
Under review as a conference paper at ICLR 2023

BUILDING COMPACT REPRESENTATIONS FOR IMAGE-
LANGUAGE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a method to learn compact vision and language representations, which
adaptively and iteratively fuses the multi-modal features. It greatly lowers the
FLOPs of the model by effectively combining and reducing the number of tokens
used for both text and images. This allows the model to scale without a large
increase in FLOPs or memory and leads to a data efficient training. In addition,
we propose adaptive pre-training data sampling which further improves the data
efficiency. We achieve competitive performance compared to much larger models,
and do so with significantly less data and FLOPs. With only 40M training exam-
ples and with 39 GFLOPs our model of 350M parameters outperforms all methods
that have used less than 1B examples for pre-training. Code will be released.

1 INTRODUCTION

Vision and language learning models have made big strides recently, enabling novel capabilities of
natural language interaction with the visual world, such as question-answering, or providing de-
scriptions or reasoning about images. Vision and language models have achieved high performance
by scaling of the model architectures, which in turn relies on the availability of very large datasets.

One important component of these models is building the underlying joint visuo-lingual representa-
tion which captures the relations between the modalities.

Recent vision and language representation learning approaches share core architecture elements,
effectively employing the Transformer model (Vaswani et al., 2017) to learn across modalities (Wang
et al., 2021; Li et al., 2021; Dou et al., 2022; Li et al., 2022).
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computing the cross attention over all the inputs L times.

(d) Our approach, only uses the input cross-attention once and uses gates to update 
the features.

(e) TokenLearner/Co-Tokenization style which generates many spatial attention maps.
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Figure 1: Illustration of our proposed approach (d) and comparisons to others. Unlike Perceiver-
style models (c), we only process the input a single time, and unlike TokenLearner approaches, we
do not use spatial attention maps. Ours results in more compact features than concatenation (a),
while still maintaining more complex features than cross-attention (b).

However, expensive attention mechanisms are applied within Transformers, in which the compute
required grows quadratically with the increase of the input sizes; further, these models perform better
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with significantly more data (Dosovitskiy et al., 2021) and training steps to learn the joint represen-
tations; and lastly, since large data are hard to collect, automatically collected datasets contain large
amounts of noise. All this makes these models even more ineffective and expensive to train: scaling
the models, combined with the corresponding data scaling required, and training with large amounts
of noise, require large amounts of compute. Thus, it is desirable to construct more memory- FLOPs-
and data- efficient vision-language representations where one can take advantage of model scale but
in a more effective way.

To that end, we propose a vision-language representation learning, the Joint Adaptive Representa-
tion, which allows efficient joint image-language learning (Figure 2). This approach first reduces the
number of tokens in the input modalities, then adaptively fuses them. This process greatly reduces
FLOPs, while maintaining or improving performance. Our approach results in a more compact and
efficient representations, obtaining 33% fewer FLOPs than the commonly used concatenation, while
improving performance. This leads to more data- and compute- efficient models.

Furthermore, pre-training has been critically important for successful vision and language methods.
In many cases, very large datasets and compute intensive training are needed to establish alignment
between modalities (Wang et al., 2021). We find that the proposed method reduces the needed
pretraining data, due to the reduced representation size. In addition, we also propose an adaptive
sampling of the pretraining datasets and tasks, which progressively increases the focus on harder
tasks. As a result of the above-mentioned innovations, pre-training is done in a more data-efficient
manner, capturing the vision-language features more effectively. Data efficiency, combined with
fewer FLOPs, reduces the overall cost of the model.

We evaluate the approach on Visual Question Answering tasks, where understanding jointly the
image in the context of the language input is important. Our model performs competitively with
respect to the state-of-the-art (SOTA) models, outperforming all models of standard parameter and
data scale (Figure 2). Further, the model outperforms other efficient joint vision-language learning
methods (Piergiovanni et al., 2022b; Jaegle et al., 2021), surpassing them both in accuracy and in
reducing FLOPs. It also scales well with increasing model size and input image size.

The main contributions of our work are: (1) a new image-text fusion method that is more efficient
that previous methods; (2) an effective method to mix and pre-train image-text models on smaller
datasets.

2 RELATED WORK

Vision and language modeling has been of much interest, with many tasks and methods showing
great progress. Many approaches have found benefits from scaling the models and data (Radford
et al., 2021; Wang et al., 2021). Most commonly, Transformers (Vaswani et al., 2017) are used for
multi-modal fusion where the inputs are most often concatenated and the fusion is effectively done
by the Transformer itself (Chen et al., 2020; Li et al., 2019; Zhang et al., 2021). Some of these
models have also been scaled significantly, which, given the costs of the Transformers, leads to
expensive approaches. For example, SimVLM (Wang et al., 2021) relies purely on concatenation and
a large Transformer model of 1.5 billion parameters and with about 1.8 billion pretraining samples to
achieve strong performance. Co-attention mechanisms within the Transformer or other architectures
are popular as well, while still using primarily concatenation of features (Lu et al., 2019; Tan &
Bansal, 2019; Nguyen & Okatani, 2018). A recent approach, METER (Dou et al., 2022) uses a
co-attention mechanism with concatenation, as well. Other works have studied methods to learning
combined vision and language features. For example, ALBEF (Li et al., 2021) and BLIP (Li et al.,
2022), use cross-attention to fuse the features, but as we show later, this can be difficult for the
model, as it relies on the text length. All of these works have shown benefits from these methods,
however, here we propose both better and more efficient fusion mechanisms, which can yield better-
scaled models and less costly ones as well.

Other recent works have studied methods for reducing input tokens (Ryoo et al., 2021) and methods
to combine multimodal inputs, and reduce their size. For example, Perceiver (Jaegle et al., 2021)
iteratively fuses multiple inputs and reduces their sizes and Iterative Co-Tokenization (Piergiovanni
et al., 2022b) iteratively selects different vision features with spatial attention. While these ap-
proaches were shown to be effective, we find here the compute requirements can further be reduced
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Figure 2: GFLOPs vs. performance for several models. The proposed approach enables much more
efficient scaling, and achieves excellent performance for fewer FLOPs. It outperforms SimVLM-
huge on VQA2.0 dataset, even though our model is evaluated in the open-vocabulary setting.

by removing the expensive spatial attention maps and iterative updates, while also improving the
performance.

Vision-and-language learning approaches have developed powerful pre-training methods following
the success of language models; pre-training objectives are either directly borrowed or appropriately
adapted to vision-language learning. In these, pre-training is typically done on a single dataset,
for example, ViLBERT (Lu et al., 2019) uses the Conceptual Captions 3M dataset (Sharma et al.,
2018), VisualBERT (Li et al., 2019) uses COCO Captions (Chen et al., 2015); in some cases very
large datasets are used, for example, SimVLM (Wang et al., 2021). Many of the recent vision
and language works use a mix of pretraining datasets and tasks, e.g., FLAVA (Singh et al., 2022)
uses 70M examples from a variety of sources. ALBEF (Li et al., 2021), BLIP (Li et al., 2022),
METER (Dou et al., 2022), VinVL (Zhang et al., 2021), UNITER (Chen et al., 2020), LXMert (Tan
& Bansal, 2019) also mix a set of tasks or datasets, common examples are COCO captions (Chen
et al., 2015), Conceptual Captions (Sharma et al., 2018), Visual Genome (Krishna et al., 2016),
YFCC (Thomee et al., 2015), etc. We follow these works, but propose a new way to sample and
utilize small, public datasets to achieve strong performance.

3 JOINT IMAGE-LANGUAGE REPRESENTATION LEARNING

The key question we address is how to combine the features from vision and language input modal-
ities. A few basic approaches use either: (1) concatenation or (2) cross-attention. A key issue with
concatenation is that it greatly increases the number of tokens by addingH∗W to the text length (H ,
W are the height and width of the image features). Thus, as the image size increases, concatenation
greatly increases the FLOPs and memory requirements of the model, e.g., (Wang et al., 2021; Dou
et al., 2022; Lu et al., 2019; Su et al., 2019; Li et al., 2019; Lu et al., 2020; Chen et al., 2020). Here,
we propose a method to reduce the number of tokens, improving efficiency.

Cross-attention based methods have other issues, mainly that the modality used for the query (usu-
ally text, e.g., ALBEF (Li et al., 2021), BLIP (Li et al., 2022)), determines the size of the output rep-
resentation. Often for vision-language tasks, the visual features have many tokens (for example, the
visual tokens are 14x14 = 196 for a modest image input size of 224x224), while text is fairly short,
e.g., 10 tokens in VQA2.0. When using cross-attention, the entire visual input must be squeezed into
these few text token representations, greatly constraining the amount of visual information that can
be used. While this approach has fewer FLOPs than concatenation, it loses information, which can
reduce task performance, and puts a dependence on the input text length. Naturally, this cross-modal
representation will have even less utility when increasing the input image size.

Instead, we here propose a module that enables better learning of vision-language features by more
effectively incorporating the visual information and fusing it with the text information. By adap-
tively and iteratively tokenizing the inputs, the model is able to refine the feature representation
learned from both modalities in the training process, while keeping a reasonable number of FLOPs.
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3.1 JOINT ADAPTIVE REPRESENTATION

Our approach is based on several insights. First, we query the image to obtain more informative
visual tokens. Previously, this was done using a TokenLearner-like approach (Piergiovanni et al.,
2022b; Ryoo et al., 2021). However, this method, while reducing FLOPs, notably for video applica-
tions in (Piergiovanni et al., 2022b), still uses quite a few FLOPs to generate and apply the attention
maps, and does not scale well with image size. Instead, we utilize a hybrid approach inspired by
Perceiver (Jaegle et al., 2021). We generate N tokens independently from each modality as a first
step. Secondly, we then use a direct cross-attention mechanism between the new text and compact
visual features to produce a better cross-modal representation. This mechanism consists of a cross-
attention layer, then a self-attention layer, and a Multi-Layer Perceptron (MLP), similar to a standard
Transformer layer (Vaswani et al., 2017), but due to the reduced tokens, is much more lightweight.

Finally, this process is done iteratively, thus refining the current representation based on the set of
features from the Transformer. This allows the model to dynamically update and select different
visual and text features at each step so it is best able to perform the task, without increasing the
compute cost. Our approach is described in detail below.

Let Xtext and Xim be the inputs for text and for images, respectively. More specifically Xtext ∈
RL×D and Xim ∈ RH×W×C , assuming the visual input is of size W × H , the text is of length
L. The goal is to produce new, lower dimensional feature representations. This can be done by
reducing the representation to a lower number of tokens, which is particularly important for the
visual features as they are many more. This is done by first unifying the representation dimensions,
more specifically projecting the visual features to the H ∗W × D space, where D is the feature
dimensions for the text input, P (Xim) = W1Xim.

In principle both the visual input and the text input can be projected to a new feature dimension e.g.,
D′, thus not having to be necessarily dependent on the input feature dimension.

As a second step, we proceed to learn a set of new N learnable tokens XN ∈ RN×D, which is
done in a DETR-style (Carion et al., 2020) feature learning. That is, XN is a randomly initialized
representation that is learned via back-propagation jointly with the other parameters to minimize the
loss.

fN =W2Φ(XN , P (Xim)). (1)

Here P (Xim) represents the projection of visual features from Equation ??, XN is the learned
latent features, Φ is the standard multi-head attention operation. This results in fN , the compact
intermediate representations with N features. This can also be viewed as learning N new tokens,
which represent the input of M tokens, where N �M , for the large visual input M = H ∗W . We
note that this is similar to the Perceiver architecture (Jaegle et al., 2021), albeit it is done only once
here. This process is also done to Xtext, resulting in N text features (tN ). Thus, unlike prior work
(e.g., (Li et al., 2021; 2022)), N is not required to be tied to the input text length; so a richer, but
more compact representation is built.

Next, for the two inputs tN , fN we learn a new joint feature representation F (tN , fN ) via cross
attention. Importantly, we note here that both of these inputs will influence the subsequent repre-
sentation to create a cross-modal fused version of text and image features. In the co-tokenization
approach (Piergiovanni et al., 2022b), the two modalities are also fused for better representation
learning, but here with two key differences: 1) the initial token reduction is not done at each iter-
ation, which is a computationally intensive process; and 2) ours uses a lightweight cross-attention
compared to the co-tokenization approach.

This process uses the following components. We first use LayerNorm (Ba et al., 2016) (denoted as
Ln) in order to normalize the features. We then compute cross-attention between tN (text features)
and fN (image features). The idea is that they will help construct a representation which is a combi-
nation of these modalities. We then use a standard Transformer layer with self-attention and MLPs
to compute the features.

Pcross(tN , fN ) =Ln(tN ) + tanh(α)Φ(Ln(tN ), Ln(fN ))

F (tN , fN ) =Pcross(tN , fN ) + tanh(β)MLP (Pcross(tN , fN )
(2)
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where α and β are learnable parameters that control how the text and vision features are fused (Φ
is the standard multi-head attention operation). We note that here, throughout, Pcross(tN , fN ) ∈
RN×D, i.e., is a compact representation which combines the two modalities. We also add the tanh
gating mechanism, which we find to be advantageous in our ablation experiments (Section 6.2).

The resultant representation F (tN , fN ) ∈ RN×D is then fed to the Transformer to produce a trans-
formed intermediate representation of the same dimension F = T (F (tN , fN )) ∈ RN×D. We use a
standard Transformer layer (T ) with multi-headed attention (Vaswani et al., 2017).

This new feature representation can be further refined to produce even better cross-modal learning by
repeating the same process, but this time taking the already obtained feature as input. The operation
is the same as Equation 2 but with continually updated input by replacing tN with F + tN , which
adds in the output of the previous Transformer layer. This lets the model continually refine and fuse
the features. Assuming Fi is the current representation and Fi+1 is the next, this uses the previous
equations to iteratively update the features as follows:

Pcross(Fi + tN , fN ) =Ln(Fi + tN ) + tanh(α)Φ(Ln(Fi + tN ), Ln(fN ))

Fi+1 =Pcross(Fi + tN , fN ) + tanh(β)MLP (Pcross(Fi + tN , fN )

Fi+1 =T (Fi+1)

(3)

At the first iteration we note the text input is used, whereas subsequently the joint features are.

Of key importance is that during the cross-modal learning process, we use the interaction of both
modalities. Specifically, we use attention to determine lower dimensional projections from both
modalities which differs both from the Transformer (Vaswani et al., 2017) which preserves the input
dimensionalities, and is a more efficient process than the Iterative Co-Tokenization (Piergiovanni
et al., 2022b) and Perceiver (Jaegle et al., 2021), also used by Flamingo (Alayrac et al., 2022), as
the expensive tokenization step over the whole input is only done once here. Further, different from
Flamingo are the iterative updates, Equation 3, where we iteratively combine the features, rather
than relying only on cross-attention. The approach is also different from methods like TokenLearner
which is only applied on a single input, which can lead to a loss in accuracy if not placed appropri-
ately (Ryoo et al., 2021). It is also different from cross-attention methods (Li et al., 2021; 2022; Dou
et al., 2022) due to the initial feature learning and iterative updating of the cross-modal information
(Equation 1). It is more efficient than these approaches, as well.

This approach also offers better performance than the concatenation baselines while using at least
33% fewer FLOPs than them (as seen in ablations, Section 6.2).

4 PRE-TRAINING

To strengthen the cross-modal feature representation learning, we use a number of cross-modal
pre-training tasks. While conflicting evidence points to either success with one or two pre-training
tasks (Wang et al., 2021; Dou et al., 2022) or with more tasks (Li et al., 2021; Dou et al., 2022;
Piergiovanni et al., 2022a), we find that a larger mixture of cross-modal tasks is more beneficial for
our vision-language model.

Our pre-training mixture includes tasks spanning captioning, split-captioning, token masking and
VQA style questions generated automatically from labeled data (which can be object specific), as
proposed by some of the above-mentioned works (Li et al., 2021; Dou et al., 2022; Piergiovanni
et al., 2022a). Please see appendix for a full list of tasks and datasets. We train all these tasks with a
single loss: per-token cross entropy, as they are all text-generative tasks.

4.1 ADAPTIVE TASK SAMPLING

Inspired by curriculum learning, we adaptively change the mixture ratios between the tasks during
pre-training. The idea is that initially in the early stages of training, various pre-training tasks will
be sampled roughly in equal proportions. However, as training progresses, it will be beneficial if
harder tasks are given larger sampling weights within each training batch. Thus the training will
progress from easy to hard examples. Since training batches are created for each training step, this
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will allow for the pre-training to seamlessly adapt its weights before sampling, so each iteration will
focus on the currently challenging tasks.

To implement this, we assume that tasks with a higher loss at a given training step are harder for the
model, and sample them more. Since all tasks are of the type (input: (image, text) and output: text)
and share the same loss, they are directly comparable and no cross-loss normalization is needed.
Specifically, a tasks sampling weight is:

LS∑
s Ls

(4)

where LS is the value of the current observed loss of a task S. That is, we take the percentage of a
task S loss over the sum of all tasks’ losses, computed on the training set. We find this helps balance
the tasks so the model is trained on the more difficult tasks, further improving data efficiency. We
enforce a minimum number of samples per task, so this can always be computed for all tasks.

We note that our adaptive sampling strategy is different from the common sampling strategies during
training, which are typically agnostic of a task’s performance, but rather based on the evolution
of the task performance during training. For example common methods are uniform sampling or
weighted sampling based on data volume or conversely to compensate for tasks or datasets which
are under-represented in training. Our finding is also consistent with other observations in which
well-performing losses are shown to be ‘myopic’, i.e., they work well on the task at hand but not as
well on downstream tasks (Kornblith et al., 2021).

In our experimental results, (Section 6.2) we see the benefits of the proposed adaptive sampling and
particularly for training in a data-efficient manner and with fewer training steps.

5 IMPLEMENTATION DETAILS

Model. In this work we use individual modality encoders. Specifically ViT Base/32 (Dosovitskiy
et al., 2021) for images and a T5 Base encoder (Roberts et al., 2022) for text. These representations
for each modality are taken from scratch, and are then jointly learned as described in Section 3.

Our base model contains about 350M parameters (where most of the parameters are in the encoders).
When the model is scaled, it has about 1.1B. Despite larger parameter count the models are very
efficient with only 38.9 and 54.5 GFLOPs, respectively, which is much fewer than methods such as
ALBEF (Li et al., 2021) with 165, BLIP (Li et al., 2022) with 250 and METER (Dou et al., 2022)
with 130; and significantly better than large models, like SimVLM (Wang et al., 2021) with 890
GFLOPs. To scale the model up, we increase from T5-base to T5-large. A T5 decoder is used to
decode the output into generated text. Exact details are provided in the supplemental materials; code
implementation will also be provided.

Pre-training mix and datasets. In contrast to several prior works that use hundreds of millions,
or 1-2 billion images (Singh et al., 2022), (Yuan et al., 2022), (Wang et al., 2021), we use a mix of
public datasets with only at most 40M samples. Specifically, we use the Conceptual Captions 3M
dataset (Sharma et al., 2018) (CC3M), the Conceptual Captions 12M dataset (Changpinyo et al.,
2021) (CC12M), Visual Genome (VG) (Krishna et al., 2016), Open Images (OI) (Kuznetsova et al.,
2020) and Localized Narratives (LN) (Pont-Tuset et al., 2020) dataset for OpenImages. Note that
we removed any images in the downstream validation/tests sets from these training sets.

Our vision and text backbones are initialized from scratch and only pre-trained by the 40M image-
language mixture described above.

6 EXPERIMENTS

6.1 EVALUATION

We evaluate our approach on three VQA datasets VQA2.0 (Agrawal et al., 2015), GQA (Hudson
& Manning, 2019), and visual entailment (SNLI-VE (Xie et al., 2019)). For each of these, we
follow the standard accuracy metrics which is the exact match accuracy. Our model uses the open-
vocabulary of the decoder to generate text and we use this output directly to compare to the ground
truth. A handful of approaches use open-vocabulary like us, e.g., ALBEF and BLIP (Li et al., 2021;
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Table 1: Comparison to the Perceiver (Jae-
gle et al., 2021) method and to the Iterative
Co-tokenization (Piergiovanni et al., 2022b) ap-
proach for image+text fusion. Both are our im-
plementations. *Adapted to VQA (The original
Iterative Co-Tokenization method is intended
for Video Question Answering with multiple
video stream inputs, however we find they are
not needed for still images and use a single in-
put stream). Base model.

GFLOPs GQA SNLI-VE

Perceiver 40.3 78.2 77.4
CoTok* 43.8 78.5 77.5
Ours 38.9 79.1 77.9

Figure 3: Comparison of the three methods with
different image sizes. Since ours does not have
the iterative input updates, it scales better to
larger inputs.

Brattoli et al., 2020). This is a more challenging scenario than the classification to a fixed vocabulary
set. After pretraining of the model, we finetune on each dataset as is also customary in the literature.
Please see the appendix for more information.

6.2 ABLATION STUDIES

In Table 1, we first directly compare our approach to other joint image-language representation learn-
ing methods, specifically the Perceiver (Jaegle et al., 2021) and the Iterative Co-Tokenization (Pier-
giovanni et al., 2022b). Both approaches are also efficient ones, using fewer FLOPs, compared to
other vision-language approaches which tend to use concatenation (Wang et al., 2021; Dou et al.,
2022; Lu et al., 2019; Su et al., 2019; Li et al., 2019; Lu et al., 2020; Chen et al., 2020). The Iter-
ative Co-Tokenization (Piergiovanni et al., 2022b) uses spatial attention maps, and both iteratively
recompute the visual features based on the raw inputs, which increase FLOPs. As seen, our ap-
proach outperforms these already efficient and advanced fusion methods, while using fewer FLOPs
(Table 1). It also scales much better than them with an increase of the input image size (Figure 3).

Next, we conduct detailed ablations to study all the pieces of the proposed model and their effect
on the performance of the model as well as the FLOPs needed for each method (Table 2). For
each experiment, we modify one component of our main approach to verify its independent impact.
When comparing to alternatives, our approach is able to produce more accurate results with lower
or even FLOPs. More specifically:

In Table 2 (a), we first compare to the concatenation baseline, which is most commonly used in the
literature e.g., (Wang et al., 2021; Dou et al., 2022; Lu et al., 2019; Su et al., 2019; Li et al., 2019;
Lu et al., 2020; Chen et al., 2020). As seen, the reduction in compute for our method is significant,
namely a 33% reduction in compute or in other words using 1.5x fewer FLOPs. This is also in
conjunction with improved performance (bottom row). We note that such reduction in FLOPs is
quite important for large vision-language models which take days to train, so it can save a lot of
compute for such models. We also see that gating is the main contributor, and so we apply our
method with gating which does not incur computational costs but brings improvements (Eq. 2).

Table 2 (b) and (c) provide an ablation of the number of tokens learned and iteration steps, re-
spectively, showing a trade-off of spending more compute for higher accuracy, but with mostly
diminishing returns. Note that here, the iterations occur after the initial resampling, in contrast to
the Perceiver and Co-Tokenization, that iteratively resample the inputs.

Table 2 (d) illustrates that a single, latent cross-attention resampling of our approach gives both
better performance and uses fewer FLOPs. This is in contrast to a spatial resampling used in prior
works (Ryoo et al., 2021; Piergiovanni et al., 2022b).
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Table 2: Ablation studies. These models are trained for 200,000 steps with a BS=512 to reduce the
compute used. GF stands for GFLOPs. The highlighted row in each experiment indicates the setting
selected and used in the other experiments here and the main experiments of the paper.

(a) Cross-Attention Method.
Fusing text and image features.

GF GQA SNLI-VE

Concat 58.4 78.9 77.4
Ours add 38.9 78.5 77.2
Ours gated 38.9 79.1 77.9

(b) Number of Tokens
used in the model.

GF GQA SNLI-VE

16 18.5 76.5 75.8
32 28.4 78.3 76.8
64 38.9 79.1 77.9
128 72.9 79.2 78.1

(c) Number of Iterations
used to compute tokens.

GF GQA SNLI-VE

1 34.2 78.3 77.1
2 35.5 78.8 77.6
4 38.9 79.1 77.9
8 42.5 79.2 77.6

(d) Resampling Method We find
a latent cross-attention is better.

GF GQA SNLI-VE

Spatial 42.5 78.9 77.4
Latent 38.9 79.1 77.9

(e) Iterative Combine. Combin-
ing features after each iteration.

GF GQA SNLI-VE

None 38.9 78.1 76.5
Residual 38.9 78.7 77.6
Weighted 38.9 79.1 77.9

(f) Number Layers used
in the fusion module.

GF GQA SNLI-VE

8 22.4 76.7 74.2
16 30.5 78.3 75.4
32 38.9 79.1 77.9

Table 3: We find the proposed approach is more
data efficient. Here, we compare pre-training
with 3M samples (single dataset), and a mix of
datasets/tasks with 12M samples.

Method GQA SNLI-VE

3M Data Concat 77.8 76.5
3M Data Ours 78.6 77.2
12M Mixture Concat 78.9 77.4
12M Mixture Ours 79.1 77.9

Table 4: Comparison of pre-training sampling
method. We find the adaptive sampling (our
method) improves performance, and even works
better with 100k than Uniform with 200k steps.

PT Steps GQA SNLI-VE

Uniform 100k 78.1 76.7
Adaptive 100k 78.8 77.2
Uniform 200k 78.5 77.1
Adaptive 200k 79.1 77.9

Table 2 (e) provides insights regarding using the proposed weighting in the method (Eq. 3), which
improves performance for the same FLOPs; (f) ablated the number of layers needed.

We note that in each of the ablations we are running the setting used in the main experiments of
the paper, and per each experiment only one component is changed to understand the importance
of specific component in a controlled setting. The grey rows indicate the main setting used. The
ablations are done with the base-sized model and is trained to fewer steps.

Furthermore, we conduct ablations on the adaptive sampling and on how the adaptive sampling
and Joint Adaptive Representation work together, specifically Tables 3 and 4 experiment with our
adaptive sampling pre-training approach.

Table 3 evaluates the performance of the base model when a single pre-training dataset is used
(here, CC3M) vs 12M mixture of tasks with adaptive sampling (here, CC3M+LN+OI+VG+subset
of CC12M). We find that the proposed Joint Adaptive Representation is able to learn strong features,
even with small data, showing its data efficiency. With respect to adaptive sampling, we also can see
that on 4x smaller dataset it is closer to the performance of larger data without our approach. The
last row indicates that both work better together and can better leverage the low data regimes.

Table 4 focuses on adaptive sampling vs uniform sampling of the same dataset and task mixture
(here, we use the 12M dataset and tasks). The experiments are conducted until either 100k or 200k
training steps. We see first that adaptive sampling is better in both cases. Further, we note that
adaptive sampling (which is working in conjunction with Joint Adaptive Representation) is training
faster, i.e., obtaining results at 100K steps which are better than uniform sampling at twice the steps.
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Table 5: We outperform or perform competitively to the state-of-the-art models (SOTA), despite
using very few FLOPs and small amounts of data. In fact with 40M training examples and with 39
GFLOPs our small model (350M params) outperforms all methods that have used less than a Billion
examples for pre-training. Our large model further outperforms SimVLM on the popular VQA2.0
benchmark, still using 40M examples, and despite using the more challenging open-vocabulary
evaluation. We are outperformed by 80B Flamingo on this benchmark. Models such as ALBEF and
BLIP use about 14M sets but use have many more FLOPs. Some models are included not necessarily
because they are comparable but because they provide useful context. ∗Our calculation of FLOPs.

GFLOPs Data GQA SNLI-VE VQA2

Large-data Models

Flamingo-80B (Alayrac et al., 2022) - 2.3B+ - - 82.0
SimVLM-Huge (Wang et al., 2021) 890∗ 1.8B - 86.21 80.03

GIT (Wang et al., 2022) - 800M - - 78.81
METER-CLIP-ViT Base** (Dou et al., 2022) 130∗ 404M - 80.86 77.68
BLIP-L (Li et al., 2022) 250∗ 129M - - 78.25

Small-data Models

FLAVA (Singh et al., 2022) 70∗ 70M - 78.9 72.5
CFR (Nguyen et al., 2022) - - 73.6 - 69.8
VinVL (Zhang et al., 2021) - 16M 65.05 - 75.95
BLIP (Li et al., 2022) 122∗ 14M - - 77.54
ALBEF (Li et al., 2021) 165∗ 14M - 80.14 74.54
12-in-1 (Lu et al., 2020) - - 60.5 - 71.3
UNITER (Chen et al., 2020) - 10M - 79.39 72.5
LXMERT (Tan & Bansal, 2019) - 6.5M 60.0 - 69.9
Ours-Base 38.9 40M 81.9 82.1 79.20
Ours 54.5 40M 83.1 84.2 80.15

6.3 COMPARISON TO THE STATE-OF-THE-ART (SOTA)

Table 5 shows the comparison with the state-of-the-art approaches. We see that our method performs
competitively or outperforms prior models. Of note is that both our base and our larger model are
actually the lowest FLOPs among contemporary models and outperforming models with many more
FLOPs. Our small model (300M params) outperforms all SOTA approaches with the exception of
extremely large models, Flamingo and SimVLM, both of which pre-training on very large datasets.
Our main model further outperforms SimVLM on VQA2.0. We note that our models evaluate in the
open-vocabulary setting which is more challenging. We note that there are many more vision and
language learning approaches worth mentioning (Lu et al., 2019; Li et al., 2020; 2019; Huang et al.,
2021), but are not included for space limitations. We also include one of the multi-task methods, the
12-in-1 (Lu et al., 2020) as one of the best performing ones. While multi-task training is a different
regime, we include it here for context, rather than as a comparison point.

Scaling of our model further indicates promise, first by improving results, and secondly, by doing so
at a very modest increase in the number of FLOPs, and still a very low overall FLOPs. Our scaled
model outperforms SimVLM-Huge (Wang et al., 2021), a larger model which used extremely large
1.8B training data, on the popular VQA2.0 benchmark, even though we are evaluating in the open-
vocabulary setting.

7 CONCLUSIONS

In this work we propose compact joint image-text representations, which provide efficient and data-
efficient training for pre-trained vision-and-language models. The main idea is to adaptively and
iteratively fuse the feature representations from both modalities. It greatly reduces the FLOPs used
by the model, at the same time improving the overall accuracy. This also allows the model to
scale without a large increase in FLOPs or memory requirements. In addition, we propose adaptive
pre-training data sampling which further improves the data efficiency. We achieve new SOTA or
competitive performance compared to much larger models, and do so with significantly less data.

9
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8 REPRODUCIBILITY STATEMENT

For better reproducibility, we plan to open source the code with widely permissible license for
everybody to use. The main proposed components of this work (Section 3.1 and Section 4.1) are both
modular and an easy substitutions to the standard techniques used on prior works i.e., they can be
substituted for the common concatenation of features, or for weighted to uniform sampling that are
often used, respectively. Model, training and implementation details are provided in Section 5 and
Section A in the Appendix. We also used well established and available in the literature backbones
such as the ViT Base/32 (Dosovitskiy et al., 2021) for images and a T5 encoder and decoder (Roberts
et al., 2022) for text.

9 ETHICS STATEMENT

The proposed approach is an alternative to present vision-language representation learning which
is costly and requires large datasets and compute. The scaling of our model (which is at a small
increase in FLOPs compared to others), confirmed that higher accuracies are obtained across all
datasets. We anticipate that even further scaling is needed in order to outperform extremely large
models trained on very large datasets. Despite the success of these methods, they incur very large
costs, so it is desirable to combat that.

Vision-and-language models also might have pitfalls with regards to memorizing and/or propagat-
ing biases, making unfair statements or classifications and other potential issues. While we have
used our models for evaluation purposes and trained and tested on publicly available datasets, such
datasets are collected by automatic or semi-automatic processes, so special consideration should be
applied before applying the models for other purposes.
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A IMPLEMENTATION DETAILS

A.1 MODEL DETAILS

We use a ViT-Base/32 backbone (Dosovitskiy et al., 2021) for images and a T5 encoder and de-
coder (Roberts et al., 2022) for text. We use the standard 32,000-token vocabulary of T5.

Base model: The base model has a ViT-Base/32 backbone and T5 Base encoder and decoder. It has
350M parameters.

1.1B Model: The large model also uses the ViT-Base/32 backbone but a T5 Large encoder and
decoder. It has 1.1B parameters.

Both of these models are trained from scratch (i.e., the VIT and T5 backbones are not pre-trained),
and are only pre-trained jointly with our approach on the 40M public datasets we use in this paper.

The model is trained to minimize a per-token cross entropy loss over the 32,000 tokens of the vo-
cabulary, both for pre-training and finetuning.

A.2 TRAINING, EVALUATION AND FINE-TUNING DETAILS

During pre-training, the model is trained with a batch size of 1024 for 500,000 steps. The learning
rate is set to 1e-4 with 10,000 step linear warmup and cosine decay. The model is trained for 500k
steps for the main experiments and for 200,000 steps for ablations.

For finetuning, we set the learning rate to 1e-5, train for 50,000 steps with a batch size of 64. For
GQA, we train for 200,000 steps.

The model is trained on 224x224 image resolution during pretraining. In the most general cases we
use the same resolution for fine-tuning, as well. One exception is the VQA2.0 dataset, where larger
resolutions for fine-tuning, have been shown to be advantageous (Wang et al., 2021). Thus for this
dataset, we fine-tune on 384 image size.

Data splits: Training and evaluation splits follow the ones established in the literature.

Evaluation metrics: The datasets considered use exact match accuracy based on the generated text
tokens. Furthermore, we use an open-vocabulary generation output, which is more challenging than
fixed vocabulary.

A.3 LIST OF PRE-TRAINING TASKS AND DATASETS

We use a relatively small sample of the publicly available image-language datasets, specifically,
the Conceptual Captions (3M samples) (Sharma et al., 2018), the Conceptual Captions 12M
dataset (12M samples) (Changpinyo et al., 2021), Visual Genome (Krishna et al., 2016), Open Im-
ages (Kuznetsova et al., 2020) and Localized Narratives dataset associated with Open Images (Pont-
Tuset et al., 2020). The mixture of datasets is of about 40M examples.

We also use broader set of tasks, the benefits of which have been demonstrated in recent work.
All tasks are formulated as image and text input and text output, More specifically the tasks are:
the Masked Language Modeling (MLM) (Lu et al., 2019; Li et al., 2020; Chen et al., 2020; Tan &
Bansal, 2019; Lu et al., 2019) (we mask random 15% of the text), Image-Text Matching (ITM) (Chen
et al., 2020; Lu et al., 2019; Tan & Bansal, 2019; Lu et al., 2019), Captioning, and Caption Com-
pletion (Sharma et al., 2018), which is a generalized version of the Captioning task, where a portion
of the caption is provided as an input and the remaining caption needs to be generated. We also use
object-specific tasks for datasets which provide information about object presence, such as Open-
Images (Kuznetsova et al., 2020), for example: ‘Does object X exist’, ’Does object X and Object
Y exist’, ’Does object X or object Y’ ‘List all objects’. For these tasks the ground truth answer
is ‘Yes’/,‘No’ or a list of class names; no localization information is required in the answer, even
though some datasets might have it. Since all tasks are effectively following the sane input and
output interface, and they easily share the same loss during training/pre-training.
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B FLOPS AND MODEL PARAMETERS CALCULATION

The FLOPs and model parameters of ALBEF, METER, BLIP and FLAVA, etc were computed using
their open source code and the THOP library https://github.com/Lyken17/pytorch-OpCounter. For
other models we obtained information from the authors.
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