
In-Context Language Learning: Architectures and Algorithms

Ekin Akyürek 1 Bailin Wang 1 Yoon Kim 1 Jacob Andreas 1

Abstract

Some neural language models (LMs) exhibit a
remarkable capacity for in-context learning (ICL):
they can fit predictors to datasets provided as in-
put. While the mechanisms underlying ICL are
well-studied in the context of synthetic problems
like in-context linear regression, there is still some
divergence between these model problems and the
“real” ICL exhibited by LMs trained on large text
corpora. In this paper, we study ICL through the
lens of a new family of model problems we term
in context language learning (ICLL). In ICLL,
LMs are presented with a set of strings from a
formal language, and must generate additional
strings from the same language. We focus on in-
context learning of regular languages generated by
random finite automata. We evaluate a diverse set
of neural sequence models on regular ICLL tasks.
We first show that Transformers significantly out-
perform neural sequence models with recurrent
or convolutional representations on ICLL tasks.
Next, we provide evidence that they do so by
computing in-context n-gram statistics using spe-
cialized attention heads. Finally, we show that
hard-wiring these heads into neural models im-
proves performance not just on synthetic ICLL,
but natural language modeling, reducing the per-
plexity of 340M-parameter Transformers by up
to 1.14 points (6.7%) on the SlimPajama dataset.
Our results highlight the usefulness of in-context
formal language learning as a tool for understand-
ing ICL in models of natural text.

1. Introduction
One of the most striking features of modern neural language
models is their capacity for in-context learning (ICL)—the
ability to infer a conditional or unconditional distribution

1MIT CSAIL. Correspondence to: Ekin Akyürek
<akyurek@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

over natural language strings simply by performing next-
token prediction following a sequence of examples from the
distribution of interest. ICL is a crucial tool for steering
large pre-trained language models (LMs), and a growing
body of work aims to understand when and how these LMs
perform ICL. Because of the complexity of large-scale LMs
trained on natural text (and the lack of public information
about many LMs’ training data), almost all work on under-
standing ICL has focused on smaller LMs trained on simple
model problems like in-context linear regression (Garg
et al., 2022), character classification (Chan et al., 2022), and
associative recall (Fu et al., 2023). Despite their simplicity,
these model problems have played a key role in identifying
properties (and limitations) of ICL in current LMs.

However, there remains a significant gap between these
model problems and the capabilities exhibited by large-scale
LMs. In particular, most model problems require relatively
simple forms of learning: computing a fixed function of
the entire training set (Akyürek et al., 2023; von Oswald
et al., 2023a;b), or retrieving a single example relevant to
the current input (Fu et al., 2023). In contrast, natural LMs
exhibit richer and much more varied forms of ICL—in some
cases producing structured generative models of text or code
from a handful of inputs (Shin & Van Durme, 2022; Drozdov
et al., 2023).

How can we systematically study these more complex forms
of ICL? In this paper, we introduce a new family of model
ICL problems that we collectively term in-context language
learning (ICLL). In ICLL, LMs are prompted with a finite
collection of strings from an unknown formal language, and
must infer the distribution over strings corresponding to the
full language (Figure 1). ICLL exercises essential features
of ICL in natural models: it involves structured outputs,
probabilistic predictions, and algorithmic reasoning about
input data. In this paper, we present a focused study of
ICLL in regular languages—the class of formal languages
generated by finite automata.

We begin by providing general background about neural
sequence models, ICL and formal languages in Section 2,
then define the ICLL task in Section 3. Next, we explore
three questions about in-context language learning in neural
sequence models:1

1Code & data are released at github.com/berlino/seq icl

1

https://github.com/berlino/seq_icl

In-Context Language Learning: Architectures and Algorithms

Q1: Which model classes can learn to perform ICLL
accurately? (Section 4)

• We find that Transformers significantly outperform
recurrent and convolutional LMs at in-context lan-
guage learning, even when these different architec-
tures perform comparably on other problems.

• Models with efficient convolutional parameteriza-
tions perform especially poorly on ICLL tasks.

Q2: What algorithmic solutions do successful in-
context language learners implement? (Section 5)

• Transformer predictions on ICLL with regular lan-
guages are well approximated by smoothed n-gram
models.

• Transformers develop “n-gram heads”: higher-
order variants of induction heads previously de-
scribed in LMs (Olsson et al., 2022).

• Compared to other model architectures, Transform-
ers better encode in-context n-gram counts in their
hidden representations.

Q3: Can we improve neural models using our under-
standing of how they perform ICLL? (Section 6)

• Hard-wiring Transformers, RNNs and convolu-
tional models with n-gram heads improves their
performance on ICLL.

• These heads are not just useful for ICLL: when
equipped with n-gram heads, neural sequence mod-
els of all classes exhibit perplexity improvements
of up to 6.7% on natural language modeling tasks.

Our results highlight the usefulness of ICLL as a model
problem—not only as a tool for research on ICL, but as a
source of insight about architectural features that can im-
prove language modeling in the real world. Many aspects of
ICLL, even with regular languages, remain to be understood
(e.g. learning dynamics and out-of-distribution generaliza-
tion). Beyond these, future work might study ICLL in more
expressive languages (e.g. context-free or context-sensitive
languages), offering a path toward understanding of even
more complex behaviors in natural LMs.

2. Background
2.1. Neural sequence modeling

Much of modern machine learning for natural language pro-
cessing is concerned with building general-purpose tools for
sequence prediction, in which we wish to place a distribution

over strings x. Very often this is done via a product of con-
ditional distributions over tokens: p(x) =

∏
i p(xi | x<i) .

In practice the distribution p(xi | x<i) is typically param-
eterized as a neural network, in which each input token xi

(a symbol, word piece, or word) is assigned an embedding
ei, which is used to compute a sequence of hidden repre-
sentations h(ℓ)

i (one in each layer ℓ of the network). The
last of these representations is ultimately used to predict the
distribution over next tokens. A wide variety of architectural
choices are available for computing each h(ℓ) from h(ℓ−1).

Attentional Networks Today, the most widely used archi-
tecture for neural sequence modeling is the Transformer
(Vaswani et al., 2017). Hidden representations in Trans-
formers are computed via an attention mechanism: to obtain
hℓ
i , models compute weighted averages of previous-layer

hidden representations h(ℓ−1)
<i followed by a feed-forward

layer. Letting x = h(ℓ−1) and h = h(ℓ) for readability,
each Transformer layer may be expressed as:

h′
i = softmax(Wkx<i(Wqxi)

⊤)Wvx<i , (1)
h = FFN(Woh

′) , (2)

where FFN denotes a feed-forward network2.

Recurrent and Convolutional Networks Sequence mod-
els other than the attention networks can be characterized as
recurrent and/or convolutional:

recurrent h′
i = f(Ah′

i−1,Bxi), (3)
convolutional h′

i = l ∗ x<i, (4)

where A and B are recurrence parameters, f is a learned
transformation, ∗ denotes convolution and l is a convolu-
tional filter. Many sequence models, like state-space models
(Gu et al., 2022b) and RWKV (Peng et al., 2023) may be
equivalently expressed in recurrent, convolutional, or even
attentional forms. Hence, our experiments classify mod-
els based on time-invariance and linearity. Time-invariant
networks only have parameters that do not depend on the in-
put x, whereas time-variant networks have input-dependent
parameters. As a middle ground between them, weakly
time-invariant networks have a mixture of input-dependent
and input-independent parameters. In addition, we use lin-
ear and non-linear to characterize recurrent models, based
on whether there are non-linear dependencies among hid-
den states (i.e., whether f is non-linear). See Appendix A
for a more detailed discussion of attentional, recurrent and
convolutional models, and relations between them.

2.2. In-context learning

One feature that has been observed in all model classes
above (to an extent) is their capacity for in-context learning.

2Layer norms and residual connections are omitted for brevity.

2

In-Context Language Learning: Architectures and Algorithms

When trained appropriately, sampling from these models
given a context of the form:

pLM(· | [d1, f(d1), ,d2, f(d2), , . . . , ,dk]),

yields an accurate estimate of f(dk). Here is a delimiter
token, each dj is an input datum, and f(dj) is its associated
output. In practice, f(d) may be stochastic and composi-
tional, and both inputs and outputs may be structured (e.g.
natural language strings with multiple tokens). In addition
to this function-learning view of ICL, we may understand it
more generally as a problem of learning a context-dependent
next-token distribution (i.e in-context language learning or
modeling), for some distribution over strings pf . Here, sam-
pling from an LM given a context with examples from pf :

pLM(· | [x1,1, . . . , x1,n1︸ ︷︷ ︸
d1∼pf

, , . . . , , xk,1, . . . , xk,nk−1)]),

yields an estimate of xk,nk
. Iteratively sampling tokens

from these conditional distributions, we may sample from
pf .

While some work on understanding ICL has studied LMs
trained on natural text (Olsson et al., 2022; Dai et al., 2023),
most interpretability-oriented research has studied LMs
trained to solve simpler problems like regression (Akyürek
et al., 2023; von Oswald et al., 2023a), associative recall (Fu
et al., 2023) or few-shot classification (Chan et al., 2022).
Work in this family studies ICL from several perspectives: as
task identification (Xie et al., 2022; Min et al., 2022), string
manipulation (Olsson et al., 2022), or a form of learned
“mesa-optimization” within a trained LM (Akyürek et al.,
2023; von Oswald et al., 2023a; Dai et al., 2023).

2.3. Formal Languages

We study ICL in the context of formal language learning,
in which models condition not on (input, output) pairs, but
instead on a collection of strings sampled from a randomly
generated language. Related language-learning problems
were also studied by Xie et al. (2022) and Hahn & Goyal
(2023); here we study models’ ability to learn new languages
rather than recognizing languages from a predetermined set.

Strings, languages, and automata In the context of for-
mal language theory, a language L is defined as a set of
strings over a finite alphabet Σ. A probabilistic language
additionally defines an (optionally normalized) distribution
P (x) over the strings x ∈ L. An automaton is an abstract
machine that defines a procedure for testing membership in
some language, or generating strings from that language.

Our experiments focus on regular languages. These are
standardly defined as the set of languages recognized by
deterministic finite automata (DFAs). A DFA, in turn, is

defined by an alphabet Σ, a set of states S , an initial state
S0 ∈ S, a subset of accepting states Sa ⊆ S, and a state
transition function T : S ×Σ→ S . To determine whether
a DFA accepts some string x = x1x2x3 . . . xn, we begin in
S0, set Si = T (Si−1, xi), and finally test if Sn ∈ Sa.

To extend this definition to probabilistic languages, we may
generalize DFAs to probabilistic finite automata (PFAs)
by redefining transition functions, initial states, and fi-
nal states respectively as distributions T : S × Σ ×
S → [0, 1], I : S → [0, 1], and A : S → [0, 1],
satisfying ΣSA(S) = 1, ΣSI(S) = 1 and A(S) +
Σx,S′T (S, x, S′) = 1. Under mild conditions pPFA(x) =∑

S0,...,Sn
I(S0)

∏n
i=1 T (Si−1, xi, Si)A(Sn) is a distribu-

tion over strings, where the sum is over all state sequences.

In this work, we will use PFAs with a single initial
state and without any terminal states (sometimes referred
to as NFPAs3). We assign probabilities pPFA(x) =∑

s0,...,sn

∏n
i=1 T (si−1, xi, si), where the sum is over all

possible state sequences. This is proven to be a proper
distribution for each sequence length (Dupont et al., 2005).

Formal languages and deep networks A large body of
previous work has used formal languages to probe the limits
of neural sequence models (Elman, 1990; Gers & Schmid-
huber, 2001; Bhattamishra et al., 2020; Suzgun et al., 2019;
Hewitt et al., 2020; Finlayson et al., 2022). Notably, Mer-
rill & Sabharwal (2023) show that under standard hardness
assumptions, bounded-precision Transformers cannot rec-
ognize important formal language classes, including some
regular languages. In contrast to this past work, our study
focuses not on whether sequence models can be trained to
generate or recognize strings in a fixed formal language, but
instead whether they can be “meta-trained” to adapt on the
fly to new languages provided in context. Closest to this
goal, the “associative recall” task studied by Fu et al. (2023)
and Arora et al. (2023) may also be viewed as a special case
of in-context language learning for an extremely restricted
sub-class of regular languages; we compare the behavior of
models on this class and general ICLL in Section 4.

3. REGBENCH: A Benchmark Dataset for
In-Context Language Learning

What does it mean to learn a language of the kind described
in Section 2? Classical formal language theory has studied
a number of different learnability criteria, including exact
identification (Gold, 1967), sometimes with stochastic sam-
ples (Angluin, 1988) and probabilistic success criteria (Pitt,
1989). But if our goal is to understand the behavior of LMs,

3Refer to Dupont et al. (2005) and Appendix C.2 more discus-
sion of the relationship between NFPAs and their equivalance to
HMMs.

3

In-Context Language Learning: Architectures and Algorithms

Figure 1. ICLL Benchmark: We randomly generate probabilistic finite automata (PFAs), then generate problem instances that include
multiple samples from each PFA. We train and evaluate models on disjoint PFAs for in-context language learning.

we wish to characterize models’ ability to approximately
predict the next-token distribution given a finite set of sam-
ples, as in work on PAC learning (Valiant, 1984). Unlike
the PAC setting (but like in natural language modeling), our
evaluation assumes a fixed prior distribution over languages.

To do so, we introduce a new dataset called REG-
BENCH. REGBENCH consists of a set of problem in-
stances d(i), each comprising a sequence of examples
[d

(i)
1 , ,d

(i)
2 , , . . . , ,d

(i)
k] drawn from the same proba-

bilistic language L(i). REGBENCH is related to other syn-
thetic language learning datasets, especially the MLRegTest
benchmark of van der Poel et al. (2023), but focuses on
generation rather than membership testing. To describe how
REGBENCH is constructed, we must specify (1) how lan-
guages are sampled, (2) how strings are sampled from these
languages, and (3) how learners are evaluated.

3.1. Sampling languages

REGBENCH is built using probabilistic automata, them-
selves sampled from a probabilistic generative process. This
process is defined formally as:

1. Choose a number of states uniformly from |S| ∈
[4, 12]. Given this value, define a set of automaton
states S = {S1, . . . , S|S|} ∪ {S0}. Define the set of
accepting states Sa = {S1, . . . , S|S|} (excluding S0).

2. Choose an alphabet size uniformly from |V | ∈ [4, 18].
Sample a language-specific alphabet V , containing
|V | symbols, uniformly (without replacement) from a
shared symbol set V (with |V| = 18).

3. For each Si, choose a number of outgoing edges uni-
formly from oi ∈ [1, 4]. Then, construct a set of edges
(Si, xj , Sj), where all xj are sampled uniformly with-
out replacement from V , and all Sj are sampled uni-
formly without replacement from {S1, . . . , S|S|} \ Si.
For every symbol x′ not sampled in this step, construct
an edge (Si, x

′, S0). Together, these edges determine
the transition distribution for a (non-probabilistic) DFA
A.4

4This particular choice of transition function ensures that each
accepted input corresponds to a unique state sequence. This makes

4. Construct a new DFA A′ by minimizing A (Hopcroft,
1971).

5. Finally, turn A′ into a probabilistic automaton without
final states by defining each T (Si, xj , Sj) = 1/oj for
edges generated above (excluding edges into S0), and
T (Si, x

′, S′) = 0 for all other x′, S′.

This procedure may be run repeatedly to obtain a collection
of PFAs A′, each with corresponding DFA A, and associated
with a stochastic language L.

3.2. Sampling strings

Given a PFA A, sampling from the associated language is
straightforward:

(1) Sample a sequence length uniformly from n ∈ [1, 50].

(2) Initialize the sampling procedure with S0.

(3) For each i ∈ 1 . . . n, sample a transition
(xi+1, Si+1) ∼ T (Si, ·, ·).

(4) Return x1 · · ·xn.

3.3. REGBENCH Dataset

Using these two sampling procedures, we construct REG-
BENCH as follows:

(1) Sample a collection of Ntrain +Ntest distinct automata
A(i) using the procedure in Section 3.1.

(2) From each automaton, choose a number of strings uni-
formly from k ∈ [10, 20].

(3) Sample k strings (d(i)
1...k) from the automata A(i) with

n ∈ [1, 50] symbols each (making the average length of
a problem instance ≈ L = 382) to obtain the problem
instance d(i) = [d

(i)
1 , ,d

(i)
2 , , . . . , ,d

(i)
k].

(4) Finally, divide this collection of instances into training
and test sets.

it possible to calculate conditional next token probabilities without
needing to marginalize over state sequences

4

In-Context Language Learning: Architectures and Algorithms

Associative Recall Dataset We also experiment with the
associative recall (AR) dataset (Fu et al., 2023) consists of
strings in the form of k1v1, ..., knvnkq, where each unique
key k is followed by a corresponding unique value v, and
the model needs to complete last query kq with its matching
value vq that is presented at least one time in the context.
AR is a simpler case of REGBENCH with deterministic
languages5 and the evaluation is based on accuracy of the
last symbol.

4. Which Model Classes Learn to Perform
ICLL Efficiently?

In this section, we use REGBENCH to analyze the behavior
of neural sequence models on ICLL tasks. These experi-
ments aim to characterize the relationship between REG-
BENCH and related existing evaluations of ICL, and to de-
termine whether there are meaningful differences between
different neural sequence models in their ability to perform
ICLL. See Lee et al. (2023) for a study of ICL across models
on a large collection of alternative tasks.

4.1. Setup

We train models on the REGBENCH dataset to maximize
the likelihood:

L(θ) =
∑

d∈Dtrain

∑
i

log pθ(xi | d<i). (5)

pθ(· | d<i) is the model’s probability of generating a sym-
bol following the context d<i where this context consists
of i symbols comprising of zero or more full examples d
followed by a partial example6. For comparison, we also
train models on the associative recall (AR) task introduced
by Poli et al. (2023), using a vocabulary size of V = 40
(based on Poli et al., 2023’s “hard” setting) and an input
sequence length of L = 382 (which matches REGBENCH’s
average sequence length). As with REGBENCH, we use
a test set of size 500. For both datasets, we use training
subsets of sizes from 150 examples to 40000 examples to
evaluate scaling behavior of models.

4.2. Neural sequence models

We evaluate 10 neural sequence models: Transformers
(Vaswani et al., 2017; Touvron et al., 2023); two Trans-
former variants with linear attention (RetNet, Sun et al.,
2023 and Linear Transformer, Katharopoulos et al., 2020);
four recurrent models (LSTM, Hochreiter & Schmidhuber,

5Each AR string can be viewed as multiple samples from spe-
cific set of regular languages that only accepts strings in the form
of kv with a finite set keys and values.

6In our convention, subscript ranges e.g. d<i on problem
instances correspond to symbol indices not the sample example
indices.

1997, RWKV, Peng et al., 2023, GLA, Yang et al., 2023, and
Mamba, Gu & Dao, 2023); and three models with convolu-
tional representations (S4, Gu et al., 2022b, H3, Fu et al.,
2023, and Hyena, Poli et al., 2023).

4.3. Baseline learning algorithms

We also compare to two classical procedures for generative
sequence modeling. Given the procedure for sampling lan-
guages described in Section 3, the Bayes optimal predictor
has the form:

p(xi | d<i) =
∑
L

p(xi | L,dlast)p(L | d<i) (6)

∝
∑
L

p(xi | L,dlast)p(d<i | L)p(L), (7)

where dlast is the last partial example in the d<i, p(L) is
the prior that a given language is produced by the sampling
process, and p(xi | L,dlast) is the probability of the emitting
xi after dlast under the language L.

In contrast to model problems like linear regression (Garg
et al., 2022), there are no known algorithms for efficiently
computing the Bayes-optimal next-token predictive distribu-
tion for the data-generating process in Section 3. However,
several classical approaches based on maximum likelihood
estimation often perform well. We compare to:

• In-context n-gram models, which consider a fixed-
sized context window of n − 1 symbols, locate all
matching windows within the problem instance, and
simply count the number of occurrences of each possi-
ble next token across those matches. Our experiments
use a variant with backoff (Chen & Goodman, 1996)—
see Appendix C.1 for details.

• In-context HMMs, which explicitly attempt to infer
the probabilistic automaton that generated the con-
text using the Baum–Welch (BW) algorithm (Rabiner,
1989). Given strings generated by a PFA (or hidden
Markov model), BW performs maximum likelihood es-
timation of the transition distribution via Expectation–
Maximization (Dempster et al., 1977), then uses the
forward algorithm to infer the next-token distribution
for a given context—see Appendix C.2 for details.

Note that both of these baselines use only the informa-
tion available within an individual problem instance; unlike
the neural models, they cannot pool information about the
language-generating process across examples.

4.4. Metrics

We evaluate models using two quantities. The first is greedy-
decoding accuracy—whether each next token predicted by

5

In-Context Language Learning: Architectures and Algorithms

Figure 2. REGBENCH results: REGBENCH (b, c) yields greater contrast between models comparing to associative recall (a), and enables
probabilistic evaluation (c). We find that Transformers are significantly more data-efficient than recent neural sequence models on
in-context learning of regular languages. Transformers also show monotonically increasing scaling curves w.r.t. the number of layers (d).

the model is valid under the current language:

accuracy(pθ, L) = (8)
1

NT

∑
d∈Dtest

∑
i

[
1[argmax pθ(x | d<i) ∈ supp(L(x | dlast))]

]
.

Here NT is number of total symbols in the test set. L(x |
dlast) is the short hand for p(x | dlast, L) used in Equa-
tion (6). We additionally compute total variation distance
between each predicted next-token distribution and the dis-
tribution under the true language L:

tvd(pθ, L) =
1

2NT

∑
d∈Dtest

∑
i

∑
x∈V

∣∣∣pθ(x | d<i)− L(x | dlast)
∣∣∣ . (9)

4.5. Results

ICLL on REGBENCH shows clear differences across
models On REGBENCH (Figure 2b–c), we find that Trans-
former models significantly outperform models in all other
classes, across evaluation metrics and training set sizes. In-
deed, most non-Transformer models underperform simple
n-gram and Baum–Welch baselines, except in the high-data
regime. In contrast, models are less clearly differentiated by
the associative recall task (Figure 2a).

Depth is necessary but not sufficient for ICLL In Fig-
ure 2d, we find that no architecture achieves non-trivial
performance on ICLL with only a single layer. Transformer
models monotonically improve their accuracy as the num-
ber of layers increases; other models start to overfit to the
training set with increasing depth.

5. What Algorithmic Solutions do In-Context
Language Learners Implement?

We have seen that Transformers significantly outperform
other neural sequence models at regular ICLL. Can we un-
derstand why these differences occur? We next analyze the

behavior of Transformers trained for ICLL tasks to charac-
terize the computations they perform and the features they
represent. Our analysis uses three complementary strategies:
attention visualization, probing, and black-box input–output
analysis. While these methods all have limitations as inter-
pretability tools (Wen et al., 2023; Bolukbasi et al., 2021;
Belinkov, 2022), they offer convergent evidence that n-gram
statistics play a key role in Transformer ICLL.

5.1. Transformers form in-context n-gram heads

In Figure 3, we visualize the attention of an (8-layer, 1-head)
Transformer. The layer 2 and 3 attention heads each attend
to the previous token. When composed, these heads enable
each hidden representation (starting in layer 3) to incorpo-
rate information about the identities of the two tokens that
precede it. The layer 5 head then attends to tokens following
2-grams matching the most recent 2-gram in the input. In
Figure 3, for example, the input ends in nh, and the layer
5 head attends to all tokens X in contexts nhX . Notably,
these heads do not selectively attend to tokens generated
from the same DFA state, as might be expected if LMs in-
ferred the true data-generating process. The pattern shown
in Figure 3 is a higher-order analog of the “induction head”
motif previously described by Olsson et al. (2022).

5.2. Transformers represent in-context n-gram counts
better than other models

Next, we probe this model (Shi et al., 2016) to determine
whether the n-gram statistics associated with these attention
patterns are in fact encoded in hidden representations.

Setup To train n-gram probes, we extract the intermediate
layer outputs h from the models as they process sequences
from the training set. For varying values of n, we construct
an MLP-based probe that takes as input a representation hi

at time step i and a query token x. We train this probe to
predict the (unnormalized) count of times x occurs follow-

6

In-Context Language Learning: Architectures and Algorithms

Figure 3. N-gram heads in Transformers. We plot the attention weights of an 8-layer, 1-head Transformer model trained on ICLL
with N = 2500 training examples. Each row shows which tokens the label in that row attends to and the corresponding weights. We
display the current PFA state next to each token label on the y and x axes. Heads in early layers attend to previous tokens (a, b), while the
attention head in layer 5 selectively attends to tokens based on their 2-gram prefix rather than the 1-gram prefix or the PFA state.

ing the same n − 1 tokens that appear at position i in the
input. We then train similar probes to predict the (normal-
ized) frequency p(x | di−n+1:i) =

count(di−n+1:ix)
count(di−n+1:i)

and the
binary existence 1[count(di−n+1:ix) > 0].

We additionally probe models for latent PFA states. Because
the labeling of states is arbitrary, we train state equivalence
probes to take two representations from different timesteps,
and predict whether they were generated by the same under-
lying PFA state. Details are provided in Appendix E.

Metrics We evaluate count and frequency probes accord-
ing to relative error (|ŷ−y|

y ; lower is better). We evaluate
existence and state equivalence probes according to binary
classification accuracy (higher is better). We train separate
probes per layer, per model and per task. In Figure 4, we
display the result for each task and model at the best layer.

Results As seen in Figure 4, frequency probes on Trans-
formers substantially outperform probes trained on other
models. Interestingly, however, these results do not carry
over to unnormalized counts, for which Transformer encod-
ings do not seem to be meaningfully different from other
architectures. In addition to counts, we can decode n-gram
existence (Figure 4b) more accurately from Transformers
than other models, as well as equivalence of underlying
automaton states (Figure 4c). Supplementary results for
models trained under high-resource conditions are presented
in Figure 6.

5.3. Transformer predictions resemble n-gram models
with learned reweighting

The previous two analyses show that Transformer ICLL
computes n-gram statistics, but do not explain how this
information is used to make predictions. Next, we show that
Transformer predictions are well approximated by simpler
models with access to the context only via n-gram statistics.

Setup We previously observed that Transformers, trained
on enough data, more accurately predict the distribution
over next tokens than n-gram language models. Here, we
compare these different models’ predictions to each other, in
addition to the ground-truth language, to reveal similarities
in prediction strategies across predictors of different classes.

We introduce one additional model for comparison: a
learned n-gram reweighting model. Given an input se-
quence, this model first represents the input by computing
the empirical next-token distribution in contexts matching
the last 1 and 2 tokens of the input, as well as the empirical
unigram distribution. It then concatenates these distribu-
tions and passes them through an MLP with one hidden
layer. This model is trained using the same language model-
ing objective as other models. We evaluate two variants: one
in which inputs contain unnormalized counts of matching
n-grams, and another with normalized distributions. Both
models are related to counter automata (Merrill, 2020).

7

In-Context Language Learning: Architectures and Algorithms

Figure 4. Probing for n-grams in neural sequence models (trained with Ntrain = 2500 examples): (a) Probes are trained to predict the
counts and normalized counts (frequencies) of the most recent (n− 1)-gram + a next query character from the model’s hidden state at
that time step. Results indicate that Transformer architectures more effectively encode frequencies of higher-order n-grams (bi-grams and
tri-grams) compared to other models, with larger Transformer models exhibiting improved performance for higher n-grams. Additional
probes show that Transformers better encode n-gram existence (b) and DFA state (c). Please refer to Appendix E for the details.

GT TF TF/8 TF/4 TF/2 BW LNW LNWr LNWb 3gram 2gram

model2

GT

TF

TF/8

TF/4

TF/2

BW

LNW

LNWr

LNWb

3gram

2gram

0.36 0.35 0.4 0.41 0.38 0.48 0.34 0.35 0.38 0.41

0.12 0.17 0.19 0.31 0.26 0.16 0.18 0.21 0.25

0.16 0.19 0.3 0.28 0.16 0.18 0.21 0.25

0.13 0.36 0.29 0.23 0.24 0.24 0.19

0.36 0.28 0.24 0.25 0.25 0.2

0.4 0.26 0.27 0.34 0.39

0.3 0.34 0.32 0.33

0.12 0.23 0.28

0.24 0.28

0.12

0.15 0.20 0.25 0.30 0.35 0.40 0.45

Figure 5. Pairwise total variation distance (TVD): We measure
total variation distance between pairs of models (trained with
N = 2500 examples) across the first 100 tokens of each string in
the REGBENCH test set. The 12-layer Transformer model (TF) is
closest to the learned MLP reweighting model with normalized
in-context n-gram distributions as input (LNWr). The 2-layer
Transformer (TF/2) is closer to a 2-gram than a 3-gram model.
For reference, the mean TVD between the TF and others TFs
initialized with different random seed is 0.11.

Results Comparisons are shown in Figure 5. Large Trans-
formers with many layers tend to produce next-token dis-
tributions more similar to those of n-gram models than to
the ground-truth DFA or the Baum-Welch algorithm. More-
over, the learned n-gram reweighting model (LNWr) best
approximates the distributions from the large Transformer.
Interestingly (and in line with the findings in Section 4) the
shallow 2-layer Transformer more closely matches predic-
tions from the 2-gram baseline than the 3-gram baseline.

6. How Can Findings About ICLL Inform the
Design of Neural Sequence Models?

The preceding results suggest that Transformers’ success
stems in part from computation of in-context n-gram statis-
tics. Can we use this information to improve other models,
or to make Transformers more efficient?

The attention pattern associated with “n-gram heads” (illus-
trated in layer 5 of Figure 3) may be parameterized as:

A(n)ij ∝ 1[(∧nk=1xi−k = xj−k−1)︸ ︷︷ ︸
n-gram matching

∧ (i > j)︸ ︷︷ ︸
causal mask

], (10)

where Aij denotes the weight with which the ith token at-
tends to the jth token. Building on this observation, we
propose to equip models with special static n-gram atten-
tion heads, which attend in a fixed fashion, but apply a
learned transformation of the attended-to representations:

NGHn(h(l−1))i = W1h
(l−1)
i +W2A(n)⊤i h

(l−1), (11)

For a model with a hidden state of size d, such a head has
2d2 parameters. To improve a model, we can simply insert
it as a standalone new layer between the existing layers.7

Unlike standard self-attention, n-gram heads do not have to
store the entire input in memory. Instead, in-context ngrams
can be stored in a trie (Pauls & Klein, 2011) and queried
efficiently. Thus, for models with a recurrent form, NGHn

introduces little overhead during inference.

ICLL Our experiments take an existing architecture (for
example RetNet), and insert a sequence of three NGH heads

7Arora et al. (2023)’s sparse attention layers resembles our
NGH1, but with learned attention weights; our implementation
attends uniformly to all matching contexts.

8

In-Context Language Learning: Architectures and Algorithms

Table 1. N-gram layers bring other models to the Transormer
level on ICLL: We train RetNet and GLA models with n-gram
heads on ICLL with N = 2500 training examples. In TVD
metric, adding n-gram layers, brings model performance to the
Transformer level trained on the same data without n-gram heads..
In accuracy, hybrid models can outperform Transformer models in
the accuracy metric.

Model TVD (↓) Accuracy (↑)
RetNet (Sun et al., 2023) 0.392 0.800

NGH(1)
1 0.310 0.814

NGH(1,2)
1 0.229 0.925

NGH(1,2,3)
1 0.217 0.94

GLA (Yang et al., 2023) 0.624 0.526
NGH(1)

1 0.302 0.819
NGH(1,2)

1 0.211 0.929
NGH(1,2,3)

1 0.207 0.946

Transformer (Vaswani et al., 2017) 0.203 0.926

Table 2. N-gram layers improve language models: We train
equal sized (340M parameters) language models with and without
n-gram heads on 7B tokens from the SlimPajama dataset (Sobol-
eva et al., 2023). Adding n-gram layers improves performance
regardless of the model, reducing test set perplexities by up to
1.14.

Model Perplexity (↓)
RetNet (Sun et al., 2023) 16.55

NGH(1,2,3)
1 + NGH(1,2,3)

−2 15.86 (+4.2%)

GLA (Yang et al., 2023) 15.65
NGH(1,1,1)

1 + NGH(1,1,1)
−2 15.54 (+0.7%)

NGH(1,2,3)
1 + NGH(1,2,3)

−2 15.24 (+2.6%)

Transformer (Llama) (Touvron et al., 2023) 16.96
NGH(1,2,3)

1 + NGH(1,2,3)
−2 15.82 (+6.7%)

with increasing context size [NGH1,NGH2,NGH3] sequen-
tially. We denote this whole bundle NGH(1,2,3)

m , where m
specifies the original layer after which the NGH heads are
added, and the whole architecture as RetNet + NGH(1,2,3)

m

(with negative m denoting an offset from the output layer
rather than the input layer).

We insert n-gram layers into RetNet and GLA models. In Ta-
ble 1, the addition of ordinary induction heads (NGH(1)) im-
proves GLA more than 50% in TVD, and improves RetNet
slightly. With second-order n-gram heads (NGH(1,2)), both
RetNet and GLA match Transformer performance. Third-
order heads improve performance even further, enabling
other models to outperform Transformers in accuracy.

Language Modeling We next test if these improvements
transfer to language modeling on real data. We add layer
normalization and MLP networks after each NGH layer

such that one NGH(i)
m plus MLP makes 4d2 parameters,

and collectively three NGH layers (i.e., i ∈ [1, 2, 3]) make
12d2 parameters, matching the number of parameters of
a standard Transformer layer.8 For each base model, we
insert two n-gram head sequences: one replacing the sec-
ond layer (NGH(1,2,3)

1), and one replacing the second-to-last
(NGH(1,2,3)

-2).

In Section 6, we observe that n-gram heads consistently im-
prove LMs. Indeed, the best improvement appears in Trans-
formers, with a 6.7% decrease in perplexity. Higher-order
heads are important: using all n-grams decreases perplexity
4 times more than using just 1-gram layers.

7. Conclusion
This paper has investigated in-context language learning
(ICLL) in neural sequence models. We identified key differ-
ences among model classes, with Transformers emerging as
particularly adept at ICLL. Further investigation revealed
that Transformers succeed by implementing in-context n-
gram heads (higher-order induction heads). Inspired by
these findings, we demonstrated that inserting simple n-
gram heads into neural architectures significantly improves
their ICLL performance and fit to natural data.

Impact Statement
This paper presents experiments on a synthetically gener-
ated dataset and a web corpus, with the goal of analyzing
and improving in-context learning and language modeling.
Like many models trained on web text, LMs trained on the
SlimPajama dataset may produce biased or harmful out-
put. We do not currently have reason to believe that our
proposed modeling improvements affect the prevalence of
these outputs. Our code release does not include a trained
model.

Acknowledgements
Thanks to William Merill and Jon Rawski for valuable feed-
back on an early draft of this paper. Ekin Akyürek and Jacob
Andreas are supported by Intel and the National Science
Foundation under the PPoSS program (CCF-2217064) as
well as the OpenPhilanthropy Foundation. Yoon Kim and
Bailin Wang were supported by MIT-IBM Watson AI.

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learning?
Investigations with linear models. In Proceedings of the
International Conference on Learning Representations,

8See Appendix F for a sample implementation.

9

In-Context Language Learning: Architectures and Algorithms

2023.

Angluin, D. Identifying languages from stochastic examples.
Yale University. Department of Computer Science, 1988.

Arora, S., Eyuboglu, S., Timalsina, A., Johnson, I., Poli,
M., Zou, J., Rudra, A., and Ré, C. Zoology: Measuring
and improving recall in efficient language models. ArXiv
preprint, abs/2312.04927, 2023.

Belinkov, Y. Probing classifiers: Promises, shortcomings,
and advances. Computational Linguistics, 48(1), 2022.

Bhattamishra, S., Ahuja, K., and Goyal, N. On the ability
and limitations of Transformers to recognize formal lan-
guages. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2020.

Bolukbasi, T., Pearce, A., Yuan, A., Coenen, A., Reif, E.,
Viégas, F., and Wattenberg, M. An interpretability illusion
for BERT. ArXiv preprint, abs/2104.07143, 2021.

Chan, S., Santoro, A., Lampinen, A., Wang, J., Singh, A.,
Richemond, P., McClelland, J., and Hill, F. Data distri-
butional properties drive emergent in-context learning in
Transformers. Advances in Neural Information Process-
ing Systems, 2022.

Chen, S. F. and Goodman, J. An empirical study of smooth-
ing techniques for language modeling. In Proceedings of
the Annual Meeting of the Association for Computational
Linguistics, Santa Cruz, California, USA, 1996.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei,
F. Why can GPT learn in-context? Language models
secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguis-
tics, 2023.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society: Series B (Method-
ological), 39(1), 1977.

Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X.,
Chen, X., Bousquet, O., and Zhou, D. Compositional
semantic parsing with large language models. In Pro-
ceedings of the International Conference on Learning
Representations, 2023.

Dupont, P., Denis, F., and Esposito, Y. Links between proba-
bilistic automata and hidden Markov models: Probability
distributions, learning models and induction algorithms.
Pattern Recognition, 38(9), 2005.

Elman, J. L. Finding structure in time. Cognitive science,
14(2), 1990.

Finlayson, M., Richardson, K., Sabharwal, A., and Clark,
P. What makes instruction learning hard? An investiga-
tion and a new challenge in a synthetic environment. In
Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2022.

Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A.,
and Re, C. Hungry hungry hippos: Towards language
modeling with state space models. In Proceedings of the
International Conference on Learning Representations,
2023.

Garg, S., Tsipras, D., Liang, P. S., and Valiant, G. What
can Transformers learn in-context? A case study of sim-
ple function classes. Advances in Neural Information
Processing Systems, 2022.

Gers, F. A. and Schmidhuber, E. LSTM recurrent networks
learn simple context-free and context-sensitive languages.
IEEE Transactions on Neural Networks, 12(6), 2001.

Gold, E. M. Language identification in the limit. Informa-
tion and Control, 10(5), 1967.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. ArXiv preprint,
abs/2312.00752, 2023.

Gu, A., Goel, K., Gupta, A., and Ré, C. On the parameteri-
zation and initialization of diagonal state space models.
Advances in Neural Information Processing Systems, 35,
2022a.

Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. In Proceedings
of the International Conference on Learning Representa-
tions, 2022b.

Hahn, M. and Goyal, N. A theory of emergent in-context
learning as implicit structure induction. ArXiv preprint,
abs/2303.07971, 2023.

Hewitt, J., Hahn, M., Ganguli, S., Liang, P., and Manning,
C. D. RNNs can generate bounded hierarchical languages
with optimal memory. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing,
2020.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8), 1997.

Hopcroft, J. An n log n algorithm for minimizing states in a
finite automaton. In Theory of Mchines and Computations.
Elsevier, 1971.

Hua, W., Dai, Z., Liu, H., and Le, Q. V. Transformer
quality in linear time. In Procedings of the International
Conference on Machine Learning, 2022.

10

In-Context Language Learning: Architectures and Algorithms

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are RNNs: Fast autoregressive Transform-
ers with linear attention. In Proceedings of the Interna-
tional Conference on Machine Learning, 2020.

Lee, I., Jiang, N., and Berg-Kirkpatrick, T. Exploring the
relationship between model architecture and in-context
learning ability. ArXiv preprint, abs/2310.08049, 2023.

Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B.
Long range language modeling via gated state spaces.
ArXiv preprint, abs/2206.13947, 2022.

Merrill, W. On the linguistic capacity of real-time counter
automata. ArXiv preprint, abs/2004.06866, 2020.

Merrill, W. and Sabharwal, A. The parallelism tradeoff:
Limitations of log-precision transformers. Transactions
of the Association for Computational Linguistics, 11,
2023.

Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M.,
Hajishirzi, H., and Zettlemoyer, L. Rethinking the role of
demonstrations: What makes in-context learning work?
ArXiv preprint, abs/2202.12837, 2022.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., et al. In-context learning and induction heads. ArXiv
preprint, abs/2209.11895, 2022.

Pauls, A. and Klein, D. Faster and smaller n-gram lan-
guage models. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies, 2011.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Cao, H., Cheng, X., Chung, M., Grella, M., GV, K. K.,
et al. RWKV: Reinventing RNNs for the transformer era.
ArXiv preprint, abs/2305.13048, 2023.

Pitt, L. Probabilistic inductive inference. Journal of the
ACM (JACM), 36(2), 1989.

Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T.,
Baccus, S., Bengio, Y., Ermon, S., and Ré, C. Hyena
hierarchy: Towards larger convolutional language models.
ArXiv preprint, abs/2302.10866, 2023.

Qin, Z., Han, X., Sun, W., Li, D., Kong, L., Barnes, N., and
Zhong, Y. The devil in linear transformer. ArXiv preprint,
abs/2210.10340, 2022.

Rabiner, L. R. A tutorial on hidden Markov models and
selected applications in speech recognition. Proceedings
of the IEEE, 77(2), 1989.

Shazeer, N. GLU variants improve Transformer. ArXiv
preprint, abs/2002.05202, 2020.

Shi, X., Padhi, I., and Knight, K. Does string-based neural
MT learn source syntax? In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, Austin, Texas, 2016.

Shin, R. and Van Durme, B. Few-shot semantic parsing with
language models trained on code. In Proceedings of the
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, Seattle, United States, 2022.

Soboleva, D., Al-Khateeb, F., Myers, R., Steeves, J. R.,
Hestness, J., and Dey, N. SlimPajama: A 627B
token cleaned and deduplicated version of RedPa-
jama, 2023. URL https://huggingface.co/
datasets/cerebras/SlimPajama-627B.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Sun, Y., Dong, L., Huang, S., Ma, S., Xia, Y., Xue, J.,
Wang, J., and Wei, F. Retentive network: A successor to
transformer for large language models. ArXiv preprint,
abs/2307.08621, 2023.

Suzgun, M., Gehrmann, S., Belinkov, Y., and Shieber,
S. M. Memory-augmented recurrent neural networks
can learn generalized Dyck languages. ArXiv preprint,
abs/1911.03329, 2019.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation
language models. ArXiv preprint, abs/2302.13971, 2023.

Valiant, L. G. A theory of the learnable. Communications
of the ACM, 27(11):1134–1142, 1984.

van der Poel, S., Lambert, D., Kostyszyn, K., Gao, T.,
Verma, R., Andersen, D., Chau, J., Peterson, E., Clair,
C. S., Fodor, P., et al. MLRegTest: A benchmark for the
machine learning of regular languages. ArXiv preprint,
abs/2304.07687, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, 2017.

von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent. In
Proceedings of the International Conference on Machine
Learning, 2023a.

von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi,
S., Zucchet, N., Scherrer, N., Miller, N., Sandler, M.,

11

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

In-Context Language Learning: Architectures and Algorithms

Vladymyrov, M., Pascanu, R., et al. Uncovering mesa-
optimization algorithms in Transformers. ArXiv preprint,
abs/2309.05858, 2023b.

Wen, K., Li, Y., Liu, B., and Risteski, A. Transform-
ers are uninterpretable with myopic methods: A case
study with bounded Dyck grammars. ArXiv preprint,
abs/2312.01429, 2023. URL https://arxiv.org/
abs/2312.01429.

Xie, S. M., Raghunathan, A., Liang, P., and Ma, T. An
explanation of in-context learning as implicit Bayesian
inference. In Proceedings of the International Conference
on Learning Representations, 2022.

Yang, S., Wang, B., Shen, Y., Panda, R., and Kim, Y. Gated
linear attention Transformers with hardware-efficient
training. ArXiv preprint, abs/2312.06635, 2023.

Zhai, S., Talbott, W., Srivastava, N., Huang, C., Goh, H.,
Zhang, R., and Susskind, J. An attention free Transformer.
ArXiv preprint, abs/2105.14103, 2021.

Zhang, B. and Sennrich, R. Root mean square layer nor-
malization. Advances in Neural Information Processing
Systems, 2019.

12

https://arxiv.org/abs/2312.01429
https://arxiv.org/abs/2312.01429

In-Context Language Learning: Architectures and Algorithms

A. Model Architectures
A.1. Overview

Linear Time Invariant (LTI) Models Linear and time invariant models usually have both recurrent and convolutional
forms. Concretely, their recurrences are linear and the parameters do not change over time, as in h′

i = Ah′
i−1+Bxi, where

A,B are learnable matrices and σ is an identity function and thus omitted. A representative example is the S4 model (Gu
et al., 2022b, along with its many variants, e.g., Gu et al., 2022a; Mehta et al., 2022), which demonstrates competitive
performance of such forms on sequence modeling.

Extending the LTI principle, models with weak linear time invariance (WLTI) allow for a time-varying component that can
still be captured convolutionally after a suitable transformation. When h′

i = Ah′
i−1 +B(xi)xi, the B is not time-invariant

any more, but if it can be written in the form h′
i = Ah′

i−1 +Bϕ(xi), it may still be viewed as LTI over the transformed
input ϕ(xi). Next, we list two kinds of WLTI networks from the literature.

Linear Attention as Weak Time-Invariance Linear attention networks such as Linear Transformers (Katharopoulos
et al., 2020) and Retentive Networks (RetNets, Sun et al., 2023) can be represented by recurrent dynamics wherein hidden
states are updated through the accumulation of key-value outer products, as in Si = λSi−1 + k⊺

i vi, where S denotes 2-D
hidden states, and k,v denote key/value vectors (as in attentional networks) respectively. Since the input of the recurrence
(i.e, k,v) is dependent on x and λ is fixed, we characterize them as WLTI networks. Moreover, this recurrent perspective
reveals that the effective capacity of the hidden states scales quadratically with their dimensionality, offering a potential
explanation for the performance of these models.

Weak Linear Time Invariant Convolutional Models The H3 model (Fu et al., 2023) combines linear attention with a
convolutional S4-like layer, resulting in a more complex recurrent form than linear attention with similar input-dependent
construction for input (see Appendix A.10). The RWKV model (Peng et al., 2023), though not originally presented in a
convolutional form, adheres to the LTI principle and can be decomposed into a pair of state space models (SSMs), suggesting
a potential for convolutional reformulation (Gu & Dao, 2023; see Appendix A.8). The Hyena model (Poli et al., 2023)
is a fully convolutional model with data-dependent gating, as in h′

i = ϕ(xi)(l ∗ x<i), where ϕ(xi) denotes a non-linear
mapping of xi. We also characterize Hyena as WLTI considering the additional input-dependent mapping ϕ(xi), compared
to vanilla LTI convolutional models.

Linear Time Variant Models Recent state-of-the-art models, Mamba (Gu & Dao, 2023) and GLA Transformer
(Yang et al., 2023), feature fully time-dependent parameterization in both the recurrent and input transformations, as in
h′
i = A(xi)h

′
i−1 + B(xi)xi. Their time-variant nature allows for a more flexible and adaptive response to the input

sequence, potentially more expressive in terms of sequence modeling. However, these models represent a departure from the
LTI framework and pose new challenges for efficient training, as they do not conform to convolutional structures.

Non-Linear Time Variant Models Finally, we also include LSTMs, which were the most widely used sequence models
in the pre-Transformer era. LSTMs (Hochreiter & Schmidhuber, 1997) feature a complex mapping (σ) based on gating
and intermediate cell states in the recurrence, apart from input-dependent parameterizations, as in h′

i = σ
(
A(xi)h

′
i−1 +

B(xi)xi

)
(see Appendix A.7). Such non-linear time variant models are incompatible with efficient parallel training due to

complex dependencies among hidden states. Nevertheless, we include LSTMs to examine their expressivity in comparison
to recent sequence models, especially other recurrent models.

A.2. Modeling Overview

We experiment with a set of neural autoregressive sequence models that generate sequences via a product of conditional
distributions ΠT

i=1pm (xi+1 | x1:i). We characterize each model with three common consecutive modules: (i) an embedding
layer that maps input tokens to vectors, (ii) a stack of backbone layers, (iii) and an output projection layer that maps the
final outputs from the backbone to the distribution over the token space:

pm (xi+1 | x1:i) = softmax(moutput ◦mbackbone ◦membed (x1:i)) (12)

Collectively, the three modules form a mapping from one-hot vectors to pre-softmax logits, i.e., {0, 1}T×|V | → RT×|V |

where T denotes the sequence length and |V | denotes the vocabulary size.

13

In-Context Language Learning: Architectures and Algorithms

Embedding Layer (membed) The embedding layer is a single projection matrix which converts one-hot input vectors to
dense vectors:

membed(x) = We x. (13)

In almost all models, positional information need not be provided in the embedding layer. Instead, it may either be explicitly
incorporated into attention mechanisms (as in rotary positional embeddings; Su et al., 2024), or implicitly provided via
recurrent / convolutional updates. The only exception is the original Transformer, in which positional information is added
via learned positional embeddings:

membed(x)i = We xi +Wp i, (14)

where i is one-hot representation of the time-step i. We use the original Transformer in our synthetic experiments, and use
the improved Transformer with Rope in our language modelling experiments on real data.

Backbone Layers (m(l)
backbone) Each backbone layer updates the previous layer’s hidden outputs (h(l−1)) in two sequential

steps. First, a token mixer that models the token-level interactions, which may be implemented as any causal network
mapping hidden states of previous tokens to a new hidden state for the current token:

a(l) = m
(l)
mixer

(
h(l−1)

)
, (15)

where m
(l)
mixer

(
h(l−1)

)
i
= m

(l)
mixer

(
h
(l−1)
1:i

)
t
. Then, a feed-forward network, m(l)

FF , applied to the final outputs of the layer
with a residual connection:

m
(l)
backbone(h

(l−1)) = m
(l)
FF

(
a(l)

)
+ a(l). (16)

or alternatively in gated attention unit (GAU, Hua et al., 2022):

m
(l)
backbone(h

(l−1)) = m
(l)
GAU

(
h(l−1),a(l)

)
+ a(l). (17)

where mGAU(x,y) = W3(W1x) ⊙ (W2y), and ⊙ denotes element-wise product. 9 In contrast to the token mixer, the
feed-forward network is applied individually for each token, i.e., there is no token-wise interaction.

Output Projection (moutput) The projection layer consists of a single fully-connected projection that maps outputs of the
backbone h(L) to the output space:

moutput(h
(L)) = Wo h

(L) (18)

In the following sections, we review the model architectures studied in this work. They share the common skeleton presented
above, and mainly differ in the design of the token-mixing module mmixer.10 We intend to present a unified view of all
models by using shared notation and equivalent forms (when possible).

We will denote input/output of a token mixer as x ∈ RL×d and y ∈ RL×d, respectively. When possible, we will present all
the possible forms (i.e., attention-style form, recurrent form and convolutional form) of a model. Generally, attentional or
convolutional forms are useful for training, whereas recurrent forms are useful for efficient inference.

A.3. Transformers with Self Attention (Vaswani et al., 2017)

Standard self-attention performs token mixing in the following way:

qi,kj = Wqxi,Wkxj ∈ Rdk (19)
Aij ∝ exp(⟨qi,kj⟩) ∈ (0, 1) softmax attention (20)

vj = Wvxj ∈ Rdv (21)

zi =

i∑
j=1

Aijvj ∈ Rdv (22)

yi = Wozi ∈ Rd (23)

9Among all the models presented, only Mamba employs the GAU architecture.
10For brevity, we omit the normalization layers which are applied before each token mixer and feed-forward layer.

14

In-Context Language Learning: Architectures and Algorithms

where dk, dv denote the dimension for query/key and value vectors, respectively. The attention scores are computed based on
the pairwise dot-product between the query vector of the current token and key vectors from the context. In the multi-head
attention, attention output zi is independently computed in each head; all outputs are concatenated as the final attention
output, which will then be fed into the output projection Wo.

A.4. Transformers with Linear Attention (Katharopoulos et al., 2020)

Linear attention (Katharopoulos et al., 2020) simplifies standard attention by replacing exp(⟨qi,kj⟩) with a kernel map
k(qi,kj) with an associative feature map (i.e., k(qi,kj) = ϕ(qi)ϕ(kj)). In this work, we consider a simple feature map of
identity function (i.e., ϕ(qi) = qi), which yields surprisingly good performance for language model on real data in recent
works (Qin et al., 2022; Yang et al., 2023). With this feature map, the token mixing process is very similar to standard
attention, except that attention scores are not normalized.

qi,kj = Wqxi,Wkxj ∈ Rdk (24)
Aij = ⟨qi,kj⟩ linear attention (25)

vj = Wvxj ∈ Rdv (26)

zi =

i∑
j=1

Aijvj ∈ Rdv (27)

yi = Wozi ∈ Rd (28)

The linear attention has an equivalent recurrent form as follows.

qi,kj = Wqxi,Wkxj ∈ Rdk (29)

Si = Si−1 + k⊺
i vi ∈ Rdk×dv (30)

zi = q⊺
i Si ∈ Rdv (31)

(the rest is the same as the attentional form)

where S is the 2-D hidden state of the linear recurrence.

A.5. RetNet (Sun et al., 2023; Qin et al., 2022)

Based on linear attention, RetNet 11 further incorporates rotary positional embeddings(Su et al., 2024) and a fixed decay rate
λ. The resulting token mixer, called retention, has the following form:

qi,kj = Wqxi,Wkxj ∈ Rdk (32)

q̃i, k̃j = RoPE(q1:i),RoPE(k1:j) ∈ Rdk (33)

Aij = λi−j⟨q̃i, k̃j⟩ (34)

vj = Wvxj ∈ Rdv (35)

zi = retention(x1:i) =

i∑
j=1

Aijvj ∈ Rdv (36)

ri = Wrxi ∈ Rdv (37)

yi = Wo

(
swish(ri)⊙ zi

)
∈ Rd (38)

While the addition of rotary positional embedding to query/key vectors is straightforward in this attention-style form, the
additional decay term λ is easier to understand in this equivalent recurrent form. The linear attention has an equivalent

11TransNormer proposed in Qin et al. (2022) has almost the same architecture as RetNet.

15

In-Context Language Learning: Architectures and Algorithms

recurrent form as follows:

qi,kj = Wqxi,Wkxj ∈ Rdk (39)

q̃i, k̃j = RoPE(q1:i),RoPE(k1:j) ∈ Rdk (40)

Si = λSi−1 + k̃⊺
i vi ∈ Rdk×dv (41)

zi = q̃⊺
i Si ∈ Rdv (42)

(the rest is the same as the attentional form)

A.6. GLA (Yang et al., 2023)

Compared with RetNet, the GLA architecture incorporates more fine-grained data-dependent gating. Instead of using rotary
positional embeddings, these gates can implicitly capture positional information. For the ease of understanding, we first
show the recurrent form of GLA, and then its attention-style form.

For each token, GLA additionally relies on two data dependent decay vectors αi ∈ Rdk and βi ∈ Rdv . The outer-product of
these vectors (i.e., α⊺

i βi) decides how much information to preserve from previous hidden state Si−1.

qi,kj = Wqxi,Wkxj ∈ Rdk (43)

αi = σ(Wαxi) ∈ Rdk βj = σ(Wβxj) ∈ Rdv (44)

vi = Wvxi ∈ Rdv (45)

Si = α⊺
i βi ⊙ Si−1 + k⊺

i vi ∈ Rdk×dv (46)

zi = q⊺
i Si ∈ Rdv (47)

ri = Wrxi ∈ Rdv (48)

yi = Wo

(
swish(ri)⊙ zi

)
∈ Rd (49)

Like linear attention and RetNet, GLA also has the following attentional form.12

qi,kj = Wqxi,Wkxj ∈ Rdk (50)

αi = σ(Wαxi) ∈ Rdk βj = σ(Wβxj) ∈ Rdv (51)

ai =
∏
i

α1:i ∈ Rdk bj =
∏
j

β1:j ∈ Rdv (52)

vj = Wvxj ∈ Rdv (53)

q̃i = qi ⊙ ai ∈ Rdk k̃j = kj/aj ∈ Rdk ṽj = vj ⊙ bj ∈ Rdv (54)

zi = gla(x1:i) =
(i∑
j=1

Aijvj

)
/bi ∈ Rdv (55)

(the rest is the same as the recurrent form)

Here ⊙ and / denote element-wise multiplication and division; σ denotes a sigmoid function.

Connections among Linear Attention, RetNet, GLA RetNet and GLA both inherit the basic linear recurrence with 2-D
hidden states from linear attention. GLA and RetNet mainly differ in the introduction of a decay term to their recurrent
forms: GLA incorporates fine-grained data-dependent gates (α,β) whereas RetNet uses a single fixed decay λ that is shared
across all tokens and hidden dimensions. Moreover, RetNet and GLA incorporate an additional output gate ri before the
output projection Wo. Such output gating is also used in the LSTM and RWKV models described next.

A.7. LSTM (Hochreiter & Schmidhuber, 1997)

All the recurrent models we have presented so fare are linear, in that the there are no non-linear dependencies between
adjacent hidden states. We also consider LSTMs (Hochreiter & Schmidhuber, 1997), a widely used class of non-linear

12Please refer to the original paper for the derivation.

16

In-Context Language Learning: Architectures and Algorithms

recurrent models with the form:

fi = σ(Wfxi +Ufhi−1) ∈ Rd (56)

ii = σ(Wixi +Uihi−1) ∈ Rd (57)

oi = σ(Woxi +Uohi−1) ∈ Rd (58)

c̃i = tanh(Wcxi +Uchi−1) ∈ Rd (59)

ci = fi ⊙ ci−1 + ii ⊙ c̃i ∈ Rd (60)

yi = oi ⊙ tanh(ci) ∈ Rd (61)

where f , i,o denote forget, input and output gates respectively. To strictly follow the architecture of traditional multi-layer
LSTM, we do not use the feed-forward in-between LSTM layers, i.e., the input of layer l is directly the output from layer
l − 1.

A.8. RWKV (Peng et al., 2023)

The recurrence of RWKV is motivated by attention-free networks (Zhai et al., 2021). In contrast to linear attention models,
this architecture uses a one-dimensional hidden state:

ki = Wkxi ∈ Rdv vi = Wvxi ∈ Rdv (62)

ai = exp(−w)⊙ ai−1 + exp(ki)⊙ vi ∈ Rdv (63)

bi = exp(−w)⊙ bi−1 + exp(ki) ∈ Rdv (64)

zi = wkv(x1:i) =
ai−1 + exp(ki + u)⊙ vi

bi−1 + exp(ki + u)
∈ Rdv (65)

ri = Wrxi ∈ Rdv (66)

yi = Wo

(
σ(ri)⊙ zi) ∈ Rdv (67)

where w,u ∈ Rdv are learnable parameters and σ is an activation function. The WKV operators maintain a recurrence with
a pair of states (ai, bi). Unlike linear attention, in which the 2D hidden state is constructed via an outer-product k⊺

i vi, WKV
uses an element-wise dot-product exp(ki)⊙ vi, so key and value vectors have the same shape.

Since the decay term w is not data-dependent, WKV also has the following equivalent convolutional form:

ki = Wkxi ∈ Rdv vi = Wvxi ∈ Rdv (68)

k̃vi = exp(ki)⊙ vi ∈ Rdv k̃i = exp(ki) ∈ Rdv (69)

li = exp(−iw) ∈ Rdv (70)

a = l ∗ k̃v ∈ RL×dv (71)

b = l ∗ k̃ ∈ RL×dv (72)
(the rest is the same as the recurrent form)

where ∗ denotes batched long convolution operator, i.e., one dimension of the filter h[:, i] ∈ RL×1 handles one corresponding
dimension a[:, i], b[:, i] ∈ RL×1.

A.9. S4 (Gu et al., 2022b)

Structured state space models (S4) are a family of sequence models defined with four parameters (∆,A,B,C). S4
models are typically represented as a sequence mapping RL×1 → RL×1, wherein the input and output are both scalars (i.e.
x,y ∈ R1). In this case, S4 has the following recurrent form.

hi = Āhi−1 + B̄xi ∈ Rdk (73)

yi = Chi ∈ R1 (74)

17

In-Context Language Learning: Architectures and Algorithms

where dinner denotes the dimension of hidden states hi, Ā ∈ Rdinner×dinner , B̄ ∈ Rdinner×1 are transformed parameters for
discrete sequence data according to a certain discretization rule, and C ∈ R1×dinner . Equivalently, S4 has the following
convolutional form:

K̄ = [CB̄,CĀB̄, . . .CĀL−1B̄] (75)
y = x ∗ K̄ (76)

where ∗ denotes the convolution operator and K̄ denotes a convolutional kernel. This form is critical for enabling efficient
parallel training via Fast Fourier Transform (FFT) algorithms.

Since the recurrent forms of other models are usually presented with vector input/output (i.e., xi,yi ∈ Rd), we may present
S4’s equivalent batched recurrent form as follows:

Si = Ā ◦ Si−1 + B̄ ◦ xi ∈ Rd ×dinner (77)

yi = C ◦ Si ∈ Rd (78)

where Si denotes a 2-D hidden state, Ā ∈ Rd×dinner×dinner , B̄ ∈ Rd×dinner×1,C ∈ Rd×1×dinner , ◦ denotes batched matrix
multiplication.13 In this batched form, d numbers of independent SSM run in parallel, each responsible for a dimension of
input x.

Connections to Linear Attention With this batched form in Equation (78), it becomes clear that S4, like linear attention,
enjoys a large effective hidden states for recurrence. We can also draw a rough parallel between (B̄, C) in S4 and (qi,kj) in
linear attention as they handle the input and output for the recurrences, respectively. This parallel reveals the difference
between S4 and linear attention. In S4, the input and output mapping is not data-dependent, i.e., (B̄, C) does not depend on
input x. In comparison, qi and kj are linear mappings of the input xi.

A.10. H3 (Fu et al., 2023)

H3 is a mixture of state-space models and linear attention. In particular, it employs the outer-product structure from linear
attention (i.e., kT

i vi) to construct the input of a state-space model:

ki = Wkxi ∈ Rdk vi = Wvxi ∈ Rdv (79)

x′
i = k⊺

i vi ∈ Rdk×dv (80)

Si = Ā⊙ Si−1 + B̄⊙ x′
i ∈ Rdk×dv×dinner (81)

z′
i = C ◦ Si ∈ Rdk×dv (82)

qi = Wqxi ∈ Rdk (83)

zi = qiz
′
i ∈ Rdv (84)

yi = z′
iWo ∈ Rd (85)

where Ā, B̄, C ∈ Rdinner are parameters of the state-space models, ⊙ denotes element-wise product with broadcasting, ◦
denotes batched matrix-vector product. The SSM is diagonally parameterized (i.e., Ā is a vector) and the original H3 paper
additionally uses another shift-SSM (Fu et al., 2023) to further refine the key vector ki.

A.11. Hyena (Poli et al., 2023)

Hyena is a purely convolutional model that does not have an equivalent recurrent form, unlike S4. However, it recursively
applies the convolution operator at the sequence level for N times. In practice, N is usually set to be 2, and the resulting

13To differentiate the size of hidden states in recurrences, we use hi in the 1-D case and Si in the 2-D case.

18

In-Context Language Learning: Architectures and Algorithms

form is as follows:

vn = Wnx ∈ RL×d (86)

z0 = v0 ∈ RL×d (87)

lni = FFN(i) ∈ RL×d

zn = vn−1 ⊙ (ln ∗ zn−1) ∈ RL×d

}
recursion n = 1 . . . N (88)

y = zN ∈ RL×d (89)

where ∗ denotes batched convolution. In practice, the filter is padded to the size of (2L− 1)× d so that the convolution
operator becomes a circular convolution for efficient training using FFT. 14 Note that the resulting kernels l1, l2 do not
depend on the input x, but the convolution output is controlled by the data-dependent gate v1,v2 in Equation (88).

A.12. Mamba (Gu & Dao, 2023)

Mamba has the same recurrent form as S4, and uses data-dependent parameterization for Ā, B̄, C:

vi = Wvxi ∈ Rdv (90)

Si = Āi ⊙ Si−1 + B̄i ⊙ vi ∈ Rdk×dv (⊙ with broadcast) (91)

yi = CiSi ∈ Rdv (92)

where Āi, B̄i ∈ Rdk×dv , Ci ∈ Rdv are data-dependently parameterized, i.e., computed based on xi/vi. However, due to
the data-dependence, this recurrent form no longer has an equivalent convolutional form for efficient training. The original
paper handles this issue with customized hardware-efficient training algorithms based on the recurrent form.

B. Optimization & Hyperparameter Search

Hyper Parameter Search

hidden size [64, 128, 256, 512, 1024]
number of layers [1, 2, 4, 8, 12]
number of heads [1, 2, 4]
epochs [200, 400]
batch size 32
optimizer [AdamW]

learning rate [1e-4, 2.5e-4]
weight decay [0.01, 0.1]
βs [(0.9, 0.99)]

scheduler Cosine Scheduler with Warmup
minimum learning rate 2.5e-5
warm-up start learning rate 1e-7
warm-up steps 25000

Table 3. Hyper-parameter search space for neural models.

We perform exhaustive search over the grid of hyper-parameters in Table 3 and pick the best setting best on validation set on
ICLL and AR seperately. In AR we search through hidden sizes up to 256. In ICLL, we search first up to a hidden size of
256; if the best performing hidden size is 256, we try 512, and then 1024. We also use only the best-performing weight
decay of 0.1 and learning rate of 2.5e-4 in the additional search runs.

14Please refer to Section 2 and 3 of (Poli et al., 2023) for details.

19

In-Context Language Learning: Architectures and Algorithms

C. Algorithms
In this section, we share the details of implemented algorithms in Section 4. We use x to denote problem instances d for
simplicity.

C.1. In-context N-gram Language Model

Algorithm 1 In-context n-gram language model with back-off

1: Input: Current prefix of s = x1:i−1 input, n-gram order n
2: Output: Next token distribution
3: // Create in-context corpus from the prefix
4: D ← map(add padding character, s.split(’ ’))
5: // Build all n-gram token counts up to order n
6: c← count all n grams(D;n)
7: // Apply smoothing
8: c∗ ← smoothing(c)
9: // To compute P (xi | xi−1

i−N+1) as :
10: if c(xi

i−N+1) > 0 then

11: return P (xi | xi−1
i−N+1) =

c∗(xi
i−N+1)

c∗(xi−1
i−N+1)

12: else
13: // Backoff to lower order model
14: return P (xi | xi−1

i−N+1) = α(xi−1
i−N+1)P (xi | xi−1

i−N+2)
15: end if

In Algorithm 1, we present an in-context applied n-gram model that incorporates a back-off mechanism (Chen & Goodman,
1996). This model differs from the standard n-gram approach that is trained on a fixed training set. Instead, here we train
a unique n-gram for each example at each time step to predict the subsequent word. The back-off strategy allows for the
assignment of non-zero probabilities to unseen n-grams by utilizing information from lower-order n-grams, as shown in line
14 of Algorithm 1. For each n-gram context xi−1

i−N+1, the back-off weight β(xi−1
i−N+1) can be computed as follows:

β(xi−1
i−N+1) = 1−

∑
{w|c(xi−1

i−N+1w)>0}

c∗(xi−1
i−N+1w)

c∗(xi−1
i−N+1)

(93)

In the absence of smoothing, the summation is expected to equal 1, resulting in β being 0. Smoothing techniques, such as
Laplace smoothing, modify the counts and allocate a probability mass for unseen n-grams. Alternatively, by excluding the
probability corresponding to the padding token w, we can reserve probability mass for back-off without explicit smoothing.
This approach is employed in our n-gram model implementation and it worked slightly better than add-one smoothing.

Finally, the back-off weights α are calculated by normalizing beta for the lower-order n-gram probabilities for the unseen
current n-gram sequences:

α(xi−1
i−N+1) =

β(xi−1
i−N+1)∑

{w|c(xi−1
i−N+1w)=0} P (w | xi−1

i−N+2)
(94)

It is important to note that the normalization ensures that the probabilities of all potential continuations of a given context
sum to one.

C.2. In-context Baum-Welch HMM Language Model

Given a NFPA from REGBENCH, we can construct a Hidden Markov Model (HMM) that assigns the same probabilities to

20

In-Context Language Learning: Architectures and Algorithms

Algorithm 2 In-context Baum-Welch HMM language model

Input: Current prefix of s = x1:i−1 input, number of states |S|, a vocabulary V , a maximum
number of iterations N.
Output: Next token distribution
// initialize the corpus from the prefix
O ← s.split(’ ’)
// initialize the HMM parameters given the number of states and vocabulary
λ← (A,B, π)
for N times do

// expectation step (E-step)
// mask A to not have self transitions (see Appendix C.3)
A← mask transitions(A)
// mask π to start at state 0 (see Appendix C.4)
π ← mask pi(π)
ξ, γ, b← 0,0,0
for each observation sequence On do

// run forward-backward to get α and β
α, β ← forward-backward(On | λ)
// accumulate expected values for all time steps t, states l, next states m, tokens k
P (qt = sl | On, λ) ∝ αt(l)βt(l)
P (qt = sl, qt+1 = sm | On, λ) ∝ αt(l)Almβt+1(m)Bmk

// expected states
γt(l)← γt(l) + P (qt = sl | On, λ)
// expected transitions
ξt(l,m)← ξt(l,m) + P (qt = sl, qt+1 = sm | On, λ)
// expected emissions
b(m, k)← b(m, k) + 1On

t =kP (qt = sm | On, λ)
end for
// maximization step (M-step)
// update state transition probabilities

Alm ←
∑T−1

t=1 ξt(l,m)∑T−1
t=1 γt(l)

// update emission probabilities
Bmk ← bmk∑T

t=1 γt(m)

// update initial state probabilities
πl ← γ1(l)/|O|

end for
// Prediction Step
// Run forward algorithm on the last observation to get α
α← forward(Olast | λ)
p(xis) ∝ α|Olast|(l)AlmBmxi

return p(xi)

any given string15. The construction can be done as:

• For each pair of states Si, Sj ∈ S, create a corresponding HMM state H(Si,Sj).

• Define the transition probabilities A(H(Si,Sj), H(Sl,Sm)) ∝ 1[j = l]TPFA(Si, w, Sj), where each character w transi-
tions to a unique state in the PFA.

• Set the emission probabilities B(H(Si,Sj), w) = 1[TPFA(Si, w, Sj) > 0], and 0 otherwise.

15Please refer to Dupont et al. (2005) for equivalence of NFPAs and hidden Markov models.

21

In-Context Language Learning: Architectures and Algorithms

• Set initial state probabilities 1 for the start states and 0 for the others: π(H(Si,Sj)) = 1[i = 1].

The number of states in the constructed HMM is the square of the number of states in the probabilistic automaton. Therefore,
we fit an HMM to the examples in REGBENCH with a maximum of |S| = 122 = 144 states. Algorithm 2 details the
in-context Baum-Welch predictor. We begin by constructing a list of observations from the current prefix x1:i−1, and then fit
an HMM given the global vocabulary V and number of states |S| = 144 using an improved Baum-Welch algorithm that is
consistent with the structure of probabilistic automata in REGBENCH. We incorporate two pieces of prior information about
the dataset:

C.3. Masking A to enforce state transitions

In our construction, we assume AH(Si,Sj)
H(Sl,Sm)

= 0 if j ̸= l. We enforce this constraint in each iteration by masking the
corresponding entries in A. Additionally, as our PFA sampling schema in Section 3.1 does not include self-transitions, we
set all AH(Si,Si)

H(Si,Sl)
= 0.

C.4. Masking π to start at the initial state

All our PFAs have a single start state, which we denote as H(S0,Si) for all i, without loss of generality. We mask all other
initial state probabilities such that π(H(S0,Si)) = 0 for i ̸= 0.

In our experiments, these masking strategies significantly improved the accuracy of the Baum-Welch algorithm. The results
presented are based on this modified BW algorithm.

D. Learned MLP Reweighting
We provide the training details of MLP n-gram reweighting models’ used in Section 5.3, namely LNW, LNWr, and LNWb.

Count Features (LNW Model) Given a sequence x, we first extract n-gram features for each position i and for each
n-gram length n:

gram(i;n) =
[
countx1:i

(xi−1
i−nw)− 1 ∀w ∈ V

]
∈ Z |V| (95)

The full set of n-gram features is the concatenation of n-gram features for n = 1 to n = 3:

gram(i;≤ 3) = concatenate(gram(i; 1), gram(i; 2), gram(i; 3)) ∈ Z3|V| (96)

We then train a sequence model that takes gram(i;≤ 3) as input and applies a 2-layer MLP with GeLU activation to produce
the unnormalized scores for the next token distribution. We use the same language modeling loss as used to train sequence
models. Our hyper-parameters for MLP training are as follows:

hyper parameter value

hidden size 1024
epochs 50
batch size 32
optimizer Adam

learning rate 1e-3
βs (0.9, 0.99)

scheduler reduce on plateu
patiance 5 epochs
factor 0.5
minimum learning rate 1e-5

Frequency Features (LNWr Model) The frequency features model uses normalized n-gram features gram(i;n)∑
V gram(i;n) instead

of the raw n-gram counts described above.

Binary Features (LNWb Model) The binary features model uses n-gram existence features, where gram(i;n) = 1 if the
n-gram exists at position i and 0 otherwise, instead of raw n-gram features.

22

In-Context Language Learning: Architectures and Algorithms

E. Probing Experiments

Figure 6. Additional results on probing analysis of n-gram representations with neural sequence models trained with Ntrain = 40000
examples. See Figure 4 for details.
Model and Objective We train a 2-layer Multilayer Perceptron (MLP) as our probe model in two configurations: (1)
fn-gram(h, c), where h represents a hidden state at a specific time step and c denotes the query n-gram; and (2) fequal(hi,hj),
which is employed in state equivalence probes. The formulation of our fn-gram(h, c) for an n-gram probe is as follows:

ec = Wembedc ∈ Rn×d/2 (97)

ec = flatten(ec) ∈ Rnd/2 (98)

eh = Wprojh ∈ Rnd/2 (99)
x = concatenate([ec, eh, ec ⊙ eh]) (100)
y = W2 GeLU(W1x+ b1) + b2 (101)

where n is the order of the n-gram and d is the dimensionality of the hidden state used by the probe. For regression tasks,
we employ the mean squared error loss on the output and our targets are corresponding n-gram counts, count(xi

t−n+1c), or

normalized counts (frequencies): p(c | xi
i−n+1) =

count(xi
i−n+1c)

count(xi
i−n+1)

. For classification tasks, we utilize binary cross-entropy
loss with the logits being y, and targets are whether the corresponding n-gram exists or not.

Data We train the probe using hidden states extracted from the actual training set of the models. Specifically, we randomly
select an example from the training set, randomly choose a time step within that example, and then create a query n-gram
by appending a random next character to the last n− 1 characters at the chosen time step. For regression tasks, we only
consider n-grams that appear at least once in the prefix. Each epoch involves iterating over each example once. For testing,
we apply the same sampling procedure using hidden states from the test set.

Model and Objective The state equivalence probe fequal(hi,hj) is defined as:

ei = Wprojhi ∈ Rd (102)

ej = Wprojhj ∈ Rd (103)

x = concatenate([ei, ej , ei ⊙ ej]) ∈ R3d (104)
y = W2 GeLU(W1x+ b1) + b2 (105)

where d is the dimensionality of the hidden state used by the probe. We use the cross-entropy loss in the classification of
whether two states are equivalent.

Data Similar to the n-gram probe, we train the state equivalence probe using hidden states from the model’s training set.
We randomly select an example and then sample two time steps within it, ensuring that in 50% of cases the probe receives

23

In-Context Language Learning: Architectures and Algorithms

identical states, and in the remaining 50%, it receives different states. The testing procedure mirrors that of the training
phase.

We employ the following hyperparameters for all probe training. We train separate probes for each layer and present the best
results in Figure 4 and Figure 6.

hyper parameter value

hidden size (d) 128
epochs 1000
batch size 64
optimizer Adam

learning rate 3e-4
βs (0.9, 0.99)

scheduler Cosine Annealing
minimum learning rate 1e-4

F. Implementations of N-gram Layers
In Figure 7 and Figure 8, we provide a Python implementation for n-gram layers that we use in our experiments.

24

In-Context Language Learning: Architectures and Algorithms

def ngram_head(x, hidden_state, shift_step=1, ngram=1):
"""
Args:

x: bsz * input_len
hidden_state: bsz * input_len * d_model
ngram: 1 means bigram, 2 means trigram
shift_step: which token to attend to after the matching ngram

Output:
bsz * input_len * d_model

"""
bsz, seq_len = x.shape

bsz * L * L, match unigram as the first step
mask_0 = x[:, None, :] == x[:, :, None]
causal_mask = torch.tril(torch.ones(seq_len, seq_len,

dtype=torch.bool, device=x.device), diagonal=-1)
mask_0 = torch.logical_and(mask_0, causal_mask)

masks = [mask_0.long()]
for _ in range(1, ngram):

mask_0[i, j] = True means token i-1 and token j-1 is matched
mask_0 = F.pad(mask_0, (1, -1, 1, -1), "constant", False)
masks.append(mask_0.long())

ngram_mask = torch.stack(masks, dim=-1).sum(dim=-1) >= ngram
if shift_step > 0:

ngram_mask = F.pad(ngram_mask,
(shift_step, -shift_step), "constant", False)

ngram_mask = torch.logical_and(ngram_mask, causal_mask)

form a uniform distribution for matched tokens
ngram_mask_norm = ngram_mask / ngram_mask.sum(dim=2, keepdim=True)
ngram_mask_norm = torch.nan_to_num(ngram_mask_norm, 0)
ngram_mask_norm = ngram_mask_norm.to(hidden_state.dtype)
output = torch.einsum("bmn,bnz->bmz", ngram_mask_norm, hidden_state)
return output

class Ngram(nn.Module):
def __init__(self, d_model, ngram=1):

super().__init__()
self.d_model = d_model
self.ngram = ngram
self.t0 = nn.Linear(self.d_model, self.d_model)
self.t1 = nn.Linear(self.d_model, self.d_model)

def forward(self, x, input_ids):
bsz, seq_len, _ = x.shape
h0 = ngram_head(input_ids, x, ngram=self.ngram)
h1 = x
y = self.t0(h0) + self.t1(h1)
return y

Figure 7. Python implementation of n-gram layers.

25

In-Context Language Learning: Architectures and Algorithms

class NgramBlock(nn.Module):
def __init__(self, config, ngram):

"""
Args:

ngram: 1, 2, or 3

Note: parameter size 4dˆ2
"""
super().__init__()
self.ln_1 = RMSNorm(config.d_model, eps=1e-5)

self.attn = Ngram(config, ngram)
self.ln_2 = RMSNorm(config.d_model, eps=1e-5)

mlp_hidden = config.d_model
self.mlp = nn.Sequential(

nn.Linear(config.d_model, mlp_hidden),
nn.SiLU(),
nn.Linear(mlp_hidden, config.d_model),

)

def forward(self, x, input_ids):
x_att = self.attn(self.ln_1(x), input_ids)
x = x + x_att
x_mlp = self.mlp(self.ln_2(x))
x = x + x_mlp
return x

Figure 8. Python implementation of n-gram blocks with SwiGLU-MLP (Shazeer, 2020) and RMSNorm (Zhang & Sennrich, 2019).

G. Language Model Experiments
In the language model experiments, all models share the same following training hyperparameters. We plan to extend the
experiment setting to larger models trained with more tokens in the future.

hyper parameter value

hidden size (d) 1024
number of training tokens 7e9
number of warm-up tokens 5e8
batch size (number of tokens) 5e5
optimizer AdamW
weight decay 0.01

learning rate 3e-4
βs (0.9, 0.95)

scheduler Cosine Annealing
minimum learning rate 3e-5

26

