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ABSTRACT

Diffusion-based large language models (Diffusion LLMs) have shown promise
for non-autoregressive text generation. However, the practical inference speed
of open-sourced Diffusion LLMs often lags behind autoregressive models due
to the lack of Key-Value (KV) Cache and quality degradation when decoding
multiple tokens simultaneously. To bridge this gap, we introduce Fast-dLLM, a
method that incorporates a novel block-wise approximate KV Cache mechanism
tailored for bidirectional diffusion models, enabling cache reuse with negligible
performance drop. Additionally, we identify the root cause of generation quality
degradation in parallel decoding as the disruption of token dependencies under the
conditional independence assumption. To address this, Fast-dLLM also proposes
a confidence-aware parallel decoding strategy that selectively decodes tokens ex-
ceeding a confidence threshold, mitigating dependency violations and maintaining
generation quality. Experimental results on LLaDA and Dream models across
multiple LLM benchmarks demonstrate up to 27.6× throughput improvement with
minimal accuracy loss, closing the performance gap with autoregressive models
and paving the way for practical deployment of Diffusion LLMs.

1 INTRODUCTION

Diffusion-based large language models (Diffusion LLMs) have recently attracted increasing attention
due to their potential for parallel token generation and the advantages of bidirectional attention
mechanisms. Notably, Mercury (Inception Labs, 2025) runs at over 1,000 tokens per second, and
Gemini Diffusion (Google DeepMind, 2025) by Google DeepMind has demonstrated the ability to
generate over 1,400 tokens per second, highlighting the promise of significant inference acceleration.

However, current open-source Diffusion LLMs (Nie et al., 2025b; Ye et al., 2025) have yet to close
such throughput gap in practice, and their actual speed often falls short of autoregressive (AR) models.
This is primarily due to two issues. First, diffusion LLMs do not support key-value (KV) caching, a
critical component in AR models for speeding up inference. Second, the generation quality tends to
degrade when decoding multiple tokens in parallel. For example, recent findings such as those from
LLaDA (Nie et al., 2025b) indicate that Diffusion LLMs perform best when generating tokens one at
a time and soon degrades when decoding multiple tokens simultaneously.

To bridge the performance gap with AR models that benefit from KV Cache, we present Fast-dLLM,
a fast aWnd practical diffusion-based language modeling framework. First, Fast-dLLM introduces an
approximate KV Cache tailored to Diffusion LLMs. While the bidirectional nature of attention in
Diffusion LLMs precludes a fully equivalent KV Cache, our approximation closely resembles an
ideal cache in practice. To support KV Cache, we adopt a block-wise generation manner. Before
generating a block, we compute and store KV Cache of the other blocks to reuse. After generating
the block, we recompute the KV Cache of all the blocks. Visualizations confirm the high similarity
with adjacent inference steps within the block, and our experiments show that this approximation
preserves model performance during inference. We further propose a DualCache version that caches
Keys and Values for both prefix and suffix tokens.

In parallel, Fast-dLLM investigates the degradation in output quality when generating multiple tokens
simultaneously. Through theoretical analysis and empirical studies, we identify that simultaneous
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(c) End-to-end speedup over vanilla LLaDA baseline.

Figure 1: Effectiveness of components of Fast-dLLM across different approaches. We use NVIDIA A100
GPU with a single batch size and no inference speedup frameworks.. (a) Inference throughput (tokens/sec)
and GSM8K (5-shot) accuracy across various designs and models under a maximum generation length of 256.
Caching mechanism and parallel decoding can significantly accelerate inference, while the combination provides
up to an 8.1× increase in throughput with negligible accuracy reduction. (b) We break down the contributions of
each method by showing both the number of tokens generated per step (line) and total throughput (bars). (c)
With long prefilling (8-shot) and a maximum generation length of 1024, our combined approach achieves up to
27.6× end-to-end speedup compared to the vanilla LLaDA baseline.

sampling of interdependent tokens under a conditional independence assumption disrupts critical
token dependencies. To address this issue and fully exploit the parallelism potential of Diffusion
LLMs, we propose a novel confidence-thresholding strategy to select which tokens can be safely
decoded simultaneously. Instead of selecting the tokens with top K confidence to decode as in
LLaDA, we select tokens with confidence larger than a threshold. Our theoretical justification and
experimental results demonstrate that this strategy maintains generation quality while achieving up to
13.3× inference speed-up.

In summary, our contributions are threefold. First, Key-Value Cache for Block-Wise Decoding. We
introduce a block-wise approximate KV Cache mechanism specifically designed for bidirectional
attention. Our approach reuses cached activations from previously decoded blocks by exploiting
the high similarity of KV activations between adjacent steps. By caching both prefix and suffix
blocks, the DualCache strategy enables substantial computational reuse. Second, Confidence-Aware
Parallel Decoding. We propose a novel confidence-aware parallel decoding method. Unlike prior
approaches that select a fixed number of tokens per step, our method dynamically selects tokens
whose confidence exceeds a global threshold, enabling safe and effective parallel decoding. This
approach significantly accelerates inference by 13.3× while preserving output quality. Third, State-
of-the-Art Acceleration Results. We conduct comprehensive experiments on multiple open-source
Diffusion LLMs (LLaDA, Dream) and four mainstream benchmarks (GSM8K, MATH, HumanEval,
MBPP). Results demonstrate that our Fast-dLLM consistently deliver order-of-magnitude speedups
with minimal or no degradation in accuracy, confirming the generality and practical value of our
approach for real-world deployment. Fast-dLLM achieves hgiher acceleration (up to 27.6×) when
generation length is longer (1024).
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2 PRELIMINARY

2.1 MASKED DIFFUSION MODEL

Diffusion models for discrete data were first explored in (Sohl-Dickstein et al., 2015; Hoogeboom
et al., 2021). D3PM (Austin et al., 2021) generalized them with a discrete-state Markov chain
forward process parameterized by transition matrices Qt, and learned the reverse process pθ(x0|xt)
via ELBO maximization. CTMC (Campbell et al., 2022) extended this to continuous time, while
SEDD (Lou et al., 2023) instead modeled the likelihood ratio pt(y)

pt(x)
using Denoising Score Entropy.

Among noise processes, Masked Diffusion Models (MDMs)—also called absorbing state discrete
diffusion—are prominent. MDMs replace tokens with a special [MASK] token according to

qt|0(xt|x0) =

n∏
i=1

Cat
(
xi
t; (1− t)δxi

0
+ tδ[MASK]

)
, (1)

where t ∈ [0, 1] interpolates between x0 (t = 0) and a fully masked sequence (t = 1).

Recent work (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024; Ou et al., 2024) shows MDM
parameterizations are equivalent and that their training objective reduces to an ELBO:

− log pθ(x) ≤
∫ 1

0

1

t
Eqt|0

[ ∑
i:xi

0=[MASK]

− log pθ(x
i
0|xt)

]
dt := LMDM. (2)

2.2 GENERATION PROCESS OF MDMS

Directly reversing Equation 1 is inefficient, altering only one token per step (Campbell et al., 2022;
Lou et al., 2023). A faster strategy is τ -leaping (Gillespie, 2001), which lets multiple masked tokens
be recovered in a single step from t to s < t:

qs|t =

n−1∏
i=0

qs|t(x
i
s|xt), qs|t(x

i
s|xt) =


1, xi

t ̸= [MASK],xi
s = xi

t
s
t , xi

t = [MASK],xi
s = [MASK]

t−s
t q0|t(x

i
s|xt), xi

t = [MASK],xi
s ̸= [MASK].

(3)

Here q0|t(x
i
s|xt) is a model distribution over the vocabulary, extended to q0|t(x

i
s|xt, p) when condi-

tioned on a prompt p.

Curse of Parallel Decoding Although τ -leaping accelerates generation by sampling multiple
tokens in parallel, the conditional independence assumption causes problems. For example, in “The
list of poker hands that consist of two English words are: _ _” (Song & Zhou, 2025), valid pairs
include “high card” or “full house,” but independent sampling can yield incoherent pairs like “high
house.” Formally, MDMs approximate p(xi

s,x
j
s|xt) by p(xi

s|xt) p(x
j
s|xt), ignoring dependencies

such as p(xj
s|xt,x

i
s). This mismatch worsens when many tokens are unmasked simultaneously,

degrading fluency and coherence.

3 METHODOLOGY

3.1 PIPELINE OVERVIEW

Our approach, Fast-dLLM, builds on the Masked Diffusion Model (MDM) architecture to enable effi-
cient and high-quality sequence generation. To accelerate inference, the overall pipeline incorporates
two key strategies: efficient attention computation through Key-Value (KV) Cache and a parallel
decoding scheme guided by prediction confidence.

Specifically, we adopt Key-Value Cache for Block-Wise Decoding, which allows reusing attention
activations across steps and significantly reduces redundant computation. Within each block, we
further propose Confidence-Aware Parallel Decoding, enabling selective updates of tokens based on
confidence scores to improve efficiency while maintaining output quality.

By combining these strategies, Fast-dLLM significantly speeds up inference for MDMs with minimal
impact on generation performance. The overall procedure is summarized in Algorithm 1.
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Cached token
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Prompt token
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𝑡 = 1
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(a)  Prefix KV Cache for block-wise generation. (b) DualCache: Bidirectional KV cache contains prefix 
and suffix Cache.

Figure 2: Illustration of our Key-Value Cache for Block-Wise Decoding. (a) During prefix-only caching, the
KV cache is computed once for the prompt and reused across multiple decoding steps within each block. The
cache is updated after completing a block to maintain consistency, with negligible overhead. (b) DualCache
extends this approach by caching both prefix and masked suffix tokens, further accelerating decoding. The high
similarity of KV activations across steps allows effective reuse with minimal approximation error.

3.2 KEY-VALUE CACHE FOR BLOCK-WISE DECODING

As shown in Figure 2, we adopt a block-wise decoding strategy to support the use of a Key-Value
(KV) Cache. Initially, we compute and store the KV Cache for the prompt, which is reused throughout
Block 0. Within each block, the same cache is reused for multiple decoding steps. After completing
the decoding of a block, we update the cache for all tokens (not just the newly generated ones). This
cache update can be performed jointly with the decoding step, so compared to not using caching,
there is no additional computational overhead. This approach results in an approximate decoding
process, due to the use of full attention in masked diffusion models (Nie et al., 2025b; Ye et al., 2025).

The effectiveness of our approximate KV Cache approach stems from the observation that KV
activations exhibit high similarity across adjacent inference steps, as illustrated in Figure 3. The red
boxed region in Figure 3a highlights the similarity scores within a block, which are consistently close
to 1. This indicates that the differences in prefix keys and values during block decoding are negligible,
allowing us to safely reuse the cache without significant loss in accuracy.

Furthermore, we implement a bidirectional version of our KV caching mechanism, named DualCache,
that caches not only the prefix tokens but also the suffix tokens, which consist entirely of masked
tokens under our block-wise decoding scheme. As shown in Table 4, DualCache results in further
acceleration. The red boxed region in Figure 3b further demonstrates that the differences in suffix
keys and values during block decoding are negligible.

3.3 CONFIDENCE-AWARE PARALLEL DECODING

While approaches like employing auxiliary models to explicitly capture these dependencies exist (Liu
et al., 2024; Xu et al., 2024), they typically increase the complexity of the overall pipeline. In contrast
to these approaches, we propose a simple yet effective confidence-aware decoding algorithm designed
to mitigate this conditional independence issue.

Concretely, at each iteration, rather than aggressively unmasking all masked tokens using their
independent marginal probabilities, we compute a confidence score for each token (e.g., the maximum
softmax probability). Only those with confidence exceeding a threshold are unmasked in the current
step; the rest remain masked and are reconsidered in future steps. If no token’s confidence exceeds the
threshold, we always unmask the token with the highest confidence to ensure progress and prevent an
infinite loop. This strategy accelerates generation while reducing errors from uncertain or ambiguous
predictions.

A critical question, however, is: When is it theoretically justifiable to decode tokens in parallel using
independent marginals, despite the true joint distribution potentially containing dependencies? We
address this with the following formal result, which characterizes the conditions under which greedy
parallel (product of marginal distribution) decoding is equivalent to greedy sequential (true joint
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(b) Last block

Figure 3: Heatmaps of Key-Value Activation Cosine Similarity Across Inference Steps in LLaDA-Instruct.
Cosine similarity heatmaps of Key-Value activations for (a) the prompt and (b) the last (suffix) block. High
similarity along the diagonal (i ≈ j, red boxes) indicates that activations for adjacent inference steps are highly
similar. This supports using an approximate block-wise KV Cache, allowing cached activations to be reused for
faster decoding with negligible impact on accuracy.

distribution) decoding in the high-confidence regime, and quantifies the divergence between the two
distributions.

Prior to presenting the theorem, we will define the mathematical notation used in its statement. Let
pθ(·|E) denote the conditional probability mass function (PMF) given by an MDM condition on E
(comprising a prompt p0 and previously generated tokens). Suppose the model is to predict n tokens
for positions i1, . . . , in not in E. Let X = (Xi1 , . . . , Xin) be the vector of n tokens, where each
Xij takes values in vocabulary V . Let p(X|E) ≡ pθ(Xi1 , . . . , Xin |E) be the joint conditional PMF
according to the model. Let pj(Xij |E) ≡ pθ(Xij |E) be the marginal conditional PMF for position
ij . Parallel decoding generates tokens using the product of marginals: q(X|E) =

∏n
j=1 pj(Xij |E).

The proof of Theorem 1 and relevant discussions are in Appendix A.
Theorem 1 (Parallel Decoding under High Confidence). Suppose there exists a specific sequence of
tokens x∗ = (xi1 , . . . , xin) such that for each j ∈ {1, . . . , n}, the model has high confidence in xij :
pj(Xij = xij |E) > 1− ϵ for some small ϵ > 0. Then, the following results hold:

1. Equivalence for Greedy Decoding: If (n+ 1)ϵ ≤ 1 (i.e., ϵ ≤ 1
n+1 ), then

argmax
z

p(z|E) = argmax
z

q(z|E) = x∗. (4)

This means that greedy parallel decoding (selecting argmax q) yields the same result as greedy
sequential decoding (selecting argmax p).

This bound is tight: if ϵ > 1
n+1 , there exist distributions p(X|E) satisfying the high-confidence

marginal assumption for which argmaxz p(z|E) ̸= argmaxz q(z|E).

2. Distance and Divergence Bounds: Let p(·|E) and q(·|E) be denoted as p and q for brevity.

Lp Distance (p ≥ 1): For n > 1, Dp (p, q) < ((n− 1)p + 2n)1/pϵ. Specifically, for Total Variation
Distance (DTV (p, q) =

1
2D1 (p, q)): DTV (p, q) <

3n−1
2 ϵ.

Forward KL Divergence: For n > 1, DKL (p∥q) < (n− 1)(Hb(ϵ) + ϵ ln(|V| − 1)), where Hb(ϵ) =
−ϵ ln ϵ− (1− ϵ) ln(1− ϵ) is the binary entropy function, and |V| is the size of the vocabulary.

Building on this theorem, we propose a practical factor-based parallel decoding strategy as an
extension of the threshold strategy that adaptively selects how many tokens to decode in parallel
based on the confidence levels. Concretely, given the model’s marginal confidence estimates for n
tokens in a block, we sort these confidences and select the largest n such that (n+ 1)(1− c(n)) < f ,
where f is a fixed decoding factor hyperparameter and c(n) is the n-th highest confidence. At each
step, the top-n tokens are decoded in parallel. This formulation mirrors the bound in Theorem 1 and
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Table 1: Comprehensive benchmark results on the LLaDA-Instruct suite. Each cell presents the accuracy and
the decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, blue:
tokens per second/orange: relative speedup). The highest throughput and speedup for each configuration are
highlighted.

Benchmark Gen Length LLaDA +Cache +Parallel +Cache+Parallel (Fast-dLLM)

GSM8K (5-shot)
256 79.3 79.5 79.2 78.5

6.7 (1×) 21.2 (3.2×) 16.5 (2.5×) 54.4 (8.1×)
512 77.5 77.0 77.6 77.2

3.2 (1×) 10.4 (3.3×) 18.6 (5.8×) 35.3 (11.0×)

MATH (4-shot)
256 33.5 33.3 33.4 33.2

9.1 (1×) 23.7 (2.6×) 24.8 (2.7×) 51.7 (5.7×)
512 37.2 36.2 36.8 36.0

8.0 (1×) 19.7 (2.5×) 23.8 (3.0×) 47.1 (5.9×)

HumanEval (0-shot)
256 41.5 42.7 43.9 43.3

30.5 (1×) 40.7 (1.3×) 101.5 (3.3×) 114.1 (3.7×)
512 43.9 45.7 43.3 44.5

18.4 (1×) 29.3 (1.6×) 57.1 (3.1×) 73.7 (4.0×)

MBPP (3-shot)
256 29.4 29.6 28.4 28.2

6.0 (1×) 17.0 (2.8×) 24.8 (4.1×) 44.8 (7.5×)
512 14.8 13.4 15.0 13.8

4.3 (1×) 10.1 (2.3×) 22.3 (5.1×) 39.5 (9.2×)

ensures that decoding only proceeds when the marginal confidence is sufficiently high to approximate
the joint decoding reliably. In contrast to the static threshold-based strategy, factor-based decoding
dynamically controls the degree of parallelism in a theoretically grounded manner.

Algorithm 1 Block-wise Confidence-aware Parallel Decoding with (Dual) KV Cache
Require: pθ, prompt p0, answer length L, blocks K, block size B, steps per block T , threshold τ ,

use_DualCache, strategy ∈ {threshold, factor}, factor f
1: x← [p0;[MASK], ...,[MASK]]
2: Initialize KV Cache (single or dual) for x (fuse with decoding). // KV Cache Init
3: for k = 1 to K do
4: s← |p0|+ (k − 1)B, e← |p0|+ kB
5: for t = 1 to T do
6: Use cache, run pθ on x[s,e) if use_DualCache else x[s,:) // Cache Reuse
7: For masked xi, compute confidence ci = maxx pθ(x

i|·) // Confidence scoring
8: if strategy == threshold then
9: Unmask all i in [s, e) with ci ≥ τ , always unmask max ci

10: else if strategy == factor then
11: Sort ci in descending order as (c(1), c(2), ..., c(m))
12: Find largest n such that (n+ 1)(1− c(n)) < f
13: Unmask top-n tokens, always unmask the max ci

14: end if
15: if all x[s,e) unmasked then
16: break
17: end if
18: end for
19: Update KV cache: if use_DualCache: prefix & suffix; else: prefix. // Cache Update
20: end for
21: return x

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments are conducted on an NVIDIA A100 80GB GPU. The proposed approach, Fast-
dLLM, comprises two components: a Key-Value Cache mechanism and a Confidence-Aware Parallel
Decoding strategy. The KV Cache component introduces a hyperparameter, the cache block size,
varied between 4 and 32. The parallel decoding strategy uses a confidence threshold hyperparameter,
explored in the range of 0.5 to 1.0. Unless otherwise specified, we use PrefixCache with block size of
32 and the threshold to 0.9.
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Table 2: Comprehensive benchmark results on Dream-Base variants over four tasks with different generation
lengths (256 and 512). Each cell shows accuracy (top row) and decoding throughput in tokens per second
with relative speedup to Dream-Base baseline (bottom row, blue: tokens per second/orange: relative speedup).
Numbers in yellow indicate the highest throughput and speedup per configuration.

Benchmark Gen Length Dream +Cache +Parallel +Cache+Parallel (Fast-dLLM)

GSM8K (5-shot)
256 75.0 74.3 74.2 74.8

9.1 (1×) 32.5 (3.6×) 14.2 (1.6×) 48.2 (5.3×)
512 76.0 74.3 73.4 74.0

7.7 (1×) 25.6 (3.3×) 14.6 (1.9×) 42.9 (5.6×)

MATH (4-shot)
256 38.4 36.8 37.9 37.6

11.4 (1×) 34.3 (3.0×) 27.3 (2.4×) 66.8 (5.9×)
512 39.8 38.0 39.5 39.3

9.6 (1×) 26.8 (2.8×) 31.6 (3.2×) 63.3 (6.5×)

HumanEval (0-shot)
256 49.4 53.7 49.4 54.3

23.3 (1×) 35.2 (1.5×) 45.6 (2.0×) 62.0 (2.8×)
512 54.3 54.9 51.8 54.3

16.3 (1×) 27.8 (1.7×) 29.8 (1.8×) 52.8 (3.2×)

MBPP (3-shot)
256 56.6 53.2 53.8 56.4

11.2 (1×) 34.5 (3.1×) 31.8 (2.8×) 76.0 (6.8×)
512 55.6 53.8 55.4 55.2

9.4 (1×) 26.7 (2.8×) 37.6 (4.0×) 73.6 (7.8×)
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Figure 4: Impact of Cache Block Size on Ac-
curacy and Throughput. The orange line il-
lustrates the effect of varying cache block size
on throughput, while the blue line depicts accu-
racy.

We evaluate Fast-dLLM on two recent diffusion-based
language models: LLaDA (Nie et al., 2025b), LLaDA-
1.5 (Zhu et al., 2025) and Dream (Ye et al., 2025). Bench-
marks include four widely-used datasets—GSM8K,
MATH, HumanEval, and MBPP, to assess performance
across diverse reasoning and code generation tasks. We
also test under varying generation lengths to evaluate
scalability and robustness.

In addition, we extend our evaluation to LLaDA-V (You
et al., 2025), a multimodal variant of LLaDA tailored
for vision-language reasoning tasks. For this, we use
two challenging multimodal benchmarks: MathVista
and MathVerse, which require solving math problems
grounded in complex visual scenes.

Inference throughput is measured as the average number
of output tokens generated per second, calculated over
the full sequence until the end-of-sequence (<eos>)
token is reached. This metric reflects true end-to-end decoding speed. All evaluations are conducted
using the standardized lm-eval library to ensure consistency and reproducibility.

4.2 MAIN RESULTS: PERFORMANCE AND SPEED

We evaluate Fast-dLLM on LLaDA-Instruct and Dream-Base across four benchmarks (Tables 1
and 2).

Introducing the KV Cache yields 2×–3.6× speedup over the vanilla backbone across tasks and
lengths. Parallel decoding alone provides further acceleration, typically 4×–6×, especially at longer
generation lengths.

Combining both gives the largest gains. On LLaDA, throughput improves up to 11× (GSM8K, len
512) and 9.2× (MBPP, len 512). On Dream-Base, maximum gains are 7.8× (MBPP, len 512) and
5.6× (GSM8K, len 512). These results show the methods are not only effective individually but also
highly complementary.

Importantly, these efficiency gains come with negligible accuracy cost: across all benchmarks
accuracy remains within 1–2 points of the backbone, and in some cases even improves. Longer
sequences, common in few-shot and code generation, benefit disproportionately due to greater cache
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Figure 5: (a) The red line shows the GSM8K (5-shot) accuracy across different confidence thresholds. Numbers
along the red line indicate the average number of tokens decoded at each step. The three dashed lines represent
the accuracy of the baseline method when selecting the top 2, 4, or 8 tokens per step. (b) The number of inference
steps required under varying confidence thresholds. (c) A comparison between our method and the baseline
on GSM8K (5-shot) accuracy, plotted against the average number of tokens per step. Our method consistently
outperforms the baseline.
Table 3: Performance and Speedup Comparison of LLaDA-V on MathVista and MathVerse. Each
benchmark includes results from Full Steps, Half Steps, and Fast-dLLM. Fast-dLLM significantly improves
throughput (highlighted), with minimal accuracy loss.

Metric MathVista MathVerse

Full Steps Half Steps Fast-dLLM Full Steps Half Steps Fast-dLLM

Accuracy (%) 59.2 59.7 56.6 28.5 28.3 28.6
Throughput (Speedup) 2.84 (1×) 5.56 (1.96×) 28.2 (9.9×) 2.75 (1×) 5.17 (1.88×) 23.3 (8.5×)

reuse and batch computation. We also evaluate LLaDA-1.5, which achieves consistently higher
accuracy and comparable or better throughput (Table 12).

Beyond text-only models, we test Fast-dLLM on multimodal LLaDA-V using MathVista and Math-
Verse. LLaDA-V is sensitive to block size, losing over 8% accuracy when reduced from 96 to 8 on
MathVista. To mitigate this, we retain full block length and apply refresh-based updates, yielding
up to 9.9× speedup with minimal degradation (Table 3). On MathVerse, Fast-dLLM even slightly
improves accuracy, showing robustness on vision-language reasoning.

Overall, improvements hold across architectures (LLaDA, Dream), task types (math reasoning,
program synthesis), and modalities (text, vision), establishing Fast-dLLM as a broadly applicable
framework for accelerating masked diffusion LLMs.

4.3 ABLATIONS AND ANALYSIS

Table 4: Performance and Speedup Comparison
on LLaDA Between 5-Shot and 8-Shot Settings at
Generation Length 1024. This table compares the ac-
curacy and throughput speedups of different decoding
strategies under 5-shot and 8-shot configurations using
a generation length of 1024. The results demonstrate
how increased prefill length enhances the effective-
ness of caching strategies, particularly for DualCache.

Setting. LLaDA Parallel Decoding
No Cache PrefixCache DualCache

5-shot 77.0 77.4 75.2 74.7
1.1 (1×) 11.7 (10.6×) 14.4 (13.1×) 21.6 (19.6×)

8-shot 77.3 78.0 75.7 76.0
0.7 (1×) 9.3 (13.3×) 13.0 (18.6×) 19.3 (27.6×)

Table 5: Impact of Generation Length on Accuracy
and Speedup Under 8-Shot for LLaDA. This ta-
ble illustrates the effect of varying generation lengths
(256, 512, and 1024) on decoding performance and
efficiency for different caching strategies under the 8-
shot setting. Longer generation lengths lead to higher
throughput gains, especially for DualCache, validat-
ing the scalability of our approach.

Len. LLaDA Parallel Decoding
No Cache PrefixCache DualCache

256 77.6 77.9 77.3 76.9
4.9 (1×) 16.4 (3.3×) 49.2 (10.0×) 46.3 (9.4×)

512 78.9 78.9 74.8 75.4
2.3 (1×) 14.0 (6.1×) 32.0 (13.9×) 36.4 (15.8×)

1024 77.3 78.0 75.7 76.0
0.7 (1×) 9.3 (13.3×) 13.0 (18.6×) 19.3 (27.6×)

We perform extensive ablations to assess the contribution of different components in Fast-dLLM,
focusing on prefill length, generation length, cache variants, block size, and confidence thresholds.
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Prefill and Generation Length Tables 4 and 5 show that longer prefill (n-shot) and generation
lengths significantly boost speedup. For example, DualCache improves from 19.6× (5-shot, gen len
1024) to 27.6× (8-shot, gen len 1024). Speedup grows as generation length increases (e.g., 9.4× at
256 tokens vs. 27.6× at 1024), consistent with amortizing computation over longer sequences.

Prefix KV Cache vs. DualCache DualCache generally surpasses prefix KV Cache, especially for
long generations (e.g., 27.6× vs. 18.6× at gen len 1024, Table 5). Accuracy remains competitive,
confirming DualCache’s ability to exploit parallelism and cache locality effectively.

Cache Block Size Figure 4 shows that smaller block sizes maximize accuracy but add cache-update
overhead, while larger sizes risk mismatch. Block size 32 achieves the best trade-off, balancing
throughput and accuracy.

Dynamic Threshold vs. Fixed Token-per-Step On GSM8K (Figure 5), our confidence-aware
strategy consistently outperforms fixed baselines: it yields higher accuracy with comparable or fewer
NFEs, generates more tokens per step, and approaches the accuracy of the 1-token baseline with
much higher throughput.

Factor Decoding vs. Fixed Strategies As shown in Figure 8 and Table 11, factor-based decoding
achieves competitive or better accuracy with fewer steps. Larger factors decode more tokens per step,
reducing iterations while preserving performance. Compared to threshold decoding, factor decoding
maintains accuracy but achieves higher throughput via adaptive granularity (see Appendix C.4).

Decoding Efficiency and Limitations Section C.5 shows PrefixCache accelerates diffusion-based
LLMs like LLaDA by up to 5× in compute-bound settings, reaching or exceeding LLaMA throughput
at small batch sizes. However, at larger batches it falls behind LLaMA, since diffusion models incur
higher overhead from full attention during decoding.

5 RELATED WORK

We put a short version here, the full Related Work is in Appendix D.
Diffusion LLM. Diffusion models, proven first in vision/audio, are re-shaping text generation.
Discrete formulations re-cast noising/denoising as Markov chains (Austin et al., 2021), continuous-
time processes (Campbell et al., 2022), score-matching (Lou et al., 2023) or masked-language tasks
(Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024); all maximize ELBO or entropy objectives and
can be made equivalent. Plugging the masked objective into BART or LLaMA yields Diffusion-NAT
(Zhou et al., 2023), LLaDA / DiffuLLaMA (Nie et al., 2025b; Gong et al., 2024) and Dream (Ye
et al., 2025): 7 B-parameter diffusion LLMs that refine corrupted sequences in parallel and match
AR quality while promising >10× speed-up.
LLM Acceleration. KV-cache (Vaswani, 2017) avoids recomputation in AR Transformers, but
full-sequence diffusion invalidates it; Block-diffusion (Arriola et al., 2025) restores the cache by
generating block-by-block. Non-autoregressive (NAR) decoding outputs many tokens at once (Xiao
et al., 2023), yielding large latency gains yet lower quality. Diffusion LLMs are a new NAR family,
but until now the speed benefit has been offset by accuracy loss (Nie et al., 2025b).

6 CONCLUSION

We address key inefficiencies in Diffusion-based Large Language Models (Diffusion LLMs), which
traditionally lack KV Cache support and suffer from degraded performance in parallel decoding.
To bridge the gap with autoregressive models, we propose Fast-dLLM, a framework introducing
an approximate KV Cache tailored to bidirectional attention via block-wise generation. We further
mitigate token-dependency issues in parallel decoding with a Confidence-Aware strategy that enables
safe, efficient multi-token generation. Experiments across benchmarks and baselines (LLaDA, Dream)
demonstrate up to 27.6× speedup with minimal accuracy loss, establishing Fast-dLLM as a practical
path toward making Diffusion LLMs competitive for real-world deployment.
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A PROOF

In this section, we will give the comprehensive proof and discussion of Theorem 1.

Proof. Step 1: Show that x∗ is the unique maximizer of q(x).

Let p∗j = pj(Xij = xij |E). We are given p∗j > 1− ϵ. Let ϵ′j = 1− p∗j = pj(Xij ̸= xij |E). Thus,
ϵ′j < ϵ. The product-of-marginals probability mass function (PMF) is

q(z|E) =

n∏
j=1

pj(Xij = zj |E).

To maximize q(z|E), we must maximize each term pj(Xij = zj |E) independently. The condition
(n + 1)ϵ ≤ 1 implies ϵ ≤ 1/(n + 1). Since n ≥ 1, it follows that 1/(n + 1) ≤ 1/2. So, ϵ ≤ 1/2.
Therefore, for the chosen xij :

p∗j = pj(Xij = xij |E) > 1− ϵ ≥ 1− 1/2 = 1/2.

This means xij is the unique maximizer for pj(·|E). So,

argmax
z

q(z|E) = (xi1 , . . . , xin) = x∗.

Step 2: Show that x∗ is the unique maximizer of p(x).

We want to show p(x∗|E) > p(z|E) for all z ̸= x∗. Using the Bonferroni inequality:

p(x∗|E) = p(∩nj=1{Xij = xij}|E) ≥ 1−
n∑

j=1

p(Xij ̸= xij |E) = 1−
n∑

j=1

ϵ′j .

Since ϵ′j < ϵ for all j, we have
∑n

j=1 ϵ
′
j < nϵ. So,

p(x∗|E) > 1− nϵ.

Now consider any z = (z1, . . . , zn) such that z ̸= x∗. This means there is at least one index k such
that zk ̸= xik . The event {X = z} is a sub-event of {Xik = zk}. So,

p(z|E) ≤ pk(Xik = zk|E).

Since zk ̸= xik ,
pk(Xik = zk|E) ≤ pk(Xik ̸= xik |E) = ϵ′k < ϵ.

Thus,
p(z|E) < ϵ.

For p(x∗|E) > p(z|E) to hold, it is sufficient that

1− nϵ ≥ ϵ,

which simplifies to 1 ≥ (n+ 1)ϵ, or ϵ ≤ 1
n+1 . The theorem assumes (n+ 1)ϵ < 1, which is exactly

this condition. The strict inequalities p(x∗|E) ≥ 1−
∑

ϵ′j > 1− nϵ and p(z|E) ≤ ϵ′k < ϵ ensure
that p(x∗|E) > p(z|E). Thus,

argmax
z

p(z|E) = x∗.

Combined with the argmax of q, this proves the main statement of Part 1:

argmax
z

p(z|E) = argmax
z

q(z|E) = x∗.

Step 3: Tightness of the bound 1
n+1 .

The bound ϵ ≤ 1
n+1 is tight. This means if ϵ > 1

n+1 , one can construct a scenario where the marginal
conditions pj(Xij = xij |E) > 1 − ϵ hold, but argmaxz p(z|E) ̸= x∗ (which is argmaxz q(z|E)
as long as ϵ ≤ 1/2).
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Consider a vocabulary V = {0, 1} and let xij = 0 for all j, so x∗ = (0, . . . , 0). For each
j ∈ {1, . . . , n}, let ej be the vector with 1 at position j and 0 elsewhere. Let η = 1

n+1 (ϵ−
1

n+1 ) > 0.
Set p(ej |E) = 1

n+1 +
1
nη, ∀1 ≤ j ≤ n and p(x∗|E) = 1

n+1 − η , then x∗ /∈ argmaxz p(z|E). The
marginal probabilities are:

pj(Xij = 1|E) = p(ej |E) =
1

n+ 1
+

1

n
η, ∀1 ≤ j ≤ n.

pj(Xij = 0|E) = 1− pj(Xij = 1|E) = 1− ϵc =
n

n+ 1
− 1

n
η > 1− ϵ,

because
1

n
η =

1

n(n+ 1)
(ϵ− 1

n+ 1
) < ϵ− 1

n+ 1

So, the marginal condition pj(Xij = xij |E) > 1 − ϵ (with xij = 0) holds. As shown,
argmaxz p(z|E) can be made different from x∗. Thus, if ϵ > 1

n+1 , the argmax of p and q may not
be the same.

Step 4: Bound the Lp distance. Let Aj be the event {Xij = xij}.

Dp (p, q)
p
= |p(x∗|E)− q(x∗|E)|p +

∑
z ̸=x∗

|p(z|E)− q(z|E)|p.

The term |p(∩nj=1Aj |E)−
∏n

j=1 p(Aj |E)| (using p(Aj |E) for pj(Xij = xij |E)) can be bounded.
Since

1−
n∑

j=1

ϵ′j ≤ p(∩nj=1Aj |E) ≤ min
1≤j≤n

p(Aj |E) = 1− max
1≤j≤n

ϵ′j ,

1−
n∑

j=1

ϵ′j ≤
n∏

j=1

(1− ϵ′j) =

n∏
j=1

p(Aj |E) ≤ 1− max
1≤j≤n

ϵ′j .

Thus,
|p(x∗|E)− q(x∗|E)| < (n− 1)ϵ.

For z ̸= x∗: p(z|E) < ϵ and q(z|E) < ϵ. So,

|p(z|E)− q(z|E)| < ϵ.

The sum
∑

z ̸=x∗ |p(z|E)− q(z|E)| can be bounded:∑
z ̸=x∗

|p(z|E)− q(z|E)| ≤
∑
z ̸=x∗

(p(z|E) + q(z|E)) = p(X ̸= x∗|E) + q(X ̸= x∗|E).

p(X ̸= x∗|E) = 1− p(x∗|E) < 1− (1−
n∑

j=1

ϵ′j) =

n∑
j=1

ϵ′j < nϵ.

q(X ̸= x∗|E) = 1− q(x∗|E) < 1−
n∏

j=1

(1− ϵ′j) ≤
n∑

j=1

ϵ′j < nϵ.

So, ∑
z ̸=x∗

|p(z|E)− q(z|E)| < 2nϵ.

Then, ∑
z ̸=x∗

|p(z|E)− q(z|E)|p ≤ ( sup
z ̸=x∗

|p(z|E)− q(z|E)|)p−1
∑
z ̸=x∗

|p(z|E)− q(z|E)|

< ϵp−1(2nϵ) = 2nϵp.

Therefore,
Dp (p, q)

p
< ((n− 1)ϵ)p + 2nϵp = ((n− 1)p + 2n)ϵp.
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So,

Dp (p, q) < ((n− 1)p + 2n)1/pϵ.

For p = 1,

D1 (p, q) < (n− 1 + 2n)ϵ = (3n− 1)ϵ.

And for Total Variation Distance,

DTV (p, q) =
1

2
D1 (p, q) <

3n− 1

2
ϵ.

Step 4: Bound the forward KL divergence.

DKL (p∥q) =
∑
z

p(z|E) log
p(z|E)

q(z|E)
= I(Xi1 ; . . . ;Xin |E).

The conditional total correlation can be expanded using the chain rule:

I(Xi1 ; . . . ;Xin |E) =

n∑
k=2

I(Xik ;Xi1 , . . . , Xik−1
|E).

Each term is bounded by the conditional entropy:

I(Xik ;Xi1 , . . . , Xik−1
|E) ≤ H(Xik |E).

The conditional entropy H(Xik |E) is bounded. Since pk(Xik = xik |E) > 1 − ϵ, it implies
pk(Xik ̸= xik |E) = ϵ′k < ϵ. The entropy is maximized when the remaining probability ϵ′k is spread
uniformly, leading to:

H(Xik |E) ≤ Hb(ϵ
′
k) + ϵ′k ln(|V| − 1) < Hb(ϵ) + ϵ ln(|V| − 1).

Summing (n− 1) such terms (for k = 2, . . . , n):

DKL (p∥q) < (n− 1)[Hb(ϵ) + ϵ ln(|V| − 1)].

Remark 1. Assumption of a Well-Defined Joint pθ(Xi1 , . . . , Xin |E): The theorem and proof rely
on pθ(Xi1 , . . . , Xin |E) being a well-defined joint probability mass function from which the marginals
pθ(Xij |E) are consistently derived. This implies that the joint PMF is coherent and its definition
does not depend on a specific factorization order beyond what is captured by the conditioning on
E. In practice, while MDM may not strictly satisfy this property, its behavior typically offers a
close approximation. The theorem holds for an idealized pθ that possesses these properties. As
MDMs become larger and more powerful, their learned distributions might better approximate such
consistency.

Worst-Case Analysis: The conditions and bounds provided in the theorem (e.g., (n+ 1)ϵ ≤ 1) are
derived from a worst-case analysis. This means the bounds are guaranteed to hold if the conditions are
met, regardless of the specific structure of pθ(X|E) beyond the high-confidence marginal property.
In practice, the actual case might be "better behaved" than the worst-case scenario. For instance, the
dependencies between Xij and Xik (given E) might be weaker than what the worst-case construction
assumes. Consequently, the argmax equivalence (Result 1) might still hold frequently even if (n+1)ϵ
is slightly greater than 1 (but not much larger). The condition identifies a threshold beyond which
guarantees break down in the worst case, but practical performance can be more robust. Similarly,
the actual Lp distances or KL divergence might be smaller than the upper bounds suggest if the true
joint pθ(X|E) is closer to the product of marginals q(X|E) than the worst-case configurations.
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B CASE STUDY

Table 6: Qualitative comparison of responses across methods.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Original PrefixCache DualCache

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, it takes 2 bolts + 1 bolt = 3
bolts of fiber. The final result is 3

Table 7: Qualitative comparison of responses with varying block size for DualCache.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Block Size 8 Block Size 16 Block Size 32

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

Table 8: Qualitative comparison of responses under different threshold settings.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Threshold 0.7 Threshold 0.8 Threshold 0.9

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, it takes takes 2 + 1 = 3
bolts of fiber. So, the value is 3
(NFE: 9)

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3
(NFE: 12)

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3
(NFE: 20)

B.1 EFFECT OF CACHING STRATEGIES ON RESPONSE QUALITY

Table 6 qualitatively compares answers from the Original, PrefixCache, and DualCache methods for
the arithmetic prompt. All correctly compute the answer (3 bolts), following similar step-by-step
reasoning, with only minor differences in phrasing. This shows cache strategies maintain answer
accuracy and logical clarity while improving efficiency; semantic fidelity and interpretability are
unaffected.

B.2 EFFECT OF BLOCK SIZE IN DUALCACHE

Table 7 examines different block sizes (8, 16, 32) in DualCache. For this arithmetic prompt, all
settings yield correct, clearly explained answers with no meaningful output differences. Thus,
DualCache is robust to block size for such problems, allowing efficiency improvements without
compromising quality.
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B.3 IMPACT OF DYNAMIC THRESHOLD SETTINGS

Table 8 investigates dynamic threshold values (0.7, 0.8, 0.9). The model consistently produces the
correct answer and clear explanations, regardless of threshold. While higher thresholds increase com-
putational effort (NFE from 9 to 20), answer quality remains stable, indicating threshold adjustment
mainly affects efficiency, not correctness, for straightforward arithmetic questions.

B.4 MULTIMODAL GENERATION WITH LLADA-V

To qualitatively analyze the effectiveness of our Fast-dLLM framework in multimodal scenarios,
we conduct a visual case study where the model is tasked with generating a highly detailed image
description. As illustrated in Figure 6, both the baseline model and our Fast-dLLM are given the
same visual input and user prompt: “Please describe the image in detail.”

User: Please describe the image in detail.

Baseline (63.0 secs):  The image captures a serene rural landscape. 

Dominating the scene is a wooden barn, its weathered exterior a 

testament to the passage of time. The barn is nestled in a field of 

green grass, which stretches out to meet the horizon. In the distance, 

a range of mountains rises, their peaks shrouded in a blanket of 

clouds. The sky above is a soft pink, suggesting either dawn or dusk. 

The perspective of the image is from a low angle, making the barn 

appear grand and imposing. The overall composition of the image 

creates a sense of depth and tranquility, inviting the viewer to 

imagine themselves in this peaceful rural setting.

Fast-dLLM (6.8 secs):  The image captures a serene rural landscape. 

Dominating the scene is a wooden barn, its rustic charm enhanced by 

the gray shingles on its roof. The barn is nestled in a field of tall 

grass, which stretches out towards the horizon. The field is framed 

by a range of mountains, their peaks dusted with snow, adding a 

touch of tranquility to the scene. The sky above is a soft pink, 

suggesting either early morning or late afternoon. The perspective of 

the image is from a low angle, making the barn appear grand and 

imposing. The overall composition of the image creates a 

harmonious blend of man-made structures and the natural world.

Figure 6: Comparison between the baseline and Fast-dLLM on a visual description task. Fast-dLLM produces a
comparable and faithful image caption in a fraction of the decoding time.

The baseline model requires 63.0 seconds to complete the generation, producing a detailed and poetic
description of the rural landscape. It highlights elements such as the weathered wooden barn, the soft
pink sky, and the tranquil atmosphere.

In contrast, our Fast-dLLM completes the task in just 6.8 seconds—a nearly 10× speedup—while
maintaining rich visual detail. It further enhances the description with additional grounding (e.g.,
“gray shingles on its roof”, “touch of tranquility”), reflecting a strong alignment with both appearance
and mood cues from the image. Notably, the generated caption retains compositional depth and
stylistic fluency, illustrating the model’s ability to balance fluency and factuality even under diffusion-
based parallel decoding.

This case highlights how LLAda-V with Fast-dLLM decoding enables high-quality vision-language
generation at significantly improved efficiency, paving the way for faster and more interactive
multimodal applications.

C EXPERIMENT DETAILS

C.1 FURTHER EXPERIMENTS WITH LLADA-V

In Table 9, we investigate how the choice of block length affects the performance of LLaDA-V on
MathVista under a fixed decoding length of 48 steps. The results show that the model achieves the
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Table 9: Effect of block length on performance (MathVista, 48 Steps)

Block Length 4 8 16 32 96

Accuracy (%) 51.2 50.7 51.8 52.3 59.7
Throughput (tok./s) 6.1 6.2 5.5 5.5 5.6

Table 10: MathVista Performance with Fast-dLLM at different refresh intervals (block length = 96)

Refresh Interval 2 4 8 16 32

Accuracy (%) 59.2 59.2 58.2 57.1 56.6
Throughput (tok./s) 15.9 19.5 21.1 25.2 28.2

highest accuracy with a block length of 96. However, when reducing the block size to 8 or 4, the
accuracy drops significantly by over 8%.

Given this sensitivity to block length, we choose not to break the output into small blocks for updating
caches individually. Instead, we keep the block length fixed at 96 and adopt a refresh-based strategy:
the cache is updated only every r decoding steps using the most recent full block. As shown in
Table 10, increasing the refresh interval leads to consistent gains in throughput—from 15.9 tokens/s
at interval 2 to 28.2 tokens/s at interval 32. While accuracy drops slightly with larger intervals, it
remains above 56.6%, suggesting that aggressive refresh scheduling can yield substantial speedups
with only minor performance degradation.

C.2 PERFORMANCE COMPARISON BETWEEN THRESHOLD AND FACTOR STRATEGY

Table 11: Performance comparison between Threshold and Factor confidence-aware decoding on GSM8K
and MATH benchmarks with generation lengths of 256 and 512. Each block shows accuracy (top row) and
throughput with speedup (bottom row). Factor decoding provides favorable trade-offs in most settings.

Benchmark Gen. Len Threshold Factor

256 78.5 77.5
GSM8K (5-shot) 54.4 (8.1×) 78.5 (11.7x)

512 77.2 74.8
35.3 (11.0×) 47.1 (14.7x)

256 33.2 32.0
MATH (4-shot) 51.7 (5.7×) 78.3 (8.6x)

512 36.0 35.2
47.1 (5.9×) 64.6 (8.1x)

We compare the performance of our threshold-based and factor-based confidence-aware parallel
decoding strategies on GSM8K and MATH benchmarks (Table 11). While the threshold strategy
achieves marginally better accuracy in most settings (e.g., 78.5% vs. 77.5% on GSM8K with 256
tokens), the factor strategy demonstrates substantially superior throughput performance.

Specifically, factor decoding achieves 1.4-1.5× higher throughput than threshold decoding across
all settings. On GSM8K with 256 tokens, factor decoding reaches 78.5 tokens/sec (11.7× speedup)
compared to 54.4 tokens/sec (8.1× speedup) for threshold decoding. This throughput advantage
becomes even more pronounced on longer generation tasks—for GSM8K with 512 tokens, factor
decoding attains 47.1 tokens/sec while threshold only achieves 35.3 tokens/sec.

The results demonstrate that factor decoding offers a compelling trade-off: it sacrifices minimal
accuracy (typically 1-3%) in exchange for significant throughput improvements (40-50% higher).
This makes factor decoding particularly attractive for latency-sensitive applications where the slight
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accuracy reduction is acceptable. The consistent pattern across both benchmarks and generation
lengths validates the robustness of the factor strategy’s theoretical foundation, which adaptively
controls parallelism based on the confidence bound (n+ 1)ϵ < f .
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Figure 7: Average number of tokens generated at each decoding step. Blue line shows the mean token count, and
the shaded area denotes the 95% confidence interval.

C.3 COMPARISON BETWEEN LLADA AND LLADA-1.5

We compare the performance of LLaDA and its enhanced version LLaDA-1.5 across both GSM8K
(5-shot) and MATH (4-shot) benchmarks under two generation length settings (256 and 512 tokens),
as shown in Table 12. Each cell reports accuracy and decoding throughput (in tokens per second),
along with the relative speedup over the greedy baseline.

Across GSM8K settings, LLaDA-1.5 consistently improves accuracy over the original LLaDA,
achieving a notable +2.2% absolute gain at 256-token generation and +3.2% at 512-token generation.
Furthermore, it maintains strong decoding efficiency, with throughput reaching 59.4 tokens/sec at
256 tokens, improving upon LLaDA’s 54.1 tokens/sec under the same setting.

On the MATH benchmark, accuracy between the two versions remains comparable. However,
LLaDA-1.5 slightly improves throughput at 256 tokens (53.7 vs. 51.7) while incurring a mild
efficiency regression at the 512-token setting (41.1 vs. 47.1). This suggests that while LLaDA-1.5
introduces enhancements beneficial for shorter or moderate decoding contexts, longer sequences may
require further optimization.

Overall, LLaDA-1.5 consistently provides either superior accuracy or better decoding speed across
settings, demonstrating better performance-efficiency trade-offs and highlighting the benefit of
incorporating adaptive improvements on top of the base LLaDA architecture.

C.4 ANALYSIS OF PARALLEL TOKEN COUNTS ACROSS DECODING STEPS

To better understand the behavior of factor-based parallel generation, we analyze the average number
of tokens generated at each decoding step. Specifically, we collect statistics from all intermediate
steps of the sampling process and compute the average number of tokens generated in parallel per step.
The results are visualized in Figure 7, along with a 95% confidence interval indicating cross-sample
variability.

As shown in Figure 7, the average number of tokens generated in parallel gradually increases during
the early to middle stages of decoding, peaking roughly between step 30 to step 60. After this peak,
the parallelism tends to slightly decline toward the end of generation. This suggests that the model
becomes more confident in generating outputs during the mid-decoding phase, allowing it to produce
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Table 12: Performance comparison between LLaDA and LLaDA-1.5. Each cell presents the accuracy and the
decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, blue: tokens
per second/orange: relative speedup).

Benchmark Gen Length LLaDA (Fast-dLLM) LLaDA 1.5 (Fast-dLLM)

GSM8K (5-shot)
256 78.5 80.7

54.1 (8.1×) 59.4 (8.9×)
512 77.2 80.4

35.3 (11.0×) 33.0 (10.3×)

MATH (4-shot)
256 33.2 32.6

51.7 (5.7×) 53.7 (5.9×)
512 36.0 35.1

47.1 (5.9×) 41.1 (5.1×)
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Figure 8: (a) GSM8K (5-shot) accuracy across different factor values using our factor-based decoding strategy.
Numbers above each point indicate the average number of tokens decoded per step. The dashed lines show the
accuracy of the baseline method with 2 or 4 tokens per step, and the non-parallel (1 token/step) baseline. (b)
The corresponding number of inference steps needed under each factor setting. Our method generally requires
significantly fewer steps than fixed-step baselines. (c) Accuracy versus average number of tokens decoded per
step on GSM8K (5-shot). Our factor-based decoding achieves better accuracy-efficiency trade-offs compared to
baselines. The red “Selected” point represents the setting chosen in our main results.

more tokens simultaneously. Toward the final steps, the decoding process tends to become more
conservative, reducing the number of tokens produced at each step.

The shaded confidence interval reveals greater variance in later decoding steps, indicating instability
and inconsistent generation behavior across samples. This is expected since tail-end decoding steps
tend to handle only a few remaining tokens required to complete the output, and the number of
remaining tokens could differ widely among different samples (e.g., due to early completion or
padding).

These observations are important for understanding how decoding efficiency can be optimized:
increasing parallelism during high-confidence phases (middle steps) offers computational savings,
while conservative behavior near boundaries maintains quality.

C.5 THROUGHPUT COMPARISON UNDER VARYING BATCH SIZES

All experiments are conducted on an NVIDIA A100 GPU, with the prefill length fixed to 256 tokens.
The generation length is varied among 16, 32, and 64 tokens, and batch sizes range from 1 to 32. This
setup reflects realistic deployment scenarios, allowing the evaluation of decoding efficiency under
diverse conditions.

It should be noted that parallel decoding allows multiple tokens to be generated simultaneously
affected by dummy input tokens. To ensure fairness, we focus solely on the acceleration provided by
caching techniques.

PrefixCache is designed as an acceleration mechanism for LLaDA, a diffusion-based LLM, and suc-
cessfully boosts the throughput significantly. Figure 9 shows that PrefixCache achieves consistent
improvements across all batch sizes and generation lengths, making it particularly suited for
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Figure 9: Throughput comparison between PrefixCache, LLaDA, and LLaMA under different generation
lengths and batch sizes. All models are evaluated on an NVIDIA A100 GPU with the prefill length fixed at 256.

scenarios with smaller generation lengths and larger batch sizes. For instance, with a generation
length of 16 and batch size of 32, PrefixCache achieves a throughput of over 211 tokens/s, signifi-
cantly outperforming the native LLaDA which reaches only 43 tokens/s, demonstrating nearly 5×
improvement.

While LLaDA exhibits limited scalability with increasing batch sizes—its throughput plateaus after
batch size 8—this limitation is inherent to diffusion-based LLMs, which are compute-bound by
nature. In contrast, LLaMA, an autoregressive (AR) model, benefits greatly from large batch sizes.
As the batch size increases, LLaMA shifts from being memory-bound to compute-bound, allowing it
to achieve high absolute throughput at larger batch settings.

These results highlight the practical advantages of PrefixCache in accelerating compute-bound diffu-
sion models like LLaDA, especially for latency-critical and high-throughput applications. Further-
more, the scalability and efficiency provided by PrefixCache bridge the gap between diffusion-based
LLMs and AR models like LLaMA, showcasing its importance for large-scale deployment settings.

D RELATED WORK

D.1 DIFFUSION LLM

Diffusion models have emerged as a transformative paradigm in generative modeling, initially
achieving remarkable success in continuous domains such as image (Rombach et al., 2022; Nichol
et al., 2022; Ramesh et al., 2021; Saharia et al., 2022) and audio synthesis (Yang et al., 2023; Huang
et al., 2023) before expanding into natural language processing. Recent advancements in discrete
diffusion models (Austin et al., 2021; Nie et al., 2025a;b; Hoogeboom et al., 2021; Campbell et al.,
2022; He et al., 2022; Meng et al., 2022; Reid et al., 2022; Sun et al., 2022; Kitouni et al., 2023;
Zheng et al., 2023; Chen et al., 2023; Ye et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Zheng et al.,
2024; Gat et al., 2024; Yu et al., 2025b;a) have reshaped the landscape of text generation, offering a
viable alternative to autoregressive (AR) paradigms in large language models (LLMs). These models
address the inherent challenges of discrete data by redefining noise injection and denoising processes
through innovative mathematical formulations.

Theoretical Foundations of Discrete Diffusion Diffusion models for discrete data were first explored
in (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021). Subsequently, D3PM (Austin et al., 2021)
provided a more general framework. This framework models the forward noising process as a
discrete state Markov chain using specific transition matrices. For the reverse process, D3PM learns
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a parameterized model of the conditional probability of the original data given a noised version by
maximizing the Evidence Lower Bound (ELBO). CTMC (Campbell et al., 2022) further extended
D3PM to a continuous-time setting, formalizing it as a continuous-time Markov Chain (CTMC). In a
distinct approach, SEDD (Lou et al., 2023) learns the reverse process by parameterizing the ratio of
marginal likelihoods for different data instances at a given noising timestep. This ratio model is then
trained using a Denoising Score Entropy objective. More recently, research on Masked Diffusion
Models (MDMs) by MDLM (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024) and RADD (Ou
et al., 2024) has introduced significant clarifications. These studies have demonstrated that different
parameterizations of MDMs can be equivalent.

Integration with Pre-trained Language Models A critical breakthrough involves combining discrete
diffusion with existing LLM architectures. Diffusion-NAT (Zhou et al., 2023) unifies the denoising
process of discrete diffusion with BART’s (Lewis et al., 2019) non-autoregressive decoding, enabling
iterative refinement of masked tokens. By aligning BART’s inference with diffusion steps, this
approach leverages pre-trained knowledge while maintaining generation speed 20× faster than
comparable AR transformers. Similarly, the LLaDA (Nie et al., 2025b) and DiffuLLaMA (Gong
et al., 2024) framework scales diffusion to 7B parameters using masked denoising, while LLaDA and
Dream (Ye et al., 2025) demonstrating competitive performance with autoregressive baselines like
LLaMA3 (Grattafiori et al., 2024) through recursive token prediction across diffusion timesteps.

D.2 LLM ACCELERATION

Key-Value Cache. Key-Value (KV) Cache is a fundamental optimization technique in modern large
language model (LLM) inference with Transformer architecture (Vaswani, 2017). It enables efficient
autoregressive text generation by storing and reusing previously computed attention states. However,
it is non-trival to apply KV Cache in diffusion langauge models such as LLaDA due to full attention.
Block diffusion (Arriola et al., 2025) overcomes key limitation of previous diffusion language models
by generating block-by-block so that key and values of previously decoded blocks can be stored and
reused.

Non-Autoregressive Generation Non-autoregressive (NAR) generation marks a fundamental shift
from sequential token generation by enabling the simultaneous generation of multiple tokens, signifi-
cantly accelerating inference (Xiao et al., 2023). Initially introduced for neural machine translation,
NAR methods have since been extended to a variety of tasks, including grammatical error correction,
text summarization, dialogue systems, and automatic speech recognition. Although NAR generation
offers substantial speed advantages over autoregressive approaches, it often sacrifices generation
quality. Diffusion LLMs represent a recent paradigm for non-autoregressive text generation; however,
prior work (Nie et al., 2025b) has struggled to realize the expected acceleration due to a notable drop
in output quality.

E LLM USAGE

During manuscript preparation, we used large language models —strictly for language polishing of
paragraphs and sentences (grammar, flow, and tone). These tools were not used to generate ideas,
design experiments, or determine conclusions. All technical content, methodology, and interpretations
were written, verified, and approved by the authors. To reduce risks of factual drift or citation errors,
we required human review of every model-edited sentence and cross-checked all references against
primary sources. The authors take full responsibility for the accuracy and integrity of the manuscript.
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