78.72±0.45 68.85
TAST 63.42±0.59 55.61±0.59 78.01±0.81 77.74±0.46 68.70
TAST-BN 62.76±0.62 55.01±0.43 77.01±0.85 77.11±0.74 67.97
TSD 64.32±0.41 56.91±0.97 77.19±0.67 77.46±0.45 68.97
PROGRAM 63.36±0.87 54.27±0.23 77.24±0.69 77.24±0.49 68.03
DEYO 63.77±0.23 54.90±1.10 76.36±0.51 77.28±0.56 68.08
PASLE 65.47±0.83 56.08±0.82 78.11±0.65 77.83±0.30 69.37

Table 11: Full results on the DomainNet dataset.

Methods BackBone clipart infograph painting quickdraw real sketch Avg

ERM

ResNet-18

50.48±0.21 15.31±0.15 41.86±0.12 11.66±0.49 51.71±0.29 43.53±0.02 35.76
BN 50.74±0.09 11.38±0.03 40.76±0.12 11.29±0.39 51.78±0.19 43.72±0.26 34.95
TENT 51.13±0.07 12.52±0.19 41.91±0.14 10.57±0.38 51.31±0.25 44.76±0.17 35.37
PL 50.88±0.06 12.87±0.70 41.22±0.10 10.84±0.74 51.62±0.29 44.01±0.25 35.24
SHOT-IM 51.02±0.07 12.75±0.39 41.41±0.13 13.71±0.32 52.26±0.15 44.38±0.23 35.92
T3A 50.34±0.26 15.11±0.20 40.35±0.12 16.24±0.23 53.13±0.30 42.68±0.17 36.31
TAST 50.31±0.16 12.64±0.09 40.66±0.05 14.59±0.51 53.58±0.15 42.49±0.26 35.71
TAST-BN 50.44±0.27 13.21±0.13 40.97±0.12 14.72±0.49 52.39±0.41 43.19±0.28 35.82
TSD 50.74±0.11 13.58±0.07 42.93±0.24 11.78±0.34 51.95±0.21 44.20±0.20 35.86
PROGRAM 51.07±0.16 13.27±0.26 41.52±0.12 13.40±0.41 52.31±0.28 44.27±0.25 35.97
DEYO 50.86±0.05 13.19±0.29 41.23±0.12 11.19±0.50 51.81±0.21 43.96±0.23 35.37
PASLE 51.76±0.39 14.98±0.28 43.06±0.15 13.67±0.26 52.69±0.18 45.15±0.27 36.89

ERM

ResNet-50

61.00±0.24 20.81±0.19 49.58±0.06 13.57±0.26 61.95±0.16 52.07±0.36 43.16
BN 60.58±0.23 15.11±0.17 48.64±0.08 11.92±0.20 61.06±0.16 51.70±0.16 41.50
TENT 61.64±0.15 17.41±0.01 50.40±0.17 10.11±0.58 61.40±0.14 53.30±0.08 42.38
PL 61.04±0.22 17.90±0.20 49.90±0.06 11.57±0.15 61.26±0.04 52.61±0.19 42.38
SHOT-IM 61.29±0.21 17.56±0.14 49.81±0.10 16.50±0.52 62.52±0.10 52.79±0.22 43.41
T3A 61.05±0.23 20.94±0.14 48.71±0.08 18.55±0.39 63.19±0.08 51.57±0.27 44.00
TAST 60.65±0.22 17.93±0.19 49.03±0.19 15.17±0.28 62.62±0.12 51.64±0.07 42.84
TAST-BN 61.03±0.32 18.04±0.22 49.65±0.19 14.75±0.41 62.71±0.07 51.97±0.09 43.03
TSD 60.76±0.24 17.89±0.17 49.82±0.65 12.21±0.26 61.66±0.17 52.27±0.18 42.44
PROGRAM 61.15±0.26 18.08±0.04 49.85±0.06 15.53±0.40 62.14±0.04 53.30±0.20 43.34
DEYO 61.04±0.22 18.17±0.11 49.84±0.05 11.99±0.23 61.25±0.02 52.50±0.21 42.47
PASLE 62.46±0.39 20.67±0.12 51.74±0.16 16.73±0.51 63.76±0.09 54.11±0.26 44.91
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Figure 4: The parameter sensitivity of batch size for PASLE.

Table 12: Full results on the CIFAR-10-C dataset.

Methods shot motn snow pixel gauss defoc brit fog zoom frost glass impul contr jpeg elast Avg.

ERM 24.93 19.40 26.12 21.62 24.52 19.59 28.41 13.48 19.53 19.13 18.31 18.34 10.93 24.93 20.59 20.66
BN 76.79 75.93 78.17 80.13 77.33 79.13 83.08 70.64 79.25 76.05 68.49 65.80 62.82 80.16 76.16 75.33
TENT 76.80 76.11 78.23 80.07 77.29 79.12 83.13 70.80 79.31 76.21 68.57 66.03 63.19 80.24 76.04 75.41
PL 77.07 76.45 78.25 80.42 77.59 79.56 83.20 71.26 79.77 76.50 68.74 66.22 63.95 80.21 76.34 75.70
SHOT-IM 77.20 76.67 78.43 80.54 77.63 79.77 83.35 71.35 79.90 76.42 68.85 66.60 64.46 80.24 76.30 75.85
T3A 29.97 20.27 29.93 26.04 29.30 19.81 34.00 13.64 20.02 21.03 21.28 21.91 15.94 28.33 21.29 23.52
TAST 75.27 75.16 77.07 78.99 76.02 78.05 82.10 69.39 78.01 75.47 66.74 64.42 62.55 78.11 74.64 74.13
TAST-BN 75.82 74.84 77.28 79.35 76.56 78.29 83.30 69.34 78.64 75.17 67.74 64.73 62.17 79.45 75.69 74.56
TSD 76.54 75.58 78.28 79.96 77.18 78.79 83.16 70.32 78.84 76.03 68.01 66.06 62.10 80.09 76.18 75.14
PROGRAM 76.73 76.22 77.87 79.98 77.10 78.83 83.21 69.86 78.74 76.01 67.88 65.40 61.21 79.95 76.06 75.00
DEYO 77.02 76.89 78.41 80.52 77.42 79.79 83.25 71.28 79.90 76.41 68.50 66.18 64.04 80.36 76.20 75.74
PASLE 78.03 77.40 79.08 81.16 78.22 80.81 83.83 72.31 80.81 77.28 69.34 67.07 67.17 80.75 76.77 76.67

Table 13: Full results on the CIFAR-100-C dataset.

Methods shot motn snow pixel gauss defoc brit fog zoom frost glass impul contr jpeg elast Avg.

ERM 7.88 3.86 8.30 6.95 7.95 4.07 11.02 1.63 3.95 5.89 5.13 5.45 1.08 8.54 5.89 5.84
BN 44.17 46.23 44.98 50.01 44.27 48.36 50.36 37.55 48.89 44.02 38.78 34.57 31.69 48.78 45.57 43.88
TENT 44.19 46.23 45.02 49.97 44.34 48.55 50.47 37.53 48.89 44.07 38.81 34.57 31.68 48.91 45.65 43.93
PL 44.57 47.05 45.09 50.11 44.36 49.27 50.58 37.32 49.49 44.35 39.29 34.94 32.22 49.01 45.92 44.24
SHOT-IM 44.51 47.23 45.20 50.34 44.81 49.22 50.76 37.93 49.25 44.33 39.16 34.90 33.05 49.04 45.60 44.36
T3A 8.24 5.28 9.14 8.19 8.59 5.04 12.94 2.23 5.50 6.18 6.23 5.97 1.08 9.49 6.98 6.74
TAST 39.65 42.29 40.35 44.83 39.86 43.72 45.00 33.13 43.37 39.13 35.68 31.45 25.91 43.23 40.50 39.21
TAST-BN 32.75 33.92 32.96 35.82 32.85 35.32 37.34 27.15 35.44 33.10 27.77 24.79 20.60 35.59 32.22 31.84
TSD 44.54 46.55 45.32 50.47 44.76 48.92 50.97 37.38 49.46 44.25 39.05 34.62 31.36 49.26 45.95 44.19
PROGRAM 44.19 46.63 44.97 49.91 44.63 48.76 50.36 37.76 48.74 44.37 38.87 34.78 32.42 48.78 45.67 44.06
DEYO 44.68 47.21 45.00 50.19 44.56 49.06 50.57 37.88 49.39 44.41 39.36 34.98 32.13 48.92 45.82 44.28
PASLE 45.88 48.44 46.28 51.43 45.60 50.05 51.92 39.12 50.42 45.17 39.94 36.00 32.87 50.05 46.63 45.32
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