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Abstract

This paper introduces VeriThoughts, a novel dataset designed for reasoning-based
Verilog code generation. We establish a new benchmark framework grounded in
formal verification methods to evaluate the quality and correctness of generated
hardware descriptions. Additionally, we present a suite of specialized small-scale
models optimized specifically for Verilog generation. Our work addresses the
growing need for automated hardware design tools that can produce verifiably
correct implementations from high-level specifications, potentially accelerating the
hardware development process while maintaining rigorous correctness guarantees.
Our code and data are available at this URL.

1 Introduction

Large language models (LLMs) have demonstrated impressive capabilities in generating software code
(such as in programming languages like Python, Java, and C++) from natural language prompts [1].
This has resulted in widespread adoption of these tools in real-world software engineering workflows,
improving developer productivity by up to 55.8% [2]. However, notwithstanding a growing body
of research, code generation for hardware design languages (HDL) has proven to be much more
challenging. Verilog, one of the most commonly used HDLs, allows designers to specify the function
of a chip at a high level, leaving its conversion to a manufacturable circuit to automated tools. Even
so, HDL programming is notoriously tedious and time-consuming [3]. LLM-based automatic Verilog
code generation would therefore significantly improve chip design productivity.

A key challenge in automating HDL code generation is the scarcity of HDL codes on the web
compared to languages like Python [4]. Code generation models trained on open-source code reposito-
ries tend to struggle on Verilog problems [5]. Recent efforts have sought to build both training and
evaluation datasets to remedy this issue [5,6,4,7,8]. An early effort, VeriGen [4], scraped more than 108K
Verilog files from GitHub, which were then used to fine-tune open-source LLMs using self-supervised
next token prediction. A small evaluation dataset of 17 natural language prompts, along with test
inputs and desired outputs was proposed to benchmark the accuracy of fine-tuned LLMs. Larger
training sets of HDL/Verilog code [7] and smaller evaluation datasets of prompts and corresponding
test inputs/outputs [9,8] have been released.

Training sets containing Verilog code alone [6,10] can only be used to finetune LLMs with self-
supervised next token prediction, but not for subsequent supervised fine-tuning (SFT) steps that
are important for performance [11]. For SFT, pairs of natural language prompts (or Verilog coding
questions) and corresponding Verilog implementations are needed. Manually writing descriptive
prompts/questions for thousands of Verilog modules is infeasible, and automated prompt/question
generation methods have been plagued by hallucinations [12–14] The recent success of reasoning
models like DeepSeek-R1 [15] and Qwen3 [16] suggests that SFT on chain-of-thought (CoT) traces
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Figure 1: Generation of the VeriThoughts dataset involves four steps. Starting with a repository of
ground-truth Verilog V , we ask a frontier model to pose a question Q for which V is a valid response.
Then we pose Q to a second frontier reasoning model, obtaining response R and generated Verilog
V ∗. Finally, a formal equivalence checker E returns a self-consistency label LC ← E(V = V ∗). A
data point in the VeriThoughts data sample is a tuple {V,Q,R, V ∗, Lc}. VeriThoughts questions are
used for supervised fine-tuning of SoTA LLMs with reasoning and Verilog code as targets.

can improve performance, but CoT traces for Verilog code generation are not publicly available.
Moreover, evaluation datasets require mechanisms to check the correctness of generated code—this
has typically been done using test inputs/outputs in both the software and hardware communities. But
test inputs/outputs may not be readily available for code scraped from open repositories, and LLM
generated tests are known to be buggy [17].

In this paper, we present VeriThoughts, the first large-scale dataset containing Verilog code with (a)
paired prompts/questions, (b) prompt/question quality labels, and (c) reasoning traces for over 20,000
Verilog modules. As an ancillary outcome from our training datset, we also curate the VeriThoughts
validation set with 250 questions sampled randomly from VeriThoughts, golden Verilog responses,
and a formal verification based evaluation; this style of evaluation is a departure from the (weaker)
testbench simulation evaluations used in the literature thus far.

Our data generation process shown in Figure 1 starts with MetRex [10], one of the largest datasets of
“synthesizable" Verilog (i.e., Verilog that can be mapped to a hardware implementation) collated from
many sources. Like VeriGen, Metrex has Verilog code only. Using a frontier Gemini model, we first
produce a question (Q) to which a MetRex code sample (V ) is a correct response. A second model,
Deepseek-R1-670B, is used to generate a reasoning trace (R) and candidate Verilog implementation
(V ) responsive to the question (Q). However, the question and/or the generated Verilog code might
be incorrect due to hallucinations, resulting in a noisy dataset. To address this concern, we propose a
formal verification-based “self-consistency" check that compares ground-truth Verilog with generated
Verilog; a mismatch indicates that one or more among Q, R or V ∗ are incorrect. Manual analysis of a
random subset of training data confirms value of these labels. We demonstrate the value of our dataset
by enabling answers to interesting RQs about the usefulness of reasoning traces and self-consistency
labels, and by training SoTA open-source models for Verilog generation.

2 Background & Related Work

LLMs have demonstrated strong capabilities in code generation for programming languages such as
C and Python [18–24]. This success is largely attributed to the availability of extensive training datasets
comprising source code in one or multiple programming languages. These datasets can span several
hundreds of gigabytes, enabling LLMs to learn syntactic patterns, semantic structures, and common
usage conventions. Inputs to the models include natural language instructions, comments, partial
code snippets, or combinations thereof.

Researchers explored fine-tuning open-source LLMs for HDL generation [25,12,26]. To assess perfor-
mance, benchmarks such as Verilog Eval [13] have been introduced to evaluate Verilog generation
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Table 1: Comparison across existing large-scale Verilog datasets. Factors include synthesizabil-
ity checking, natural language questions/descriptions, availability of reasoning traces, and self-
consistency checking.

Dataset Design
Count

Synth.
Verilog

Nat. Lang.
Qns. Reasoning Self-Cons.

Check
Verilog GitHub (VeriGen) 108 971 ✗ ✗ ✗ ✗
MG-Verilog 11 144 ✓ ✗ ✗ ✗
Resyn (RTL-Coder) 26 532 ✗ ✓ ✗ ✗
MetRex 25 868 ✓ ✓ ✗ ✗
VeriThoughts (train) 20 173 ✓ ✓ ✓ ✓
VeriThoughts (test) 291 ✓ ✓ ✓ ✓

quality. Despite these efforts, even fine-tuned models often lag behind leading closed-source, propri-
etary LLMs such as Claude Sonnet or the GPT series in output quality and reliability.

In order to enable training of domain-specific Verilog generation models, a number of relevant
datasets have been created. The Verilog GitHub dataset [25] includes approximately 108,000 Verilog
files scraped from GitHub, and has been used to train models such as VeriGen and CL-Verilog.
Building on this dataset, MG-Verilog introduced a multi-grained version of the Verilog GitHub
dataset with corrected syntax. The RTL-Coder Resyn dataset utilizes LLMs to create a number of
machine-generated Verilog samples [12]. Finally, the MetRex dataset, which we build upon here,
contains over 25,000 Verilog files which are synthesizable via Yosys, and includes natural language
descriptions of all relevant post-synthesis metrics. Table 1 contains comparisons across existing
large-scale Verilog datasets, including the number of Verilog designs they include, whether they have
been checked for synthesizability, whether they include natural language descriptions, whether they
include a reasoning trace related to each design, and whether they include self-consistency checks.

3 VeriThoughts Dataset

We now introduce VeriThoughts, a unique, large-scale, formally-verified Verilog reasoning dataset.
VeriThoughts is comprised of 20K samples of Verilog RTL code, each paired with a prompt describing
the code, newly generated Verilog code from the prompt, the reasoning traces used to generate the
new Verilog code, and a label indicating whether the generated Verilog and original Verilog are
functionally equivalent. The original RTL code, V , is sourced from the MetRex dataset [10]. We
then generate prompts, Q, for each Verilog entry with the Gemini-2.0-Flash-Thinking-Experimental
model. These prompts are then given to Deepseek-R1 which generates Verilog code V ∗ and reasoning
trace R. Finally, we perform formal verification E of the original and generated Verilog code with
the Yosys framework to obtain a self-consistency label LC ← E(V = V ∗). An overview of this
framework can be seen in Figure 1.

3.1 MetRex: Original Verilog Dataset

The MetRex dataset, released under the BSD 3-Clause license [10], contains 25.8K Verilog designs
taken from publicly available sources. These include machine generated designs such as the RTL-
Coder dataset [7] and human created designs such as the VeriGen dataset [4]. The dataset creators took
scraped Verilog designs from the web and cleaned the data to ensure that only synthesizable designs
remained. Note that some of the RTL included in this dataset [7] include LLM-generated descriptions
of their function. However, the quality of these annotations is unverified and for our purposes, we
only use the RTL, and discard all existing generated text descriptions. We filter the dataset to around
25K entries that all have a character length of less than 10,000 characters.

3.2 Generating Prompts for Unlabeled Verilog Code

Given a Verilog sample V , we need to annotate this sample with a question Q which accurately
defines V . If we are to use LLMs for this annotation task, a naive prompt can lead to a litany of
problems in the generated question. For example, a simple prompt such as “Create a question whose
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answer is the following Verilog Code:" will often generate questions that do not explicitly state
the variable names for the inputs/outputs of the module. This makes it difficult to perform formal
verification on the Verilog code generated from this question. Therefore, we specify in the prompt
that the output should include the name of the module and its input/output variables.

Another concern when using LLM-generated labels is the risk of the LLM "spelling out" the answer
to the problem when creating a question. We sometimes find the LLM-generated question to include
implementation details within the question that reveal significant portions of the original Verilog code.
Therefore, we constrain the generated question by asking the LLM to generate a question that leaves
room for the reader to think about the question. Finally, we find sometimes that the annotation model
generates parts of a question, or earlier versions of a question, in the reasoning traces. This makes it
difficult to parse out the question in a programmatic fashion. Thus, we prompt the LLM to encase the
final question in a set of words that can be parsed automatically. These requirements inform our final
question generating prompt, shown in Figure 2.

Question Generating Prompt:

Write a question whose answer is the following Verilog code. Do not make the
question so detailed that someone can effectively copy the code straight from
the question. The question needs to leave room for the person reading it
to need to think about the answer. Make sure to state the interface in your
question. You should specify the inputs and outputs and make sure they have the
same names as in the original code. In addition, include the exact name of the
module. Please do the same for all modules present in the Verilog code I give
you. The beginning of your final question should start with QUESTION BEGIN and
the end of your question should end with QUESTION END.

Figure 2: Prompt used to generate a question Q consistent with ground-truth Verilog (V ).

This question generating prompt along with V , is used to query the Gemini annotator model to
generate a Q whose answer is V . A specific example of V and Q can be seen in 8.

Notwithstanding incorrect questions, other work on software code generation has found that even
inconsistent question-answer pairs in a training dataset can help improve code generation accuracy [27].
To help resolve the issue in the context of Verilog code generation, VeriThoughts also includes addi-
tional labels that attempt to capture the impact of consistency between pairs of (V,Q). Unfortunately,
manual annotations are not feasible for a dataset of our size—instead, we employ self-consistency
check, described below, as a proxy for question answer consistency.

3.3 Generating Reasoning Traces

We choose the DeepSeek-R1 model as our Verilog code generation model. It is notable for being one
of the best performing open source models on coding problems while also being a reasoning model.
Thus, when generating Verilog code from our generated question, we can extract the reasoning traces,
R, produced from this inference. We store R in the VeriThoughts dataset to be analyzed and used
in later model training. We follow the recommended generation guidelines for DeepSeek-R1 by
using a temperature setting of 0.6, a top_p of 0.95, and a maximum generation length of 8192 tokens.
We append the following statement to every question: "Make sure your input and output interface
has the same names as described in the question. \nPlease start your Verilog code with CODE
BEGIN and end with CODE END."+ "\n<think>\n". We instruct DeepSeek-R1 to stay consistent with
module interface because it sometimes changes the module or variable names. In addition, we add
code parsing bookends to the prompt (similar to those present during question generation). Finally,
following best practices for DeepSeek we append a <think> token to produce reasoning traces.

3.4 Verifying Question Quality using Self Consistency

Given a (V,Q) pair, it is difficult to a priori ascertain the quality of the question Q. However, we
leverage the following key insight: if one were to use Q to generate new Verilog code V ∗, then we
could compare the functional equivalence of this newly generated code and the original Verilog as a
proxy for the question quality. If (V, V ∗) are equivalent, we can be highly confident that the question
accurately describes the golden Verilog. However, if (V, V ∗) are not functionally equivalent, there
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is a possibility of a mismatch between (V,Q), (Q,V ∗), or both. Therefore, we use the generated
questions to perform this "self-consistency" check as a proxy for the quality of Q.

Given the newly generated V ∗, we can now perform formal verification to see if the generated code is
functionally equivalent to the original (or “golden”) Verilog. Formal verification tools mathematically
prove the equivalence of two circuits for all possible input combinations. This is much more powerful
than standard practice in LLM evaluations, which lean on human-designed unit tests, or LLM-as-
judge tests. In addition to being a stronger equivalence check than human-designed test cases, using
a formal verification tool takes away the necessity of manual (or LLM-enabled) generation of test
cases. We perform formal verification with the Yosys software using the script shown in A.

The script begins by loading in the two sets of Verilog: golden and generated. Afterwards, the third
line prepares the Verilog code for synthesis by performing various optimizations. The fourth line
converts clocked flip flops into combinational logic which is necessary for performing verification on
sequential circuits. The fifth line creates a specific circuit (miter) used for equivalence checking. The
final line runs a Boolean Satisfiability (SAT) solver to see if the two circuits are equivalent. We take
the output of LC ← E(V = V ∗) and add it to the VeriThoughts dataset with the remaining entries in
the tuple {V,Q,R, V ∗, Lc}. In addition, there are cases where V contains multiple modules. We do
sub-module level verification by checking E(Vs = V ∗

s ) for each sub-module pair (Vs, V
∗
s ) ∈ V . If

all sub-modules are functionally equivalent, then Lc ← 1, otherwise Lc ← 0.

3.5 VeriThoughts: Statistics and Analysis

We explore various statistics about the Verilog dataset we have generated. In Figure 3 we compare the
self-consistent (Lc = 1) and inconsistent (Lc = 0) datasets. We examine the number of lines in the
Verilog ground truth (V ), the number of modules in (V ), the number of sequential code samples in
each dataset, and the number of characters in the reasoning traces (R). We see that the distributions
are quite different between the two datasets. The number of lines is centered around 24 lines of
code for the consistent dataset, but is centered around 50 lines of code. We see a similar trend in the
number of characters present in each dataset’s reasoning traces.

These two factors combined suggest that the Verilog present in the inconsistent dataset is more
difficult or complex than the Verilog present in the self-consistent dataset. An additional point of
support for this can be seen in the right most graph which compares the number of combinational
and sequential circuits in each dataset. We see an increased number of sequential circuits in the
inconsistent dataset which matches with the real world expectation that sequential circuits are more
complex than combinational circuits.

Figure 3: These figures explore various statistics when comparing the self-consistent and inconsistent
subset of VeriThoughts. The left figure compares the number of lines of code in ground truth Verilog
samples. The middle figure compares the number of characters in a reasoning trace. The right figure
looks at the number of sequential modules present in each dataset.

3.6 Manual Analysis of VeriThoughts Subset

To validate the effectiveness of our formal-verification-based dataset-generation framework, we
randomly sampled 100 data points from our VeriThoughts dataset, which are further evaluated
manually. Each data point contains a tuple (V, V ∗, Q). The 100 samples are comprised of 50 data
points that passed the self consistency test, and 50 data points that fail to pass the self consistency
test. For every sampled data point, a human expert reviewer evaluated whether the Q accurately
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summarizes V , and whether V ∗ accurately implements Q. Combining the answers to these two
questions yields four possible evaluation cases:

• Prompt error: the prompt does not summarize the golden Verilog accurately, but the gener-
ated Verilog accurately follows the prompt.

• Code-gen error: the prompt is accurate, yet the generated Verilog deviates from it.
• Both errors: the prompt inaccurately summarizes the golden Verilog, and the generated

Verilog inaccurately implements the prompt.
• No error: no mismatches are found in the two aspects.

Table 2 reports the distribution of different evaluation cases. The first row gives raw counts for each
subset (matched or mismatched), and the second row gives percentages relative to that subset.

Table 2: Outcomes of our manual analysis of 100 datasamples from the VeriThoughts dataset, with
50 drawn at random from Self-consistent (LC = 1) responses and 50 from Inconsistent responses
(LC = 0). Incorrect questions are inconsistent with ground-truth Verilog (V ). Incorrectly generated
Verilog (V ∗) is when the question (Q) is correct but V ∗ is inconsistent with Q.

Dataset Question Incorrect Generated Verilog Incorrect Both Incorrect

Self-Consistent (50) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Inconsistent (50) 33 (66.0%) 8 (16.0%) 9 (18.0%)

We provide three representative examples to illustrate the prompt error (Fig. 4), code-gen error (Fig. 5),
and both errors (Fig. 6) cases identified above. Among the 50 mismatched data points, most of them
(66%) correspond to the prompt error case: the prompt produced by the LLM cannot accurately
explain the golden Verilog code. A smaller fraction (16 %) correspond to the code-generation error
case, where the prompt is accurate but the LLM implements it inexactly. Finally, 18 % belong to the
both errors case; here a common pattern is that the generated prompt omits some implementation
details of the golden Verilog, and the LLM fills in the missing details, leading to function mismatches.

4 Applications of VeriThoughts

The VeriThoughts dataset lets us pose interesting research questions for studying Verilog generation
models that are otherwise difficult to explore systematically. Such questions include: How do
reasoning traces impact the utility of a Verilog model? How important is it for a question answer pair
to be consistent with each other? Do hallucinated prompts paired with hallucinated answers provide
downstream utility? For the rest of this section, we will first outline the essential benchmarks and
finetuning tools necessary to tackle the aforementioned questions. Then, we finetune several models
using VeriThoughts. Finally, we will compare these models against other Verilog generation models.

4.1 Experimental Setup

LLM Finetuning In all subsequent experiments we perform supervised fine-tuning (SFT) of Qwen-
2.5-Instruct-7B models using a learning rate of 8 ∗ 10−5, a cosine scheduler, bf16 format, and three
epochs over our training set. This finetuning is done with Llama-Factory [28]. The full fine-tuning was
performed on 8xA100 GPUs and takes roughly 2-4 hours for instruction tuned models and roughly
7-14 hours for reasoning models.

Evaluations We evaluate both preexisting and our trained models on two benchmarks. Verilo-
gEval [5] has 156 problems sourced from HDLBits and is meant to test a language model’s ability to
generate a diverse distribution of Verilog code. We focus on the "Human" split of VerilogEval 1.0
because it has higher-quality labels and problems than the machine-generated "Machine" split. The
benchmark is evaluated using human-designed test cases for every Verilog problem.

In addition to VerilogEval, we create a new benchmark sourced by randomly sampling a hold-out
set of 291 questions from VeriThoughts. We call this the VeriThoughts benchmark, and validate it
using the formal verification scheme described in Section 3. This helps avoid the strain of manually
creating unit test cases (such as in VerilogEval) while also providing a stronger level of verification
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Table 3: Dataset subsets derived from VeriThoughts. Subsets are defined by features of the data
points such as self-consistency and the type of verilog target used for fine-tuning.

Dataset Label Self-Consistent Fine-tune Type Verilog Target

A Yes Reasoning Ground Truth
B Yes Instruct Ground Truth

C No Reasoning Ground Truth
D No Instruct Ground Truth
E No Reasoning Generated
F No Instruct Generated

for our benchmark. We generate responses for VerilogEval with a temperature of 0.5, top_p of 0.90,
and maximum generation length of 1024 tokens. This is in line with the VerilogEval Human 1.0
results [13]. For our VeriThoughts benchmark, we generate responses with a temperature of 0.6, top_p
of 0.95, and maximum generation length of 16384. Temperature and top_p are in line with the
suggested generation settings for DeepSeek and the maximum generation length is increased for
longer problems (and associated reasoning traces) in VeriThoughts. We report standard "pass@k" [29]

metrics for k = {1, 5, 10}, standard values used in the literature. Pass@k is evaluated over 20 trials.

Dataset Subsets We create dataset subsets to measure the impact of different features in the dataset
on downstream performance. The subset list is found in Table 3. We see that datasets A and B are the
only self-consistent datasets. Of those two, we see that A is a reasoning style dataset while B is a
instruction tuning dataset. Datasets C and D follow a similar pattern except they are not consistent
datasets. Finally, E and F use the generated Verilog as the training target instead of the ground truth
Verilog. All subsets are approximately 10K samples to ensure fairness in the dataset size.

4.2 Research Questions

The new features of the VeriThoughts dataset enable us to answer interesting research questions of
interest to the community, which have previously not been addressed in literature.

RQ1: Does reasoning help Verilog code generation? Reasoning in LLMs has been shown to help
in tasks such as coding and science [30,31]; does this apply to a low-resource coding language such as
Verilog? We validate this hypothesis by comparing models trained on full reasoning traces versus
instruction tuning along. The results are in Table 4.

Table 4: Pass@k scores comparing Reasoning vs. Instruct models across VeriThoughts and Verilog
Eval benchmarks. Diff. denotes the difference between the pass@k accuracies of the reasoning and
instruct models. Bold entries are the highest scoring models for a specific pass@k. Underlined entries
are the second highest scoring models for a specific pass@k.

Model Self-Consistent Verilog Target VeriThoughts Verilog Eval
Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

Reasoning Yes Ground Truth 75.5% 88.9% 92.1% 34.6% 47.2% 50.7%
Instruct Yes Ground Truth 49.0% 69.0% 73.7% 21.9% 31.6% 34.6%

Diff. 26.5% 19.9% 18.4% 12.7% 15.6% 16.1%

Reasoning No Ground Truth 51.0% 79.3% 86.4% 37.2% 52.1% 56.8%
Instruct No Ground Truth 44.9% 65.3% 72.4% 19.8% 31.2% 35.4%

Diff. 6.1% 14.0% 14.0% 17.4% 20.9% 21.4%

Reasoning No Generated 82.8% 94.2% 95.7% 37.3% 50.1% 53.0%
Instruct No Generated 51.0% 68.9% 73.5% 37.9% 43.2% 44.7%

Diff. 31.8% 25.3% 22.2% -0.6% 6.9% 8.3%

We see that models trained on reasoning datasets (A, C, E) outperform the corresponding models
trained on instruction datasets (B, D, F) for VeriThoughts and Verilog Eval. The one exception to this
trend is Datasets E and F where there is an essential tie between reasoning versus vanilla instruct
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for Verilog Eval. (However, we see that for pass@5 and pass@10 that dataset E returns to being the
more effective model.) These results suggest that reasoning benefits Verilog coding tasks.

RQ2: Does question-answer consistency improve accuracy? For a traditional code generation
dataset, it is extremely hard to guarantee the consistency of a question-answer pair in the absence
of human expert evaluation. However, VeriThoughts starts with synthesizable Verilog, which helps
us generate consistency labels for ground truth Verilog V and questions Q. Therefore, we can
measure how consistency impacts the downstream coding ability of Verilog fine-tuned models. We

Table 5: Pass@k scores comparing Self-Consistent vs. Inconsistent examples for Reasoning and
Instruct models across VeriThoughts and Verilog Eval. Diff. denotes the difference between the
pass@k accuracies of the pass and fail models. Bold entries are the highest scoring models for a
specific pass@k. Underlined entries are the second highest scoring models for a specific pass@k.

Model Self-Consistent Verilog Target VeriThoughts Verilog Eval
Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

Reasoning Yes Ground Truth 75.5% 88.9% 92.1% 34.6% 47.2% 50.7%
Reasoning No Ground Truth 51.0% 79.3% 86.4% 37.2% 52.1% 56.8%

Diff. 24.5% 9.6% 5.7% -2.6% -4.9% -6.1%

Instruct Yes Ground Truth 49.0% 69.0% 73.7% 21.9% 31.6% 34.6%
Instruct No Ground Truth 44.9% 65.3% 72.4% 19.8% 31.2% 35.4%

Diff. 4.1% 3.7% 1.3% 2.1% 0.4% -0.8%

see in Table 5 that the majority of the data points benefit from a self-consistent question answer
pair. However, we do notice on VerilogEval that the reasoning model does not benefit from this
consistency at all pass@k levels. Therefore, it appears that consistency is not the only factor affecting
the downstream utility. One additional factor to consider is the contents of the datasets. We saw in
Section 3.5 that the inconsistent dataset is comprised of Verilog modules with a higher number of
lines of code and a longer reasoning trace than the consistent dataset. This suggests the two subsets
have slightly different task distributions, and can explain the discrepancy in Table 5.

RQ3: Do hallucinated prompts paired with hallucinated answers provide downstream utility?
We have shown that on average models benefit from being trained on reasoning datasets that are
self-consistent. However, self-consistency has been explored solely from the perspective of ground
truth V and Q. Our human evaluations in Section 3.6 show that the vast majority of the mismatches
between (V, V ∗) are caused by a mismatch in (V,Q) rather than a mismatch in (Q,V ∗). Therefore,
we test the impact of a training set built on (Q,V ∗) instead of (Q,V ). The results are shown in
Table 6. We see that models trained on the inconsistent subset (Q,V ∗) outperform models trained on

Table 6: Pass@k scores comparing Self-consistent vs. Inconsistent (Generated) examples for Reason-
ing and Instruct models across VeriThoughts and Verilog Eval. Diff denotes the difference between
the pass@k accuracies of the pass and fail models. Bold entries are the highest scoring models for a
specific pass@k. Underlined entries are the second highest scoring models for a specific pass@k.

Model Self-Consistent Verilog Target VeriThoughts Verilog Eval
Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

Reasoning Yes Ground Truth 75.5% 88.9% 92.1% 34.6% 47.2% 50.7%
Reasoning No Generated 82.8% 94.2% 95.7% 37.3% 50.1% 53.0%

Diff. -7.3% -5.3% -3.6% -2.7% -2.9% -2.3%

Instruct Yes Ground Truth 49.0% 69.0% 73.7% 21.9% 31.6% 34.6%
Instruct No Generated 51.0% 68.9% 73.5% 37.9% 43.2% 44.7%

Diff. -2.0% 0.1% 0.2% -16.0% -11.6% -10.1%

the consistent subset for nearly all evaluations. This suggests that there may be value in hallucination
question-answer pairs, but why? In Section 3.5 we saw that the inconsistent dataset generally had
more lines of code, more sequential modules, and longer reasoning traces. It is often the case that
sequential Verilog code is more complex than combinational Verilog code. In addition, it can be
argued that code with more lines or code that induces longer reasoning traces may also be more
difficult on average. The final observation can be made from Section 3.6 where we saw that the vast
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majority of inconsistent data had consistent (Q,V ∗), but inconsistent (Q,V ). Therefore, one possible
explanation for this observation is that the hallucinated prompt accurately describes the generated
Verilog. In addition, if the "inconsistent" question answer pairs are more difficult on average than the
"consistent" question answer pairs, it would explain this downstream behavior. Although we cannot
concretely determine the reasons for this behavior, we are only able to explore this question with
such detail because of the modular nature of VeriThoughts.

4.3 A new state of the art on VerilogEval

Given the quality and scale of the VeriThoughts dataset, our goal is to leverage it to create new
state-of-the-art Verilog generation models. The results for various open and closed source models on
the VeriThoughts and VerilogEval benchmarks are shown in Table 8.

Table 7: Pass@k scores for closed- and open-source models on VeriThoughts and Verilog Eval.
Closed source models first, followed by open source models. Bold entries are the highest scoring
models for a pass@k. Underlined entries are the second highest scoring models for a pass@k. Missing
evaluations are due to compute constraints and will be updated in the supplementary material.

Model Model Type VeriThoughts Verilog Eval
Pass@1 Pass@5 Pass@10 Pass@1 Pass@5 Pass@10

Closed Source
ChatGPT-o3 Reasoning 92.6% 96.7% 97.6% 74.4% 84.7% 86.8%
Gemini-2.5-Flash-Preview-04-17 Reasoning 88.4% 97.3% 98.3% 54.9% 70.7% 76.0%

Open Source
Qwen3-14B Reasoning 87.4% 96.8% 98.1% 28.1% 45.6% 51.0%
VeriThoughts-14B (Qwen2.5 Base) Reasoning 78.5% 90.0% 92.1% 43.7% 52.2% 55.14%
DeepSeek-R1-Distill-Qwen-14B Reasoning 46.2% 81.4% 89.1% 38.7% 62.1% 69.0%
Qwen2.5-7B Instruct 40.6% 68.9% 76.4% 25.6% 38.9% 42.6%
Qwen2.5-14B Instruct 36.9% 75.0% 84.7% 30.7% 50.2% 56.8%
CodeLlama-13B Instruct 27.1% 60.9% 72.6% 20.7% 35.8% 41.7%
CodeLlama-13B-Python Base 12.4% 40.9% 56.6% 24.1% 41.3% 47.9%
CL-Verilog-7B Base 10.2% 36.9% 53.6% 21.7% 36.4% 42.7%
CL-Verilog-13B Base 5.0% 19.6% 30.9% 26.0% 42.1% 47.7%
Llama 3.1-8B Instruct 6.8% 25.9% 40.5% 18.9% 33.2% 37.4%

We train a 14B reasoning model using dataset fold A, with Qwen-2.5-Instruct-14B as the base. We see
that our model performs very competitively among open source models. On the standard VerilogEval
benchmark (at pass@1) our model has the highest accuracy, and is close behind DeepSeek-R1-
Distill-Qwen-14B for pass@5 and pass@10. Moreover, our model shines on our new VeriThoughts
benchmark, only losing out to the recently released Qwen3-14B model. These results show that even
with a small fine-tuning set (with ∼10K samples) we are able to create a powerful Verilog reasoning
model that can compete with other reasoning and instruction-tuned models.

5 Discussion

In this paper, we introduced VeriThoughts, the first large scale formally verified reasoning dataset
for Verilog. We use VeriThoughts to tackle previously difficult-to-approach research questions such
as the value of hallucinated prompts. We then use VeriThoughts as a training set to fine-tune a
state-of-the-art (Open Source) Verilog generation model with only 10K training samples.

We consider this work to be just the start for generating data via formal verification. We believe
that adding new data sources outside of MetRex will lead to more diverse Verilog code generations.
In addition, we would like to apply our formal verification benchmarking methodology to existing
Verilog benchmarks such as Verilog Eval to see how those benchmarks are impacted. We hope that
this work will increase interest in formal verification and reasoning for dataset generation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the abstract and introduction summarize the key claims made in this
paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the final section discusses limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Not a theory paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we have strived to provide all experimental details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Yes, we make all our data and code public and free to access.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide a full list of experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to cost considerations we don’t query models multiple time during
benchmarking, and do not train multiple reasoning models on our dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, this is part of our experimental details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have reviewed the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the intro and the conclusions point to broader impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Not applicable.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we credit all data sources and include licenses wherever relevant.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Yes, we publish our dataset and benchmark.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB needed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

17



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: LLMs were used in data generation and we document this extensively.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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[Golden Verilog]

module dffrle_s (din, rst_l, en, clk, q, se, 

si, so);

parameter SIZE = 1;

input [SIZE-1:0] din;

input rst_l;

input en;

input clk;

output [SIZE-1:0] q;

input se;

input [SIZE-1:0] si;

output [SIZE-1:0] so;

reg [SIZE-1:0] q;

always @ (posedge clk) begin

if (!rst_l) begin

q <= {SIZE{1'b0}};

end else if (se) begin

q <= si;

end else if (en) begin

q <= din;

end

end

assign so = q;

endmodule

[Generated Verilog]

module dffrle_s #(parameter SIZE = 1) (

    input [SIZE-1:0] din,

    input rst_l,

    input en,

    input clk,

    input se,

    input [SIZE-1:0] si,

    output reg [SIZE-1:0] q,

    output [SIZE-1:0] so

);

assign so = q;

always @(posedge clk or negedge rst_l) begin

    if (!rst_l) begin

        q <= {SIZE{1'b0}};

    end else begin

        if (se) begin

            q <= si;

        end else if (en) begin

            q <= din;

        end

    end

end

endmodule

[Prompt]

Design a parameterized synchronous register module named `dffrle_s` with a width specified by the parameter `SIZE`. The 

default value for `SIZE` should be 1.

The module should have the following interface:

Inputs:

- `din` [SIZE-1:0]: Data input

- `rst_l`: Asynchronous active-low reset

- `en`: Clock enable

- `clk`: Clock input

- `se`: Scan enable

- `si` [SIZE-1:0]: Scan input

Outputs:

- `q` [SIZE-1:0]: Main register output

- `so` [SIZE-1:0]: Scan output

The register should operate based on the positive edge of the `clk` signal:

- It must implement an asynchronous, active-low reset. When `rst_l` is low, the register's output `q` should be set to all zeros, 

overriding all other operations.

- When `rst_l` is high, the register's load behavior is determined by `se` and `en`.

- If `se` is high, the register should load the data from `si`, regardless of the state of `en`.

- If `se` is low but `en` is high, the register should load the data from `din`.

- If both `se` and `en` are low (and `rst_l` is high), the register should hold its current value.

- The output `so` should always reflect the current value stored in the register `q`.

Figure 4: Example of prompt error case.

A Appendix

Yosys Script:
read_verilog verilog_truth.v
read_verilog verilog_gen.v
prep; proc; opt; memory;
clk2fflogic;
miter -equiv -flatten new_module_name original_module_name miter
sat -seq 50 -verify -prove trigger 0 -show-all -show-inputs -show-outputs -set-init-zero miter
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[Golden Verilog]

module top_module( 

    input [3:0] a,

    input [3:0] b,

    input select,     // Select input to 

choose between different outputs

    output [3:0] out_xor_bitwise,

    output out_xor_logical,

    output [7:0] out_not

);

    // Generate the inverse of the input 

numbers

    wire [3:0] a_inv = ~a;

    wire [3:0] b_inv = ~b;

    // Generate the bitwise-XOR output

    wire [3:0] xor_bitwise = a ^ b;

    // Generate the logical-XOR output

    wire xor_logical = !(a & b) && (a | b);

    // Generate the output based on the 

select input

    assign out_xor_bitwise = select ? 

xor_bitwise : 4'b0;

    assign out_xor_logical = select ? 

xor_logical : 1'b0;

    assign out_not = select ? {b_inv, a_inv} 

: 8'b0;

endmodule

[Generated Verilog]

module top_module (

    input [3:0] a,

    input [3:0] b,

    input select,

    output [3:0] out_xor_bitwise,

    output out_xor_logical,

    output [7:0] out_not

);

    assign out_xor_bitwise = select ? (a ^ 

b) : 4'd0;

    assign out_xor_logical = select ? ((|a 

|| |b) && !(|a && |b)) : 1'b0;

    assign out_not = select ? {~b, ~a} : 

8'd0;

endmodule

[Prompt]

Write a Verilog module named `top_module` with the following interface:

`input [3:0] a, input [3:0] b, input select, output [3:0] out_xor_bitwise,          

output out_xor_logical, output [7:0] out_not`

This module should implement the following logic based on the `select` input:

*   When `select` is high (1):

    *   `out_xor_bitwise` should be the bitwise XOR of inputs `a` and `b`.

    *   `out_xor_logical` should be the logical XOR of inputs `a` and `b`. Implement this logical XOR using only basic logical 

operators (AND, OR, NOT).

    *   `out_not` should be an 8-bit value formed by concatenating the bitwise inverse of `b` with the bitwise inverse of `a` (i.e., 

`{~b, ~a}`).

*   When `select` is low (0):

    *   All outputs (`out_xor_bitwise`, `out_xor_logical`, and `out_not`) should be driven to their respective zero 

values (0 for 1-bit, all zeros for wider outputs).

Your implementation should use continuous assignments.

Figure 5: Example of code-gen error case.

Table 8: Pass@k scores for closed- and open-source models on Verilog Eval. Closed source models
first, followed by open source models.

Model Model Type Verilog Eval
Pass@1 Pass@5 Pass@10

Claude 3.7 Sonnet Reasoning 66.3% 75.8% 78.5%
GPT-4o Instruct (MoE) 56.3% 66.7% 69.0%
GPT-4 Instruct (MoE) 43.5% 55.8% 58.9%
VeriThoughts-32B (Qwen2.5 Base) Reasoning 52.0% 61.6% 63.6%
VeriThoughts-32B (Qwen3 Base) Reasoning 49.5% 59.2% 61.9%
VeriThoughts-14B (Qwen3 Base) Reasoning 38.7% 51.8% 55.6%
RTLCoder-v1.1-7B Instruct 34.6% 43.4% 45.5%
RTLCoder-DeepSeek-v1.1-7B Instruct 39.7% 49.3% 51.9%
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[Golden Verilog]

module shift_register(input clk, stb, di, 

output reg do);

localparam integer DIN_N = 256;

localparam integer DOUT_N = 256;

reg [DIN_N-1:0] din;

reg [DIN_N-1:0] din_shr;

reg [DOUT_N-1:0] dout;

reg [DOUT_N-1:0] dout_shr;

always @(posedge clk) begin

din_shr <= {din_shr, di};

dout_shr <= {dout_shr, 

din_shr[DIN_N-1]};

if (stb) begin

din <= din_shr;

dout <= dout_shr;

end

end

always @(posedge clk) begin

do <= dout_shr[DOUT_N-1];  // 

Corrected the assignment of do to 

dout_shr[DOUT_N-1]

end

endmodule

[Generated Verilog]

module shift_register #(

    parameter integer DIN_N = 1,

    parameter integer DOUT_N = 1

) (

    input wire clk, stb, di, output wire do

);

reg [DIN_N-1:0] first_stage;

reg [DOUT_N-1:0] second_stage;

reg [DIN_N-1:0] captured_din;

reg [DOUT_N-1:0] captured_dout;

// First stage shift logic

always @(posedge clk) begin

    first_stage <= (DIN_N > 1) ? 

{first_stage[DIN_N-2:0], di} : di;

end

// Second stage shift logic

always @(posedge clk) begin

    second_stage <= (DOUT_N > 1) ? 

{second_stage[DOUT_N-2:0], 

first_stage[DIN_N-1]} : first_stage[DIN_N-

1];

end

// Capture on stb

always @(posedge clk) begin

    if (stb) begin

        captured_din <= first_stage;

        captured_dout <= second_stage;

    end

end

assign do = (DOUT_N >= 1) ? 

second_stage[DOUT_N-1] : 1'b0;

endmodule

[Prompt]

Write a Verilog module named `shift_register` with the following interface:

Inputs: `clk`, `stb`, `di`

Output: `do`

The module should implement a two-stage serial processing pipeline.

On each rising edge of the `clk` signal:

1. A new bit `di` is shifted into the first stage.

2. The bit that has propagated fully through the first stage is shifted into the second stage.

The capacities of the first and second stages should be configurable using integer parameters named `DIN_N` and `DOUT_N`, 

respectively.

The output `do` should continuously provide the bit that has propagated fully through the second stage.

Additionally, when the `stb` signal is asserted high on a clock edge, the current contents of both the first and second stage shift 

registers should be captured and stored in separate internal registers.

Figure 6: Example of both errors case.
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Figure 7: Number of lines of golden Verilog designs vs number of characters of reasoning traces.

Design a synchronous 3-bit counter module in Verilog.
The module should increment its count on each
positive edge of the clock input (`clk`). The counter
should wrap around to 0 after reaching its maximum
value. Implement a synchronous reset (`reset`) that
sets the counter output to 0 when asserted high.
Your module must be named `counter\_3bit`.
The interface should be as follows:
Inputs:
- `clk`: Clock signal.
- `reset`: Asynchronous reset signal (active high).
Output:
- `out`: A 3-bit output, indexed from [2:0], representing
the current count.

Ground-Truth Verilog, V Question, Q Generated Verilog, V*

Figure 8: Example of wrong question Q, wrongly capturing the functionality (in this case, reset
behavior) and the generated verilog V ∗ correctly implementing the functionality in Q.
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When `select` is high (1):
    *   `out_xor_bitwise` should be the
bitwise XOR of inputs `a` and `b`.
    *   `out_xor_logical` should be the
logical XOR of inputs `a` and `b`.
Implement this logical XOR using only
basic logical operators (AND, OR, NOT).
    *   `out_not` should be an 8-bit value
formed by concatenating the bitwise
inverse of `b` with the bitwise inverse of
`a` (i.e., `{~b, ~a}`).
When `select` is low (0):
    *   All outputs (`out_xor_bitwise`,
`out_xor_logical`, and `out_not`) should be
driven to their respective zero values (0 for
1-bit, all zeros for wider outputs).

Ground-Truth Verilog, V Question, Q Generated Verilog, V*

Figure 9: Example of mismatch between the question and the generated Verilog.

23


	Introduction
	Background & Related Work
	VeriThoughts Dataset
	MetRex: Original Verilog Dataset
	Generating Prompts for Unlabeled Verilog Code
	Generating Reasoning Traces
	Verifying Question Quality using Self Consistency
	VeriThoughts: Statistics and Analysis
	Manual Analysis of VeriThoughts Subset

	Applications of VeriThoughts
	Experimental Setup
	Research Questions
	A new state of the art on VerilogEval

	Discussion
	Appendix

