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ABSTRACT

Sequential recommendation systems aim to provide personalized recommenda-
tions for users based on their interaction history. To achieve this, they often incor-
porate auxiliary information, such as textual descriptions of items and auxiliary
tasks, like predicting user preferences and intent. Despite numerous efforts to
enhance these models, they still suffer from limited personalization. To address
this issue, we propose a new paradigm, which we term preference discerning. In
preference discerning, we explicitly condition a generative sequential recommen-
dation system on user preferences within its context. The user preferences are
generated by Large Language Models (LLMs) based on user reviews. To eval-
uate preference discerning capabilities of sequential recommendation systems,
we introduce a novel benchmark that provides a holistic evaluation across vari-
ous scenarios, including preference steering and sentiment following. We assess
current state-of-the-art methods using our benchmark and show that they strug-
gle to accurately discern user preferences. Therefore, we propose a new method
named Mender (Multimodal Preference Discerner), which improves upon exist-
ing methods and achieves state-of-the-art performance on our benchmark. Our
results show that Mender can be effectively guided by human preferences, paving
the way toward more personalized sequential recommendation systems. We will
open-source the code and benchmarks upon publication.

1 INTRODUCTION

Sequential recommendation is the task of recommending items to a user based on their historical
interactions. This requires inferring latent variables, such as user preferences and intent, which
are often not explicitly provided in publicly available datasets. To improve personalization, several
sequential recommendation systems leverage auxiliary information, including heterogeneous inter-
action types (Meng et al., 2020), item descriptors (e.g., textual, visual) (Hidasi et al., 2016b; Liu
et al., 2021; Zhang et al., 2019a), temporal information (Bogina & Kuflik, 2017; Li et al., 2020), and
keyword-based user queries (He et al., 2022). By incorporating such information, these systems can
better approximate a user’s intent, leading to improved performance and personalization.

Although incorporating additional information can provide benefits, the degree of personalization in
current sequential recommendation models remains limited. User decisions on what item to acquire
next are guided by their preferences, which are typically not explicitly provided in commonly used
recommendation datasets (Ni et al., 2019; Zhang et al., 2015). As a result, these preferences must
be approximated from the user’s interaction history. Recent works have leveraged LLMs to extract
user preferences from existing datasets and leverage them for auxiliary tasks (Zhang et al., 2023;
Cao et al., 2024). However, these approaches do not allow the model to be dynamically steered by
user preferences in their context during inference. Furthermore, there is currently no benchmark that
effectively evaluates to what extent those models discern preferences.

To address these limitations, we propose a novel paradigm, which we term preference discerning.
preference discerning entails training a multimodal generative retrieval model conditioned on user
preferences within its context (see Figure 1). This requires approximating a user’s preference in tex-
tual form from user-specific data, such as reviews via pre-trained LLMs (Kim et al., 2024). By con-
ditioning the sequential recommendation system on user preferences in-context, we unlock steering
via generated user preferences, effectively combining the sequential prior from interaction history
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Figure 1: The preference discerning paradigm, comprising two components: preference approxi-
mation and preference conditioning. Preference approximation utilizes pre-trained LLMs to infer
user preferences from user-specific data. In preference conditioning a sequential recommendation
system is conditioned on the generated user preferences, enabling personalized recommendations.

with the user preferences. Therefore, users can specify in natural language what item properties they
wish to avoid or prefer. The sequential recommendation system then integrates this information with
past interactions to provide a well-personalized recommendation.

To evaluate preference discerning capabilities of sequential recommendation systems, we propose a
holistic benchmark that comprises five evaluation axes: (1) preference-based recommendation, (2)
sentiment following, (3) fine-grained steering, (4) coarse-grained steering, and (5) history consol-
idation. We evaluate state-of-the-art generative retrieval methods on our benchmark and find they
lack several key abilities of preference discerning. Therefore, we introduce a novel multimodal gen-
erative retrieval method named Multimodal preference discerner (Mender) which effectively fuses
pre-trained language encoders with the generative retrieval framework for preference discerning.
We demonstrate that preference discerning capabilities can naturally emerge when training solely
on preference-based recommendation data. Furthermore, we show that preference discerning capa-
bilities can be obtained by augmenting the training data with training splits for the different axes.
As a result, Mender can be effectively steered by different user preferences provided in it’s context
to recommend specific items. Ultimately, Mender mostly outperforms existing state-of-the-art gen-
erative retrieval models across all evaluation axes of our benchmark. In summary, our contributions
are as follows:

• We introduce a novel paradigm called preference discerning, where the generative
sequential recommendation system is conditioned on user preferences within its context.

• We propose a comprehensive benchmark for evaluating preference discerning, compris-
ing of five distinct evaluation scenarios that provide a holistic assessment of its capabilities.

• We present Mender, a multimodal baseline that integrates collaborative semantics with
language preferences, achieving state-of-the-art performance on our proposed benchmark.

2 RELATED WORK

Sequential Recommendation can be categorized into two major scenarios: search (Nigam et al.,
2019) and recommendation (Covington et al., 2016). The former assumes access to a query from
a user that reflects their intent (He et al., 2022), whereas the latter scenario does not make such
an assumption. For the recommendation scenario, numerous works have investigated the use of
additional information to enhance recommendation performance (Meng et al., 2020; Hidasi et al.,
2016a; Liu et al., 2021; Zhang et al., 2019a; Bogina & Kuflik, 2017; Li et al., 2020). Our work
introduces a new paradigm that enables in-context steering of sequential recommendation systems
by textual user preferences.

Existing Benchmarks for recommendation vary in their representation of user preferences and the
tasks they evaluate. Oh et al. (2024) proposed a benchmark for instruction-following in information
retrieval where instructions are generated from user-specific data via LLMs. The C4 benchmark
(Hou et al., 2024) uses complex search queries that reflect user preferences for retrieval. Contrary,
we focus on user preferences in sequential recommendation. Such preferences are often modeled
indirectly from user queries and responses to recommended items (Min et al., 2023; Huang et al.,
2013; Ma et al., 2018), or represented as edges on graphs (Ying et al., 2018; Li et al., 2019). In
query-aware sequential recommendation He et al. (2022) the model is given keywords in its context
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that represent the user’s intent but do not capture their preferences. In contrast, our benchmark builds
on established datasets (Ni et al., 2019; Kang & McAuley, 2018) and augments them with generated
user preferences to evaluate preference discerning capabilities.

Generative Retrieval uses autoregressive modeling to generate the next item, rather than perform-
ing pairwise comparisons between a user representation and all item representations. Rajput et al.
(2023) proposes tokenizing items in the form of semantic IDs (Lee et al., 2022). The benefit of this
approach is that very large item sets can be represented as a combination of ids that reflect their se-
mantic similarity. Subsequent works have investigated the effect of learned tokenization (Sun et al.,
2023) and additional objectives (Li et al., 2024; Wang et al., 2024). Our Mender represents items as
semantic IDs and fuses them with pre-trained LMs to effectively steer the recommendation.

Language-Based Sequential Recommendation rely on the premise of enhanced transparency and
actionable interrogation of recommendation systems (Radlinski et al., 2022). Furthermore, language
provides a natural interface for users to express their preferences and allows harnessing the expres-
sive power of LLMs. Recent works have leveraged LLMs to approximate user preferences by repre-
senting user-and item-specific data in natural language (Zheng et al., 2023; Oh et al., 2024; Sanner
et al., 2023; Cao et al., 2024),by conditioning the LLM on user embeddings (Ning et al., 2024), or
by leveraging user reviews for items (Kim et al., 2024). In this context, Kang et al. (2023) found that
effective preference approximation may require fine-tuning of the LLM. Other studies have explored
using LLMs for data augmentation in sequential recommendation (Geng et al., 2022; Zhang et al.,
2019b; Luo et al., 2024). In the near cold-start scenario, Sanner et al. (2023) demonstrated that user
preferences represented in natural language can be particularly effective. Li et al. (2023) showed
the benefit of moving from ID-based representations to text-based representation of the interaction
history. Similarly, Petrov & Macdonald (2023) represent all items in natural language and performs
ranking conditioned on past interactions. Zheng et al. (2023) explored aligning semantic IDs with
natural language by adding auxiliary tasks. The key difference to our Mender is that it operates on
different levels of abstraction to represent the user’s interaction history.

3 METHODOLOGY

The preference discerning paradigm comprises two primary components: preference approximation
and preference conditioning (see Figure 1).

3.1 PREFERENCE APPROXIMATION

Preference approximation refers to the process of inferring a user’s preferences based on user- and
item-specific data. This process has been User-specific data may include user reviews, profiles,
posts, demographic information, or any other relevant details. The incorporation of item-specific
information is crucial, as it provides additional context that can help alleviate the vagueness or
incompleteness often encountered in user-specific data. Preference approximation is a necessary
pre-requsite that enables in-context conditioning on the generated user preferences.

Algorithm 1 Preference Approximation
Input: prompt x, users U , items I, reviews R, Lan-

guage Model LLM(·)
1: for u ∈ U do
2: for t ∈ {1, . . . , Tu} do
3: P(t)

u ← LLM
([
x; i

(1)
u ; r

(1)
u ; . . . ; i

(t)
u ; r

(t)
u

])
4: end for
5: end for

In the context of sequential recom-
mendation, we assume access to a set
of users U and a set of items I. For
each user u ∈ U , we are given a se-
quence of item purchases in chrono-
logical order: su =

[
i1u, . . . , i

Tu
u

]
,

where Tu represents the time horizon
for a particular user u who has pur-
chased items i ∈ I. The task of the
sequential recommendation system is
to predict the next item based on the
interaction history. We also assume
access to user-specific data including user reviews r ∈ R and natural language descriptions of items.
For each user u and for each timestep 1 ≤ t ≤ Tu, we collect reviews {r(1)u , . . . , r

(t)
u } along with

item information {i1u, . . . , i
(t)
u } from their interaction history su and prompt an LLM to approximate

the user’s preferences. We additionally add a prompt x to the interaction history which contains gen-
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eral instructions such as to neglect aspects like delivery time or pricing and encode aversions of the
user. With this process we obtain a set of five user preferences P(t)

u for each each timestep t that
is based on the past interaction history. Importantly, the information contained in the different user
preferences are mostly orthogonal, i.e. they describe preferences with respect to different items, or
item properties (see an example in Appendix C). To verify the quality of the generated preferences
we conduct a user study (see Appendix F). The participans found that usually around 75% of the
generated preferences correctly approximate the user’s preferences. A schematic illustration of the
preference generation procedure is shown in Figure 9 and we provide pseudocode in Algorithm 1.
For details on prompts, generation process, or preference granularity, we refer to Appendix C.

3.2 BENCHMARK GENERATION

We compile a comprehensive benchmark that enables a holistic evaluation of preference discerning
capabilities. To achieve this, we define five axes of evaluation: Preference-based recommendation,
Sentiment following, Fine-grained steering, Coarse-grained steering, and History consolidation.
Below, we elaborate on each of these axes and discuss their respective use cases.

Preference-based Recommendation. This evaluation scenario extends the sequential recommen-
dation scenario by incorporating the generated user preferences. For this task, the model receives a
single user preference of the set Pt

u along with the interaction history and must predict the next item
it. We select the preference that yields the maximum cosine similarity to it in a pre-trained sentence
embedding space (Ni et al., 2022). More formally, given a pre-trained sentence embedding model
ϕ(·), we select p(t−1)

u as

p(t−1)
u = arg max

p∈P(t)
u

ϕ(p)⊤ϕ(it)

∥ϕ(p)∥∥ϕ(it)∥
. (1)

This results in a setting where each ground-truth item i
(t)
u is associated with a single user pref-

erence p
(t−1)
u . Therefore, the input to the sequential recommendation system is a sequence of[

p
(t−1)
u , i

(1)
u , . . . , i

(t−1)
u

]
and the task is to predict i(t)u . Since p

(t−1)
u is generated based only on

information about past items, there is no information leak that could reveal the ground truth item,
i.e. there is no information leak and the underlying aleatoric uncertainty of the task is preserved.

Fine-Grained & Coarse-Grained Steering. This axis can be useful in leveraging organic data
for, e.g., recommending ads. As an example, if a user is an opponent of exercise and fitness and
engages in such discussion, a model can steer the recommendations such that they avoid weight-
loss medications even if the user has purchased them in the past. Recall, that the preference-based
recommendation scenario captures the underlying uncertainty of the original recommendation task
as we provide the model with p

(t−1)
u to predict i(t)u . This can result in cases where p

(t−1)
u is not

semantically related to i
(t)
u , as oftentimes i(t)u is not related to previously acquired items. However,

our aim is to quantify how well the model can follow the user preference to recommend certain
items. The intuition is that if a user provides additional information about their preferences to the
recommendation system, the system should adapt its recommendation accordingly. Therefore, our
goal is to quantify the model’s ability to be steered towards items that are either very similar or very
distinct from it by modifying the user preference in its context. To achieve this, we identify a very
similar item ĩ(t) and a very distinct item î

(t)
u to the ground-truth item i

(t)
u by

ĩ(t)u = argmax
i∈I\{i(t)u }

ϕ(i)⊤ϕ(i
(t)
u )

∥ϕ(i)∥∥ϕ(i(t)u )∥
, and î(t)u = argmin

i∈I\{i(t)u }

ϕ(i)⊤ϕ(i
(t)
u )

∥ϕ(i)∥∥ϕ(i(t)u )∥
. (2)

Next, we associate ĩ(t) and î
(t)
u with different user preferences p1 and p2 by

p1 = argmax
p∈P

ϕ(p)⊤ϕ(̃i(t))

∥ϕ(p)∥∥ϕ(̃i(t))∥
, and p2 = argmax

p∈P

ϕ(p)⊤ϕ(̂i
(t)
u )

∥ϕ(p)∥∥ϕ(̂i(t)u )∥
, (3)

where P denotes the sett of accumulated preferences across all users and items. Additionally, we
obtain a target user û with the same ground truth item i

(t)
û = i

(t)
u , but a different interaction history.

The motivation for this is to enhance the variability in the generated datasets. By combining these
elements, we create two new sequences:

[
p1, i

(1)
û , . . . , i

(t−1)
û

]
and

[
p2, i

(1)
u , . . . , i

(t−1)
u

]
with ground

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

truth items ĩ(t)u , and î
(t)
u , respectively. A visual illustration of this procedure is provided in Figure 12.

Throughout the dataset creation process, we ensure that the preferences used during training are not
associated with the evaluation items. This allows us to evaluate the model’s ability to generalize and
respond to new preferences that are semantically similar to preferences in the training set.

Sentiment Following. This axis is crucial for utilizing organic data. For example, on social media,
we have access to the users’ interactions with ads, but also to organic data such as posts, comments,
and likes. A user may discuss on their posts or comments that they do not like a specific brand of
phone but then they may accidentally click on an ad for the same brand of the phone. Sentiment
following allows the system to utilize negatively formulated user preferences to correctly identify
what items not to retrieve. To evaluate this scenario, we instruct the LLM during preference approx-
imation to generate preferences that contain information about items that should not be retrieved.
To identify negative preferences and reviews, we classify them using pre-trained sentiment classifi-
cation models. Then, we match negative preferences with items that received negative reviews, as
these most likely elicited the negative preference (see Figure 10). The matching is done via cosine
similarity in Sentence-T5 space. This results in tuples of (p−u , i), where p−u represents a negative
preference and i is the matched item. To obtain a positive pair (p+u , i), we apply a rule-based inver-
sion of the negative preference (Figure 11). The details of this rule-based inversion are provided in
Appendix D. Notably, the compiled data consists solely of (p±u , i) tuples, without interaction history.

To evaluate this scenario we rely on a combined hit-rate measure. Given a set of k predicted
candidate items C = {ī1, . . . , īk}, we check whether the ground truth item occurs in C, i.e.
1C(i) = 1, where 1(·) represents the indicator function. Now let us assume that we obtain two
prediction sets C+ and C−, where C+ is obtained using the positive preference p+u and C− by using
the negative preference p−u for item i. Then the combined hit-rate measure can be computed as
m = 1C+(i) ∧ ¬1C−(i). Here m = 1 indicates that the model successfully retrieved the item for
p+u , while simulaneously not predicting it for p−u . This measure can then again be computed for
different sizes of prediction sets, i.e. m@k, as conventional retrieval metrics.

History Consolidation. User preferences may change over time and users usually have different
preferences that relate to different items. For example a user may prefer running shoes based on a
certain foam but also prefers lightness. Consider that after some time the kind of foam may not be
as important to the user anymore. Then, the recommendation system should be capable of adapting
its recommendation based on the interaction history and be able to ignore preferences it has received
originally. Therefore, we aim to evaluate the capabilitiy of the system to incorporate multiple user
preferences and ignore some of them. To simulate such a use case, we leverage he fact that the
generated user preferences are mostly orthogonal and provide the whole set of five generated pref-
erences P(t−1)

u to the model simultaneously where the task is to predict the ground-truth item i
(t)
u .

The preferences in P(t−1)
u are usually orthogonal in the information they provide (see an example

in Appendix C). Therefore, they are not necessarily valuable to make a more accurate prediction. In
fact, this evaluation scenario can be considered more difficult than preference-based recommenda-
tion, as it incorporates both time dependency, as well as a higher content of noise in the preferences.
In this evaluation scenario the originally matched preference is contained in P . Therefore, in order
to accurately predict the ground truth item, the model most infer the matched preference out of P .
The corresponding evaluation sequences are structured as

[
p
(Tu−1)
u1 , . . . , p

(Tu−1)
u5 , i1, . . . , i

(Tu−1)
u

]
and contain all five generated user preferences.

3.3 MULTIMODAL PREFERENCE DISCERNER (MENDER)

We propose Mender, a novel multimodal generative sequential recommendation system. Mender
can be conditioned on user preferences expressed in natural language in its context and generates
item identifiers. Mender builds on the recently proposed TIGER (Rajput et al., 2023), a generative
retrieval model trained on semantic IDs. These semantic IDs are obtained by training a RQ-VAE
(Lee et al., 2022) on item embeddings in Sentence-T5 space. Given an item embedding e ∈ Rd, the
RQ-VAE quantizes e into a discrete feature map as:

RQ(e, C, D) = (k1, . . . , kN ) ∈ [K]N (4)

where C represents a finite set of tuples {(k, ck)}k∈K , K denotes the granularity of the codebook
C, and N corresponds to the depth of the RQ-VAE, i.e., the number of codebooks. A user sequence
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su is then represented as a sequence of semantic IDs:
[
k
(1)
1 , . . . , k

(1)
N , . . . , k

(Tu)
1 , . . . , k

(Tu)
N

]
, which

serves as input to train a Transformer model (Vaswani et al., 2017). To enable conditioning on natural
language, we leverage pre-trained language encoders. Specifically, we represent both the interaction
history and the user preference in natural language and process them with the pre-trained encoder.
This is inspired by Li et al. (2023); Paischer et al. (2022; 2023), who demonstrated the benefits
of history compression via language models. The decoder of Mender is randomly initialized and
conditioned on the language encoder via cross-attention to predict semantic IDs.

 

LM Encoder

User preference + 
Interaction history

Decoder
Cross-Attention

BOS 5 3 7 1

EOS5 3 7 1

Figure 2: Architecture of Mender. The
decoder generates semantic IDs condi-
tioned on user preferences and past in-
teractions via cross-attention with a pre-
trained language encoder.

We propose two variants of Mender, namely MenderTok
and MenderEmb. The key difference between these
variants lies in how they encode user preferences and
items. MenderTok encodes user preferences and items
as a single sequence of language tokens. In contrast,
MenderEmb encodes each user preference and item sep-
arately using a pre-trained embedding model from Su
et al. (2023). MenderEmb allows pre-computing item
and preference embeddings, resulting in improved train-
ing efficacy. MenderEmb does not support fine-tuning,
as propagating through the embedding model for each
preference/item is prohibitively expensive. However,
MenderTok processes the entire token sequence at once,
making it amenable to fine-tuning.

4 EXPERIMENTS

We evaluate our approach on four widely-used datasets,
namely three Amazon reviews subsets (Ni et al., 2019)
and Steam (Kang & McAuley, 2018). An overview of
the dataset statistics can be found in Table 3 in Ap-
pendix B. To generate user preferences, we utilize the
LlaMa-3-70B-Instruct1 model. For sentiment
classification of reviews, we employ the model trained by Hartmann et al. (2023)2. The result-
ing preference statistics, including the number of generated preferences, the proportion of positive
and negative preferences, and the sample sizes for each evaluation split, are presented in Table 4.
Our data generation pipeline is built entirely on open-source models, making it easily extensible to
additional datasets.

For training our models, we use the preference-based recommendation data, which consists of a
single user preference and the interaction history. Unless mentioned otherwise, the additional gen-
erated data splits (positive/negative and fine/coarse data) are used solely for evaluation purposes.
Following (Rajput et al., 2023), we limit the maximum number of items in a user sequence to the 20
most recent ones. We adopt a leave-last-out data split, where the penultimate item in a sequence is
used for validation and the last item is used for testing (Kang & McAuley, 2018; Sun et al., 2019).
Our evaluation benchmark is based only on validation and test items of that split. The remaining
items in each sequence are used for training, except for the first item, since no user preferences
are available for it. We evaluate our trained baselines using common retrieval metrics, including
Recall (or Hit Rate), and Normalized Discounted Cumulative Gain (Järvelin & Kekäläinen, 2002,
NDCG). Implementation details for training the RQ-VAE and Transformer models can be found in
Appendix A.1 and Appendix A.2, respectively. All our methods are trained on single A100 or V100
GPUs using PyTorch (Paszke et al., 2019).

4.1 BASELINES

We train and evaluate a range of generative retrieval baselines and compare their performance to our
Mender variants on our proposed benchmarks.

1https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
2https://huggingface.co/siebert/sentiment-roberta-large-english
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Figure 3: Recall@10 for all methods on our novel benchmark, evaluating preference discerning
across three subsets of the Amazon review dataset: Beauty (left), Sports and Outdoors (middle),
and Toys and Games (right). The different axes represent recommendation, fine–grained steering,
coarse-grained steering, history consolidation, and sentiment following.

TIGER (Rajput et al., 2023) is a state-of-the-art generative retrieval model based on semantic IDs.
Although TIGER is not conditioned on user preferences, we still evaluate its performance on our
benchmarks for recommendation, fine-grained steering, and coarse-grained steering. The latter two
essentially evaluate how well TIGER predicts a very similar or distinct item to the ground truth item.
VocabExtRND is based on extending the vocabulary of the TIGER model, which enables condition-
ing it on language preferences. Notably, this version does not leverage any pre-trained components.
LC-REC (Zheng et al., 2023) extends the vocabulary of a pre-trained LM with newly initialized
embeddings that represent semantic IDs. We fine-tune the LM utilizing LoRA (Hu et al., 2022), but
do not add the auxiliary tasks. Additionally, we reduce the dimensionality of the language model
head to match the number of semantic IDs, as language generation is not required for our task.
VocabExtLM represents the past interaction history in language as done for MenderTok and
MenderEmb, but initializes the decoder with a pre-trained language decoder. Therefore this baseline
operates on the same semantic gap as Mender variants. We again leverage LoRA for fine-tuning.

4.2 RESULTS

We present a detailed analysis of the results obtained by the different methods on our benchmark for
three subsets of Amazon reviews (Beauty, Sports and Outdoors, and Toys and Games), and Steam
datasets. Figure 3 and Figure 4 (left) show Recall@10 for all methods on the Amazon and Steam
datasets, respectively. Table 1 shows complementary metrics, such as NDCG@5, NDCG@10, and
Recall@5, as well as relative improvements of Mender to the best baseline method. In Appendix E
we report the corresponding standard deviations for all methods across all datasets. Our results re-
veal several key trends: (i) incorporating preferences consistently improves performance; (ii) train-
ing on preference-based recommendation data leads to the emergence of fine-grained steering on
certain datasets; (iii) current models struggle with sentiment following; and (iv) both coarse-grained
steering and sentiment following can be achieved through data augmentations. Additionally, we
provide ablation studies on data mixtures and the impact of adding user preferences in Section 4.3.

Recommendation. Our MenderTok achieves the best performance across all datasets on the recom-
mendation axis with relative improvements of up to 45%. The significant gap between TIGER and
MenderTok demonstrates the benefits of conditioning on the generated user preferences. The higher
performance on the Steam dataset compared to the Amazon datasets traces back to the different item
distributions (see Figure 8). As there are few items that are overrepresented, it is generally easier
to obtain a higher score by predicting only those. Further, MenderEmb performs second-best on the
Amazon datasets providing a decent trade-off between performance and training speed, by training
around five times faster. Notably, other baselines such as VocabExtRND and LC-REC sometimes per-
form worse than TIGER on Toys and Steam, indicating that they cannot properly align the semantic
id and language spaces. LC-REC usually requires auxiliary tasks to align the two spaces properly
(Zheng et al., 2023), while our Mender successfully fuses them without training on auxiliary tasks.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance for all methods on all evaluation axes for all datasets trained on recommen-
dation data. We report average performance across three random seeds as well as relative improve-
ments of Mender to the second-best performing baseline and highlight best performance in boldface.
For sentiment following we reprt m@k for k ∈ {5, 10} instead of Recall@k.

Methods
Sports and Outdoors Beauty Toys and Games Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation

TIGER 0.0249 0.0158 0.0377 0.0199 0.0431 0.0275 0.0681 0.0356 0.0375 0.0238 0.0600 0.0311 0.163 0.144 0.193 0.153
VocabExtRND 0.0238 0.0151 0.0392 0.0201 0.0434 0.0277 0.0697 0.0362 0.0330 0.0205 0.0544 0.0275 0.166 0.142 0.200 0.154
LC-REC 0.0195 0.0124 0.0291 0.0156 0.0457 0.0294 0.0731 0.0382 0.0327 0.0209 0.0473 0.0256 0.160 0.137 0.194 0.148
VocabExtLM 0.0233 0.0148 0.0355 0.0187 0.0345 0.0224 0.0561 0.0293 0.0371 0.0234 0.0559 0.0296 0.1547 0.1305 0.1878 0.1412
MenderEmb 0.0264 0.0173 0.0394 0.0215 0.0494 0.0321 0.0755 0.0405 0.0422 0.0267 0.0653 0.0342 0.145 0.111 0.182 0.123
MenderTok 0.0282 0.0188 0.0427 0.0234 0.0605 0.0401 0.0937 0.0508 0.0533 0.0346 0.0799 0.0432 0.168 0.144 0.204 0.156
Rel. Impr. +13.2%+18.9% +8.9% +16.4%+32.4%+36.4%+28.1%+33.0%+42.1%+45.4%+33.2%+38.9% +1.2% +0.0% +2.0% +1.3%

Fine-grained steering

TIGER 0.0061 0.0037 0.0118 0.0055 0.0119 0.0074 0.0195 0.0098 0.0149 0.0092 0.0237 0.0120 0.0084 0.0052 0.0145 0.0072
VocabExtRND 0.0104 0.0063 0.0186 0.0089 0.0229 0.0163 0.0437 0.0220 0.0200 0.0123 0.0358 0.0174 0.0102 0.0064 0.0178 0.0088
LC-REC 0.0119 0.0074 0.0190 0.0097 0.0348 0.0218 0.0563 0.0288 0.0248 0.0153 0.0388 0.0198 0.0157 0.0098 0.0264 0.0133
VocabExtLM 0.0214 0.0132 0.0352 0.0176 0.0292 0.0186 0.0498 0.0253 0.0341 0.0220 0.0572 0.0294 0.0217 0.0133 0.0365 0.0180
MenderEmb 0.0173 0.0106 0.0322 0.0154 0.0276 0.0174 0.0465 0.0234 0.0316 0.0199 0.0529 0.0267 0.0184 0.0114 0.0287 0.0147
MenderTok 0.0190 0.0117 0.0324 0.0159 0.0534 0.0344 0.0844 0.0444 0.0378 0.0237 0.0639 0.0321 0.0211 0.0134 0.0352 0.0179

Rel. Impr. -12.6% -12.8% -8.6% -10.7% +53.4%+57.8%+49.9%+54.2%+10.9% +7.7% +11.7% +9.2% -2.8% +1% -3.7% -1%
Coarse-grained steering

TIGER 0.0001 0.0000 0.0003 0.0001 0.0003 0.0001 0.0003 0.0002 0.0003 0.0001 0.0006 0.0003 0.0005 0.0003 0.0008 0.0004
VocabExtRND 0.0005 0.0003 0.0010 0.0004 0.0023 0.0014 0.0046 0.0021 0.0013 0.0009 0.0021 0.0011 0.0032 0.0018 0.0055 0.0026
LC-REC 0.0010 0.0006 0.0017 0.0009 0.0032 0.0019 0.0059 0.0028 0.0022 0.0013 0.0036 0.0017 0.0028 0.0018 0.0049 0.0024
VocabExtLM 0.0047 0.0028 0.0098 0.0044 0.0053 0.0033 0.0086 0.0044 0.0037 0.0022 0.0065 0.0030 0.0047 0.0029 0.0077 0.0039
MenderEmb 0.0036 0.0022 0.0071 0.0033 0.0057 0.0035 0.0101 0.0050 0.0035 0.0021 0.0071 0.0032 0.0042 0.0024 0.0067 0.0032
MenderTok 0.0023 0.0013 0.0045 0.0021 0.0094 0.0059 0.0161 0.0080 0.0032 0.0020 0.0060 0.0029 0.0043 0.0027 0.0081 0.0040
Rel. Impr. -30.6% -27.3% -38.1% -33.3% +77.4%+78.8%+87.2%+81.8% -15.6% -4.8% +9.2% +6.7% -9.3% -7.4% +5.2% +2.6%

Sentiment following

TIGER 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 -
VocabExtRND 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0061 - 0.0086 -
LC-REC 0.0018 - 0.0027 - 0.0029 - 0.0045 - 0.0008 - 0.0017 - 0.0033 - 0.0053 -
VocabExtLM 0.0019 - 0.0016 - 0.0027 - 0.0051 - 0.0012 - 0.0004 - 0.0049 - 0.0107 -
MenderEmb 0.0022 - 0.0022 - 0.0030 - 0.0047 - 0.0017 - 0.0015 - 0.0114 - 0.0185 -
MenderTok 0.0035 - 0.0042 - 0.0043 - 0.0053 - 0.0016 - 0.0017 - 0.0084 - 0.0110 -

Rel. Impr. +84.2% - +55.6% - +48.3% - +3.9% - +41.7% - +0% - +86.9% - +72.9% -

History consolidation

TIGER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VocabExtRND 0.0190 0.0120 0.0329 0.0164 0.0303 0.0191 0.0504 0.0256 0.0260 0.0158 0.0441 0.0216 0.1366 0.1155 0.1642 0.1244
LC-REC 0.0158 0.0101 0.0243 0.0129 0.0354 0.0226 0.0577 0.0297 0.0295 0.0185 0.0430 0.0229 0.1460 0.1277 0.1726 0.1363
VocabExtLM 0.0179 0.0112 0.0278 0.0145 0.0247 0.0155 0.0423 0.0211 0.0316 0.0195 0.0487 0.0251 0.0615 0.0440 0.0866 0.0521
MenderEmb 0.0206 0.0133 0.0312 0.0167 0.0352 0.0228 0.0580 0.0301 0.0314 0.0201 0.0516 0.0266 0.1241 0.0938 0.1558 0.1040
MenderTok 0.0234 0.0151 0.0345 0.0187 0.0457 0.0304 0.0720 0.0388 0.0467 0.0302 0.0700 0.0377 0.0490 0.0317 0.0745 0.0399

Rel. Impr. +23.2%+25.8% +4.9% +14.0%+29.1%+34.5%+24.8%+30.6%+58.3%+54.9%+43.7%+50.2% -15.1% -26.5% -9.7% -23.7%

VocabExtRND performs significantly worse then both Mender versions due to its lack of a pre-trained
language encoder, which requires learning the interaction between item history and user preferences
from scratch. In contrast, LC-REC utilizes a pre-trained language encoder but fails to effectively
combine semantic IDs with language representations. A potential reason for this is that our datasets
are relatively small and only comprise recommendation data and no grounding of semantic IDs to
language. Based on these findings, we conclude that: (i) user preferences substantially enhance rec-
ommendation performance, and (ii) representing both interaction history and user preferences in a
linguistic format is the preferred approach to fuse interaction history and generated user preferences.

Fine- and coarse-grained steering. We observe that MenderTok consistently achieves the best per-
formance across all datasets for fine-grained steering with relative improvements of up to 70.5% to
baselines. Notably, as illustrated in Figure 3, fine-grained steering naturally emerges as a byprod-
uct of training on preference-based recommendation data. However, this is not the case for the
Steam dataset (Figure 4, right), where we notice a significant gap between recommendation and
fine-grained steering performance. We surmise that the reason for this is the fundamental differ-
ence in the respective data distribution of the Amazon and Steam datasets. Prior work demonstrated
that data distribution is an essential driving factor to elicit emerging capabilites such as in-context
learning (Chan et al., 2022). Future work should aim at confirming this conjecture via systematic
experiments. Furthermore, our results indicate that all methods struggle to perform coarse-grained
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Figure 4: Recall@10 of different baselines trained on the default recommendation data of the Steam
dataset (left). Recall@10 for MenderTok trained on different datasplits on the Amazon Beauty sub-
set, evaluated under various schemes: Recommendation, Sentiment following, Preference steering,
Preference consolidation, and History consolidation (right).

steering, suggesting that the preference-based recommendation data lacks a beneficial signal to fa-
cilitate the emergence of coarse-grained steering.

History Consolidation. Generally, we observe that all methods attain lower scores on history con-
solidation compared to the recommendation. This is because the additional preferences are not nec-
essarily related to the ground truth item and thus add a substantial amount of noise. Furthermore, one
of the five user preferences provided to the model contains information to identify the ground truth
item as they were matched during the benchmark generation. Therefore, the attained performance
is a proxy on how well the model can identify a useful preference out of set of potentially noisy
preferences. On the Amazon subsets, MenderTok consistently attains the highest performance, while
LC-REC attains the best results on Steam. These findings suggest that preference-based methods
can effectively fuse interaction history with multiple user preferences for recommendation. Interest-
ingly, we found in preliminary experiments that training on history consolidation data alone leads to
a degradation in recommendation performance. Contrary, our reported results demonstrate that train-
ing on preference-based recommendation data maintains recommendation performance and elicits
decent performance on history consolidation and recommendation.

Sentiment Following. While both Mender variants attain the highest performance on different
datasets, the overall performance on sentiment following is generally around an order of magnitude
smaller. This result indicates that all current models struggle with sentiment following. This finding
presents an interesting avenue for future research, which should prioritize developing models that
can accurately identify the sentiment of user preferences and adapt their retrieval accordingly. Prior
works found that there is little to no gain by incorporating negative user preferences into recom-
mendation systems (Sanner et al., 2023). Our results confirm that current systems mostly lack the
ability to discern negative preferences and to act accordingly. However, we show in the next section
that this observation depends on how the negative preferences are used during training, and that it is
indeed possible to obtain a system that improves along this axis.

4.3 ABLATION STUDIES

Importance of Preferences. We perform an ablation study to investigate the impact of combining
both user preferences and items represented in natural language. In Figure 7 in Appendix A.4 we
provide evidence that representing items in language instead of semantic IDs leads to better rankings.
Further, we quantify the improvement by providing both, preferences along with items represented
in language in the model’s context. To this end, we train MenderTok and (i), condition it only on
preferences; (ii) condition it only on items represented in language; and (iii), condition it on both.

9
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We present our results for the Beauty dataset in Figure 5, right. Our results clearly demonstrate the
benefits of combining items with user preferences in language.

Figure 5: Left: Right: Ablation study highlight-
ing the importance of combining items and user
preferences in natural language.

Data Mixture. We evaluate whether mod-
els trained on sentiment following and steer-
ing improve performance on the respective
evaluation axes. This is particularly inter-
esting for datasets, such as Steam, where no
steering capabilities emerged, or the Ama-
zon subsets, where models lack coarse-grained
steering. We augment the training set with
the additional data sources and train dif-
ferent variants of MenderTok. We train
four variants: MenderTok-Pos, which uses
positive pairs; MenderTok-Neg, which uses
negative pairs; MenderTok-Pos-Neg, which
combines both positive and negative pairs;
MenderTok-Fine, which uses fine-grained steer-
ing data; MenderTok-Coarse, which uses coarse-
grained steering data; MenderTok-Fine-Coarse,
which uses fine- and coarse-grained steering
data; and finally, MenderTok-All, which is
trained on all data. When including the negative
(p−u , i) tuples, we simply minimize the likeli-
hood and weight it by a hyperparameter. We
present Recall@10 for Beauty in Figure 4, right
and for Steam in Appendix E. We additionally report Recall@5, NDCG@5, and NDCG@10 for all
methods and evaluation axes in Table 5 in Appendix E. Most importantly, coarse-grained steering as
well as sentiment following capabilities arise when we explicitly train the model on the respective
data. Interestingly, MenderTok-All significantly improves upon MenderTok on all axes while main-
taining performance on the recommendation axis. However, training on a data split in isolation
improves over training on all data, i.e. MenderTok-Coarse leads to better coarse-grained steering
than MenderTok-All, but lacks sentiment following. Furthermore, sentiment following capabilities
only arise when training on both, positive and negative data jointly. These findings present a fruitful
avenue for future research on mixing the different data sources.

5 LIMITATIONS

A current limitation of our benchmark is that the compiled user preferences are limited to five se-
lected datasets. However, since we used open-source models to generate them, the data generation
pipeline can be extended to new datasets. Currently, the data generation process relies on extensive
post-processing to ensure high-quality user preferences, which is tailored to the specific LLM we
used. Furthermore, our preference generation pipeline relies on the presence of user reviews and
does not take into account longer time dependencies. Finally, we do not explore the effect of scaling
the language encoder. All of these limitations present fruitful avenues for future work.

6 CONCLUSION

Current sequential recommendation systems are limited in their personalization as they model user
preferences implicitly. We propose a new paradigm, namely preference discerning, in which the se-
quential recommendation system is conditioned on user preferences represented in natural language.
To evaluate preference discerning capabilities, we present a benchmark that is specifically designed
to assess the ability of sequential recommendation models to discern textual preferences along five
different axes. We also propose a novel generative retrieval model, Mender, which represents the
items at different levels of abstraction, namely semantic ids and natural language. Our experimental
results show that Mender outperforms state-of-the-art models on our benchmark. Our contributions
pave the way for a new class of generative retrieval models that unlock leveraging organic data for
steering via textual user preferences.
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A GENERATIVE RETRIEVAL VIA SEMANTIC IDS

We provide an open-source implementation of all baselines used in this work, including TIGER
(Rajput et al., 2023). To facilitate reproducibility of the results reported in Rajput et al. (2023), we
elaborate on the implementation details as follows. The training of TIGER consists of two stages:
(i) training the residual quantizer (RQ-VAE) to obtain semantic IDs, and (ii), training the generative
retrieval model.

A.1 RQ-VAE

Training the RQ-VAE involves two essential steps: (i) constructing an item embedding, and (ii)
optimizing the model through residual quantization.

Item embedding For item embedding, we utilize the Sentence-T5 model (Ni et al., 2022), which
is publicly available on the Hugging Face Hub (Wolf et al., 2020). We explored various sources
of information to represent items and found that the optimal approach varies across datasets. For
the Beauty and Sports datasets, using item descriptions led to sub-optimal results due to the high
noise levels present in these descriptions. In contrast, item descriptions proved beneficial for the
Toys dataset. Additionally, we leveraged other item attributes, including title, price, brand, and
categories. For the Stream dataset, we utilized a broader set of attributes: title, genre, specs, tags,
price, publisher, and sentiment.

Training By default, we standardize the item embeddings, as this helps prevent collapse during
RQ-VAE training. For training the RQ-VAE, we found that the encoder-decoder architecture is
crucial for increasing codebook coverage. Additionally, residual connections and weight decay
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Figure 6: Left: Number of correctly retrieved test items for TIGER on the Beauty subset of the
Amazon review dataset. Right: Performance comparison of TIGER with user embedding (TIGER-
UserEmb) and without user embedding (TIGER) on the Beauty dataset.

are essential for maintaining a good separation and preventing collapse. Our encoder architecture
consists of four hidden layers with sizes 768, 512, 256, and 128, respectively. Each layer includes
layer normalization (Ba et al., 2016), ReLU activation, and dropout (Hinton et al., 2012). The
decoder follows the same architecture but in reverse order, where the sum of residuals obtained
via the quantization procedure is up-projected to the original dimension of 768. Following Rajput
et al. (2023), we use a three-level residual quantization scheme with 256 codebooks each. We also
experimented with EMA updates and resetting unused codebook entries, as in Lee et al. (2022),
but did not observe any significant improvements. To evaluate the performance of our trained RQ-
VAEs, we rely on metrics such as reconstruction error, codebook coverage, and downstream task
performance.

A.2 TRANSFORMER

Following Rajput et al. (2023) we instantiate the generative model via the T5 architecture (Raffel
et al., 2020). Next, we delve into the design choices underlying this approach, as introduced by
Rajput et al. (2023), and discuss their utility.

Training sequences To construct the training sequences, Rajput et al. (2023) limit the number of
items in a user sequence to at most 20. This can be implemented by taking either the first, the last, or
all items within a sliding window of up to 20 items. We experimented with each of these approaches
and found that using the most recent 20 items in a user sequence generally yields improved per-
formance. Unlike prior sequential recommendation systems, which require at least one item in a
sequence to predict the next item (Kang & McAuley, 2018; Zhou et al., 2020), TIGER leverages a
user embedding trained alongside item embeddings. Therefore, we typically use the first item in a
sequence for training, although this is not strictly necessary.

Decoding Another crucial aspect of the generative retrieval pipeline is the decoding process. As
noted by Rajput et al. (2023), the generation of valid semantic IDs is not guaranteed. To mitigate
this issue, we track the number of invalid semantic IDs produced during decoding. We find that
this number is typically quite low. Nevertheless, to further improve the accuracy of our retrieval
results, we employ filtering to remove invalid IDs and increase the beam size to be larger than the
final retrieval set.

A.3 REPRODUCED RESULTS

In Table 2, we present the results of our reproduced and open-source implementation of TIGER. Our
results closely match those reported in Rajput et al. (2023) for the Sports and Beauty datasets, but
we observe a significant gap on the Toys dataset. Notably, our trained models achieve substantially
higher Recall@10 scores on the Beauty dataset. Furthermore, we find that the disparity is more pro-
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nounced for NDCG than for Recall, suggesting that while the retrieved candidate items are similar,
our models’ ranking performance is inferior.

Table 2: Reproduced results for our open-source implementation of TIGER (Rajput et al., 2023)

Methods
Sports and Outdoors Beauty Toys and Games

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

P5 Geng et al. (2022) 0.0061 0.0041 0.0095 0.0052 0.0163 0.0107 0.0254 0.0136 0.0070 0.0050 0.0121 0.0066
Caser Tang & Wang (2018) 0.0116 0.0072 0.0194 0.0097 0.0205 0.0131 0.0347 0.0176 0.0166 0.0107 0.0270 0.0141
HGN Ma et al. (2019) 0.0189 0.0120 0.0313 0.0159 0.0325 0.0206 0.0512 0.0266 0.0321 0.0221 0.0497 0.0277
GRU4Rec Hidasi et al. (2016a) 0.0129 0.0086 0.0204 0.0110 0.0164 0.0099 0.0283 0.0137 0.0097 0.0059 0.0176 0.0084
BERT4Rec Sun et al. (2019) 0.0115 0.0075 0.0191 0.0099 0.0203 0.0124 0.0347 0.0170 0.0116 0.0071 0.0203 0.0099
FDSA Zhang et al. (2019b) 0.0182 0.0122 0.0288 0.0156 0.0267 0.0163 0.0407 0.0208 0.0228 0.0140 0.0381 0.0189
SASRec Kang & McAuley (2018) 0.0233 0.0154 0.0350 0.0192 0.0387 0.0249 0.0605 0.0318 0.0463 0.0306 0.0675 0.0374
S3-Rec Zhou et al. (2020) 0.0251 0.0161 0.0385 0.0204 0.0387 0.0244 0.0647 0.0327 0.0443 0.0294 0.0700 0.0376

TIGER(Rajput et al., 2023) 0.0264 0.0181 0.0400 0.0225 0.0454 0.0321 0.0648 0.0384 0.0521 0.0371 0.0712 0.0432
TIGER (Ours) 0.0249 0.0158 0.0377 0.0199 0.0431 0.0275 0.0681 0.0356 0.0375 0.0238 0.0600 0.0311

A.4 ADDITIONAL FINDINGS

Beyond the experiments discussed above, we conducted further investigations into the TIGER
framework, yielding the following key insights.

• TIGER exhibits superior performance on shorter sequences, as shown in Figure 6 (left).
• The inclusion of user embeddings in TIGER does not yield any significant benefits to down-

stream performance, as illustrated in Figure 6 (right).
• Representing interaction history in natural language leads to improved ranking perfor-

mance, as demonstrated in Figure 7.

TIGER Works Better on Shorter Sequences. As shown in Figure 6 (left), TIGER performs signif-
icantly better on shorter sequences than on longer ones. The x-axis represents the number of items
per test sequence, which is at least 4 due to the 5-core user and item filtering applied. Further, the
maximum number of items per sequence is capped at 19, as we limit the maximum sequences length
to 20, following (Rajput et al., 2023). This results in a maximum sequence length of 19 items, where
the task is to predict the 20th item. The y-axis shows the number of matches. Notably, TIGER’s
performance is substantially better on shorter sequences than on longer ones. However, the number
of matches increases again for the longest sequences, although it remains considerably lower than
for shorter sequences.

User Embedding. Rajput et al. (2023) employ a user embedding selected based on hashing. How-
ever, it is unclear whether this approach offers any advantages, as the number of user embeddings
suggested by Rajput et al. (2023) often results in numerous collisions in practice. To investigate
this, we conduct an experiment where we remove the user embedding entirely. As shown in Fig-
ure 6 (middle), we do not observe a significant drop in performance. This suggests that the user
embedding, as implemented in (Rajput et al., 2023), does not provide any notable benefits.

History Compression via Natural Language. We conduct an additional study where we repre-
sent the past interaction history using natural language and initialize the encoder of TIGER with
a FLAN-T5-small language encoder. This approach is reminiscent of history compression via lan-
guage models (Paischer et al., 2022, HELM). We refer to this variant as LIGER (Language-TIGER),
and compare its performance to the baseline TIGER in Figure 7. The results show that while there
is no significant difference in Recall, LIGER yields notable improvement in NDCG metrics. This
suggests that compressing interaction history using natural language generally enhances the model’s
ranking capabilities.

B DATASETS

We consider two publicly available datasets for sequential recommendation: Amazon review dataset
(Ni et al., 2019) and Steam (Kang & McAuley, 2018). To preprocess these datasets, we apply a
5-core filtering criterion, removing users with fewer than five interactions and items that appear
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Figure 7: Performance comparison between TIGER and LIGER on the Beauty subset of the Amazon
review dataset. Both models predict semantic IDs, but differ in their input representation: LIGER
encodes past items as natural language descriptions, while TIGER represents them as semantic IDs.

less than five times. The resulting dataset statistics are presented in Table 3. Due to computational
constraints, we subsample the Steam dataset to reduce the number of user preferences generated
during the preference approximation pipeline.

We also visualize the item distribution in Figure 8, which shows that the three Amazon datasets fol-
low approximatelx the same item distribution, while for Steam the distribution differs significantly.
In particular, on the Steam dataset the number of items in the same range as for the Amazon datasets,
however the number of users is much larger, as well as the average number of actions per user. As
can be observed from the item distribution, there is a small fraction of items that is overrepresented.

Table 3: Dataset statistics after user 5-core and item 5-core preprocessing. Asterisk denotes datasets
are subsets of the Amazon review dataset.

Dataset #users #items avg. actions /user avg. actions /item #actions

Beauty* 22,363 12,101 8.8764 16.403 198,502
Toys and Games* 19,412 11,924 8.6337 14.0554 167,597
Sports and Outdoors* 35,598 18,357 8.3245 16.1430 296,337
Yelp 19,855 14,540 10.4279 14.2387 207,045
Steam 47,761 10,403 12.554 54.6549 599,620

C PREFERENCE GENERATION

In this section, we provide details on the prompting scheme used to generate user preferences from
item reviews using LLaMA-3-70B-Instruct. We provide reviews along with item specific
information to the LLM and prompt it to generate a set of five user preferences (see Figure 9).
Below we present an example prompt and response for a user in the Beauty subset of the Amazon
reviews dataset.
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Figure 8: Data distribution of the Amazon and Steam datasets.

Vision

Figure 9: Schematic illustration of our preference generation pipeline. A user’s reviews for items,
combined with item information, are input into Llama3 as a prompt to infer the user’s preferences.
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Table 4: Statistics for generated preferences for the different datasets. For pos/neg and fine/coarse
we show number of samples in the format train/val/test split.

Benchmark #preferences #positive #negative pos/neg fine/coarse

Beauty 992,510 708,706 283,804 17,811/3,671/3,716 24,114/16,702/15,956
Toys and Games 837,985 645,696 192,289 11,513/2,342/2,508 23,730/15,968/14,950
Sports and Outdoors 1,481,685 1,075,679 406,006 21,402/4,275/4,293 36,552/25,728/25,188
Steam 2,026,225 1,495,931 530,294 31,505/7,968/8,493 19,550/10,678/10,626

Instruction:
Here is a list of items a user bought along with their respective reviews in json format: { } . Your
task is to generate a list of up to five search instructions that reflect the user’s preferences based on
their reviews. Be specific about what the user likes, does not like, and should be avoided. Do not
mention brands or certain products. Return a json file containing the search instructions with key
’instructions’. Keep the instructions simple, short and concise, and do NOT include comments on
delivery time or pricing.
Parsed response:
[’Search for nail polish with shimmer finish’, ’Look for products
with vibrant, bold colors’, ’Avoid products that require base coat
for optimal results’, ’Prioritize products with high-quality,
long-lasting formula’, ’Opt for products with easy, smooth
application’]

After generation, we apply an exhaustive postprocessing step to ensure that every user-item pair is
associated with exactly five user preferences. In Table 4 we show the statistics after our preference
generation pipeline for the different datasets.

Granularity of preferences. We also investigate whether the granularity of user preferences affects
the model’s ability to adhere to them. We experiment with various prompts to elicit preferences at
different levels of granularity, ranging from coarser, higher-level user preferences to fine-grained
preferences that include detailed descriptions of products and brands. To obtain more abstract user
preferences, we slightly modify the prompt as follows. An example for the same user mentioned
above is shown.

Instruction:
Here is a list of items a user bought along with their respective reviews in json format: { } .
Your task is to generate a list of up to five search instructions that summarizes the userś high level
preferences based on their reviews. Be specific on what the user does not like and should be avoided.
Do not mention brands or certain products. Return a json file containing the search instructions with
key ’instructions’. Keep the instructions simple, short and concise, and do NOT include comments on
delivery time or pricing.
Parsed response:
[’Look for products with vibrant colors’, ’Prioritize products with
high-quality finishes’, ’Opt for products that are easy to apply’,
’Consider products that are suitable for multiple uses (e.g.,
toes and fingers)’, ’Avoid products that require additional base
coats’]

Finally, to obtain more fine-grained user preferences, we slightly modify the prompt again to permit
the inclusion of specific brands and item names in the LLama’s response. As shown below, the
LLama indeed mentions brands when given the explicit instruction that mentioning item names or
brands is acceptable.
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Instruction:
Here is a list of items a user bought along with their respective reviews in json format: { } .
Your task is to generate a list of up to five search instructions that reflect the user’s preferences based
on their reviews. Be specific on what the user likes, does not like, and should be avoided. It is ok
to mention brands or certain products. Return a json file containing the search instructions with key
’instructions’. Keep the instructions simple, short and concise, and do NOT include comments on
delivery time or pricing.
Parsed response:
["Search for nail polishes with similar shimmering effects to
OPI’s Simmer and Shimmer", ’Prioritize products with vibrant,
long-lasting colors that look great on toes’, "Look for nail
polish brands that offer a wide range of colors, similar to
OPI’s Burlesque collection", ’Avoid products that require a base
coat for optimal results’, ’Opt for nail polishes with a smooth,
easy-to-apply formula’]

In practice, we found that varying the granularity of user preferences did not significantly impact
model performance when using more fine/coarse grained user preferences. This suggests that the
user preferences obtained through our default prompting scheme contain sufficient information to
effectively steer the model.

C.1 REVIEWS TO PROPERTIES

In addition to item titles and descriptions, the collective reviews of items offer a wealth of infor-
mation about their properties. However, with hundreds of users potentially reviewing a single item,
each contributing multiple paragraphs, extracting relevant information can be challenging. To im-
prove the signal-to-noise ratio, we prompt LLaMA-3-70B-Instruct to extract and condense
item properties from the corpus of user reviews. Specifically, we instruct the LLM to provide con-
cise objective descriptions, excluding subjective opinions. Below, we illustrate this approach with
an example of extracting properties from reviews of a froggy pool in the Amazon Toys and Games
dataset.

Instruction:
Your task is to summarize the following reviews of an item into a list of item properties using
keywords and phrases: { } . Keep your response short and concise. Only focus on objective
properties of the item. Do NOT include subjective opinions or emotions. Do NOT include comments
on price or delivery time. Return your response as a python list with at most 10 entries that accurately
reflect the properties of the item.
Parsed response:
Inflatable pool with a frog head design, Rainbow sunshade provides
shade for the entire pool, Inflatable base consists of multiple air
cushions, Pool holds 12 gallons of water, Maximum fill line is 4
inches, Inflated pool area has a 28 inch diameter, Three separate
air valves for inflation, Easy to set up and take down, Suitable
for children aged 1-3 years, Cushioned inflatable base for comfort.
Original review:
This froggy pool is great for your young children. It is 45" x 39"
x 27" and very comfortable and safe for your child.

The parsed response above demonstrates that LLama3 is capable of providing a comprehensive
list of characteristics about toys in the Amazon Toys and Games dataset. We observed modest
performance gains when providing summarized item properties alongside item titles and preferences
as input to our language-conditioned generative retrieval model. Since we were limited by the
number of prompts we could issue, we did not compile item properties for all datasets. Nevertheless,
we provide the prompts to facilitate future research in this direction.
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Vision

Figure 10: Schematic illustration of our pipeline to identify the reviews that triggered negative
user preferences. The reviews of different items guided the LLM to generate two distinct user
preferences. We perform sentiment classification on both user preferences and reviews, followed
by a matching step in Sentence-T5 space to determine which negative review led to a negative user
preference.

D BENCHMARK DESIGN

In this section, we provide supplementary detail on the creation of the various components of our
benchmark.

D.1 PREFERENCE SENTIMENT UNDERSTANDING

The sentiment understanding benchmark is based on preference-item pairs and utilizes a matching
mechanism to identify items that triggered negative reviews. This is implemented using a pre-trained
sentiment classification model from Hartmann et al. (2023) to classify reviews. To identify prefer-
ences, we employ a rule-based approach, as we observed that preferences can be both positive and
negative simultaneously (e.g., a preference may specify liking certain items, while avoiding others).
Furthermore, we noticed that negative preferences consistently follow a specific pattern, starting
with either “Avoid”, “Exclude”, or “No”. To minimize misclassifications, we consider preferences
beginning with these words to be negative. If only one item in a user sequence received a negative
review, we pair the negative preference with that item. Otherwise, we use a matching mechanism
in Sentence-T5 space, where we match a negative preference to the item whose review is closest in
terms of cosine similarity. An example of the negative matching pipeline is illustrated in Figure 10
. This yields a set of negative preference-item pairs, enabling us to evaluate whether the model can
recognize negative sentiment and respond accordingly. To obtain positive preference-item pairs, we
iterate over all negative pairs and invert the gathered preferences. Since negative instructions always
start with “Avoid”, “Exclude”, or “No”, we simply replace these words with “Find” or “Search for”
to invert them. This results in two sets: one containing negative preferences paired with items and
another containing positive preferences paired with the same items. Finally, we assess whether the
model can successfully avoid certain items, while actively retrieving others.

D.2 PREFERENCE STEERING

In the preference steering scenario we consider two distinct scenarios: fine-grained and coarse-
grained preference steering. The former assesses whether the model can retrieve an item very sim-
ilar to the ground truth by modifying the user preference. In contrast, the latter evaluates whether
the model can retrieve a distinctly different item by changing the user preference accordingly. We
identify a very similar item by the maximal cosine similarity in a pre-trained Sentence-T5 embed-
ding space. Contrary, we retrieve a very distinct item by the lowest cosine similarity to the ground
truth item. Subsequently, we match the retrieved items to new user preferences, again via cosine
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Figure 11: Positive and negative preference-item pairs obtained after matching negative preferences
to items that received a negative review. We apply a rule-based inversion to generate the correspond-
ing positive pair.

Curved OLED monitors

Curved OLED monitors

Fine-grained

Coarse-grained

Figure 12: Schematic illustration of our pipeline for constructing fine- and coarse-grained preference
steering. We search for very similar and dissimilar items to the ground truth item of each original
item sequence and match them to user preferences (top). Then, we obtain two new sequences by
exchanging the original preference with each user preferences and associated new ground truth item.

similarity. We show a visual illustration of this procedure in Figure 12. Finally, we ensure that there
is no overlap between our compiled training, validation and test split by controlling for the matched
preferecnes, i.e. if a user preference was already matched to a retrieved item, we associate the cur-
rent item with the next most similar or distinct preference. This results in uniquely (preference,
item) tuples for every dataset split.
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Figure 13: Recall@10 for MenderTok trained on different datasplits on the Steam dataset, evaluated
under various schemes: Recommendation, Sentiment following, Preference steering, Preference con-
solidation, and History consolidation.

E ADDITIONAL RESULTS

We provide complementary results for our ablation studies on the data mixture. In Table 5 we report
Recall@5, Recall@10, NDCG@5, and NDCG@10 for the different versions of Mender that are
trained on different data mixes. Furthermore, we provide results for training on the Steam dataset
with different data mixtures in Figure 13 to highlight that fine-and coarse-grained steering as well
as sentiment following capabilties can be obtained on this dataset as well.

Additionally, we report standard deviations of our results in Table 1 in Table 6 with larger values
being depicted in red. The small standard deviation indicates that reported improvements of Mender
are statistically significant.

To assess the efficiency of our Mender variants, we compare the time required for training and
inference as well as their performance. Furthermore, we add a comparison to SASRec (Kang &
McAuley, 2018) which is a traditional sequential recommendation baseline. We present our results
in Table 7 for the all the four datasets.

Additionally, we conduct an experiment to demonstrate that training on all five generated user
preferences leads to detrimental performance. As mentioned in Section 3.2, each training se-
quence contains of a single user preference that is matched to the target item in a pre-trained
SentenceT5 space. To verify that this is the best training strategy, we compare MenderTok
trained on these sequences to the setup where MenderTok receives all five user preferences along
with the interaction history (MenderTok-AllPrefs), i.e. the training sequences are structured as[
pTu−1
u1

, . . . , pTu−1
u5

, i1, . . . , iTu−1

]
. We report our results in Table 8. They verify that training on

sequences
[
pTu−1
u , . . . , i1, . . . , iTu−1

]
where pTu−1

u is matched to the ground truth item iTu−1 at-
tains significantly better results no recommendation and also leads to the emergence of steering
capabilities.
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Table 5: Performance for different versions of Mender trained on different data mixtures for all
evaluation axes on the Beauty and Steam datasets. We report average performance across three
random seeds.

Methods
Beauty Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation

MenderTok 0.0605 0.0401 0.0937 0.0508 0.1682 0.1441 0.2037 0.1555
MenderTok-Pos 0.0553 0.0371 0.0840 0.0463 0.1667 0.1429 0.2004 0.1538
MenderTok-Neg 0.0598 0.0394 0.0917 0.0497 0.1646 0.1410 0.1983 0.1519
MenderTok-Pos-Neg 0.0491 0.0321 0.0778 0.0413 0.1647 0.1416 0.1979 0.1523
MenderTok-Fine 0.0591 0.0383 0.0918 0.0487 0.1667 0.1428 0.2005 0.1538
MenderTok-Coarse 0.0601 0.0392 0.0924 0.0496 0.1682 0.1440 0.2018 0.1549
MenderTok-Fine-Coarse 0.0570 0.0366 0.0893 0.0470 0.1663 0.1424 0.2007 0.1535
MenderTok-All 0.0529 0.0337 0.0838 0.0436 0.1634 0.1400 0.1969 0.1508

Fine-grained steering

MenderTok 0.0534 0.0344 0.0844 0.0444 0.0218 0.0137 0.0357 0.0182
MenderTok-Pos 0.0501 0.0321 0.0791 0.0414 0.0217 0.0137 0.0343 0.0177
MenderTok-Neg 0.0500 0.0323 0.0803 0.0420 0.0196 0.0124 0.0318 0.0163
MenderTok-Pos-Neg 0.0513 0.0333 0.0791 0.0423 0.0211 0.0131 0.0344 0.0173
MenderTok-Fine 0.2476 0.1680 0.3475 0.2002 0.0829 0.0538 0.1234 0.0668
MenderTok-Coarse 0.1483 0.0981 0.2212 0.1215 0.0395 0.0244 0.0652 0.0327
MenderTok-Fine-Coarse 0.2781 0.1885 0.3861 0.2234 0.0985 0.0643 0.1459 0.0795
MenderTok-All 0.2676 0.1802 0.3750 0.2148 0.0903 0.0601 0.1338 0.0741

Coarse-grained steering

MenderTok 0.0094 0.0059 0.0161 0.0080 0.0045 0.0028 0.0085 0.0041
MenderTok-Pos 0.0098 0.0062 0.0163 0.0083 0.0047 0.0029 0.0079 0.0040
MenderTok-Neg 0.0063 0.0039 0.0117 0.0056 0.0041 0.0027 0.0072 0.0036
MenderTok-Pos-Neg 0.0095 0.0061 0.0169 0.0084 0.0050 0.0031 0.0083 0.0041
MenderTok-Fine 0.1005 0.0655 0.1494 0.0813 0.0272 0.0175 0.0691 0.0304
MenderTok-Coarse 0.3028 0.2631 0.3541 0.2797 0.0953 0.0485 0.1385 0.0624
MenderTok-Fine-Coarse 0.3525 0.2710 0.4413 0.2999 0.1403 0.1052 0.1741 0.1163
MenderTok-All 0.3294 0.2779 0.3885 0.2970 0.1063 0.0696 0.1495 0.0839

Sentiment following

MenderTok 0.0043 - 0.0053 - 0.0084 - 0.0110 -
MenderTok-Pos 0.0113 - 0.0140 - 0.0123 - 0.0134 -
MenderTok-Neg 0.0000 - 0.0000 - 0.0000 - 0.0000 -
MenderTok-Pos-Neg 0.0268 - 0.0414 - 0.0637 - 0.0787 -
MenderTok-Fine 0.0046 - 0.0075 - 0.0080 - 0.0112 -
MenderTok-Coarse 0.0067 - 0.0089 - 0.0088 - 0.0184 -
MenderTok-Fine-Coarse 0.0057 - 0.0083 - 0.0053 - 0.0081 -
MenderTok-All 0.0440 - 0.0635 - 0.0184 - 0.0256 -

History consolidation

MenderTok 0.0457 0.0304 0.0720 0.0388 0.0490 0.0317 0.0745 0.0399
MenderTok-Pos 0.0405 0.0272 0.0632 0.0344 0.0490 0.0331 0.0704 0.0400
MenderTok-Neg 0.0460 0.0301 0.0714 0.0383 0.0448 0.0288 0.0667 0.0359
MenderTok-Pos-Neg 0.0359 0.0233 0.0581 0.0305 0.0440 0.0293 0.0649 0.0360
MenderTok-Fine 0.0418 0.0270 0.0657 0.0346 0.0492 0.0333 0.0730 0.0410
MenderTok-Coarse 0.0436 0.0284 0.0682 0.0363 0.0495 0.0331 0.0728 0.0406
MenderTok-Fine-Coarse 0.0399 0.0254 0.0636 0.0331 0.0517 0.0355 0.0753 0.0430
MenderTok-All 0.0379 0.0236 0.0607 0.0309 0.0506 0.0349 0.0713 0.0416

F USER STUDY

Our aim is to verify that the user preferences that were generated by the LLM accurately approximate
the real user preferences. To this end, we conduct a user study to answer the following questions:
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Table 6: Standard deviation for all methods on all evaluation axes for all datasets trained on recom-
mendation data across three random seeds.

Methods
Sports and Outdoors Beauty Toys and Games Steam

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recall
@5

NDCG
@5

Recall
@10

NDCG
@10

Recommendation

TIGER 0.0009 0.0006 0.0006 0.0005 0.0010 0.0009 0.0012 0.0009 0.0008 0.0005 0.0004 0.0004 0.0015 0.0014 0.0008 0.0012
VocabExtRND 0.0002 0.0001 0.0002 0.0000 0.0020 0.0017 0.0034 0.0022 0.0005 0.0006 0.0006 0.0006 0.0006 0.0002 0.0015 0.0001
LC-REC 0.0021 0.0014 0.0027 0.0016 0.0010 0.0007 0.0006 0.0006 0.0010 0.0009 0.0015 0.0010 0.0014 0.0019 0.0013 0.0019
MenderEmb 0.0011 0.0005 0.0017 0.0007 0.0007 0.0007 0.0017 0.0010 0.0015 0.0010 0.0023 0.0012 0.0035 0.0030 0.0040 0.0031
MenderTok 0.0007 0.0005 0.0005 0.0004 0.0004 0.0001 0.0012 0.0002 0.0019 0.0011 0.0022 0.0012 0.0006 0.0004 0.0004 0.0003

Fine-grained steering

TIGER 0.0006 0.0004 0.0006 0.0004 0.0040 0.0024 0.0065 0.0032 0.0010 0.0006 0.0032 0.0011 0.0005 0.0003 0.0010 0.0004
VocabExtRND 0.0007 0.0005 0.0006 0.0005 0.0005 0.0004 0.0019 0.0009 0.0009 0.0004 0.0010 0.0004 0.0010 0.0005 0.0011 0.0004
LC-REC 0.0034 0.0022 0.0054 0.0028 0.0009 0.0004 0.0018 0.0007 0.0016 0.0010 0.0024 0.0012 0.0014 0.0006 0.0020 0.0007
MenderEmb 0.0009 0.0005 0.0013 0.0007 0.0017 0.0013 0.0015 0.0012 0.0020 0.0017 0.0015 0.0015 0.0024 0.0014 0.0039 0.0019
MenderTok 0.0004 0.0000 0.0010 0.0003 0.0012 0.0007 0.0010 0.0006 0.0008 0.0004 0.0010 0.0004 0.0005 0.0003 0.0004 0.0003

Coarse-grained steering

TIGER 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001
VocabExtRND 0.0001 0.0000 0.0001 0.0000 0.0003 0.0002 0.0002 0.0000 0.0004 0.0003 0.0002 0.0002 0.0002 0.0001 0.0004 0.0001
LC-REC 0.0005 0.0003 0.0008 0.0004 0.0006 0.0003 0.0012 0.0005 0.0007 0.0005 0.0009 0.0005 0.0005 0.0004 0.0008 0.0004
MenderEmb 0.0000 0.0000 0.0004 0.0001 0.0008 0.0005 0.0000 0.0002 0.0009 0.0006 0.0009 0.0005 0.0005 0.0002 0.0010 0.0003
MenderTok 0.0002 0.0001 0.0005 0.0002 0.0015 0.0011 0.0017 0.0011 0.0003 0.0002 0.0009 0.0004 0.0005 0.0003 0.0002 0.0001

Sentiment following

TIGER 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 - 0.0000 -
VocabExtRND 0.0000 - 0.0000 - 0.0012 - 0.0005 - 0.0000 - 0.0000 - 0.0029 - 0.0010 -
LC-REC 0.0003 - 0.0007 - 0.0006 - 0.0012 - 0.0003 - 0.0007 - 0.0016 - 0.0014 -
MenderEmb 0.0001 - 0.0001 - 0.0003 - 0.0007 - 0.0002 - 0.0005 - 0.0003 - 0.0020 -
MenderTok 0.0011 - 0.0012 - 0.0014 - 0.0003 - 0.0000 - 0.0002 - 0.0012 - 0.0014 -

History consolidation

TIGER 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
VocabExtRND 0.0001 0.0001 0.0007 0.0003 0.0017 0.0016 0.0020 0.0017 0.0009 0.0008 0.0006 0.0007 0.0023 0.0027 0.0028 0.0028
LC-REC 0.0009 0.0006 0.0012 0.0007 0.0012 0.0007 0.0012 0.0007 0.0008 0.0003 0.0018 0.0007 0.0014 0.0019 0.0012 0.0018
MenderEmb 0.0011 0.0005 0.0018 0.0007 0.0007 0.0003 0.0005 0.0002 0.0006 0.0008 0.0015 0.0007 0.0003 0.0007 0.0006 0.0008
MenderTok 0.0008 0.0006 0.0007 0.0006 0.0005 0.0000 0.0005 0.0001 0.0015 0.0013 0.0014 0.0013 0.0030 0.0023 0.0038 0.0025

Table 7: Performance, training time and inference time on an A100 GPU for MenderEmb, MenderTok,
and traditional sequential recommendation system SASRec (Kang & McAuley, 2018) on Beauty,
Sports and Outdoors, Toys and Games, and Steam.

Method Dataset Train time Inference time NDGC@10 Recall@10

SASRec

Beauty 293min 8ms 0.0227 ± 0.0004 0.0528 ± 0.0006
Sports and Outdoors 447min 9ms 0.0118 ± 0.0002 0.0271 ± 0.0005
Toys and Games 280min 5ms 0.0267 ± 0.0002 0.0615 ± 0.0002
Steam 280min 5ms 0.1469 ± 0.0002 0.1781 ± 0.0004

MenderEmb

Beauty 127min 453ms 0.0405 ± 0.001 0.0755 ± 0.0017
Sports and Outdoors 374min 194ms 0.0215 ± 0.0007 0.0394 ± 0.0017
Toys and Games 239min 178ms 0.0342 ± 0.0015 0.0653 ± 0.0015
Steam 231min 179ms 0.123 ± 0.0031 0.182 ± 0.004

MenderTok

Beauty 2324min 562ms 0.0508 ± 0.0002 0.0937 ± 0.0012
Sports and Outdoors 2350min 210ms 0.0234 ± 0.0004 0.0427 ± 0.0005
Toys and Games 1021min 227ms 0.0432 ± 0.0012 0.0799 ± 0.0022
Steam 2330min 222ms 0.156 ± 0.0003 0.204 ± 0.0004

1. Are the generated user preferences informed by the user’s past interaction history?
2. Do the generated preferences accurately approximate the user’s preferences?
3. Is the matched preference related to the target item?
4. Given that a user preference accurately approximates the user’s preferences, is it related to

the target item?
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Table 8: Performance of MenderTok when being trained on the single matched preference compared
to training on all five generated user preferences on the Amazon datasets. For sentiment following
we report m@10 instead of Recall@10.

Methods
Beauty Sports Toys

Recall
@10

NDCG
@10

Recall
@10

NDCG
@10

Recall
@10

NDCG
@10

Recommendation

MenderTok 0.0937 0.0508 0.0427 0.0234 0.0799 0.0432
MenderTok-AllPrefs 0.0131 0.0066 0.0063 0.0037 0.0074 0.0039

Fine-grained steering

MenderTok 0.0844 0.0444 0.0324 0.0159 0.0639 0.0321
MenderTok-AllPrefs 0.0014 0.0006 0.0009 0.0004 0.0018 0.0009

Coarse-grained steering

MenderTok 0.0161 0.0080 0.0045 0.0021 0.0060 0.0029
MenderTok-AllPrefs 0.0006 0.0002 0.0003 0.0002 0.0006 0.0003

Sentiment following

MenderTok 0.0053 - 0.0042 - 0.0017 -
MenderTok-AllPrefs 0.0008 - 0.0001 - 0.0005 -

History consolidation

MenderTok 0.0720 0.0388 0.0345 0.0187 0.0700 0.0377
MenderTok-AllPrefs 0.0089 0.0041 0.0063 0.0038 0.0046 0.0025

In total there were 22 participants that answered all three aforementioned questions about 20 ran-
domly sampled recommendation scenarios of one of the Beauty, Toys and Games, Sports and Out-
doors, or Steam datasets. For each of the three questions we provide three possible answers, namely
(1) yes, (2) no, or (3) lack of information to tell. In one such scenario, users were first shown the
past interaction history of a random user along with their reviews. Then, the generated user prefer-
ences were displayed along with the one user preference that was matched to the ground truth item,
i.e. the next item in the sequence. In the end, we also display the ground truth item with the same
information as the recommendation system would receive it.

Overall, 440 recommendation scenarios were reviewed, which amounts to 2200 preferences that
were judged. We now iterate over all questions and present the corresponding findings.

Are the generated user preferences informed by the user’s past interaction history? The ob-
jective for introducing this question was to quantify how much of the generated preferences was
actually represented in the interaction history and what amount has been hallucinated. We report
the results for this first question in Figure 14. The majority of users found that the generated user
preferences are generally well informed by the user’s interaction history across datasets. We found
that the model occasionally generated rather generic preferences, for example “Avoid harsh chemi-
cals” on the Beauty dataset even though there was no mention of harsh datasets in the reviews. Such
preferences are rather generic and do not convey much information about a user’s preference. Fur-
thermore, some participants indicated that there was a lack of information to answer the question.
This can be traced back to the fact that we intentionally did not provide item descriptions to the
user, as those often contain a substantial amount of noise. As this information is hidden, we believe
it caused the small fraction of preferences that were rated as lack of info. Thus, we can conclude
that the generated user preferences for the most part were informed by reviews or item-specific info,
however there is still a non-negligible amount of user preferences that can be considered halluci-
nated.

Do the generated preferences accurately approximate the user’s preferences? The aim of this
question is to quantify whether participants believe that the preferences of the user are correctly

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 14: User survey results for the question “Are the generated user preferences informed by
the user’s past interaction history?” for the four different datasets used for approximating user
preferences.

Figure 15: User survey results for the question “Do the generated preferences accurately approxi-
mate the user’s preferences?” for the four different datasets used for approximating user preferences.

approximated. This question is crucial as it sits at the core of our user survey to identify the quality
of the preferences. We report the outcome in Figure 15. Again we find that participants believe that
for the most part, the preferences accurately reflects the user’s preferences. In this case, the answer
lack of info means that there is not enough information to capture the user’s preferences, which is
the case if very little details are given in the reviews or they are missing entirely. Fortunately, this
case is underrepresented. Overall, we can conclude that the approximation of user preferences via
our preference approximation results yields high quality preferences that accurately reflect the user’s
preferences.

Is the matched preference related to the target item? After we have established the quality of
the preferences it is imperative to also evaluate our matching of preferences to target items con-
ducted in Section 3.2 for preference-based recommendation. The reason we conduct this matching
is to provide the model with a useful signal it can learn from. This is imperative as we observed that
simply using all preferences for training leads to detrimental performance (see Table 8). We report
the results for this question in Figure 16. Interestingly, the fraction of correctly matched preferences
is significantly lower compared to the number of correctly generated preferences. The reasons for
this can be two fold, (i) it can be that the target item is entirely unrelated to the past interaction
history, or (ii), the matching mechanism is suboptimal. The former case reflects the inherent uncer-
tainty of the sequential recommendation task, as oftentimes the target item is simply not related to
previously acquired purchases. This shortcoming cannot be alleviated. The latter, however, can be
tackled by potentially more expressive embedding models or LLMs that can be used for matching
preferences to the target item. Finally, the lack of info category represents cases where the infor-
mation about the target item is too little, i.e. no description or item title is given. Overall, we can
conclude that even though we demonstrated significant performance gains resulting from training
on the matched preferences, it could likely be improved.

Given that a user preference accurately approximates the user’s preferences, is it related to the
target item? This question was not explicitly asked for in the user study, however we can obtain an
estimate on the underlying aleatoric uncertainty of the task. In particular, we consider cases where
Q2 was answered with yes and visualize the three categories for Q3 (see Figure 17). In other words,
we look at correctly approximated preferences and ask what fraction of them is related to the target
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Figure 16: User survey results for the question “Is the matched preference related to the target item?”
for the four different datasets used for approximating user preferences.

Figure 17: User survey results for the question ‘Given that a user preference accurately approxi-
mates the user’s preferences, is it related to the target item?” for the four different datasets used for
approximating user preferences.

item. If Q2 is answered with yes, then we expect the matching to perform well, as there is a semantic
relation to the target item. However, if there is still no relation to the target item, i.e. Q3 is answered
with no, then we know this is due to the inherent uncertainty of the task. Interestingly, 50-70% of
the correctly approximated preferences are related to the target item. This provides us with an upper
bound on the maximum performance that can be obtained on the sequential recommendation task,
i.e. the maximum Recall that can be obtained is in the range of 0.5-0.7, depending on the dataset.
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