
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST-DLLM: TRAINING-FREE ACCELERATION OF DIF-
FUSION LLM BY ENABLING KV CACHE AND PARAL-
LEL DECODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Diffusion-based large language models (Diffusion LLMs) have shown promise
for non-autoregressive text generation. However, the practical inference speed
of open-sourced Diffusion LLMs often lags behind autoregressive models due
to the lack of Key-Value (KV) Cache and quality degradation when decoding
multiple tokens simultaneously. To bridge this gap, we introduce Fast-dLLM, a
method that incorporates a novel block-wise approximate KV Cache mechanism
tailored for bidirectional diffusion models, enabling cache reuse with negligible
performance drop. Additionally, we identify the root cause of generation quality
degradation in parallel decoding as the disruption of token dependencies under the
conditional independence assumption. To address this, Fast-dLLM also proposes
a confidence-aware parallel decoding strategy that selectively decodes tokens ex-
ceeding a confidence threshold, mitigating dependency violations and maintaining
generation quality. Experimental results on LLaDA and Dream models across
multiple LLM benchmarks demonstrate up to 27.6× throughput improvement with
minimal accuracy loss, closing the performance gap with autoregressive models
and paving the way for practical deployment of Diffusion LLMs.

1 INTRODUCTION

Diffusion-based large language models (Diffusion LLMs) have recently attracted increasing attention
due to their potential for parallel token generation and the advantages of bidirectional attention
mechanisms. Notably, Mercury (Inception Labs, 2025) runs at over 1,000 tokens per second, and
Gemini Diffusion (Google DeepMind, 2025) by Google DeepMind has demonstrated the ability to
generate over 1,400 tokens per second, highlighting the promise of significant inference acceleration.

However, current open-source Diffusion LLMs (Nie et al., 2025b; Ye et al., 2025) have yet to close
such throughput gap in practice, and their actual speed often falls short of autoregressive (AR) models.
This is primarily due to two issues. First, diffusion LLMs do not support key-value (KV) caching, a
critical component in AR models for speeding up inference. Second, the generation quality tends to
degrade when decoding multiple tokens in parallel. For example, recent findings such as those from
LLaDA (Nie et al., 2025b) indicate that Diffusion LLMs perform best when generating tokens one at
a time and soon degrades when decoding multiple tokens simultaneously.

To bridge the performance gap with AR models that benefit from KV Cache, we present Fast-dLLM,
a fast aWnd practical diffusion-based language modeling framework. First, Fast-dLLM introduces an
approximate KV Cache tailored to Diffusion LLMs. While the bidirectional nature of attention in
Diffusion LLMs precludes a fully equivalent KV Cache, our approximation closely resembles an
ideal cache in practice. To support KV Cache, we adopt a block-wise generation manner. Before
generating a block, we compute and store KV Cache of the other blocks to reuse. After generating
the block, we recompute the KV Cache of all the blocks. Visualizations confirm the high similarity
with adjacent inference steps within the block, and our experiments show that this approximation
preserves model performance during inference. We further propose a DualCache version that caches
Keys and Values for both prefix and suffix tokens.

In parallel, Fast-dLLM investigates the degradation in output quality when generating multiple tokens
simultaneously. Through theoretical analysis and empirical studies, we identify that simultaneous

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Throughput (Tokens/sec)

70

72

74

76

78

80

82

84

86

G
SM

8K
 (

5-
sh

ot
)

Ac
cu

ra
cy

 (
%

)

LLaMA-3-8B

Qwen2.5-7B

LLaDA
LLaDA+KVCache

LLaDA+Parallel
LLaDA+KVCache
+Parallel

Dream

Dream+KVCacheDream+Parallel Dream+KVCache
+Parallel

5.3× Faster

8.1× Faster

(a) Throughput vs. Accuracy across methods

LLaDA

LLaDA+KVCache

LLaDA+Parallel

LLaDA+KVCache+Parallel

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
r

of
 t

ok
en

s
pe

r
st

ep

1.00 1.00

3.25 3.01Tokens per step
Throughput (tokens/second)

0

10

20

30

40

50

60

70

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

ec
on

d)

6.70

21.20
16.50

54.40

(b) Throughput and tokens per step across methods

LLaDA
1024 steps

+Parallel
~100 steps

+PrefixCache
~140 steps

+DualCache
~140 step

Latency per step

Latency per sample: 266s, Throughput: 0.7 tok./s

 26s, 9.3 tok./s

0.14s

 0.26s

 0.26s

 20s, 13.0 tok./s

GSM8K (8-shot) Gen. Length=1024 Acc=77.3

13.3x

2.1x

27.6x
GSM8K (8-shot) Gen. Length=1024 Acc=76.0

1.4x

 12s,

19.3 tok./s0.09s

(c) End-to-end speedup over vanilla LLaDA baseline.

Figure 1: Effectiveness of components of Fast-dLLM across different approaches. We use NVIDIA A100
GPU with a single batch size and no inference speedup frameworks.. (a) Inference throughput (tokens/sec)
and GSM8K (5-shot) accuracy across various designs and models under a maximum generation length of 256.
Caching mechanism and parallel decoding can significantly accelerate inference, while the combination provides
up to an 8.1× increase in throughput with negligible accuracy reduction. (b) We break down the contributions of
each method by showing both the number of tokens generated per step (line) and total throughput (bars). (c)
With long prefilling (8-shot) and a maximum generation length of 1024, our combined approach achieves up to
27.6× end-to-end speedup compared to the vanilla LLaDA baseline.

sampling of interdependent tokens under a conditional independence assumption disrupts critical
token dependencies. To address this issue and fully exploit the parallelism potential of Diffusion
LLMs, we propose a novel confidence-thresholding strategy to select which tokens can be safely
decoded simultaneously. Instead of selecting the tokens with top K confidence to decode as in
LLaDA, we select tokens with confidence larger than a threshold. Our theoretical justification and
experimental results demonstrate that this strategy maintains generation quality while achieving up to
13.3× inference speed-up.

In summary, our contributions are threefold. First, Key-Value Cache for Block-Wise Decoding. We
introduce a block-wise approximate KV Cache mechanism specifically designed for bidirectional
attention. Our approach reuses cached activations from previously decoded blocks by exploiting
the high similarity of KV activations between adjacent steps. By caching both prefix and suffix
blocks, the DualCache strategy enables substantial computational reuse. Second, Confidence-Aware
Parallel Decoding. We propose a novel confidence-aware parallel decoding method. Unlike prior
approaches that select a fixed number of tokens per step, our method dynamically selects tokens
whose confidence exceeds a global threshold, enabling safe and effective parallel decoding. This
approach significantly accelerates inference by 13.3× while preserving output quality. Third, State-
of-the-Art Acceleration Results. We conduct comprehensive experiments on multiple open-source
Diffusion LLMs (LLaDA, Dream) and four mainstream benchmarks (GSM8K, MATH, HumanEval,
MBPP). Results demonstrate that our Fast-dLLM consistently deliver order-of-magnitude speedups
with minimal or no degradation in accuracy, confirming the generality and practical value of our
approach for real-world deployment. Fast-dLLM achieves hgiher acceleration (up to 27.6×) when
generation length is longer (1024).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARY

2.1 MASKED DIFFUSION MODEL

Diffusion models for discrete data were first explored in (Sohl-Dickstein et al., 2015; Hoogeboom
et al., 2021). D3PM (Austin et al., 2021) generalized them with a discrete-state Markov chain
forward process parameterized by transition matrices Qt, and learned the reverse process pθ(x0|xt)
via ELBO maximization. CTMC (Campbell et al., 2022) extended this to continuous time, while
SEDD (Lou et al., 2023) instead modeled the likelihood ratio pt(y)

pt(x)
using Denoising Score Entropy.

Among noise processes, Masked Diffusion Models (MDMs)—also called absorbing state discrete
diffusion—are prominent. MDMs replace tokens with a special [MASK] token according to

qt|0(xt|x0) =

n∏
i=1

Cat
(
xi
t; (1− t)δxi

0
+ tδ[MASK]

)
, (1)

where t ∈ [0, 1] interpolates between x0 (t = 0) and a fully masked sequence (t = 1).

Recent work (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024; Ou et al., 2024) shows MDM
parameterizations are equivalent and that their training objective reduces to an ELBO:

− log pθ(x) ≤
∫ 1

0

1

t
Eqt|0

[∑
i:xi

0=[MASK]

− log pθ(x
i
0|xt)

]
dt := LMDM. (2)

2.2 GENERATION PROCESS OF MDMS

Directly reversing Equation 1 is inefficient, altering only one token per step (Campbell et al., 2022;
Lou et al., 2023). A faster strategy is τ -leaping (Gillespie, 2001), which lets multiple masked tokens
be recovered in a single step from t to s < t:

qs|t =

n−1∏
i=0

qs|t(x
i
s|xt), qs|t(x

i
s|xt) =


1, xi

t ̸= [MASK],xi
s = xi

t
s
t , xi

t = [MASK],xi
s = [MASK]

t−s
t q0|t(x

i
s|xt), xi

t = [MASK],xi
s ̸= [MASK].

(3)

Here q0|t(x
i
s|xt) is a model distribution over the vocabulary, extended to q0|t(x

i
s|xt, p) when condi-

tioned on a prompt p.

Curse of Parallel Decoding Although τ -leaping accelerates generation by sampling multiple
tokens in parallel, the conditional independence assumption causes problems. For example, in “The
list of poker hands that consist of two English words are: _ _” (Song & Zhou, 2025), valid pairs
include “high card” or “full house,” but independent sampling can yield incoherent pairs like “high
house.” Formally, MDMs approximate p(xi

s,x
j
s|xt) by p(xi

s|xt) p(x
j
s|xt), ignoring dependencies

such as p(xj
s|xt,x

i
s). This mismatch worsens when many tokens are unmasked simultaneously,

degrading fluency and coherence.

3 METHODOLOGY

3.1 PIPELINE OVERVIEW

Our approach, Fast-dLLM, builds on the Masked Diffusion Model (MDM) architecture to enable effi-
cient and high-quality sequence generation. To accelerate inference, the overall pipeline incorporates
two key strategies: efficient attention computation through Key-Value (KV) Cache and a parallel
decoding scheme guided by prediction confidence.

Specifically, we adopt Key-Value Cache for Block-Wise Decoding, which allows reusing attention
activations across steps and significantly reduces redundant computation. Within each block, we
further propose Confidence-Aware Parallel Decoding, enabling selective updates of tokens based on
confidence scores to improve efficiency while maintaining output quality.

By combining these strategies, Fast-dLLM significantly speeds up inference for MDMs with minimal
impact on generation performance. The overall procedure is summarized in Algorithm 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Cached token

MASK token

Decoded token

Compute cache

Decode token

Prompt token

Prompt Block 0 Block 1

𝑡 = 1

𝑡 = 0

Prompt Block 0 Block 1

𝑡 = 1

𝑡 = 0

(a) Prefix KV Cache for block-wise generation. (b) DualCache: Bidirectional KV cache contains prefix
and suffix Cache.

Figure 2: Illustration of our Key-Value Cache for Block-Wise Decoding. (a) During prefix-only caching, the
KV cache is computed once for the prompt and reused across multiple decoding steps within each block. The
cache is updated after completing a block to maintain consistency, with negligible overhead. (b) DualCache
extends this approach by caching both prefix and masked suffix tokens, further accelerating decoding. The high
similarity of KV activations across steps allows effective reuse with minimal approximation error.

3.2 KEY-VALUE CACHE FOR BLOCK-WISE DECODING

As shown in Figure 2, we adopt a block-wise decoding strategy to support the use of a Key-Value
(KV) Cache. Initially, we compute and store the KV Cache for the prompt, which is reused throughout
Block 0. Within each block, the same cache is reused for multiple decoding steps. After completing
the decoding of a block, we update the cache for all tokens (not just the newly generated ones). This
cache update can be performed jointly with the decoding step, so compared to not using caching,
there is no additional computational overhead. This approach results in an approximate decoding
process, due to the use of full attention in masked diffusion models (Nie et al., 2025b; Ye et al., 2025).

The effectiveness of our approximate KV Cache approach stems from the observation that KV
activations exhibit high similarity across adjacent inference steps, as illustrated in Figure 3. The red
boxed region in Figure 3a highlights the similarity scores within a block, which are consistently close
to 1. This indicates that the differences in prefix keys and values during block decoding are negligible,
allowing us to safely reuse the cache without significant loss in accuracy.

Furthermore, we implement a bidirectional version of our KV caching mechanism, named DualCache,
that caches not only the prefix tokens but also the suffix tokens, which consist entirely of masked
tokens under our block-wise decoding scheme. As shown in Table 4, DualCache results in further
acceleration. The red boxed region in Figure 3b further demonstrates that the differences in suffix
keys and values during block decoding are negligible.

3.3 CONFIDENCE-AWARE PARALLEL DECODING

While approaches like employing auxiliary models to explicitly capture these dependencies exist (Liu
et al., 2024; Xu et al., 2024), they typically increase the complexity of the overall pipeline. In contrast
to these approaches, we propose a simple yet effective confidence-aware decoding algorithm designed
to mitigate this conditional independence issue.

Concretely, at each iteration, rather than aggressively unmasking all masked tokens using their
independent marginal probabilities, we compute a confidence score for each token (e.g., the maximum
softmax probability). Only those with confidence exceeding a threshold are unmasked in the current
step; the rest remain masked and are reconsidered in future steps. If no token’s confidence exceeds the
threshold, we always unmask the token with the highest confidence to ensure progress and prevent an
infinite loop. This strategy accelerates generation while reducing errors from uncertain or ambiguous
predictions.

A critical question, however, is: When is it theoretically justifiable to decode tokens in parallel using
independent marginals, despite the true joint distribution potentially containing dependencies? We
address this with the following formal result, which characterizes the conditions under which greedy
parallel (product of marginal distribution) decoding is equivalent to greedy sequential (true joint

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 20 40 60 80 100 120
Inference Step

0

20

40

60

80

100

120

In
fe

re
nc

e
St

ep

High Cosine similarity for
(i, j) diagonal
neighborhood blocks

Cosine similarity is very low
when (i, j) are far apart

Prompt's Key-Value Activation Cosine Similarity Heatmap

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Co
si

ne
 S

im
ila

ri
ty

(a) Prompt block

0 20 40 60 80
Inference Step

0

20

40

60

80

In
fe

re
nc

e
St

ep

High Cosine similarity for
(i, j) diagonal
neighborhood blocks

Cosine similarity is very low
when (i, j) are far apart

Last Block's Key-Value Activation Cosine Similarity Heatmap

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Co
si

ne
 S

im
ila

ri
ty

(b) Last block

Figure 3: Heatmaps of Key-Value Activation Cosine Similarity Across Inference Steps in LLaDA-Instruct.
Cosine similarity heatmaps of Key-Value activations for (a) the prompt and (b) the last (suffix) block. High
similarity along the diagonal (i ≈ j, red boxes) indicates that activations for adjacent inference steps are highly
similar. This supports using an approximate block-wise KV Cache, allowing cached activations to be reused for
faster decoding with negligible impact on accuracy.

distribution) decoding in the high-confidence regime, and quantifies the divergence between the two
distributions.

Prior to presenting the theorem, we will define the mathematical notation used in its statement. Let
pθ(·|E) denote the conditional probability mass function (PMF) given by an MDM condition on E
(comprising a prompt p0 and previously generated tokens). Suppose the model is to predict n tokens
for positions i1, . . . , in not in E. Let X = (Xi1 , . . . , Xin) be the vector of n tokens, where each
Xij takes values in vocabulary V . Let p(X|E) ≡ pθ(Xi1 , . . . , Xin |E) be the joint conditional PMF
according to the model. Let pj(Xij |E) ≡ pθ(Xij |E) be the marginal conditional PMF for position
ij . Parallel decoding generates tokens using the product of marginals: q(X|E) =

∏n
j=1 pj(Xij |E).

The proof of Theorem 1 and relevant discussions are in Appendix A.
Theorem 1 (Parallel Decoding under High Confidence). Suppose there exists a specific sequence of
tokens x∗ = (xi1 , . . . , xin) such that for each j ∈ {1, . . . , n}, the model has high confidence in xij :
pj(Xij = xij |E) > 1− ϵ for some small ϵ > 0. Then, the following results hold:

1. Equivalence for Greedy Decoding: If (n+ 1)ϵ ≤ 1 (i.e., ϵ ≤ 1
n+1), then

argmax
z

p(z|E) = argmax
z

q(z|E) = x∗. (4)

This means that greedy parallel decoding (selecting argmax q) yields the same result as greedy
sequential decoding (selecting argmax p).

This bound is tight: if ϵ > 1
n+1 , there exist distributions p(X|E) satisfying the high-confidence

marginal assumption for which argmaxz p(z|E) ̸= argmaxz q(z|E).

2. Distance and Divergence Bounds: Let p(·|E) and q(·|E) be denoted as p and q for brevity.

Lp Distance (p ≥ 1): For n > 1, Dp (p, q) < ((n− 1)p + 2n)1/pϵ. Specifically, for Total Variation
Distance (DTV (p, q) =

1
2D1 (p, q)): DTV (p, q) <

3n−1
2 ϵ.

Forward KL Divergence: For n > 1, DKL (p∥q) < (n− 1)(Hb(ϵ) + ϵ ln(|V| − 1)), where Hb(ϵ) =
−ϵ ln ϵ− (1− ϵ) ln(1− ϵ) is the binary entropy function, and |V| is the size of the vocabulary.

Building on this theorem, we propose a practical factor-based parallel decoding strategy as an
extension of the threshold strategy that adaptively selects how many tokens to decode in parallel
based on the confidence levels. Concretely, given the model’s marginal confidence estimates for n
tokens in a block, we sort these confidences and select the largest n such that (n+ 1)(1− c(n)) < f ,
where f is a fixed decoding factor hyperparameter and c(n) is the n-th highest confidence. At each
step, the top-n tokens are decoded in parallel. This formulation mirrors the bound in Theorem 1 and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive benchmark results on the LLaDA-Instruct suite. Each cell presents the accuracy and
the decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, blue:
tokens per second/orange: relative speedup). The highest throughput and speedup for each configuration are
highlighted.

Benchmark Gen Length LLaDA +Cache +Parallel +Cache+Parallel (Fast-dLLM)

GSM8K (5-shot)
256 79.3 79.5 79.2 78.5

6.7 (1×) 21.2 (3.2×) 16.5 (2.5×) 54.4 (8.1×)
512 77.5 77.0 77.6 77.2

3.2 (1×) 10.4 (3.3×) 18.6 (5.8×) 35.3 (11.0×)

MATH (4-shot)
256 33.5 33.3 33.4 33.2

9.1 (1×) 23.7 (2.6×) 24.8 (2.7×) 51.7 (5.7×)
512 37.2 36.2 36.8 36.0

8.0 (1×) 19.7 (2.5×) 23.8 (3.0×) 47.1 (5.9×)

HumanEval (0-shot)
256 41.5 42.7 43.9 43.3

30.5 (1×) 40.7 (1.3×) 101.5 (3.3×) 114.1 (3.7×)
512 43.9 45.7 43.3 44.5

18.4 (1×) 29.3 (1.6×) 57.1 (3.1×) 73.7 (4.0×)

MBPP (3-shot)
256 29.4 29.6 28.4 28.2

6.0 (1×) 17.0 (2.8×) 24.8 (4.1×) 44.8 (7.5×)
512 14.8 13.4 15.0 13.8

4.3 (1×) 10.1 (2.3×) 22.3 (5.1×) 39.5 (9.2×)

ensures that decoding only proceeds when the marginal confidence is sufficiently high to approximate
the joint decoding reliably. In contrast to the static threshold-based strategy, factor-based decoding
dynamically controls the degree of parallelism in a theoretically grounded manner.

Algorithm 1 Block-wise Confidence-aware Parallel Decoding with (Dual) KV Cache
Require: pθ, prompt p0, answer length L, blocks K, block size B, steps per block T , threshold τ ,

use_DualCache, strategy ∈ {threshold, factor}, factor f
1: x← [p0;[MASK], ...,[MASK]]
2: Initialize KV Cache (single or dual) for x (fuse with decoding). // KV Cache Init
3: for k = 1 to K do
4: s← |p0|+ (k − 1)B, e← |p0|+ kB
5: for t = 1 to T do
6: Use cache, run pθ on x[s,e) if use_DualCache else x[s,:) // Cache Reuse
7: For masked xi, compute confidence ci = maxx pθ(x

i|·) // Confidence scoring
8: if strategy == threshold then
9: Unmask all i in [s, e) with ci ≥ τ , always unmask max ci

10: else if strategy == factor then
11: Sort ci in descending order as (c(1), c(2), ..., c(m))
12: Find largest n such that (n+ 1)(1− c(n)) < f
13: Unmask top-n tokens, always unmask the max ci

14: end if
15: if all x[s,e) unmasked then
16: break
17: end if
18: end for
19: Update KV cache: if use_DualCache: prefix & suffix; else: prefix. // Cache Update
20: end for
21: return x

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments are conducted on an NVIDIA A100 80GB GPU. The proposed approach, Fast-
dLLM, comprises two components: a Key-Value Cache mechanism and a Confidence-Aware Parallel
Decoding strategy. The KV Cache component introduces a hyperparameter, the cache block size,
varied between 4 and 32. The parallel decoding strategy uses a confidence threshold hyperparameter,
explored in the range of 0.5 to 1.0. Unless otherwise specified, we use PrefixCache with block size of
32 and the threshold to 0.9.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Comprehensive benchmark results on Dream-Base variants over four tasks with different generation
lengths (256 and 512). Each cell shows accuracy (top row) and decoding throughput in tokens per second
with relative speedup to Dream-Base baseline (bottom row, blue: tokens per second/orange: relative speedup).
Numbers in yellow indicate the highest throughput and speedup per configuration.

Benchmark Gen Length Dream +Cache +Parallel +Cache+Parallel (Fast-dLLM)

GSM8K (5-shot)
256 75.0 74.3 74.2 74.8

9.1 (1×) 32.5 (3.6×) 14.2 (1.6×) 48.2 (5.3×)
512 76.0 74.3 73.4 74.0

7.7 (1×) 25.6 (3.3×) 14.6 (1.9×) 42.9 (5.6×)

MATH (4-shot)
256 38.4 36.8 37.9 37.6

11.4 (1×) 34.3 (3.0×) 27.3 (2.4×) 66.8 (5.9×)
512 39.8 38.0 39.5 39.3

9.6 (1×) 26.8 (2.8×) 31.6 (3.2×) 63.3 (6.5×)

HumanEval (0-shot)
256 49.4 53.7 49.4 54.3

23.3 (1×) 35.2 (1.5×) 45.6 (2.0×) 62.0 (2.8×)
512 54.3 54.9 51.8 54.3

16.3 (1×) 27.8 (1.7×) 29.8 (1.8×) 52.8 (3.2×)

MBPP (3-shot)
256 56.6 53.2 53.8 56.4

11.2 (1×) 34.5 (3.1×) 31.8 (2.8×) 76.0 (6.8×)
512 55.6 53.8 55.4 55.2

9.4 (1×) 26.7 (2.8×) 37.6 (4.0×) 73.6 (7.8×)

4 8 16 32 64 128 256
Cache Block Size

55

60

65

70

75

80

G
SM

8K
 (

5-
sh

ot
)

Ac
cu

ra
cy

No cache

6

8

10

12

14

16

18

20

22

Th
ro

ug
hp

ut
 (

to
ke

ns
/s

)

Selected

No cache

3.3x Speedup

Figure 4: Impact of Cache Block Size on Ac-
curacy and Throughput. The orange line il-
lustrates the effect of varying cache block size
on throughput, while the blue line depicts accu-
racy.

We evaluate Fast-dLLM on two recent diffusion-based
language models: LLaDA (Nie et al., 2025b), LLaDA-
1.5 (Zhu et al., 2025) and Dream (Ye et al., 2025). Bench-
marks include four widely-used datasets—GSM8K,
MATH, HumanEval, and MBPP, to assess performance
across diverse reasoning and code generation tasks. We
also test under varying generation lengths to evaluate
scalability and robustness.

In addition, we extend our evaluation to LLaDA-V (You
et al., 2025), a multimodal variant of LLaDA tailored
for vision-language reasoning tasks. For this, we use
two challenging multimodal benchmarks: MathVista
and MathVerse, which require solving math problems
grounded in complex visual scenes.

Inference throughput is measured as the average number
of output tokens generated per second, calculated over
the full sequence until the end-of-sequence (<eos>)
token is reached. This metric reflects true end-to-end decoding speed. All evaluations are conducted
using the standardized lm-eval library to ensure consistency and reproducibility.

4.2 MAIN RESULTS: PERFORMANCE AND SPEED

We evaluate Fast-dLLM on LLaDA-Instruct and Dream-Base across four benchmarks (Tables 1
and 2).

Introducing the KV Cache yields 2×–3.6× speedup over the vanilla backbone across tasks and
lengths. Parallel decoding alone provides further acceleration, typically 4×–6×, especially at longer
generation lengths.

Combining both gives the largest gains. On LLaDA, throughput improves up to 11× (GSM8K, len
512) and 9.2× (MBPP, len 512). On Dream-Base, maximum gains are 7.8× (MBPP, len 512) and
5.6× (GSM8K, len 512). These results show the methods are not only effective individually but also
highly complementary.

Importantly, these efficiency gains come with negligible accuracy cost: across all benchmarks
accuracy remains within 1–2 points of the backbone, and in some cases even improves. Longer
sequences, common in few-shot and code generation, benefit disproportionately due to greater cache

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

30

40

50

60

70

80

G
SM

8K
 (

5-
sh

ot
)

Ac
cu

ra
cy Selected

7.01
6.17

5.12 4.24
3.25 1.00

Ours
2 tokens per step
4 tokens per step
8 tokens per step

0.5 0.6 0.7 0.8 0.9 1.0
Threshold

0

50

100

150

200

250

300

In
fe

re
nc

e
St

ep
s

Selected

7.01 6.17 5.12 4.24
3.25

1.00Ours
2 tokens per step
4 tokens per step
8 tokens per step

0 2 4 6 8
Average #Tokens per Step

30

40

50

60

70

80

G
SM

8K
 (

5-
sh

ot
)

Ac
cu

ra
cy

Selected

7.01
6.17

5.124.243.25

2

4

8

Ours
Fixed-Step Baseline (2/4/8 tokens)
Non-Parallel Baseline (1 token/step)

(a) (b) (c)

Figure 5: (a) The red line shows the GSM8K (5-shot) accuracy across different confidence thresholds. Numbers
along the red line indicate the average number of tokens decoded at each step. The three dashed lines represent
the accuracy of the baseline method when selecting the top 2, 4, or 8 tokens per step. (b) The number of inference
steps required under varying confidence thresholds. (c) A comparison between our method and the baseline
on GSM8K (5-shot) accuracy, plotted against the average number of tokens per step. Our method consistently
outperforms the baseline.
Table 3: Performance and Speedup Comparison of LLaDA-V on MathVista and MathVerse. Each
benchmark includes results from Full Steps, Half Steps, and Fast-dLLM. Fast-dLLM significantly improves
throughput (highlighted), with minimal accuracy loss.

Metric MathVista MathVerse

Full Steps Half Steps Fast-dLLM Full Steps Half Steps Fast-dLLM

Accuracy (%) 59.2 59.7 56.6 28.5 28.3 28.6
Throughput (Speedup) 2.84 (1×) 5.56 (1.96×) 28.2 (9.9×) 2.75 (1×) 5.17 (1.88×) 23.3 (8.5×)

reuse and batch computation. We also evaluate LLaDA-1.5, which achieves consistently higher
accuracy and comparable or better throughput (Table 12).

Beyond text-only models, we test Fast-dLLM on multimodal LLaDA-V using MathVista and Math-
Verse. LLaDA-V is sensitive to block size, losing over 8% accuracy when reduced from 96 to 8 on
MathVista. To mitigate this, we retain full block length and apply refresh-based updates, yielding
up to 9.9× speedup with minimal degradation (Table 3). On MathVerse, Fast-dLLM even slightly
improves accuracy, showing robustness on vision-language reasoning.

Overall, improvements hold across architectures (LLaDA, Dream), task types (math reasoning,
program synthesis), and modalities (text, vision), establishing Fast-dLLM as a broadly applicable
framework for accelerating masked diffusion LLMs.

4.3 ABLATIONS AND ANALYSIS

Table 4: Performance and Speedup Comparison
on LLaDA Between 5-Shot and 8-Shot Settings at
Generation Length 1024. This table compares the ac-
curacy and throughput speedups of different decoding
strategies under 5-shot and 8-shot configurations using
a generation length of 1024. The results demonstrate
how increased prefill length enhances the effective-
ness of caching strategies, particularly for DualCache.

Setting. LLaDA Parallel Decoding
No Cache PrefixCache DualCache

5-shot 77.0 77.4 75.2 74.7
1.1 (1×) 11.7 (10.6×) 14.4 (13.1×) 21.6 (19.6×)

8-shot 77.3 78.0 75.7 76.0
0.7 (1×) 9.3 (13.3×) 13.0 (18.6×) 19.3 (27.6×)

Table 5: Impact of Generation Length on Accuracy
and Speedup Under 8-Shot for LLaDA. This ta-
ble illustrates the effect of varying generation lengths
(256, 512, and 1024) on decoding performance and
efficiency for different caching strategies under the 8-
shot setting. Longer generation lengths lead to higher
throughput gains, especially for DualCache, validat-
ing the scalability of our approach.

Len. LLaDA Parallel Decoding
No Cache PrefixCache DualCache

256 77.6 77.9 77.3 76.9
4.9 (1×) 16.4 (3.3×) 49.2 (10.0×) 46.3 (9.4×)

512 78.9 78.9 74.8 75.4
2.3 (1×) 14.0 (6.1×) 32.0 (13.9×) 36.4 (15.8×)

1024 77.3 78.0 75.7 76.0
0.7 (1×) 9.3 (13.3×) 13.0 (18.6×) 19.3 (27.6×)

We perform extensive ablations to assess the contribution of different components in Fast-dLLM,
focusing on prefill length, generation length, cache variants, block size, and confidence thresholds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Prefill and Generation Length Tables 4 and 5 show that longer prefill (n-shot) and generation
lengths significantly boost speedup. For example, DualCache improves from 19.6× (5-shot, gen len
1024) to 27.6× (8-shot, gen len 1024). Speedup grows as generation length increases (e.g., 9.4× at
256 tokens vs. 27.6× at 1024), consistent with amortizing computation over longer sequences.

Prefix KV Cache vs. DualCache DualCache generally surpasses prefix KV Cache, especially for
long generations (e.g., 27.6× vs. 18.6× at gen len 1024, Table 5). Accuracy remains competitive,
confirming DualCache’s ability to exploit parallelism and cache locality effectively.

Cache Block Size Figure 4 shows that smaller block sizes maximize accuracy but add cache-update
overhead, while larger sizes risk mismatch. Block size 32 achieves the best trade-off, balancing
throughput and accuracy.

Dynamic Threshold vs. Fixed Token-per-Step On GSM8K (Figure 5), our confidence-aware
strategy consistently outperforms fixed baselines: it yields higher accuracy with comparable or fewer
NFEs, generates more tokens per step, and approaches the accuracy of the 1-token baseline with
much higher throughput.

Factor Decoding vs. Fixed Strategies As shown in Figure 8 and Table 11, factor-based decoding
achieves competitive or better accuracy with fewer steps. Larger factors decode more tokens per step,
reducing iterations while preserving performance. Compared to threshold decoding, factor decoding
maintains accuracy but achieves higher throughput via adaptive granularity (see Appendix C.4).

Decoding Efficiency and Limitations Section C.5 shows PrefixCache accelerates diffusion-based
LLMs like LLaDA by up to 5× in compute-bound settings, reaching or exceeding LLaMA throughput
at small batch sizes. However, at larger batches it falls behind LLaMA, since diffusion models incur
higher overhead from full attention during decoding.

5 RELATED WORK

We put a short version here, the full Related Work is in Appendix D.
Diffusion LLM. Diffusion models, proven first in vision/audio, are re-shaping text generation.
Discrete formulations re-cast noising/denoising as Markov chains (Austin et al., 2021), continuous-
time processes (Campbell et al., 2022), score-matching (Lou et al., 2023) or masked-language tasks
(Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024); all maximize ELBO or entropy objectives and
can be made equivalent. Plugging the masked objective into BART or LLaMA yields Diffusion-NAT
(Zhou et al., 2023), LLaDA / DiffuLLaMA (Nie et al., 2025b; Gong et al., 2024) and Dream (Ye
et al., 2025): 7 B-parameter diffusion LLMs that refine corrupted sequences in parallel and match
AR quality while promising >10× speed-up.
LLM Acceleration. KV-cache (Vaswani, 2017) avoids recomputation in AR Transformers, but
full-sequence diffusion invalidates it; Block-diffusion (Arriola et al., 2025) restores the cache by
generating block-by-block. Non-autoregressive (NAR) decoding outputs many tokens at once (Xiao
et al., 2023), yielding large latency gains yet lower quality. Diffusion LLMs are a new NAR family,
but until now the speed benefit has been offset by accuracy loss (Nie et al., 2025b).

6 CONCLUSION

We address key inefficiencies in Diffusion-based Large Language Models (Diffusion LLMs), which
traditionally lack KV Cache support and suffer from degraded performance in parallel decoding.
To bridge the gap with autoregressive models, we propose Fast-dLLM, a framework introducing
an approximate KV Cache tailored to bidirectional attention via block-wise generation. We further
mitigate token-dependency issues in parallel decoding with a Confidence-Aware strategy that enables
safe, efficient multi-token generation. Experiments across benchmarks and baselines (LLaDA, Dream)
demonstrate up to 27.6× speedup with minimal accuracy loss, establishing Fast-dLLM as a practical
path toward making Diffusion LLMs competitive for real-world deployment.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marianne Arriola, Aaron Gokaslan, Justin T. Chiu, Zhihan Yang, Zhixuan Qi, Jiaqi Han, Sub-
ham Sekhar Sahoo, and Volodymyr Kuleshov. Block diffusion: Interpolating between autoregres-
sive and diffusion language models, 2025. URL https://arxiv.org/abs/2503.09573.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas Rainforth, George Deligiannidis, and
Arnaud Doucet. A continuous time framework for discrete denoising models. Advances in Neural
Information Processing Systems, 35:28266–28279, 2022.

Zixiang Chen, Huizhuo Yuan, Yongqian Li, Yiwen Kou, Junkai Zhang, and Quanquan Gu. Fast
sampling via de-randomization for discrete diffusion models. arXiv preprint arXiv:2312.09193,
2023.

Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi, and
Yaron Lipman. Discrete flow matching. arXiv preprint arXiv:2407.15595, 2024.

Daniel T Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems.
The Journal of chemical physics, 115(4):1716–1733, 2001.

Shansan Gong, Shivam Agarwal, Yizhe Zhang, Jiacheng Ye, Lin Zheng, Mukai Li, Chenxin An,
Peilin Zhao, Wei Bi, Jiawei Han, et al. Scaling diffusion language models via adaptation from
autoregressive models. arXiv preprint arXiv:2410.17891, 2024.

Google DeepMind. Gemini diffusion. https://deepmind.google/models/
gemini-diffusion, 2025. Accessed: 2025-05-24.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, et al. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.
21783.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusion-
bert: Improving generative masked language models with diffusion models. arXiv preprint
arXiv:2211.15029, 2022.

Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax flows
and multinomial diffusion: Learning categorical distributions. Advances in Neural Information
Processing Systems, 34:12454–12465, 2021.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models, 2023. URL https://arxiv.org/abs/2301.12661.

Inception Labs. Introducing mercury: The first commercial diffusion-based language model. https:
//www.inceptionlabs.ai/introducing-mercury, 2025. Accessed: 2025-05-24.

Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for
structured knowledge. arXiv preprint arXiv:2312.05253, 2023.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension, 2019. URL https://arxiv.
org/abs/1910.13461.

Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion.
arXiv preprint arXiv:2410.01949, 2024.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion language modeling by estimating
the ratios of the data distribution. arXiv preprint arXiv:2310.16834, 2023.

10

https://arxiv.org/abs/2503.09573
https://deepmind.google/models/gemini-diffusion
https://deepmind.google/models/gemini-diffusion
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2301.12661
https://www.inceptionlabs.ai/introducing-mercury
https://www.inceptionlabs.ai/introducing-mercury
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chenlin Meng, Kristy Choi, Jiaming Song, and Stefano Ermon. Concrete score matching: Generalized
score matching for discrete data. Advances in Neural Information Processing Systems, 35:34532–
34545, 2022.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models, 2022. URL https://arxiv.org/abs/2112.10741.

Shen Nie, Fengqi Zhu, Chao Du, Tianyu Pang, Qian Liu, Guangtao Zeng, Min Lin, and Chongxuan
Li. Scaling up masked diffusion models on text, 2025a. URL https://arxiv.org/abs/
2410.18514.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025b. URL https:
//arxiv.org/abs/2502.09992.

Jingyang Ou, Shen Nie, Kaiwen Xue, Fengqi Zhu, Jiacheng Sun, Zhenguo Li, and Chongxuan Li.
Your absorbing discrete diffusion secretly models the conditional distributions of clean data. arXiv
preprint arXiv:2406.03736, 2024.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation, 2021. URL https://arxiv.org/
abs/2102.12092.

Machel Reid, Vincent J. Hellendoorn, and Graham Neubig. Diffuser: Discrete diffusion via edit-based
reconstruction, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding, 2022. URL https://arxiv.org/abs/
2205.11487.

Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. arXiv preprint arXiv:2406.07524, 2024.

Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K Titsias. Simplified and
generalized masked diffusion for discrete data. arXiv preprint arXiv:2406.04329, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song and Linqi Zhou. Ideas in inference-time scaling can benefit generative pre-training
algorithms. arXiv preprint arXiv:2503.07154, 2025.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and Hanjun Dai. Score-based continuous-time
discrete diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Ashish Vaswani. Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie yan Liu. A
survey on non-autoregressive generation for neural machine translation and beyond, 2023. URL
https://arxiv.org/abs/2204.09269.

Minkai Xu, Tomas Geffner, Karsten Kreis, Weili Nie, Yilun Xu, Jure Leskovec, Stefano Ermon,
and Arash Vahdat. Energy-based diffusion language models for text generation. arXiv preprint
arXiv:2410.21357, 2024.

11

https://arxiv.org/abs/2112.10741
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2410.18514
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2502.09992
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2102.12092
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2205.11487
https://arxiv.org/abs/2204.09269

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete diffusion model for text-to-sound generation, 2023. URL https://arxiv.
org/abs/2207.09983.

Jiacheng Ye, Zhihui Xie, Lin Zheng, Jiahui Gao, Zirui Wu, Xin Jiang, Zhenguo Li, and Lingpeng
Kong. Dream 7b, 2025. URL https://hkunlp.github.io/blog/2025/dream.

Jiasheng Ye, Zaixiang Zheng, Yu Bao, Lihua Qian, and Quanquan Gu. Diffusion language models
can perform many tasks with scaling and instruction-finetuning. arXiv preprint arXiv:2308.12219,
2023.

Zebin You, Shen Nie, Xiaolu Zhang, Jun Hu, Jun Zhou, Zhiwu Lu, Ji-Rong Wen, and Chongxuan
Li. Llada-v: Large language diffusion models with visual instruction tuning. arXiv preprint
arXiv:2505.16933, 2025.

Runpeng Yu, Qi Li, and Xinchao Wang. Discrete diffusion in large language and multimodal models:
A survey, 2025a. URL https://arxiv.org/abs/2506.13759.

Runpeng Yu, Xinyin Ma, and Xinchao Wang. Dimple: Discrete diffusion multimodal large language
model with parallel decoding, 2025b. URL https://arxiv.org/abs/2505.16990.

Kaiwen Zheng, Yongxin Chen, Hanzi Mao, Ming-Yu Liu, Jun Zhu, and Qinsheng Zhang. Masked
diffusion models are secretly time-agnostic masked models and exploit inaccurate categorical
sampling. arXiv preprint arXiv:2409.02908, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

Kun Zhou, Yifan Li, Wayne Xin Zhao, and Ji-Rong Wen. Diffusion-nat: Self-prompting discrete
diffusion for non-autoregressive text generation, 2023. URL https://arxiv.org/abs/
2305.04044.

Fengqi Zhu, Rongzhen Wang, Shen Nie, Xiaolu Zhang, Chunwei Wu, Jun Hu, Jun Zhou, Jianfei Chen,
Yankai Lin, Ji-Rong Wen, and Chongxuan Li. Llada 1.5: Variance-reduced preference optimization
for large language diffusion models, 2025. URL https://arxiv.org/abs/2505.19223.

12

https://arxiv.org/abs/2207.09983
https://arxiv.org/abs/2207.09983
https://hkunlp.github.io/blog/2025/dream
https://arxiv.org/abs/2506.13759
https://arxiv.org/abs/2505.16990
https://arxiv.org/abs/2305.04044
https://arxiv.org/abs/2305.04044
https://arxiv.org/abs/2505.19223

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF

In this section, we will give the comprehensive proof and discussion of Theorem 1.

Proof. Step 1: Show that x∗ is the unique maximizer of q(x).

Let p∗j = pj(Xij = xij |E). We are given p∗j > 1− ϵ. Let ϵ′j = 1− p∗j = pj(Xij ̸= xij |E). Thus,
ϵ′j < ϵ. The product-of-marginals probability mass function (PMF) is

q(z|E) =

n∏
j=1

pj(Xij = zj |E).

To maximize q(z|E), we must maximize each term pj(Xij = zj |E) independently. The condition
(n + 1)ϵ ≤ 1 implies ϵ ≤ 1/(n + 1). Since n ≥ 1, it follows that 1/(n + 1) ≤ 1/2. So, ϵ ≤ 1/2.
Therefore, for the chosen xij :

p∗j = pj(Xij = xij |E) > 1− ϵ ≥ 1− 1/2 = 1/2.

This means xij is the unique maximizer for pj(·|E). So,

argmax
z

q(z|E) = (xi1 , . . . , xin) = x∗.

Step 2: Show that x∗ is the unique maximizer of p(x).

We want to show p(x∗|E) > p(z|E) for all z ̸= x∗. Using the Bonferroni inequality:

p(x∗|E) = p(∩nj=1{Xij = xij}|E) ≥ 1−
n∑

j=1

p(Xij ̸= xij |E) = 1−
n∑

j=1

ϵ′j .

Since ϵ′j < ϵ for all j, we have
∑n

j=1 ϵ
′
j < nϵ. So,

p(x∗|E) > 1− nϵ.

Now consider any z = (z1, . . . , zn) such that z ̸= x∗. This means there is at least one index k such
that zk ̸= xik . The event {X = z} is a sub-event of {Xik = zk}. So,

p(z|E) ≤ pk(Xik = zk|E).

Since zk ̸= xik ,
pk(Xik = zk|E) ≤ pk(Xik ̸= xik |E) = ϵ′k < ϵ.

Thus,
p(z|E) < ϵ.

For p(x∗|E) > p(z|E) to hold, it is sufficient that

1− nϵ ≥ ϵ,

which simplifies to 1 ≥ (n+ 1)ϵ, or ϵ ≤ 1
n+1 . The theorem assumes (n+ 1)ϵ < 1, which is exactly

this condition. The strict inequalities p(x∗|E) ≥ 1−
∑

ϵ′j > 1− nϵ and p(z|E) ≤ ϵ′k < ϵ ensure
that p(x∗|E) > p(z|E). Thus,

argmax
z

p(z|E) = x∗.

Combined with the argmax of q, this proves the main statement of Part 1:

argmax
z

p(z|E) = argmax
z

q(z|E) = x∗.

Step 3: Tightness of the bound 1
n+1 .

The bound ϵ ≤ 1
n+1 is tight. This means if ϵ > 1

n+1 , one can construct a scenario where the marginal
conditions pj(Xij = xij |E) > 1 − ϵ hold, but argmaxz p(z|E) ̸= x∗ (which is argmaxz q(z|E)
as long as ϵ ≤ 1/2).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Consider a vocabulary V = {0, 1} and let xij = 0 for all j, so x∗ = (0, . . . , 0). For each
j ∈ {1, . . . , n}, let ej be the vector with 1 at position j and 0 elsewhere. Let η = 1

n+1 (ϵ−
1

n+1) > 0.
Set p(ej |E) = 1

n+1 +
1
nη, ∀1 ≤ j ≤ n and p(x∗|E) = 1

n+1 − η , then x∗ /∈ argmaxz p(z|E). The
marginal probabilities are:

pj(Xij = 1|E) = p(ej |E) =
1

n+ 1
+

1

n
η, ∀1 ≤ j ≤ n.

pj(Xij = 0|E) = 1− pj(Xij = 1|E) = 1− ϵc =
n

n+ 1
− 1

n
η > 1− ϵ,

because
1

n
η =

1

n(n+ 1)
(ϵ− 1

n+ 1
) < ϵ− 1

n+ 1

So, the marginal condition pj(Xij = xij |E) > 1 − ϵ (with xij = 0) holds. As shown,
argmaxz p(z|E) can be made different from x∗. Thus, if ϵ > 1

n+1 , the argmax of p and q may not
be the same.

Step 4: Bound the Lp distance. Let Aj be the event {Xij = xij}.

Dp (p, q)
p
= |p(x∗|E)− q(x∗|E)|p +

∑
z ̸=x∗

|p(z|E)− q(z|E)|p.

The term |p(∩nj=1Aj |E)−
∏n

j=1 p(Aj |E)| (using p(Aj |E) for pj(Xij = xij |E)) can be bounded.
Since

1−
n∑

j=1

ϵ′j ≤ p(∩nj=1Aj |E) ≤ min
1≤j≤n

p(Aj |E) = 1− max
1≤j≤n

ϵ′j ,

1−
n∑

j=1

ϵ′j ≤
n∏

j=1

(1− ϵ′j) =

n∏
j=1

p(Aj |E) ≤ 1− max
1≤j≤n

ϵ′j .

Thus,
|p(x∗|E)− q(x∗|E)| < (n− 1)ϵ.

For z ̸= x∗: p(z|E) < ϵ and q(z|E) < ϵ. So,

|p(z|E)− q(z|E)| < ϵ.

The sum
∑

z ̸=x∗ |p(z|E)− q(z|E)| can be bounded:∑
z ̸=x∗

|p(z|E)− q(z|E)| ≤
∑
z ̸=x∗

(p(z|E) + q(z|E)) = p(X ̸= x∗|E) + q(X ̸= x∗|E).

p(X ̸= x∗|E) = 1− p(x∗|E) < 1− (1−
n∑

j=1

ϵ′j) =

n∑
j=1

ϵ′j < nϵ.

q(X ̸= x∗|E) = 1− q(x∗|E) < 1−
n∏

j=1

(1− ϵ′j) ≤
n∑

j=1

ϵ′j < nϵ.

So, ∑
z ̸=x∗

|p(z|E)− q(z|E)| < 2nϵ.

Then, ∑
z ̸=x∗

|p(z|E)− q(z|E)|p ≤ (sup
z ̸=x∗

|p(z|E)− q(z|E)|)p−1
∑
z ̸=x∗

|p(z|E)− q(z|E)|

< ϵp−1(2nϵ) = 2nϵp.

Therefore,
Dp (p, q)

p
< ((n− 1)ϵ)p + 2nϵp = ((n− 1)p + 2n)ϵp.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

So,

Dp (p, q) < ((n− 1)p + 2n)1/pϵ.

For p = 1,

D1 (p, q) < (n− 1 + 2n)ϵ = (3n− 1)ϵ.

And for Total Variation Distance,

DTV (p, q) =
1

2
D1 (p, q) <

3n− 1

2
ϵ.

Step 4: Bound the forward KL divergence.

DKL (p∥q) =
∑
z

p(z|E) log
p(z|E)

q(z|E)
= I(Xi1 ; . . . ;Xin |E).

The conditional total correlation can be expanded using the chain rule:

I(Xi1 ; . . . ;Xin |E) =

n∑
k=2

I(Xik ;Xi1 , . . . , Xik−1
|E).

Each term is bounded by the conditional entropy:

I(Xik ;Xi1 , . . . , Xik−1
|E) ≤ H(Xik |E).

The conditional entropy H(Xik |E) is bounded. Since pk(Xik = xik |E) > 1 − ϵ, it implies
pk(Xik ̸= xik |E) = ϵ′k < ϵ. The entropy is maximized when the remaining probability ϵ′k is spread
uniformly, leading to:

H(Xik |E) ≤ Hb(ϵ
′
k) + ϵ′k ln(|V| − 1) < Hb(ϵ) + ϵ ln(|V| − 1).

Summing (n− 1) such terms (for k = 2, . . . , n):

DKL (p∥q) < (n− 1)[Hb(ϵ) + ϵ ln(|V| − 1)].

Remark 1. Assumption of a Well-Defined Joint pθ(Xi1 , . . . , Xin |E): The theorem and proof rely
on pθ(Xi1 , . . . , Xin |E) being a well-defined joint probability mass function from which the marginals
pθ(Xij |E) are consistently derived. This implies that the joint PMF is coherent and its definition
does not depend on a specific factorization order beyond what is captured by the conditioning on
E. In practice, while MDM may not strictly satisfy this property, its behavior typically offers a
close approximation. The theorem holds for an idealized pθ that possesses these properties. As
MDMs become larger and more powerful, their learned distributions might better approximate such
consistency.

Worst-Case Analysis: The conditions and bounds provided in the theorem (e.g., (n+ 1)ϵ ≤ 1) are
derived from a worst-case analysis. This means the bounds are guaranteed to hold if the conditions are
met, regardless of the specific structure of pθ(X|E) beyond the high-confidence marginal property.
In practice, the actual case might be "better behaved" than the worst-case scenario. For instance, the
dependencies between Xij and Xik (given E) might be weaker than what the worst-case construction
assumes. Consequently, the argmax equivalence (Result 1) might still hold frequently even if (n+1)ϵ
is slightly greater than 1 (but not much larger). The condition identifies a threshold beyond which
guarantees break down in the worst case, but practical performance can be more robust. Similarly,
the actual Lp distances or KL divergence might be smaller than the upper bounds suggest if the true
joint pθ(X|E) is closer to the product of marginals q(X|E) than the worst-case configurations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B CASE STUDY

Table 6: Qualitative comparison of responses across methods.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Original PrefixCache DualCache

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, it takes 2 bolts + 1 bolt = 3
bolts of fiber. The final result is 3

Table 7: Qualitative comparison of responses with varying block size for DualCache.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Block Size 8 Block Size 16 Block Size 32

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3

Table 8: Qualitative comparison of responses under different threshold settings.

Prompt: A robe takes 2 bolts of blue fiber and half that much white fiber. How many bolts in total does it take?

Threshold 0.7 Threshold 0.8 Threshold 0.9

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, it takes takes 2 + 1 = 3
bolts of fiber. So, the value is 3
(NFE: 9)

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3
(NFE: 12)

The robe takes 2 bolts of blue fiber.
It also takes half that much white
fiber, so it takes 2/2 = 1 bolt of
white fiber.
In total, the robe takes 2 + 1 = 3
bolts of fiber. So, the value is 3
(NFE: 20)

B.1 EFFECT OF CACHING STRATEGIES ON RESPONSE QUALITY

Table 6 qualitatively compares answers from the Original, PrefixCache, and DualCache methods for
the arithmetic prompt. All correctly compute the answer (3 bolts), following similar step-by-step
reasoning, with only minor differences in phrasing. This shows cache strategies maintain answer
accuracy and logical clarity while improving efficiency; semantic fidelity and interpretability are
unaffected.

B.2 EFFECT OF BLOCK SIZE IN DUALCACHE

Table 7 examines different block sizes (8, 16, 32) in DualCache. For this arithmetic prompt, all
settings yield correct, clearly explained answers with no meaningful output differences. Thus,
DualCache is robust to block size for such problems, allowing efficiency improvements without
compromising quality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

B.3 IMPACT OF DYNAMIC THRESHOLD SETTINGS

Table 8 investigates dynamic threshold values (0.7, 0.8, 0.9). The model consistently produces the
correct answer and clear explanations, regardless of threshold. While higher thresholds increase com-
putational effort (NFE from 9 to 20), answer quality remains stable, indicating threshold adjustment
mainly affects efficiency, not correctness, for straightforward arithmetic questions.

B.4 MULTIMODAL GENERATION WITH LLADA-V

To qualitatively analyze the effectiveness of our Fast-dLLM framework in multimodal scenarios,
we conduct a visual case study where the model is tasked with generating a highly detailed image
description. As illustrated in Figure 6, both the baseline model and our Fast-dLLM are given the
same visual input and user prompt: “Please describe the image in detail.”

User: Please describe the image in detail.

Baseline (63.0 secs): The image captures a serene rural landscape.

Dominating the scene is a wooden barn, its weathered exterior a

testament to the passage of time. The barn is nestled in a field of

green grass, which stretches out to meet the horizon. In the distance,

a range of mountains rises, their peaks shrouded in a blanket of

clouds. The sky above is a soft pink, suggesting either dawn or dusk.

The perspective of the image is from a low angle, making the barn

appear grand and imposing. The overall composition of the image

creates a sense of depth and tranquility, inviting the viewer to

imagine themselves in this peaceful rural setting.

Fast-dLLM (6.8 secs): The image captures a serene rural landscape.

Dominating the scene is a wooden barn, its rustic charm enhanced by

the gray shingles on its roof. The barn is nestled in a field of tall

grass, which stretches out towards the horizon. The field is framed

by a range of mountains, their peaks dusted with snow, adding a

touch of tranquility to the scene. The sky above is a soft pink,

suggesting either early morning or late afternoon. The perspective of

the image is from a low angle, making the barn appear grand and

imposing. The overall composition of the image creates a

harmonious blend of man-made structures and the natural world.

Figure 6: Comparison between the baseline and Fast-dLLM on a visual description task. Fast-dLLM produces a
comparable and faithful image caption in a fraction of the decoding time.

The baseline model requires 63.0 seconds to complete the generation, producing a detailed and poetic
description of the rural landscape. It highlights elements such as the weathered wooden barn, the soft
pink sky, and the tranquil atmosphere.

In contrast, our Fast-dLLM completes the task in just 6.8 seconds—a nearly 10× speedup—while
maintaining rich visual detail. It further enhances the description with additional grounding (e.g.,
“gray shingles on its roof”, “touch of tranquility”), reflecting a strong alignment with both appearance
and mood cues from the image. Notably, the generated caption retains compositional depth and
stylistic fluency, illustrating the model’s ability to balance fluency and factuality even under diffusion-
based parallel decoding.

This case highlights how LLAda-V with Fast-dLLM decoding enables high-quality vision-language
generation at significantly improved efficiency, paving the way for faster and more interactive
multimodal applications.

C EXPERIMENT DETAILS

C.1 FURTHER EXPERIMENTS WITH LLADA-V

In Table 9, we investigate how the choice of block length affects the performance of LLaDA-V on
MathVista under a fixed decoding length of 48 steps. The results show that the model achieves the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Effect of block length on performance (MathVista, 48 Steps)

Block Length 4 8 16 32 96

Accuracy (%) 51.2 50.7 51.8 52.3 59.7
Throughput (tok./s) 6.1 6.2 5.5 5.5 5.6

Table 10: MathVista Performance with Fast-dLLM at different refresh intervals (block length = 96)

Refresh Interval 2 4 8 16 32

Accuracy (%) 59.2 59.2 58.2 57.1 56.6
Throughput (tok./s) 15.9 19.5 21.1 25.2 28.2

highest accuracy with a block length of 96. However, when reducing the block size to 8 or 4, the
accuracy drops significantly by over 8%.

Given this sensitivity to block length, we choose not to break the output into small blocks for updating
caches individually. Instead, we keep the block length fixed at 96 and adopt a refresh-based strategy:
the cache is updated only every r decoding steps using the most recent full block. As shown in
Table 10, increasing the refresh interval leads to consistent gains in throughput—from 15.9 tokens/s
at interval 2 to 28.2 tokens/s at interval 32. While accuracy drops slightly with larger intervals, it
remains above 56.6%, suggesting that aggressive refresh scheduling can yield substantial speedups
with only minor performance degradation.

C.2 PERFORMANCE COMPARISON BETWEEN THRESHOLD AND FACTOR STRATEGY

Table 11: Performance comparison between Threshold and Factor confidence-aware decoding on GSM8K
and MATH benchmarks with generation lengths of 256 and 512. Each block shows accuracy (top row) and
throughput with speedup (bottom row). Factor decoding provides favorable trade-offs in most settings.

Benchmark Gen. Len Threshold Factor

256 78.5 77.5
GSM8K (5-shot) 54.4 (8.1×) 78.5 (11.7x)

512 77.2 74.8
35.3 (11.0×) 47.1 (14.7x)

256 33.2 32.0
MATH (4-shot) 51.7 (5.7×) 78.3 (8.6x)

512 36.0 35.2
47.1 (5.9×) 64.6 (8.1x)

We compare the performance of our threshold-based and factor-based confidence-aware parallel
decoding strategies on GSM8K and MATH benchmarks (Table 11). While the threshold strategy
achieves marginally better accuracy in most settings (e.g., 78.5% vs. 77.5% on GSM8K with 256
tokens), the factor strategy demonstrates substantially superior throughput performance.

Specifically, factor decoding achieves 1.4-1.5× higher throughput than threshold decoding across
all settings. On GSM8K with 256 tokens, factor decoding reaches 78.5 tokens/sec (11.7× speedup)
compared to 54.4 tokens/sec (8.1× speedup) for threshold decoding. This throughput advantage
becomes even more pronounced on longer generation tasks—for GSM8K with 512 tokens, factor
decoding attains 47.1 tokens/sec while threshold only achieves 35.3 tokens/sec.

The results demonstrate that factor decoding offers a compelling trade-off: it sacrifices minimal
accuracy (typically 1-3%) in exchange for significant throughput improvements (40-50% higher).
This makes factor decoding particularly attractive for latency-sensitive applications where the slight

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

accuracy reduction is acceptable. The consistent pattern across both benchmarks and generation
lengths validates the robustness of the factor strategy’s theoretical foundation, which adaptively
controls parallelism based on the confidence bound (n+ 1)ϵ < f .

0 20 40 60 80 100
Step Index

0

2

4

6

8

10

12

Av
er

ag
e

Pa
ra

lle
l T

ok
en

 C
ou

nt

Decoding Steps vs Parallel Token Count

95% Confidence Interval
Avg Parallel Token Count

Figure 7: Average number of tokens generated at each decoding step. Blue line shows the mean token count, and
the shaded area denotes the 95% confidence interval.

C.3 COMPARISON BETWEEN LLADA AND LLADA-1.5

We compare the performance of LLaDA and its enhanced version LLaDA-1.5 across both GSM8K
(5-shot) and MATH (4-shot) benchmarks under two generation length settings (256 and 512 tokens),
as shown in Table 12. Each cell reports accuracy and decoding throughput (in tokens per second),
along with the relative speedup over the greedy baseline.

Across GSM8K settings, LLaDA-1.5 consistently improves accuracy over the original LLaDA,
achieving a notable +2.2% absolute gain at 256-token generation and +3.2% at 512-token generation.
Furthermore, it maintains strong decoding efficiency, with throughput reaching 59.4 tokens/sec at
256 tokens, improving upon LLaDA’s 54.1 tokens/sec under the same setting.

On the MATH benchmark, accuracy between the two versions remains comparable. However,
LLaDA-1.5 slightly improves throughput at 256 tokens (53.7 vs. 51.7) while incurring a mild
efficiency regression at the 512-token setting (41.1 vs. 47.1). This suggests that while LLaDA-1.5
introduces enhancements beneficial for shorter or moderate decoding contexts, longer sequences may
require further optimization.

Overall, LLaDA-1.5 consistently provides either superior accuracy or better decoding speed across
settings, demonstrating better performance-efficiency trade-offs and highlighting the benefit of
incorporating adaptive improvements on top of the base LLaDA architecture.

C.4 ANALYSIS OF PARALLEL TOKEN COUNTS ACROSS DECODING STEPS

To better understand the behavior of factor-based parallel generation, we analyze the average number
of tokens generated at each decoding step. Specifically, we collect statistics from all intermediate
steps of the sampling process and compute the average number of tokens generated in parallel per step.
The results are visualized in Figure 7, along with a 95% confidence interval indicating cross-sample
variability.

As shown in Figure 7, the average number of tokens generated in parallel gradually increases during
the early to middle stages of decoding, peaking roughly between step 30 to step 60. After this peak,
the parallelism tends to slightly decline toward the end of generation. This suggests that the model
becomes more confident in generating outputs during the mid-decoding phase, allowing it to produce

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 12: Performance comparison between LLaDA and LLaDA-1.5. Each cell presents the accuracy and the
decoding throughput in tokens per second with relative speedup to the LLaDA baseline (bottom row, blue: tokens
per second/orange: relative speedup).

Benchmark Gen Length LLaDA (Fast-dLLM) LLaDA 1.5 (Fast-dLLM)

GSM8K (5-shot)
256 78.5 80.7

54.1 (8.1×) 59.4 (8.9×)
512 77.2 80.4

35.3 (11.0×) 33.0 (10.3×)

MATH (4-shot)
256 33.2 32.6

51.7 (5.7×) 53.7 (5.9×)
512 36.0 35.1

47.1 (5.9×) 41.1 (5.1×)

0.7 1.0 1.3 1.6 1.9
Factor

50

55

60

65

70

75

80

85

G
SM

8K
 (

5-
sh

ot
)

Ac
cu

ra
cy

Selected

3.79 4.41 4.92
5.26 5.68

Ours
2 token/step
4 token/step
Non-Parallel Baseline (1 token/step)

0.7 1.0 1.3 1.6 1.9
Factor

0

50

100

150

200

250

In
fe

re
nc

e
St

ep
s

Selected

3.79 4.41 4.92 5.26 5.68

Ours
2 token/step
4 token/step
Non-Parallel Baseline (1 token/step)

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Average #Tokens per Step

30

40

50

60

70

80

G
SM

8K
 (

5-
sh

ot
)

Ac
cu

ra
cy

3.79

4.41

4.92

5.26

5.68
Selected

2

4

Ours
Fixed-Step Baseline (2/4 tokens)
Non-Parallel Baseline (1 token/step)

(a) (b) (c)

Figure 8: (a) GSM8K (5-shot) accuracy across different factor values using our factor-based decoding strategy.
Numbers above each point indicate the average number of tokens decoded per step. The dashed lines show the
accuracy of the baseline method with 2 or 4 tokens per step, and the non-parallel (1 token/step) baseline. (b)
The corresponding number of inference steps needed under each factor setting. Our method generally requires
significantly fewer steps than fixed-step baselines. (c) Accuracy versus average number of tokens decoded per
step on GSM8K (5-shot). Our factor-based decoding achieves better accuracy-efficiency trade-offs compared to
baselines. The red “Selected” point represents the setting chosen in our main results.

more tokens simultaneously. Toward the final steps, the decoding process tends to become more
conservative, reducing the number of tokens produced at each step.

The shaded confidence interval reveals greater variance in later decoding steps, indicating instability
and inconsistent generation behavior across samples. This is expected since tail-end decoding steps
tend to handle only a few remaining tokens required to complete the output, and the number of
remaining tokens could differ widely among different samples (e.g., due to early completion or
padding).

These observations are important for understanding how decoding efficiency can be optimized:
increasing parallelism during high-confidence phases (middle steps) offers computational savings,
while conservative behavior near boundaries maintains quality.

C.5 THROUGHPUT COMPARISON UNDER VARYING BATCH SIZES

All experiments are conducted on an NVIDIA A100 GPU, with the prefill length fixed to 256 tokens.
The generation length is varied among 16, 32, and 64 tokens, and batch sizes range from 1 to 32. This
setup reflects realistic deployment scenarios, allowing the evaluation of decoding efficiency under
diverse conditions.

It should be noted that parallel decoding allows multiple tokens to be generated simultaneously
affected by dummy input tokens. To ensure fairness, we focus solely on the acceleration provided by
caching techniques.

PrefixCache is designed as an acceleration mechanism for LLaDA, a diffusion-based LLM, and suc-
cessfully boosts the throughput significantly. Figure 9 shows that PrefixCache achieves consistent
improvements across all batch sizes and generation lengths, making it particularly suited for

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30
Batch Size

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (T

ok
en

/s
)

Throughput vs Batch Size
Generation Length

L = 16
L = 32
L = 64

Method
PrefixCache
LLaDA
LLaMA (AR)

Figure 9: Throughput comparison between PrefixCache, LLaDA, and LLaMA under different generation
lengths and batch sizes. All models are evaluated on an NVIDIA A100 GPU with the prefill length fixed at 256.

scenarios with smaller generation lengths and larger batch sizes. For instance, with a generation
length of 16 and batch size of 32, PrefixCache achieves a throughput of over 211 tokens/s, signifi-
cantly outperforming the native LLaDA which reaches only 43 tokens/s, demonstrating nearly 5×
improvement.

While LLaDA exhibits limited scalability with increasing batch sizes—its throughput plateaus after
batch size 8—this limitation is inherent to diffusion-based LLMs, which are compute-bound by
nature. In contrast, LLaMA, an autoregressive (AR) model, benefits greatly from large batch sizes.
As the batch size increases, LLaMA shifts from being memory-bound to compute-bound, allowing it
to achieve high absolute throughput at larger batch settings.

These results highlight the practical advantages of PrefixCache in accelerating compute-bound diffu-
sion models like LLaDA, especially for latency-critical and high-throughput applications. Further-
more, the scalability and efficiency provided by PrefixCache bridge the gap between diffusion-based
LLMs and AR models like LLaMA, showcasing its importance for large-scale deployment settings.

D RELATED WORK

D.1 DIFFUSION LLM

Diffusion models have emerged as a transformative paradigm in generative modeling, initially
achieving remarkable success in continuous domains such as image (Rombach et al., 2022; Nichol
et al., 2022; Ramesh et al., 2021; Saharia et al., 2022) and audio synthesis (Yang et al., 2023; Huang
et al., 2023) before expanding into natural language processing. Recent advancements in discrete
diffusion models (Austin et al., 2021; Nie et al., 2025a;b; Hoogeboom et al., 2021; Campbell et al.,
2022; He et al., 2022; Meng et al., 2022; Reid et al., 2022; Sun et al., 2022; Kitouni et al., 2023;
Zheng et al., 2023; Chen et al., 2023; Ye et al., 2023; Sahoo et al., 2024; Shi et al., 2024; Zheng et al.,
2024; Gat et al., 2024; Yu et al., 2025b;a) have reshaped the landscape of text generation, offering a
viable alternative to autoregressive (AR) paradigms in large language models (LLMs). These models
address the inherent challenges of discrete data by redefining noise injection and denoising processes
through innovative mathematical formulations.

Theoretical Foundations of Discrete Diffusion Diffusion models for discrete data were first explored
in (Sohl-Dickstein et al., 2015; Hoogeboom et al., 2021). Subsequently, D3PM (Austin et al., 2021)
provided a more general framework. This framework models the forward noising process as a
discrete state Markov chain using specific transition matrices. For the reverse process, D3PM learns

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

a parameterized model of the conditional probability of the original data given a noised version by
maximizing the Evidence Lower Bound (ELBO). CTMC (Campbell et al., 2022) further extended
D3PM to a continuous-time setting, formalizing it as a continuous-time Markov Chain (CTMC). In a
distinct approach, SEDD (Lou et al., 2023) learns the reverse process by parameterizing the ratio of
marginal likelihoods for different data instances at a given noising timestep. This ratio model is then
trained using a Denoising Score Entropy objective. More recently, research on Masked Diffusion
Models (MDMs) by MDLM (Shi et al., 2024; Sahoo et al., 2024; Zheng et al., 2024) and RADD (Ou
et al., 2024) has introduced significant clarifications. These studies have demonstrated that different
parameterizations of MDMs can be equivalent.

Integration with Pre-trained Language Models A critical breakthrough involves combining discrete
diffusion with existing LLM architectures. Diffusion-NAT (Zhou et al., 2023) unifies the denoising
process of discrete diffusion with BART’s (Lewis et al., 2019) non-autoregressive decoding, enabling
iterative refinement of masked tokens. By aligning BART’s inference with diffusion steps, this
approach leverages pre-trained knowledge while maintaining generation speed 20× faster than
comparable AR transformers. Similarly, the LLaDA (Nie et al., 2025b) and DiffuLLaMA (Gong
et al., 2024) framework scales diffusion to 7B parameters using masked denoising, while LLaDA and
Dream (Ye et al., 2025) demonstrating competitive performance with autoregressive baselines like
LLaMA3 (Grattafiori et al., 2024) through recursive token prediction across diffusion timesteps.

D.2 LLM ACCELERATION

Key-Value Cache. Key-Value (KV) Cache is a fundamental optimization technique in modern large
language model (LLM) inference with Transformer architecture (Vaswani, 2017). It enables efficient
autoregressive text generation by storing and reusing previously computed attention states. However,
it is non-trival to apply KV Cache in diffusion langauge models such as LLaDA due to full attention.
Block diffusion (Arriola et al., 2025) overcomes key limitation of previous diffusion language models
by generating block-by-block so that key and values of previously decoded blocks can be stored and
reused.

Non-Autoregressive Generation Non-autoregressive (NAR) generation marks a fundamental shift
from sequential token generation by enabling the simultaneous generation of multiple tokens, signifi-
cantly accelerating inference (Xiao et al., 2023). Initially introduced for neural machine translation,
NAR methods have since been extended to a variety of tasks, including grammatical error correction,
text summarization, dialogue systems, and automatic speech recognition. Although NAR generation
offers substantial speed advantages over autoregressive approaches, it often sacrifices generation
quality. Diffusion LLMs represent a recent paradigm for non-autoregressive text generation; however,
prior work (Nie et al., 2025b) has struggled to realize the expected acceleration due to a notable drop
in output quality.

E LLM USAGE

During manuscript preparation, we used large language models —strictly for language polishing of
paragraphs and sentences (grammar, flow, and tone). These tools were not used to generate ideas,
design experiments, or determine conclusions. All technical content, methodology, and interpretations
were written, verified, and approved by the authors. To reduce risks of factual drift or citation errors,
we required human review of every model-edited sentence and cross-checked all references against
primary sources. The authors take full responsibility for the accuracy and integrity of the manuscript.

22

