

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST-DLLM: TRAINING-FREE ACCELERATION OF DIFFUSION LLM BY ENABLING KV CACHE AND PARALLEL DECODING

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion-based large language models (Diffusion LLMs) have shown promise for non-autoregressive text generation. However, the practical inference speed of open-sourced Diffusion LLMs often lags behind autoregressive models due to the lack of Key-Value (KV) Cache and quality degradation when decoding multiple tokens simultaneously. To bridge this gap, we introduce Fast-dLLM, a method that incorporates a novel block-wise approximate KV Cache mechanism tailored for bidirectional diffusion models, enabling cache reuse with negligible performance drop. Additionally, we identify the root cause of generation quality degradation in parallel decoding as the disruption of token dependencies under the conditional independence assumption. To address this, Fast-dLLM also proposes a confidence-aware parallel decoding strategy that selectively decodes tokens exceeding a confidence threshold, mitigating dependency violations and maintaining generation quality. Experimental results on LLaDA and Dream models across multiple LLM benchmarks demonstrate up to 27.6x throughput improvement with minimal accuracy loss, closing the performance gap with autoregressive models and paving the way for practical deployment of Diffusion LLMs.

1 INTRODUCTION

Diffusion-based large language models (Diffusion LLMs) have recently attracted increasing attention due to their potential for parallel token generation and the advantages of bidirectional attention mechanisms. Notably, Mercury ([Inception Labs, 2025](#)) runs at over 1,000 tokens per second, and Gemini Diffusion ([Google DeepMind, 2025](#)) by Google DeepMind has demonstrated the ability to generate over 1,400 tokens per second, highlighting the promise of significant inference acceleration.

However, current open-source Diffusion LLMs ([Nie et al., 2025b](#); [Ye et al., 2025](#)) have yet to close such throughput gap in practice, and their actual speed often falls short of autoregressive (AR) models. This is primarily due to two issues. First, diffusion LLMs do not support key-value (KV) caching, a critical component in AR models for speeding up inference. Second, the generation quality tends to degrade when decoding multiple tokens in parallel. For example, recent findings such as those from LLaDA ([Nie et al., 2025b](#)) indicate that Diffusion LLMs perform best when generating tokens one at a time and soon degrades when decoding multiple tokens simultaneously.

To bridge the performance gap with AR models that benefit from KV Cache, we present Fast-dLLM, a fast aWnd practical diffusion-based language modeling framework. First, Fast-dLLM introduces an approximate KV Cache tailored to Diffusion LLMs. While the bidirectional nature of attention in Diffusion LLMs precludes a fully equivalent KV Cache, our approximation closely resembles an ideal cache in practice. To support KV Cache, we adopt a block-wise generation manner. Before generating a block, we compute and store KV Cache of the other blocks to reuse. After generating the block, we recompute the KV Cache of all the blocks. Visualizations confirm the high similarity with adjacent inference steps within the block, and our experiments show that this approximation preserves model performance during inference. We further propose a DualCache version that caches Keys and Values for both prefix and suffix tokens.

In parallel, Fast-dLLM investigates the degradation in output quality when generating multiple tokens simultaneously. Through theoretical analysis and empirical studies, we identify that simultaneous

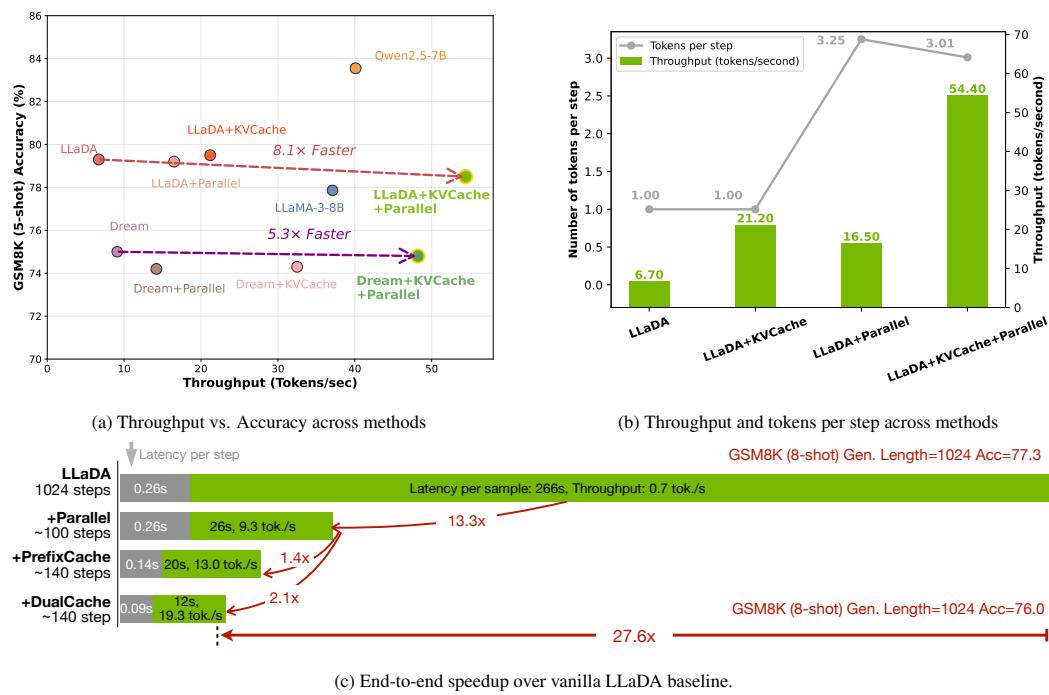


Figure 1: **Effectiveness of components of Fast-dLLM across different approaches.** We use NVIDIA A100 GPU with a single batch size and no inference speedup frameworks. (a) Inference throughput (tokens/sec) and GSM8K (5-shot) accuracy across various designs and models under a maximum generation length of 256. Caching mechanism and parallel decoding can significantly accelerate inference, while the combination provides up to an $8.1 \times$ increase in throughput with negligible accuracy reduction. (b) We break down the contributions of each method by showing both the number of tokens generated per step (line) and total throughput (bars). (c) With long prefilling (8-shot) and a maximum generation length of 1024, our combined approach achieves up to $27.6 \times$ end-to-end speedup compared to the vanilla LLaDA baseline.

sampling of interdependent tokens under a conditional independence assumption disrupts critical token dependencies. To address this issue and fully exploit the parallelism potential of Diffusion LLMs, we propose a novel confidence-thresholding strategy to select which tokens can be safely decoded simultaneously. Instead of selecting the tokens with top K confidence to decode as in LLaDA, we select tokens with confidence larger than a threshold. Our theoretical justification and experimental results demonstrate that this strategy maintains generation quality while achieving up to $13.3 \times$ inference speed-up.

In summary, our contributions are threefold. First, **Key-Value Cache for Block-Wise Decoding.** We introduce a block-wise approximate KV Cache mechanism specifically designed for bidirectional attention. Our approach reuses cached activations from previously decoded blocks by exploiting the high similarity of KV activations between adjacent steps. By caching both prefix and suffix blocks, the DualCache strategy enables substantial computational reuse. Second, **Confidence-Aware Parallel Decoding.** We propose a novel confidence-aware parallel decoding method. Unlike prior approaches that select a fixed number of tokens per step, our method dynamically selects tokens whose confidence exceeds a global threshold, enabling safe and effective parallel decoding. This approach significantly accelerates inference by $13.3 \times$ while preserving output quality. Third, **State-of-the-Art Acceleration Results.** We conduct comprehensive experiments on multiple open-source Diffusion LLMs (LLaDA, Dream) and four mainstream benchmarks (GSM8K, MATH, HumanEval, MBPP). Results demonstrate that our Fast-dLLM consistently deliver order-of-magnitude speedups with minimal or no degradation in accuracy, confirming the generality and practical value of our approach for real-world deployment. Fast-dLLM achieves higher acceleration (up to $27.6 \times$) when generation length is longer (1024).

108

2 PRELIMINARY

109

2.1 MASKED DIFFUSION MODEL

110 Diffusion models for discrete data were first explored in (Sohl-Dickstein et al., 2015; Hoogeboom
 111 et al., 2021). D3PM (Austin et al., 2021) generalized them with a discrete-state Markov chain
 112 forward process parameterized by transition matrices Q_t , and learned the reverse process $p_\theta(\mathbf{x}_0|\mathbf{x}_t)$
 113 via ELBO maximization. CTMC (Campbell et al., 2022) extended this to continuous time, while
 114 SEDD (Lou et al., 2023) instead modeled the likelihood ratio $\frac{p_t(\mathbf{y})}{p_t(\mathbf{x})}$ using Denoising Score Entropy.
 115

116 Among noise processes, Masked Diffusion Models (MDMs)—also called absorbing state discrete
 117 diffusion—are prominent. MDMs replace tokens with a special [MASK] token according to
 118

$$119 q_{t|0}(\mathbf{x}_t|\mathbf{x}_0) = \prod_{i=1}^n \text{Cat}\left(\mathbf{x}_t^i; (1-t)\delta_{\mathbf{x}_0^i} + t\delta_{[\text{MASK}]}\right), \quad (1)$$

120 where $t \in [0, 1]$ interpolates between \mathbf{x}_0 ($t = 0$) and a fully masked sequence ($t = 1$).
 121

122 Recent work (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024; Ou et al., 2024) shows MDM
 123 parameterizations are equivalent and that their training objective reduces to an ELBO:
 124

$$125 -\log p_\theta(\mathbf{x}) \leq \int_0^1 \frac{1}{t} \mathbb{E}_{q_{t|0}} \left[\sum_{i: \mathbf{x}_0^i = [\text{MASK}]} -\log p_\theta(\mathbf{x}_0^i|\mathbf{x}_t) \right] dt := \mathcal{L}_{\text{MDM}}. \quad (2)$$

126

2.2 GENERATION PROCESS OF MDMs

127 Directly reversing Equation 1 is inefficient, altering only one token per step (Campbell et al., 2022;
 128 Lou et al., 2023). A faster strategy is τ -leaping (Gillespie, 2001), which lets multiple masked tokens
 129 be recovered in a single step from t to $s < t$:

$$130 q_{s|t} = \prod_{i=0}^{n-1} q_{s|t}(\mathbf{x}_s^i|\mathbf{x}_t), \quad q_{s|t}(\mathbf{x}_s^i|\mathbf{x}_t) = \begin{cases} 1, & \mathbf{x}_t^i \neq [\text{MASK}], \mathbf{x}_s^i = \mathbf{x}_t^i \\ \frac{s}{t}, & \mathbf{x}_t^i = [\text{MASK}], \mathbf{x}_s^i = [\text{MASK}] \\ \frac{t-s}{t} q_{0|t}(\mathbf{x}_s^i|\mathbf{x}_t), & \mathbf{x}_t^i = [\text{MASK}], \mathbf{x}_s^i \neq [\text{MASK}]. \end{cases} \quad (3)$$

131 Here $q_{0|t}(\mathbf{x}_s^i|\mathbf{x}_t)$ is a model distribution over the vocabulary, extended to $q_{0|t}(\mathbf{x}_s^i|\mathbf{x}_t, p)$ when conditioned on a prompt p .
 132

133 **Curse of Parallel Decoding** Although τ -leaping accelerates generation by sampling multiple
 134 tokens in parallel, the conditional independence assumption causes problems. For example, in “The
 135 list of poker hands that consist of two English words are: _ _” (Song & Zhou, 2025), valid pairs
 136 include “high card” or “full house,” but independent sampling can yield incoherent pairs like “high
 137 house.” Formally, MDMs approximate $p(\mathbf{x}_s^i, \mathbf{x}_s^j|\mathbf{x}_t)$ by $p(\mathbf{x}_s^i|\mathbf{x}_t) p(\mathbf{x}_s^j|\mathbf{x}_t)$, ignoring dependencies
 138 such as $p(\mathbf{x}_s^j|\mathbf{x}_t, \mathbf{x}_s^i)$. This mismatch worsens when many tokens are unmasked simultaneously,
 139 degrading fluency and coherence.
 140

141

3 METHODOLOGY

142

3.1 PIPELINE OVERVIEW

143 Our approach, Fast-dLLM, builds on the Masked Diffusion Model (MDM) architecture to enable effi-
 144 cient and high-quality sequence generation. To accelerate inference, the overall pipeline incorporates
 145 two key strategies: efficient attention computation through Key-Value (KV) Cache and a parallel
 146 decoding scheme guided by prediction confidence.
 147

148 Specifically, we adopt Key-Value Cache for Block-Wise Decoding, which allows reusing attention
 149 activations across steps and significantly reduces redundant computation. Within each block, we
 150 further propose Confidence-Aware Parallel Decoding, enabling selective updates of tokens based on
 151 confidence scores to improve efficiency while maintaining output quality.
 152

153 By combining these strategies, Fast-dLLM significantly speeds up inference for MDMs with minimal
 154 impact on generation performance. The overall procedure is summarized in Algorithm 1.
 155

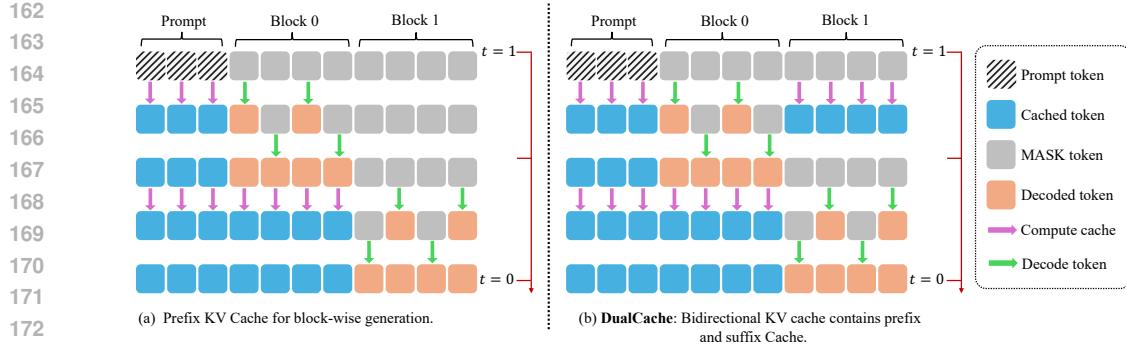


Figure 2: **Illustration of our Key-Value Cache for Block-Wise Decoding.** (a) During prefix-only caching, the KV cache is computed once for the prompt and reused across multiple decoding steps within each block. The cache is updated after completing a block to maintain consistency, with negligible overhead. (b) DualCache extends this approach by caching both prefix and masked suffix tokens, further accelerating decoding. The high similarity of KV activations across steps allows effective reuse with minimal approximation error.

3.2 KEY-VALUE CACHE FOR BLOCK-WISE DECODING

As shown in Figure 2, we adopt a block-wise decoding strategy to support the use of a Key-Value (KV) Cache. Initially, we compute and store the KV Cache for the prompt, which is reused throughout Block 0. Within each block, the same cache is reused for multiple decoding steps. After completing the decoding of a block, we update the cache for all tokens (not just the newly generated ones). This cache update can be performed jointly with the decoding step, so compared to not using caching, there is no additional computational overhead. This approach results in an approximate decoding process, due to the use of full attention in masked diffusion models (Nie et al., 2025b; Ye et al., 2025).

The effectiveness of our approximate KV Cache approach stems from the observation that KV activations exhibit high similarity across adjacent inference steps, as illustrated in Figure 3. The red boxed region in Figure 3a highlights the similarity scores within a block, which are consistently close to 1. This indicates that the differences in prefix keys and values during block decoding are negligible, allowing us to safely reuse the cache without significant loss in accuracy.

Furthermore, we implement a bidirectional version of our KV caching mechanism, named DualCache, that caches not only the prefix tokens but also the suffix tokens, which consist entirely of masked tokens under our block-wise decoding scheme. As shown in Table 4, DualCache results in further acceleration. The red boxed region in Figure 3b further demonstrates that the differences in suffix keys and values during block decoding are negligible.

3.3 CONFIDENCE-AWARE PARALLEL DECODING

While approaches like employing auxiliary models to explicitly capture these dependencies exist (Liu et al., 2024; Xu et al., 2024), they typically increase the complexity of the overall pipeline. In contrast to these approaches, we propose a simple yet effective confidence-aware decoding algorithm designed to mitigate this conditional independence issue.

Concretely, at each iteration, rather than aggressively unmasking all masked tokens using their independent marginal probabilities, we compute a confidence score for each token (e.g., the maximum softmax probability). Only those with confidence exceeding a threshold are unmasked in the current step; the rest remain masked and are reconsidered in future steps. If no token's confidence exceeds the threshold, we always unmask the token with the highest confidence to ensure progress and prevent an infinite loop. This strategy accelerates generation while reducing errors from uncertain or ambiguous predictions.

A critical question, however, is: *When is it theoretically justifiable to decode tokens in parallel using independent marginals, despite the true joint distribution potentially containing dependencies?* We address this with the following formal result, which characterizes the conditions under which greedy parallel (product of marginal distribution) decoding is equivalent to greedy sequential (true joint

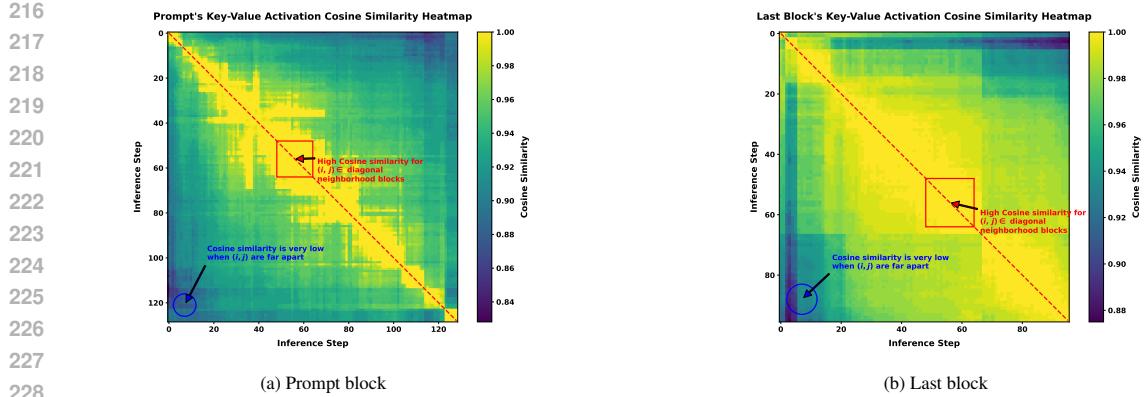


Figure 3: **Heatmaps of Key-Value Activation Cosine Similarity Across Inference Steps in LLaDA-Instruct.** Cosine similarity heatmaps of Key-Value activations for (a) the prompt and (b) the last (suffix) block. High similarity along the diagonal ($i \approx j$, red boxes) indicates that activations for adjacent inference steps are highly similar. This supports using an approximate block-wise KV Cache, allowing cached activations to be reused for faster decoding with negligible impact on accuracy.

distribution) decoding in the high-confidence regime, and quantifies the divergence between the two distributions.

Prior to presenting the theorem, we will define the mathematical notation used in its statement. Let $p_{\theta}(\cdot|E)$ denote the conditional probability mass function (PMF) given by an MDM condition on E (comprising a prompt p_0 and previously generated tokens). Suppose the model is to predict n tokens for positions i_1, \dots, i_n not in E . Let $\mathbf{X} = (X_{i_1}, \dots, X_{i_n})$ be the vector of n tokens, where each X_{i_j} takes values in vocabulary \mathcal{V} . Let $p(\mathbf{X}|E) \equiv p_{\theta}(X_{i_1}, \dots, X_{i_n}|E)$ be the joint conditional PMF according to the model. Let $p_j(X_{i_j}|E) \equiv p_{\theta}(X_{i_j}|E)$ be the marginal conditional PMF for position i_j . Parallel decoding generates tokens using the product of marginals: $q(\mathbf{X}|E) = \prod_{j=1}^n p_j(X_{i_j}|E)$. The proof of Theorem 1 and relevant discussions are in Appendix A.

Theorem 1 (Parallel Decoding under High Confidence). *Suppose there exists a specific sequence of tokens $\mathbf{x}^* = (x_{i_1}, \dots, x_{i_n})$ such that for each $j \in \{1, \dots, n\}$, the model has high confidence in x_{i_j} : $p_j(X_{i_j} = x_{i_j}|E) > 1 - \epsilon$ for some small $\epsilon > 0$. Then, the following results hold:*

1. *Equivalence for Greedy Decoding: If $(n+1)\epsilon \leq 1$ (i.e., $\epsilon \leq \frac{1}{n+1}$), then*

$$\operatorname{argmax}_{\mathbf{z}} p(\mathbf{z}|E) = \operatorname{argmax}_{\mathbf{z}} q(\mathbf{z}|E) = \mathbf{x}^*. \quad (4)$$

This means that greedy parallel decoding (selecting $\operatorname{argmax} q$) yields the same result as greedy sequential decoding (selecting $\operatorname{argmax} p$).

This bound is tight: if $\epsilon > \frac{1}{n+1}$, there exist distributions $p(\mathbf{X}|E)$ satisfying the high-confidence marginal assumption for which $\operatorname{argmax}_{\mathbf{z}} p(\mathbf{z}|E) \neq \operatorname{argmax}_{\mathbf{z}} q(\mathbf{z}|E)$.

2. *Distance and Divergence Bounds: Let $p(\cdot|E)$ and $q(\cdot|E)$ be denoted as p and q for brevity.*

L_p Distance ($p \geq 1$): For $n > 1$, $D_p(p, q) < ((n-1)^p + 2n)^{1/p} \epsilon$. Specifically, for Total Variation Distance ($D_{TV}(p, q) = \frac{1}{2} D_1(p, q)$): $D_{TV}(p, q) < \frac{3n-1}{2} \epsilon$.

Forward KL Divergence: For $n > 1$, $D_{KL}(p||q) < (n-1)(H_b(\epsilon) + \epsilon \ln(|\mathcal{V}| - 1))$, where $H_b(\epsilon) = -\epsilon \ln \epsilon - (1-\epsilon) \ln(1-\epsilon)$ is the binary entropy function, and $|\mathcal{V}|$ is the size of the vocabulary.

Building on this theorem, we propose a practical *factor-based* parallel decoding strategy as an extension of the threshold strategy that adaptively selects how many tokens to decode in parallel based on the confidence levels. Concretely, given the model’s marginal confidence estimates for n tokens in a block, we sort these confidences and select the largest n such that $(n+1)(1 - c^{(n)}) < f$, where f is a fixed decoding factor hyperparameter and $c^{(n)}$ is the n -th highest confidence. At each step, the top- n tokens are decoded in parallel. This formulation mirrors the bound in Theorem 1 and

Table 1: Comprehensive benchmark results on the LLaDA-Instruct suite. Each cell presents the accuracy and the decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, **blue: tokens per second/orange: relative speedup**). The highest throughput and speedup for each configuration are highlighted.

Benchmark	Gen Length	LLaDA	+Cache	+Parallel	+Cache+Parallel (Fast-dLLM)
GSM8K (5-shot)	256	79.3	79.5	79.2	78.5
	512	6.7 (1×)	21.2 (3.2×)	16.5 (2.5×)	54.4 (8.1×)
		77.5	77.0	77.6	77.2
	512	3.2 (1×)	10.4 (3.3×)	18.6 (5.8×)	35.3 (11.0×)
MATH (4-shot)	256	33.5	33.3	33.4	33.2
	512	9.1 (1×)	23.7 (2.6×)	24.8 (2.7×)	51.7 (5.7×)
		37.2	36.2	36.8	36.0
	512	8.0 (1×)	19.7 (2.5×)	23.8 (3.0×)	47.1 (5.9×)
HumanEval (0-shot)	256	41.5	42.7	43.9	43.3
	512	30.5 (1×)	40.7 (1.3×)	101.5 (3.3×)	114.1 (3.7×)
		43.9	45.7	43.3	44.5
	512	18.4 (1×)	29.3 (1.6×)	57.1 (3.1×)	73.7 (4.0×)
MBPP (3-shot)	256	29.4	29.6	28.4	28.2
	512	6.0 (1×)	17.0 (2.8×)	24.8 (4.1×)	44.8 (7.5×)
		14.8	13.4	15.0	13.8
	512	4.3 (1×)	10.1 (2.3×)	22.3 (5.1×)	39.5 (9.2×)
IFEval	256	57.1	53.6	57.1	54.0
	512	15.7 (1×)	19.7 (1.3×)	30.9 (2.0×)	36.0 (2.3×)
		58.0	57.5	57.9	57.3
	512	8.2 (1×)	12.0 (1.5×)	22.2 (2.7×)	30.0 (3.7×)

ensures that decoding only proceeds when the marginal confidence is sufficiently high to approximate the joint decoding reliably. In contrast to the static threshold-based strategy, factor-based decoding dynamically controls the degree of parallelism in a theoretically grounded manner.

Algorithm 1 Block-wise Confidence-aware Parallel Decoding with (Dual) KV Cache

```

Require:  $p_\theta$ , prompt  $p_0$ , answer length  $L$ , blocks  $K$ , block size  $B$ , steps per block  $T$ , threshold  $\tau$ ,
use_DualCache, strategy  $\in \{\text{threshold, factor}\}$ , factor  $f$ 
1:  $x \leftarrow [p_0; [\text{MASK}], \dots, [\text{MASK}]]$ 
2: Initialize KV Cache (single or dual) for  $x$  (fuse with decoding). // KV Cache Init
3: for  $k = 1$  to  $K$  do
4:    $s \leftarrow |p_0| + (k - 1)B$ ,  $e \leftarrow |p_0| + kB$ 
5:   for  $t = 1$  to  $T$  do
6:     Use cache, run  $p_\theta$  on  $x^{[s,e]}$  if use_DualCache else  $x^{[s,:]}$  // Cache Reuse
7:     For masked  $x^i$ , compute confidence  $c^i = \max_x p_\theta(x^i|\cdot)$  // Confidence scoring
8:     if strategy == threshold then
9:       Unmask all  $i$  in  $[s, e]$  with  $c^i \geq \tau$ , always unmask max  $c^i$ 
10:      else if strategy == factor then
11:        Sort  $c^i$  in descending order as  $(c^{(1)}, c^{(2)}, \dots, c^{(m)})$ 
12:        Find largest  $n$  such that  $(n + 1)(1 - c^{(n)}) < f$ 
13:        Unmask top- $n$  tokens, always unmask the max  $c^i$ 
14:      end if
15:      if all  $x^{[s,e]}$  unmasked then
16:        break
17:      end if
18:    end for
19:    Update KV cache: if use_DualCache: prefix & suffix; else: prefix. // Cache Update
20:  end for
21: return  $x$ 

```

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

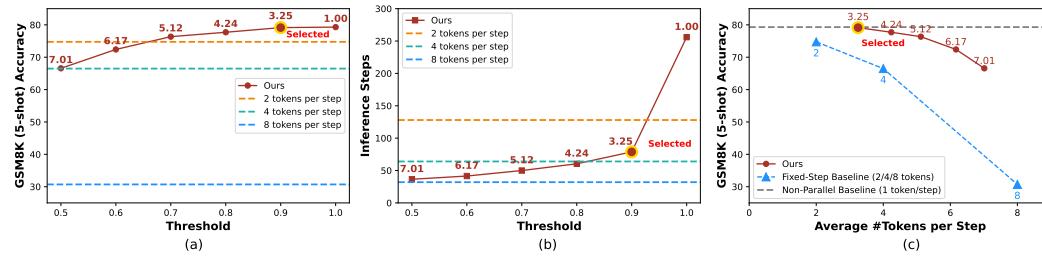
All experiments are conducted on an NVIDIA A100 80GB GPU. The proposed approach, Fast-dLLM, comprises two components: a Key-Value Cache mechanism and a Confidence-Aware Parallel

324
 325
 326
 327
 Table 2: Comprehensive benchmark results on Dream-Base variants over four tasks with different generation
 lengths (256 and 512). Each cell shows accuracy (top row) and decoding throughput in tokens per second
 with relative speedup to Dream-Base baseline (bottom row, **blue: tokens per second/orange: relative speedup**).
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1

378
 379 **Table 3: Performance and Speedup Comparison of LLaDA-V on MathVista and MathVerse.** Each
 380 benchmark includes results from Full Steps, Half Steps, and Fast-dLLM. Fast-dLLM significantly improves
 381 throughput (highlighted), with minimal accuracy loss.

Metric	MathVista			MathVerse		
	Full Steps	Half Steps	Fast-dLLM	Full Steps	Half Steps	Fast-dLLM
Accuracy (%)	59.2	59.7	56.6	28.5	28.3	28.6
Throughput (Speedup)	2.84 (1x)	5.56 (1.96x)	28.2 (9.9x)	2.75 (1x)	5.17 (1.88x)	23.3 (8.5x)

382
 383
 384
 385
 386
 387
 388 5.6 \times (GSM8K, len 512). These results show the methods are not only effective individually but also
 389 highly complementary.
 390



400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

Figure 5: (a) The red line shows the GSM8K (5-shot) accuracy across different confidence thresholds. Numbers along the red line indicate the average number of tokens decoded at each step. The three dashed lines represent the accuracy of the baseline method when selecting the top 2, 4, or 8 tokens per step. (b) The number of inference steps required under varying confidence thresholds. (c) A comparison between our method and the baseline on GSM8K (5-shot) accuracy, plotted against the average number of tokens per step. Our method consistently outperforms the baseline.

420 Importantly, these efficiency gains come with negligible accuracy cost: across all benchmarks
 421 accuracy remains within 1–2 points of the backbone, and in some cases even improves. Longer
 422 sequences, common in few-shot and code generation, benefit disproportionately due to greater cache
 423 reuse and batch computation. We also evaluate LLaDA-1.5, which achieves consistently higher
 424 accuracy and comparable or better throughput (Table 12).

425 Beyond text-only models, we test Fast-dLLM on multimodal LLaDA-V using MathVista and Math-
 426 Verse. LLaDA-V is sensitive to block size, losing over 8% accuracy when reduced from 96 to 8 on
 427 MathVista. To mitigate this, we retain full block length and apply refresh-based updates, yielding
 428 up to 9.9 \times speedup with minimal degradation (Table 3). On MathVerse, Fast-dLLM even slightly
 429 improves accuracy, showing robustness on vision-language reasoning.

430 Overall, improvements hold across architectures (LLaDA, Dream), task types (math reasoning,
 431 program synthesis), and modalities (text, vision), establishing Fast-dLLM as a broadly applicable
 432 framework for accelerating masked diffusion LLMs.

4.3 ABLATIONS AND ANALYSIS

433 We perform extensive ablations to assess the contribution of different components in Fast-dLLM,
 434 focusing on prefill length, generation length, cache variants, block size, and confidence thresholds.

435 **Prefill and Generation Length** Tables 4 and 5 show that longer prefill (n -shot) and generation
 436 lengths significantly boost speedup. For example, DualCache improves from 19.6 \times (5-shot, gen len
 437 1024) to 27.6 \times (8-shot, gen len 1024). Speedup grows as generation length increases (e.g., 9.4 \times at
 438 256 tokens vs. 27.6 \times at 1024), consistent with amortizing computation over longer sequences.

439 **Prefix KV Cache vs. DualCache** DualCache generally surpasses prefix KV Cache, especially for
 440 long generations (e.g., 27.6 \times vs. 18.6 \times at gen len 1024, Table 5). Accuracy remains competitive,
 441 confirming DualCache’s ability to exploit parallelism and cache locality effectively.

432
 433 **Table 4: Performance and Speedup Comparison**
 434 **on LLaDA Between 5-Shot and 8-Shot Settings at**
 435 **Generation Length 1024.** This table compares the
 436 accuracy and throughput speedups of different decoding
 437 strategies under 5-shot and 8-shot configurations using
 438 a generation length of 1024. The results demonstrate
 439 how increased prefill length enhances the effectiveness
 440 of caching strategies, particularly for DualCache.

Setting.	LLaDA	Parallel Decoding		
		No Cache	PrefixCache	DualCache
5-shot	77.0 1.1 (1x)	77.4 11.7 (10.6x)	75.2 14.4 (13.1x)	74.7 21.6 (19.6x)
	77.3 0.7 (1x)	78.0 9.3 (13.3x)	75.7 13.0 (18.6x)	76.0 19.3 (27.6x)
8-shot				

5: Impact of Generation Length on Accuracy and Speedup Under 8-Shot for LLaDA. This table illustrates the effect of varying generation lengths (256, 512, and 1024) on decoding performance and efficiency for different caching strategies under the 8-shot setting. Longer generation lengths lead to higher throughput gains, especially for DualCache, validating the scalability of our approach.

Len.	LLaDA	Parallel Decoding		
		No Cache	PrefixCache	DualCache
256	77.6 4.9 (1x)	77.9 16.4 (3.3x)	77.3 49.2 (10.0x)	76.9 46.3 (9.4x)
	78.9 2.3 (1x)	78.9 14.0 (6.1x)	74.8 32.0 (13.9x)	75.4 36.4 (15.8x)
512	77.3 0.7 (1x)	78.0 9.3 (13.3x)	75.7 13.0 (18.6x)	76.0 19.3 (27.6x)

446
 447 **Cache Block Size** Figure 4 shows that smaller block sizes maximize accuracy but add cache-update
 448 overhead, while larger sizes risk mismatch. Block size 32 achieves the best trade-off, balancing
 449 throughput and accuracy.

450
 451 **Dynamic Threshold vs. Fixed Token-per-Step** On GSM8K (Figure 5), our confidence-aware
 452 strategy consistently outperforms fixed baselines: it yields higher accuracy with comparable or fewer
 453 NFEs, generates more tokens per step, and approaches the accuracy of the 1-token baseline with
 454 much higher throughput.

455
 456 **Factor Decoding vs. Fixed Strategies** As shown in Figure 8 and Table 11, factor-based decoding
 457 achieves competitive or better accuracy with fewer steps. Larger factors decode more tokens per step,
 458 reducing iterations while preserving performance. Compared to threshold decoding, factor decoding
 459 maintains accuracy but achieves higher throughput via adaptive granularity (see Appendix C.4).

460
 461 **Decoding Efficiency and Limitations** Section C.5 shows PrefixCache accelerates diffusion-based
 462 LLMs like LLaDA by up to 5 \times in compute-bound settings, reaching or exceeding LLaMA throughput
 463 at small batch sizes. However, at larger batches it falls behind LLaMA, since diffusion models incur
 464 higher overhead from full attention during decoding.

5 RELATED WORK

468 We put a short version here, the full **Related Work** is in Appendix D.

469 **Diffusion LLM.** Diffusion models, proven first in vision/audio, are re-shaping text generation.
 470 Discrete formulations re-cast noising/denoising as Markov chains (Austin et al., 2021), continuous-
 471 time processes (Campbell et al., 2022), score-matching (Lou et al., 2023) or masked-language tasks
 472 (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024); all maximize ELBO or entropy objectives and
 473 can be made equivalent. Plugging the masked objective into BART or LLaMA yields Diffusion-NAT
 474 (Zhou et al., 2023), LLaDA / DiffuLLaMA (Nie et al., 2025b; Gong et al., 2024) and Dream (Ye
 475 et al., 2025): 7 B-parameter diffusion LLMs that refine corrupted sequences in parallel and match
 476 AR quality while promising >10 \times speed-up.

477 **LLM Acceleration.** KV-cache (Vaswani, 2017) avoids recomputation in AR Transformers, but
 478 full-sequence diffusion invalidates it; Block-diffusion (Arriola et al., 2025) restores the cache by
 479 generating block-by-block. **Non-autoregressive (NAR)** decoding outputs many tokens at once (Xiao
 480 et al., 2023), yielding large latency gains yet lower quality. Diffusion LLMs are a new NAR family,
 481 but until now the speed benefit has been offset by accuracy loss (Nie et al., 2025b).

6 CONCLUSION

482 We address key inefficiencies in Diffusion-based Large Language Models (Diffusion LLMs), which
 483 traditionally lack KV Cache support and suffer from degraded performance in parallel decoding.

486 To bridge the gap with autoregressive models, we propose Fast-dLLM, a framework introducing
 487 an approximate KV Cache tailored to bidirectional attention via block-wise generation. We further
 488 mitigate token-dependency issues in parallel decoding with a Confidence-Aware strategy that enables
 489 safe, efficient multi-token generation. Experiments across benchmarks and baselines (LLaDA, Dream)
 490 demonstrate up to $27.6\times$ speedup with minimal accuracy loss, establishing Fast-dLLM as a practical
 491 path toward making Diffusion LLMs competitive for real-world deployment.

492
 493 REFERENCES
 494

495 Anonymous. Oneflowseq: Achieving one-step generation for diffusion language models via
 496 lightweight distillation. *OpenReview, ICLR 2026 Conference Submission*, 2025. Submission
 497 ID: P7OzWxOUHK.

498 Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
 499 ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
 500 sive and diffusion language models, 2025. URL <https://arxiv.org/abs/2503.09573>.

501 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
 502 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing
 503 Systems*, 34:17981–17993, 2021.

504 Wenrui Bao, Zhiben Chen, Dan Xu, and Yuzhang Shang. Learning to parallel: Accelerating diffusion
 505 large language models via learnable parallel decoding. *arXiv preprint arXiv:2509.25188*, 2025.

506 Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
 507 Arnaud Doucet. A continuous time framework for discrete denoising models. *Advances in Neural
 508 Information Processing Systems*, 35:28266–28279, 2022.

509 Xinhua Chen, Sitao Huang, Cong Guo, Chiyue Wei, Yintao He, Jianyi Zhang, Hai Helen Li, and
 510 Yiran Chen. Dpad: Efficient diffusion language models with suffix dropout. *arXiv preprint
 511 arXiv:2508.14148*, 2025a.

512 Zigeng Chen, Gongfan Fang, Xinyin Ma, Ruonan Yu, and Xinchao Wang. dparallel: Learnable
 513 parallel decoding for dllms. *arXiv preprint arXiv:2509.26488*, 2025b.

514 Zixiang Chen, Huizhuo Yuan, Yongqian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu. Fast
 515 sampling via de-randomization for discrete diffusion models. *arXiv preprint arXiv:2312.09193*,
 516 2023.

517 Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
 518 Yaron Lipman. Discrete flow matching. *arXiv preprint arXiv:2407.15595*, 2024.

519 Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
 520 *The Journal of chemical physics*, 115(4):1716–1733, 2001.

521 Shanshan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
 522 Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
 523 autoregressive models. *arXiv preprint arXiv:2410.17891*, 2024.

524 Google DeepMind. Gemini diffusion. [https://deepmind.google/models/
 525 gemini-diffusion](https://deepmind.google/models/gemini-diffusion), 2025. Accessed: 2025-05-24.

526 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 527 Al-Dahle, et al. The llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.

528 Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
 529 bert: Improving generative masked language models with diffusion models. *arXiv preprint
 530 arXiv:2211.15029*, 2022.

531 Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
 532 and multinomial diffusion: Learning categorical distributions. *Advances in Neural Information
 533 Processing Systems*, 34:12454–12465, 2021.

540 Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
 541 Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
 542 diffusion models, 2023. URL <https://arxiv.org/abs/2301.12661>.

543

544 Inception Labs. Introducing mercury: The first commercial diffusion-based language model. <https://www.inceptionlabs.ai/introducing-mercury>, 2025. Accessed: 2025-05-24.

545

546 Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for
 547 structured knowledge. *arXiv preprint arXiv:2312.05253*, 2023.

548

549 Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
 550 Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training
 551 for natural language generation, translation, and comprehension, 2019. URL <https://arxiv.org/abs/1910.13461>.

552

553 Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion.
 554 *arXiv preprint arXiv:2410.01949*, 2024.

555

556 Zhiyuan Liu, Yicun Yang, Yaojie Zhang, Junjie Chen, Chang Zou, Qingyuan Wei, Shaobo Wang, and
 557 Linfeng Zhang. dllm-cache: Accelerating diffusion large language models with adaptive caching.
 558 *arXiv preprint arXiv:2506.06295*, 2025.

559

560 Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
 561 the ratios of the data distribution. *arXiv preprint arXiv:2310.16834*, 2023.

562

563 Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
 564 score matching for discrete data. *Advances in Neural Information Processing Systems*, 35:34532–
 34545, 2022.

565

566 Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
 567 Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
 568 text-guided diffusion models, 2022. URL <https://arxiv.org/abs/2112.10741>.

569

570 Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
 571 Li. Scaling up masked diffusion models on text, 2025a. URL <https://arxiv.org/abs/2410.18514>.

572

573 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
 574 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025b. URL <https://arxiv.org/abs/2502.09992>.

575

576 Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
 577 Your absorbing discrete diffusion secretly models the conditional distributions of clean data. *arXiv
 578 preprint arXiv:2406.03736*, 2024.

579

580 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 581 and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL <https://arxiv.org/abs/2102.12092>.

582

583 Machel Reid, Vincent J. Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via edit-based
 584 reconstruction, 2022.

585

586 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 587 resolution image synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.

588

589 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
 590 Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
 591 Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
 592 diffusion models with deep language understanding, 2022. URL <https://arxiv.org/abs/2205.11487>.

594 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
 595 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
 596 models. *arXiv preprint arXiv:2406.07524*, 2024.

597

598 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
 599 generalized masked diffusion for discrete data. *arXiv preprint arXiv:2406.04329*, 2024.

600 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 601 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 602 pp. 2256–2265. PMLR, 2015.

603

604 Jiaming Song and Linqi Zhou. Ideas in inference-time scaling can benefit generative pre-training
 605 algorithms. *arXiv preprint arXiv:2503.07154*, 2025.

606

607 Yuerong Song, Xiaoran Liu, Ruixiao Li, Zhigeng Liu, Zengfeng Huang, Qipeng Guo, Ziwei He, and
 608 Xipeng Qiu. Sparse-dllm: Accelerating diffusion llms with dynamic cache eviction. *arXiv preprint
 609 arXiv:2508.02558*, 2025.

610

611 Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
 612 discrete diffusion models. *arXiv preprint arXiv:2211.16750*, 2022.

613

614 Ashish Vaswani. Attention is all you need. *arXiv preprint arXiv:1706.03762*, 2017.

615

616 Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie yan Liu. A
 617 survey on non-autoregressive generation for neural machine translation and beyond, 2023. URL
<https://arxiv.org/abs/2204.09269>.

618

619 Yi Xin, Qi Qin, Siqi Luo, et al. Lumina-dimoo: An omni diffusion large language model for
 620 multi-modal generation and understanding. *arXiv preprint arXiv:2510.06308*, 2025.

621

622 Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon,
 623 and Arash Vahdat. Energy-based diffusion language models for text generation. *arXiv preprint
 624 arXiv:2410.21357*, 2024.

625

626 Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
 627 Diffsound: Discrete diffusion model for text-to-sound generation, 2023. URL <https://arxiv.org/abs/2207.09983>.

628

629 Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
 630 Kong. Dream 7b, 2025. URL <https://hkunlp.github.io/blog/2025/dream>.

631

632 Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
 633 can perform many tasks with scaling and instruction-finetuning. *arXiv preprint arXiv:2308.12219*,
 634 2023.

635

636 Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
 637 Li. Llada-v: Large language diffusion models with visual instruction tuning. *arXiv preprint
 638 arXiv:2505.16933*, 2025.

639

640 Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models:
 641 A survey, 2025a. URL <https://arxiv.org/abs/2506.13759>.

642

643 Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
 644 model with parallel decoding, 2025b. URL <https://arxiv.org/abs/2505.16990>.

645

646 Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
 647 diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
 648 sampling. *arXiv preprint arXiv:2409.02908*, 2024.

649

650 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 651 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
 652 chatbot arena. *Advances in Neural Information Processing Systems*, 36:46595–46623, 2023.

648 Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-nat: Self-prompting discrete
649 diffusion for non-autoregressive text generation, 2023. URL <https://arxiv.org/abs/2305.04044>.
650

651 Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen,
652 Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference optimization
653 for large language diffusion models, 2025. URL <https://arxiv.org/abs/2505.19223>.
654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PROOF
703704 In this section, we will give the comprehensive proof and discussion of Theorem 1.
705706 **Proof. Step 1: Show that x^* is the unique maximizer of $q(x)$.**
707708 Let $p_j^* = p_j(X_{i_j} = x_{i_j} | E)$. We are given $p_j^* > 1 - \epsilon$. Let $\epsilon'_j = 1 - p_j^* = p_j(X_{i_j} \neq x_{i_j} | E)$. Thus,
709 $\epsilon'_j < \epsilon$. The product-of-marginals probability mass function (PMF) is

710
711
$$q(\mathbf{z}|E) = \prod_{j=1}^n p_j(X_{i_j} = z_j | E).$$

712

713 To maximize $q(\mathbf{z}|E)$, we must maximize each term $p_j(X_{i_j} = z_j | E)$ independently. The condition
714 $(n+1)\epsilon \leq 1$ implies $\epsilon \leq 1/(n+1)$. Since $n \geq 1$, it follows that $1/(n+1) \leq 1/2$. So, $\epsilon \leq 1/2$.
715 Therefore, for the chosen x_{i_j} :

716
717
$$p_j^* = p_j(X_{i_j} = x_{i_j} | E) > 1 - \epsilon \geq 1 - 1/2 = 1/2.$$

718

719 This means x_{i_j} is the unique maximizer for $p_j(\cdot | E)$. So,

720
721
$$\underset{\mathbf{z}}{\operatorname{argmax}} q(\mathbf{z}|E) = (x_{i_1}, \dots, x_{i_n}) = \mathbf{x}^*.$$

722

723 **Step 2: Show that x^* is the unique maximizer of $p(x)$.**
724725 We want to show $p(\mathbf{x}^* | E) > p(\mathbf{z} | E)$ for all $\mathbf{z} \neq \mathbf{x}^*$. Using the Bonferroni inequality:

726
727
$$p(\mathbf{x}^* | E) = p(\cap_{j=1}^n \{X_{i_j} = x_{i_j}\} | E) \geq 1 - \sum_{j=1}^n p(X_{i_j} \neq x_{i_j} | E) = 1 - \sum_{j=1}^n \epsilon'_j.$$

728

729 Since $\epsilon'_j < \epsilon$ for all j , we have $\sum_{j=1}^n \epsilon'_j < n\epsilon$. So,

730
731
$$p(\mathbf{x}^* | E) > 1 - n\epsilon.$$

732 Now consider any $\mathbf{z} = (z_1, \dots, z_n)$ such that $\mathbf{z} \neq \mathbf{x}^*$. This means there is at least one index k such
733 that $z_k \neq x_{i_k}$. The event $\{\mathbf{X} = \mathbf{z}\}$ is a sub-event of $\{X_{i_k} = z_k\}$. So,

734
735
$$p(\mathbf{z} | E) \leq p_k(X_{i_k} = z_k | E).$$

736 Since $z_k \neq x_{i_k}$,

737
$$p_k(X_{i_k} = z_k | E) \leq p_k(X_{i_k} \neq x_{i_k} | E) = \epsilon'_k < \epsilon.$$

738 Thus,

739
$$p(\mathbf{z} | E) < \epsilon.$$

740 For $p(\mathbf{x}^* | E) > p(\mathbf{z} | E)$ to hold, it is sufficient that

741
742
$$1 - n\epsilon \geq \epsilon,$$

743 which simplifies to $1 \geq (n+1)\epsilon$, or $\epsilon \leq \frac{1}{n+1}$. The theorem assumes $(n+1)\epsilon < 1$, which is exactly
744 this condition. The strict inequalities $p(\mathbf{x}^* | E) \geq 1 - \sum \epsilon'_j > 1 - n\epsilon$ and $p(\mathbf{z} | E) \leq \epsilon'_k < \epsilon$ ensure
745 that $p(\mathbf{x}^* | E) > p(\mathbf{z} | E)$. Thus,

746
747
$$\underset{\mathbf{z}}{\operatorname{argmax}} p(\mathbf{z} | E) = \mathbf{x}^*.$$

748 Combined with the argmax of q , this proves the main statement of Part 1:

749
750
$$\underset{\mathbf{z}}{\operatorname{argmax}} p(\mathbf{z} | E) = \underset{\mathbf{z}}{\operatorname{argmax}} q(\mathbf{z} | E) = \mathbf{x}^*.$$

751

752 **Step 3: Tightness of the bound $\frac{1}{n+1}$.**
753754 The bound $\epsilon \leq \frac{1}{n+1}$ is tight. This means if $\epsilon > \frac{1}{n+1}$, one can construct a scenario where the marginal
755 conditions $p_j(X_{i_j} = x_{i_j} | E) > 1 - \epsilon$ hold, but $\operatorname{argmax}_{\mathbf{z}} p(\mathbf{z} | E) \neq \mathbf{x}^*$ (which is $\operatorname{argmax}_{\mathbf{z}} q(\mathbf{z} | E)$
as long as $\epsilon \leq 1/2$).

756 Consider a vocabulary $\mathcal{V} = \{0, 1\}$ and let $x_{i_j} = 0$ for all j , so $\mathbf{x}^* = (0, \dots, 0)$. For each
 757 $j \in \{1, \dots, n\}$, let \mathbf{e}_j be the vector with 1 at position j and 0 elsewhere. Let $\eta = \frac{1}{n+1}(\epsilon - \frac{1}{n+1}) > 0$.
 758 Set $p(\mathbf{e}_j|E) = \frac{1}{n+1} + \frac{1}{n}\eta$, $\forall 1 \leq j \leq n$ and $p(\mathbf{x}^*|E) = \frac{1}{n+1} - \eta$, then $\mathbf{x}^* \notin \text{argmax}_{\mathbf{z}} p(\mathbf{z}|E)$. The
 759 marginal probabilities are:
 760

$$p_j(X_{i_j} = 1|E) = p(\mathbf{e}_j|E) = \frac{1}{n+1} + \frac{1}{n}\eta, \forall 1 \leq j \leq n.$$

$$p_j(X_{i_j} = 0|E) = 1 - p_j(X_{i_j} = 1|E) = 1 - \epsilon_c = \frac{n}{n+1} - \frac{1}{n}\eta > 1 - \epsilon,$$

765 because

$$\frac{1}{n}\eta = \frac{1}{n(n+1)}(\epsilon - \frac{1}{n+1}) < \epsilon - \frac{1}{n+1}$$

766 So, the marginal condition $p_j(X_{i_j} = x_{i_j}|E) > 1 - \epsilon$ (with $x_{i_j} = 0$) holds. As shown,
 767 $\text{argmax}_{\mathbf{z}} p(\mathbf{z}|E)$ can be made different from \mathbf{x}^* . Thus, if $\epsilon > \frac{1}{n+1}$, the argmax of p and q may not
 768 be the same.
 769

770 **Step 4: Bound the L_p distance.** Let A_j be the event $\{X_{i_j} = x_{i_j}\}$.
 771

$$D_p(p, q)^p = |p(\mathbf{x}^*|E) - q(\mathbf{x}^*|E)|^p + \sum_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)|^p.$$

772 The term $|p(\bigcap_{j=1}^n A_j|E) - \prod_{j=1}^n p(A_j|E)|$ (using $p(A_j|E)$ for $p_j(X_{i_j} = x_{i_j}|E)$) can be bounded.
 773 Since

$$1 - \sum_{j=1}^n \epsilon'_j \leq p(\bigcap_{j=1}^n A_j|E) \leq \min_{1 \leq j \leq n} p(A_j|E) = 1 - \max_{1 \leq j \leq n} \epsilon'_j,$$

$$1 - \sum_{j=1}^n \epsilon'_j \leq \prod_{j=1}^n (1 - \epsilon'_j) = \prod_{j=1}^n p(A_j|E) \leq 1 - \max_{1 \leq j \leq n} \epsilon'_j.$$

774 Thus,

$$|p(\mathbf{x}^*|E) - q(\mathbf{x}^*|E)| < (n-1)\epsilon.$$

775 For $\mathbf{z} \neq \mathbf{x}^*$: $p(\mathbf{z}|E) < \epsilon$ and $q(\mathbf{z}|E) < \epsilon$. So,

$$|p(\mathbf{z}|E) - q(\mathbf{z}|E)| < \epsilon.$$

776 The sum $\sum_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)|$ can be bounded:
 777

$$\sum_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)| \leq \sum_{\mathbf{z} \neq \mathbf{x}^*} (p(\mathbf{z}|E) + q(\mathbf{z}|E)) = p(\mathbf{X} \neq \mathbf{x}^*|E) + q(\mathbf{X} \neq \mathbf{x}^*|E).$$

$$p(\mathbf{X} \neq \mathbf{x}^*|E) = 1 - p(\mathbf{x}^*|E) < 1 - (1 - \sum_{j=1}^n \epsilon'_j) = \sum_{j=1}^n \epsilon'_j < n\epsilon.$$

$$q(\mathbf{X} \neq \mathbf{x}^*|E) = 1 - q(\mathbf{x}^*|E) < 1 - \prod_{j=1}^n (1 - \epsilon'_j) \leq \sum_{j=1}^n \epsilon'_j < n\epsilon.$$

778 So,

$$\sum_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)| < 2n\epsilon.$$

779 Then,

$$\begin{aligned} \sum_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)|^p &\leq (\sup_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)|)^{p-1} \sum_{\mathbf{z} \neq \mathbf{x}^*} |p(\mathbf{z}|E) - q(\mathbf{z}|E)| \\ &< \epsilon^{p-1} (2n\epsilon) = 2n\epsilon^p. \end{aligned}$$

780 Therefore,

$$D_p(p, q)^p < ((n-1)\epsilon)^p + 2n\epsilon^p = ((n-1)^p + 2n)\epsilon^p.$$

810 So,

$$D_p(p, q) < ((n-1)^p + 2n)^{1/p} \epsilon.$$

811 For $p = 1$,

$$D_1(p, q) < (n-1 + 2n)\epsilon = (3n-1)\epsilon.$$

812 And for Total Variation Distance,

$$D_{TV}(p, q) = \frac{1}{2}D_1(p, q) < \frac{3n-1}{2}\epsilon.$$

813 **Step 4: Bound the forward KL divergence.**

$$D_{KL}(p\|q) = \sum_{\mathbf{z}} p(\mathbf{z}|E) \log \frac{p(\mathbf{z}|E)}{q(\mathbf{z}|E)} = I(X_{i_1}; \dots; X_{i_n}|E).$$

814 The conditional total correlation can be expanded using the chain rule:

$$I(X_{i_1}; \dots; X_{i_n}|E) = \sum_{k=2}^n I(X_{i_k}; X_{i_1}, \dots, X_{i_{k-1}}|E).$$

815 Each term is bounded by the conditional entropy:

$$I(X_{i_k}; X_{i_1}, \dots, X_{i_{k-1}}|E) \leq H(X_{i_k}|E).$$

816 The conditional entropy $H(X_{i_k}|E)$ is bounded. Since $p_k(X_{i_k} = x_{i_k}|E) > 1 - \epsilon$, it implies 817 $p_k(X_{i_k} \neq x_{i_k}|E) = \epsilon'_k < \epsilon$. The entropy is maximized when the remaining probability ϵ'_k is spread 818 uniformly, leading to:

$$H(X_{i_k}|E) \leq H_b(\epsilon'_k) + \epsilon'_k \ln(|\mathcal{V}| - 1) < H_b(\epsilon) + \epsilon \ln(|\mathcal{V}| - 1).$$

819 Summing $(n-1)$ such terms (for $k = 2, \dots, n$):

$$D_{KL}(p\|q) < (n-1)[H_b(\epsilon) + \epsilon \ln(|\mathcal{V}| - 1)].$$

820 \square 821 **Remark 1. Assumption of a Well-Defined Joint $p_{\theta}(X_{i_1}, \dots, X_{i_n}|E)$:** The theorem and proof rely 822 on $p_{\theta}(X_{i_1}, \dots, X_{i_n}|E)$ being a well-defined joint probability mass function from which the marginals 823 $p_{\theta}(X_{i_j}|E)$ are consistently derived. This implies that the joint PMF is coherent and its definition 824 does not depend on a specific factorization order beyond what is captured by the conditioning on 825 E . In practice, while MDM may not strictly satisfy this property, its behavior typically offers a 826 close approximation. The theorem holds for an idealized p_{θ} that possesses these properties. As 827 MDMs become larger and more powerful, their learned distributions might better approximate such 828 consistency.829 **Worst-Case Analysis:** The conditions and bounds provided in the theorem (e.g., $(n+1)\epsilon \leq 1$) are 830 derived from a worst-case analysis. This means the bounds are guaranteed to hold if the conditions are 831 met, regardless of the specific structure of $p_{\theta}(\mathbf{X}|E)$ beyond the high-confidence marginal property. 832 In practice, the actual case might be "better behaved" than the worst-case scenario. For instance, the 833 dependencies between X_{i_j} and X_{i_k} (given E) might be weaker than what the worst-case construction 834 assumes. Consequently, the argmax equivalence (Result 1) might still hold frequently even if $(n+1)\epsilon$ 835 is slightly greater than 1 (but not much larger). The condition identifies a threshold beyond which 836 guarantees break down in the worst case, but practical performance can be more robust. Similarly, 837 the actual L_p distances or KL divergence might be smaller than the upper bounds suggest if the true 838 joint $p_{\theta}(\mathbf{X}|E)$ is closer to the product of marginals $q(\mathbf{X}|E)$ than the worst-case configurations.839

B CASE STUDY

840

B.1 EFFECT OF CACHING STRATEGIES ON RESPONSE QUALITY

841 Table 6 presents qualitative comparisons of responses from the *Original*, *PrefixCache*, and *DualCache* 842 methods for both an arithmetic prompt and an idiom-completion prompt. For the arithmetic question, 843 all three methods correctly compute **3 bolts** through similar step-by-step reasoning, differing only in 844 minor wording. For the idiom-completion task, all methods produce the standard completion and 845 give accurate explanations of its meaning. These results indicate that different caching strategies 846 preserve semantic fidelity and reasoning quality across both factual and conceptual queries, while 847 primarily serving to improve efficiency without degrading interpretability or correctness.

864

865

866

867

Table 6: Qualitative comparison of responses across methods.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?		
Original	PrefixCache	DualCache
The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3	The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3	The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, it takes 2 bolts + 1 bolt = 3 bolts of fiber. The final result is 3
Prompt: Finish the idiom and explain its meaning: A bird in the hand is worth...		
Original	PrefixCache	DualCache
A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of something that is uncertain or risky. It suggests that it's better to have a sure thing than to risk losing something valuable. The phrase comes from the idea that having a bird in one's hand is more secure than having two birds in the bush, which could be lost or harmed.	A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of gaining something more but is uncertain. It suggests that it's better to have a smaller amount of something that you know you have, rather than risking a larger amount of something that you don't have. The phrase is often used to encourage people to focus on what they already have and to avoid chasing after something that may not materialize.	A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of something greater but uncertain. It suggests that it's better to have a small, certain gain or reward rather than to risk a larger, potentially uncertain reward. In other words, it's better to be safe than sorry.

891

892

893

Table 7: Qualitative comparison of responses with varying block size for DualCache.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?		
Block Size 8	Block Size 16	Block Size 32
The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3	The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3	The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3
Prompt: Finish the idiom and explain its meaning: A bird in the hand is worth...		
Block Size 8	Block Size 16	Block Size 32
A bird in the hand is worth two in the bush. This idiom means that having something certain and secure is more valuable than the possibility of gaining something more but is uncertain or risky. It emphasizes the importance of taking precautions and holding onto what you already have, rather than risking everything for a potential gain.	A bird in the hand is worth two in the bush. This idiom means that having something certain and secure is more valuable than the possibility of something that is uncertain or risky. It suggests that it's better to have a sure thing in your possession rather than taking a chance on something that may not work out. The phrase is often used to advise against taking unnecessary risks and to prioritize safety and security over potential gains.	A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of something greater but uncertain. It suggests that it's better to have a small, certain gain or reward rather than to risk a larger, potentially uncertain reward. In other words, it's better to be safe than sorry.

918 Table 8: Qualitative comparison of responses under different threshold settings.
919

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?		
Threshold 0.7	Threshold 0.8	Threshold 0.9
The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, it takes $2 + 1 = 3$ bolts of fiber. So, the value is 3 (NFE: 9)	The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3 (NFE: 12)	The robe takes 2 bolts of blue fiber. It also takes half that much white fiber, so it takes $2/2 = 1$ bolt of white fiber. In total, the robe takes $2 + 1 = 3$ bolts of fiber. So, the value is 3 (NFE: 20)
Prompt: Finish the idiom and explain its meaning: A bird in the hand is worth...		
Threshold 0.7	Threshold 0.8	Threshold 0.9
A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of something that is uncertain or risky. It suggests that it's better to have a sure thing than to risk losing something valuable. The phrase comes from the idea that having a bird in one's hand is more secure than having two birds in the bush, which could be lost or harmed. (NFE: 74)	A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of something that is uncertain or risky. It suggests that it's better to have a sure thing than to risk losing something valuable. The phrase comes from the idea that having a bird in one's hand is more secure than having two birds in the bush, which could be lost or harmed. (NFE: 79)	A bird in the hand is worth two in the bush. This idiom means that having something certain and guaranteed is more valuable than the possibility of something that is uncertain or risky. It suggests that it's better to have a sure thing than to risk losing something valuable. The phrase comes from the idea that having a bird in one's hand is more secure than having two birds in the bush, which could be lost or harmed. (NFE: 86)

945 **B.2 EFFECT OF BLOCK SIZE IN DUALCACHE**

946
947 Table 7 compares outputs from DualCache with varying block sizes (**8**, **16**, and **32**). Across both the
948 arithmetic and idiom prompts, all configurations return identical answers, with consistent logical
949 steps and explanatory clarity. No qualitative differences are observed in output content, suggesting
950 that DualCache is robust to block size settings for these types of queries. This allows practitioners to
951 adjust block size for computational efficiency without worrying about a loss of output quality.
952

953 **B.3 IMPACT OF DYNAMIC THRESHOLD SETTINGS**

954
955 Table 8 explores the effect of varying dynamic threshold values (**0.7**, **0.8**, **0.9**). For the arithmetic
956 and idiom tasks, all thresholds yield correct answers with coherent explanations, confirming that
957 threshold tuning does not affect accuracy for straightforward prompts. However, higher thresholds
958 noticeably increase the number of function evaluations (NFE), e.g., from **9** to **20** for the arithmetic
959 task and from **74** to **86** for the idiom task. This suggests that threshold choice primarily influences
960 computational cost, with quality remaining stable—enabling trade-offs between speed and resource
961 usage for different application scenarios.
962

963 **B.4 MULTIMODAL GENERATION WITH LLADA-V**

964
965 To qualitatively analyze the effectiveness of our Fast-dLLM framework in multimodal scenarios,
966 we conduct a visual case study where the model is tasked with generating a highly detailed image
967 description. As illustrated in Figure 10, both the baseline model and our Fast-dLLM are given the
968 same visual input and user prompt: “*Please describe the image in detail.*”
969

970 The baseline model requires 63.0 seconds to complete the generation, producing a detailed and poetic
971 description of the rural landscape. It highlights elements such as the weathered wooden barn, the soft
pink sky, and the tranquil atmosphere.
972

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991

User: Please describe the image in detail.

Baseline (63.0 secs): The image captures a serene rural landscape. Dominating the scene is a wooden barn, its weathered exterior a testament to the passage of time. The barn is nestled in a field of green grass, which stretches out to meet the horizon. In the distance, a range of mountains rises, their peaks shrouded in a blanket of clouds. The sky above is a soft pink, suggesting either dawn or dusk. The perspective of the image is from a low angle, making the barn appear grand and imposing. The overall composition of the image creates a sense of depth and tranquility, inviting the viewer to imagine themselves in this peaceful rural setting.

Fast-dLLM (6.8 secs): The image captures a serene rural landscape. Dominating the scene is a wooden barn, its rustic charm enhanced by the gray shingles on its roof. The barn is nestled in a field of tall grass, which stretches out towards the horizon. The field is framed by a range of mountains, their peaks dusted with snow, adding a touch of tranquility to the scene. The sky above is a soft pink, suggesting either early morning or late afternoon. The perspective of the image is from a low angle, making the barn appear grand and imposing. The overall composition of the image creates a harmonious blend of man-made structures and the natural world.

992 Figure 6: Comparison between the baseline and Fast-dLLM on a visual description task. Fast-dLLM produces a
993 comparable and faithful image caption in a fraction of the decoding time.

994
995 In contrast, our Fast-dLLM completes the task in just 6.8 seconds—a nearly 10× speedup—while
996 maintaining rich visual detail. It further enhances the description with additional grounding (e.g.,
997 “gray shingles on its roof”, “touch of tranquility”), reflecting a strong alignment with both appearance
998 and mood cues from the image. Notably, the generated caption retains compositional depth and
999 stylistic fluency, illustrating the model’s ability to balance fluency and factuality even under diffusion-
1000 based parallel decoding.

1001 This case highlights how LLAda-V with Fast-dLLM decoding enables high-quality vision-language
1002 generation at significantly improved efficiency, paving the way for faster and more interactive
1003 multimodal applications.

1005 C EXPERIMENT DETAILS

1008 C.1 FURTHER EXPERIMENTS WITH LLADA-V

1009 Table 9: Effect of block length on performance (MathVista, 48 Steps)

1011 Block Length	4	8	16	32	96
1013 Accuracy (%)	51.2	50.7	51.8	52.3	59.7
1014 Throughput (tok./s)	6.1	6.2	5.5	5.5	5.6

1016 Table 10: MathVista Performance with Fast-dLLM at different refresh intervals (block length = 96)

1018 Refresh Interval	2	4	8	16	32
1020 Accuracy (%)	59.2	59.2	58.2	57.1	56.6
1021 Throughput (tok./s)	15.9	19.5	21.1	25.2	28.2

1022 In Table 9, we investigate how the choice of block length affects the performance of LLAda-V on
1023 MathVista under a fixed decoding length of 48 steps. The results show that the model achieves the
1024 highest accuracy with a block length of 96. However, when reducing the block size to 8 or 4, the
1025 accuracy drops significantly by over 8%.

Given this sensitivity to block length, we choose not to break the output into small blocks for updating caches individually. Instead, we keep the block length fixed at 96 and adopt a refresh-based strategy: the cache is updated only every r decoding steps using the most recent full block. As shown in Table 10, increasing the refresh interval leads to consistent gains in throughput—from 15.9 tokens/s at interval 2 to 28.2 tokens/s at interval 32. While accuracy drops slightly with larger intervals, it remains above 56.6%, suggesting that aggressive refresh scheduling can yield substantial speedups with only minor performance degradation.

C.2 PERFORMANCE COMPARISON BETWEEN THRESHOLD AND FACTOR STRATEGY

Table 11: Performance comparison between **Threshold** and **Factor** confidence-aware decoding on GSM8K and MATH benchmarks with generation lengths of 256 and 512. Each block shows accuracy (top row) and throughput with speedup (bottom row). Factor decoding provides favorable trade-offs in most settings.

Benchmark	Gen. Len	Threshold	Factor
GSM8K (5-shot)	256	78.5	77.5
	512	54.4 (8.1x)	78.5 (11.7x)
MATH (4-shot)	256	77.2	74.8
	512	35.3 (11.0x)	47.1 (14.7x)
	256	33.2	32.0
	512	51.7 (5.7x)	78.3 (8.6x)
	512	36.0	35.2
		47.1 (5.9x)	64.6 (8.1x)

We compare the performance of our threshold-based and factor-based confidence-aware parallel decoding strategies on GSM8K and MATH benchmarks (Table 11). While the threshold strategy achieves marginally better accuracy in most settings (e.g., 78.5% vs. 77.5% on GSM8K with 256 tokens), the factor strategy demonstrates substantially superior throughput performance.

Specifically, factor decoding achieves 1.4-1.5x higher throughput than threshold decoding across all settings. On GSM8K with 256 tokens, factor decoding reaches 78.5 tokens/sec (11.7x speedup) compared to 54.4 tokens/sec (8.1x speedup) for threshold decoding. This throughput advantage becomes even more pronounced on longer generation tasks—for GSM8K with 512 tokens, factor decoding attains 47.1 tokens/sec while threshold only achieves 35.3 tokens/sec.

The results demonstrate that factor decoding offers a compelling trade-off: it sacrifices minimal accuracy (typically 1-3%) in exchange for significant throughput improvements (40-50% higher). This makes factor decoding particularly attractive for latency-sensitive applications where the slight accuracy reduction is acceptable. The consistent pattern across both benchmarks and generation lengths validates the robustness of the factor strategy’s theoretical foundation, which adaptively controls parallelism based on the confidence bound $(n + 1)\epsilon < f$.

C.3 COMPARISON BETWEEN LLADA AND LLADA-1.5

We compare the performance of LLADA and its enhanced version LLADA-1.5 across both GSM8K (5-shot) and MATH (4-shot) benchmarks under two generation length settings (256 and 512 tokens), as shown in Table 12. Each cell reports accuracy and decoding throughput (in tokens per second), along with the relative speedup over the greedy baseline.

Across GSM8K settings, LLADA-1.5 consistently improves accuracy over the original LLADA, achieving a notable +2.2% absolute gain at 256-token generation and +3.2% at 512-token generation. Furthermore, it maintains strong decoding efficiency, with throughput reaching 59.4 tokens/sec at 256 tokens, improving upon LLADA’s 54.1 tokens/sec under the same setting.

On the MATH benchmark, accuracy between the two versions remains comparable. However, LLADA-1.5 slightly improves throughput at 256 tokens (53.7 vs. 51.7) while incurring a mild

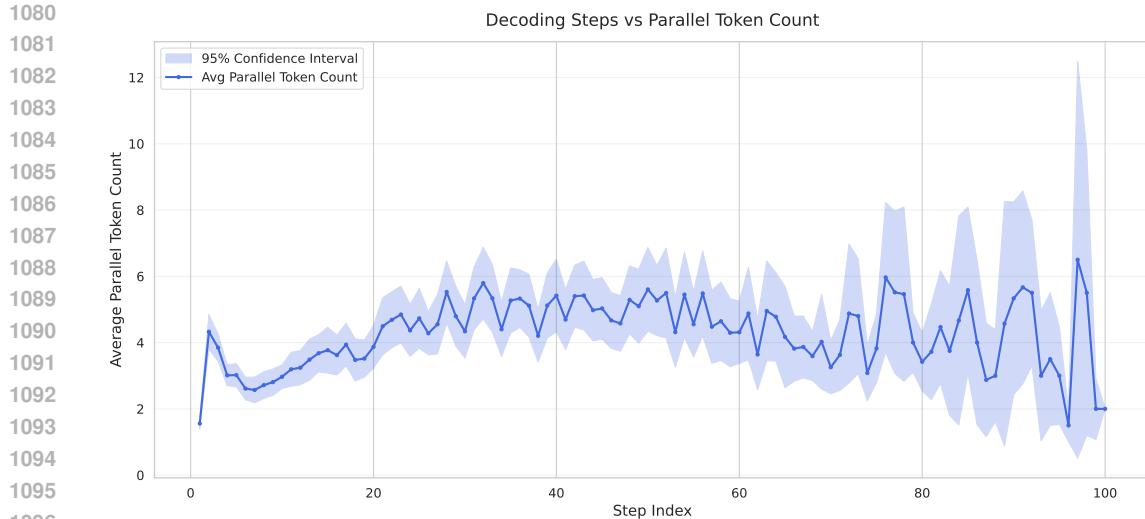


Figure 7: Average number of tokens generated at each decoding step. Blue line shows the mean token count, and the shaded area denotes the 95% confidence interval.

Table 12: Performance comparison between LLaDA and LLaDA-1.5. Each cell presents the accuracy and the decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, blue: tokens per second/orange: relative speedup).

Benchmark	Gen Length	LLaDA (Fast-dLLM)	LLaDA 1.5 (Fast-dLLM)
GSM8K (5-shot)	256	78.5	80.7
	512	54.1 (8.1 \times)	59.4 (8.9 \times)
		77.2	80.4
MATH (4-shot)	256	35.3 (11.0 \times)	33.0 (10.3 \times)
	512	33.2	32.6
		51.7 (5.7 \times)	53.7 (5.9 \times)
		36.0	35.1
		47.1 (5.9 \times)	41.1 (5.1 \times)

efficiency regression at the 512-token setting (41.1 vs. 47.1). This suggests that while LLaDA-1.5 introduces enhancements beneficial for shorter or moderate decoding contexts, longer sequences may require further optimization.

Overall, LLaDA-1.5 consistently provides either superior accuracy or better decoding speed across settings, demonstrating better performance-efficiency trade-offs and highlighting the benefit of incorporating adaptive improvements on top of the base LLaDA architecture.

C.4 ANALYSIS OF PARALLEL TOKEN COUNTS ACROSS DECODING STEPS

To better understand the behavior of factor-based parallel generation, we analyze the average number of tokens generated at each decoding step. Specifically, we collect statistics from all intermediate steps of the sampling process and compute the average number of tokens generated in parallel per step. The results are visualized in Figure 7, along with a 95% confidence interval indicating cross-sample variability.

As shown in Figure 7, the average number of tokens generated in parallel gradually increases during the early to middle stages of decoding, peaking roughly between step 30 to step 60. After this peak, the parallelism tends to slightly decline toward the end of generation. This suggests that the model becomes more confident in generating outputs during the mid-decoding phase, allowing it to produce more tokens simultaneously. Toward the final steps, the decoding process tends to become more conservative, reducing the number of tokens produced at each step.

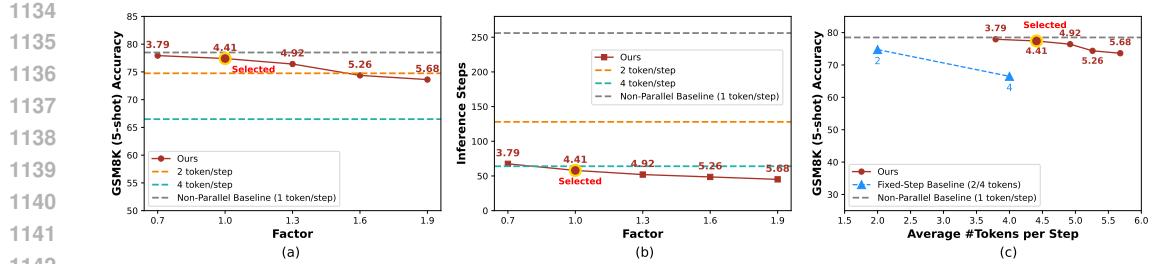


Figure 8: (a) GSM8K (5-shot) accuracy across different factor values using our factor-based decoding strategy. Numbers above each point indicate the average number of tokens decoded per step. The dashed lines show the accuracy of the baseline method with 2 or 4 tokens per step, and the non-parallel (1 token/step) baseline. (b) The corresponding number of inference steps needed under each factor setting. Our method generally requires significantly fewer steps than fixed-step baselines. (c) Accuracy versus average number of tokens decoded per step on GSM8K (5-shot). Our factor-based decoding achieves better accuracy-efficiency trade-offs compared to baselines. The red “Selected” point represents the setting chosen in our main results.

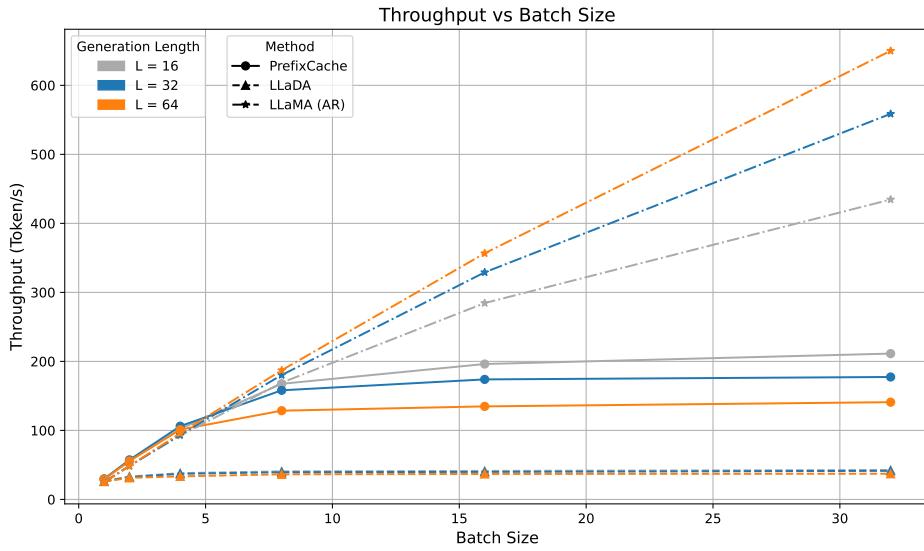


Figure 9: Throughput comparison between **PrefixCache**, **LLaDA**, and **LLaMA** under different generation lengths and batch sizes. All models are evaluated on an **NVIDIA A100** GPU with the prefill length fixed at 256.

The shaded confidence interval reveals greater variance in later decoding steps, indicating instability and inconsistent generation behavior across samples. This is expected since tail-end decoding steps tend to handle only a few remaining tokens required to complete the output, and the number of remaining tokens could differ widely among different samples (e.g., due to early completion or padding).

These observations are important for understanding how decoding efficiency can be optimized: increasing parallelism during high-confidence phases (middle steps) offers computational savings, while conservative behavior near boundaries maintains quality.

C.5 THROUGHPUT COMPARISON UNDER VARYING BATCH SIZES

All experiments are conducted on an NVIDIA A100 GPU, with the prefill length fixed to 256 tokens. The generation length is varied among 16, 32, and 64 tokens, and batch sizes range from 1 to 32. This setup reflects realistic deployment scenarios, allowing the evaluation of decoding efficiency under diverse conditions.

1188 It should be noted that parallel decoding allows multiple tokens to be generated simultaneously
 1189 affected by dummy input tokens. To ensure fairness, we focus solely on the acceleration provided by
 1190 caching techniques.

1191 PrefixCache is designed as an acceleration mechanism for LLaDA, a diffusion-based LLM, and suc-
 1192 cessfully boosts the throughput significantly. Figure 9 shows that **PrefixCache achieves consistent**
 1193 **improvements across all batch sizes and generation lengths**, making it particularly suited for
 1194 scenarios with smaller generation lengths and larger batch sizes. For instance, with a generation
 1195 length of 16 and batch size of 32, PrefixCache achieves a throughput of over 211 tokens/s, signifi-
 1196 cantly outperforming the native LLaDA which reaches only 43 tokens/s, demonstrating nearly 5×
 1197 improvement.

1198 While LLaDA exhibits limited scalability with increasing batch sizes—its throughput plateaus after
 1199 batch size 8—this limitation is inherent to diffusion-based LLMs, which are compute-bound by
 1200 nature. In contrast, LLaMA, an autoregressive (AR) model, benefits greatly from large batch sizes.
 1201 As the batch size increases, LLaMA shifts from being memory-bound to compute-bound, allowing it
 1202 to achieve high absolute throughput at larger batch settings.

1203 These results highlight the practical advantages of PrefixCache in accelerating compute-bound diffu-
 1204 sion models like LLaDA, especially for latency-critical and high-throughput applications. Further-
 1205 more, the scalability and efficiency provided by PrefixCache bridge the gap between diffusion-based
 1206 LLMs and AR models like LLaMA, showcasing its importance for large-scale deployment settings.

1209 D RELATED WORK

1211 D.1 DIFFUSION LLM

1213 Diffusion models have emerged as a transformative paradigm in generative modeling, initially
 1214 achieving remarkable success in continuous domains such as image (Rombach et al., 2022; Nichol
 1215 et al., 2022; Ramesh et al., 2021; Saharia et al., 2022) and audio synthesis (Yang et al., 2023; Huang
 1216 et al., 2023) before expanding into natural language processing. Recent advancements in discrete
 1217 diffusion models (Austin et al., 2021; Nie et al., 2025a;b; Hoogeboom et al., 2021; Campbell et al.,
 1218 2022; He et al., 2022; Meng et al., 2022; Reid et al., 2022; Sun et al., 2022; Kitouni et al., 2023;
 1219 Zheng et al., 2023; Chen et al., 2023; Ye et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Zheng et al.,
 1220 2024; Gat et al., 2024; Yu et al., 2025b;a) have reshaped the landscape of text generation, offering a
 1221 viable alternative to autoregressive (AR) paradigms in large language models (LLMs). These models
 1222 address the inherent challenges of discrete data by redefining noise injection and denoising processes
 1223 through innovative mathematical formulations.

1224 **Theoretical Foundations of Discrete Diffusion** Diffusion models for discrete data were first explored
 1225 in (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021). Subsequently, D3PM (Austin et al., 2021)
 1226 provided a more general framework. This framework models the forward noising process as a
 1227 discrete state Markov chain using specific transition matrices. For the reverse process, D3PM learns
 1228 a parameterized model of the conditional probability of the original data given a noised version by
 1229 maximizing the Evidence Lower Bound (ELBO). CTMC (Campbell et al., 2022) further extended
 1230 D3PM to a continuous-time setting, formalizing it as a continuous-time Markov Chain (CTMC). In a
 1231 distinct approach, SEDD (Lou et al., 2023) learns the reverse process by parameterizing the ratio of
 1232 marginal likelihoods for different data instances at a given noising timestep. This ratio model is then
 1233 trained using a Denoising Score Entropy objective. More recently, research on Masked Diffusion
 1234 Models (MDMs) by MDLM (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024) and RADD (Ou
 1235 et al., 2024) has introduced significant clarifications. These studies have demonstrated that different
 1236 parameterizations of MDMs can be equivalent.

1237 **Integration with Pre-trained Language Models** A critical breakthrough involves combining discrete
 1238 diffusion with existing LLM architectures. Diffusion-NAT (Zhou et al., 2023) unifies the denoising
 1239 process of discrete diffusion with BART’s (Lewis et al., 2019) non-autoregressive decoding, enabling
 1240 iterative refinement of masked tokens. By aligning BART’s inference with diffusion steps, this
 1241 approach leverages pre-trained knowledge while maintaining generation speed 20x faster than
 comparable AR transformers. Similarly, the LLaDA (Nie et al., 2025b) and DiffuLLaMA (Gong
 1242 et al., 2024) framework scales diffusion to 7B parameters using masked denoising, while LLaDA

and Dream (Ye et al., 2025) demonstrating competitive performance with autoregressive baselines like LLaMA3 (Grattafiori et al., 2024) through recursive token prediction across diffusion timesteps. Beyond text-only generation, Lumina-DiMOO (Xin et al., 2025) extends discrete diffusion modeling to multimodal tasks, achieving state-of-the-art performance on text-to-image generation and image understanding by utilizing fully discrete diffusion across modalities with higher sampling efficiency than hybrid AR-Diffusion paradigms.

One-Step and Few-Step Diffusion Models Recent work has focused on reducing the number of denoising steps required for high-quality generation. OneFlowSeq (Anonymous, 2025) distills multi-step diffusion teachers into one-step generators through MeanFlow-based supervision and Jacobian-vector product signals, achieving state-of-the-art Seq2Seq performance with significantly reduced inference time while requiring fewer trainable parameters. dParallel (Chen et al., 2025b) introduces certainty-forcing distillation that trains diffusion models to achieve high certainty on masked tokens more rapidly and in parallel, reducing decoding steps from 256 to 30 on GSM8K with 8.5 \times speedup. Learning to Parallel (Learn2PD) (Bao et al., 2025) proposes a lightweight adaptive filter model that predicts whether each token position matches the final output, achieving up to 22.58 \times speedup on LLaDA without performance degradation, and up to 57.51 \times when combined with KV-Cache.

D.2 LLM ACCELERATION

Key-Value Cache. Key-Value (KV) Cache is a fundamental optimization technique in modern large language model (LLM) inference with Transformer architecture (Vaswani, 2017). It enables efficient autoregressive text generation by storing and reusing previously computed attention states. However, it is non-trivial to apply KV Cache in diffusion language models such as LLaDA due to full attention. Block diffusion (Arriola et al., 2025) overcomes key limitation of previous diffusion language models by generating block-by-block so that key and values of previously decoded blocks can be stored and reused. Several recent works have proposed specialized caching mechanisms for diffusion LLMs. dLLM-Cache (Liu et al., 2025) introduces a training-free adaptive caching framework that combines long-interval prompt caching with partial response updates guided by feature similarity, achieving up to 9.1 \times speedup. Sparse-dLLM (Song et al., 2025) proposes the first training-free dynamic cache eviction method featuring delayed bidirectional sparse caching, leveraging the observation that pivotal tokens remain salient across decoding steps while low-relevance tokens stay unimportant, achieving up to 10 \times higher throughput. DPad (Chen et al., 2025a) restricts attention to a structured subset of suffix tokens through a sliding window and distance-decay dropout strategy, delivering up to 61.4 \times speedup while maintaining comparable accuracy.

Non-Autoregressive Generation Non-autoregressive (NAR) generation marks a fundamental shift from sequential token generation by enabling the simultaneous generation of multiple tokens, significantly accelerating inference (Xiao et al., 2023). Initially introduced for neural machine translation, NAR methods have since been extended to a variety of tasks, including grammatical error correction, text summarization, dialogue systems, and automatic speech recognition. Although NAR generation offers substantial speed advantages over autoregressive approaches, it often sacrifices generation quality. Diffusion LLMs represent a recent paradigm for non-autoregressive text generation; however, prior work (Nie et al., 2025b) has struggled to realize the expected acceleration due to a notable drop in output quality.

E LLM USAGE

During manuscript preparation, we used large language models —strictly for language polishing of paragraphs and sentences (grammar, flow, and tone). These tools were not used to generate ideas, design experiments, or determine conclusions. All technical content, methodology, and interpretations were written, verified, and approved by the authors. To reduce risks of factual drift or citation errors, we required human review of every model-edited sentence and cross-checked all references against primary sources. The authors take full responsibility for the accuracy and integrity of the manuscript.

F KV ACTIVATION SIMILARITY

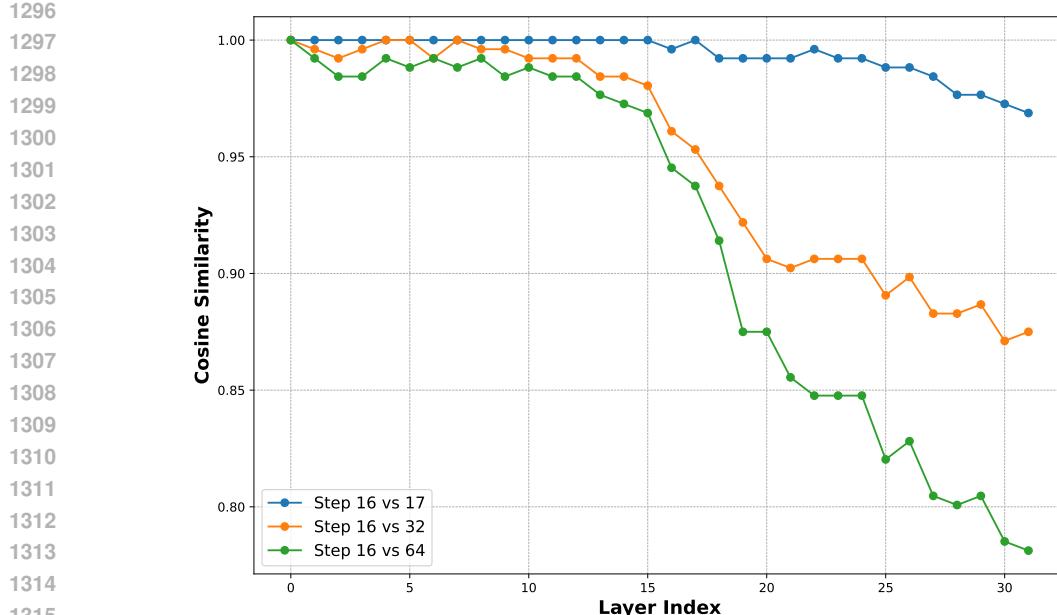


Figure 10: KV cache similarity across all layers between adjacent diffusion steps.

As shown in the figure, adjacent diffusion steps (e.g., step 16 vs. 17) consistently exhibit high cosine similarity across all layers, indicating that our caching mechanism is well-justified for short-term reuse. However, the similarity decreases in deeper layers as step intervals widen (e.g., step 16 vs. 64), suggesting that KV activations evolve more rapidly toward the top of the network. This non-uniformity across layers and steps points to opportunities for improvement. In future work, we plan to explore layer-aware or adaptive caching strategies that more precisely account for per-layer similarity patterns.

G DPARALLEL COMBINED WITH FAST-DLLM

Our confidence-aware decoding strategy remains effective when applied to distilled few-step diffusion models like dParallel, which naturally exhibit higher confidence due to distillation. Using a threshold of 0.5, dParallel combined with our decoding method already achieves large speedups. Moreover, by further integrating our KV cache, we observed an additional 1.84 \times throughput gain (from 49.9 to 92.0 tokens/s) with a slight accuracy improvement (from 76.5% to 77.1%) on GSM8K (see table above). The reduced number of decoding steps per block in dParallel improves cache reuse fidelity, making our caching design even more precise. As for One-Step Diffusion LLM, while it explores aggressive timestep reduction, its evaluation focuses primarily on perplexity rather than downstream tasks, so we could not include it in our setting. Exploring how our techniques generalize to extreme distillation regimes remains a valuable direction for future work.

Table 13: Performance comparison of LLaDA baseline, dParallel (threshold 0.5), and dParallel with prefix caching (threshold 0.5) on GSM8K in terms of throughput (tokens/s) and accuracy (%). The dParallel model benefits from distillation-induced higher confidence, enabling effective application of confidence-aware decoding. Integrating KV cache further boosts throughput by 1.84 \times with a slight accuracy gain.

Model	Throughput (tokens/s)	Accuracy (%)
Baseline (LLaDA)	6.7	79.3
dParallel (Threshold 0.5)	49.9	76.5
dParallel + Prefix Cache (Threshold 0.5)	92.0	77.1

1350 H MEMORY USAGE

1352 While our block-wise KV caching mechanism introduces changes in memory access patterns, it
 1353 does not significantly increase memory usage. As shown in the table below, both PrefixCache
 1354 and DualCache reuse KV entries from a single full-sequence cache, split across blocks rather than
 1355 duplicated. For instance, in the 256+256 case, DualCache reduces computation by over 16 \times (7.68T
 1356 \rightarrow 0.48T FLOPs), while memory only increases slightly (15.07G \rightarrow 15.36G). Even at 1024+1024,
 1357 VRAM remains well within 16.6GB, showing practicality for large-scale input. PrefixCache reuses
 1358 only the prefix, while DualCache retains all but the current decoding block, providing more effective
 1359 reuse at minimal extra memory cost. Overall, our method achieves substantial speedup with marginal
 1360 VRAM overhead, and scales well to long sequences and large models.

1361 Table 14: FLOP count (T) and peak VRAM usage (G) under different input and generation sequence lengths
 1362 (256+256, 512+512, 1024+1024) for LLaDA baseline, PrefixCache, and DualCache. DualCache achieves over
 1363 16 \times reduction in computation (7.68T \rightarrow 0.48T FLOPs) with only marginal memory increase (15.07G \rightarrow 15.36G)
 1364 in the 256+256 case, demonstrating high computational efficiency and memory scalability.

1366 Method	256+256		512+512		1024+1024	
	FLOPs (T)	VRAM (G)	FLOPs (T)	VRAM (G)	FLOPs (T)	VRAM (G)
1368 LLaDA (Baseline)	7.68	15.07	15.36	15.20	30.71	15.44
1369 PrefixCache	3.84	15.63	7.68	16.31	15.36	17.69
1370 DualCache	0.48	15.36	0.48	15.76	0.48	16.57

1373 I COMPARE WITH RELATED WORKS

1375 While dLLM-Cache focuses on content-based adaptive KV caching using value similarity, our block-
 1376 wise KV cache relies on temporal similarity across adjacent steps, offering a complementary approach.
 1377 DPad targets a different axis by pruning redundant suffix tokens to reduce attention cost, whereas our
 1378 method optimizes the decoding process itself via caching and confidence-aware parallel decoding.
 1379 Notably, both methods are compatible with our approach, and can be combined for multiplicative
 1380 speedups, as acknowledged in the DPad paper. We see these works as complementary, addressing
 1381 different bottlenecks in dLLM inference, and appreciate the opportunity to position Fast-dLLM
 1382 within this evolving landscape.

1383 Table 15: Accuracy (%) and throughput (tokens/s) on GSM8K 5-shot for 256- and 512-token sequences.
 1384 Fast-dLLM denotes our full system (confidence-aware parallel decoding + block-wise KV cache). dLLM-Cache
 1385 adopts value-similarity-based adaptive caching, whereas DPad prunes redundant suffix tokens. Our approach is
 1386 orthogonal and can be combined with others for multiplicative gains (e.g., DPad+Parallel+PrefixCache reaches
 1387 54.0 tokens/s at 256 length with 77.6% accuracy).

1389 Method	256 tokens		512 tokens	
	Acc (%)	Thru (tok/s)	Acc (%)	Thru (tok/s)
1392 dLLM-Cache	79.2	18.0	78.0	9.2
1393 DPad	79.1	7.3	80.1	7.2
1394 + Parallel	80.5	20.8	81.0	21.2
1395 + Parallel + PrefixCache	77.6	54.0	79.2	53.8
1396 Fast-dLLM (ours)	78.5	54.4	77.3	35.3
1397 PrefixCache	79.5	21.2	77.0	10.4
Parallel	79.2	16.5	77.6	18.6