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ABSTRACT

Federated learning is gaining popularity as it enables training of high-utility mod-
els across several clients without directly sharing their private data. As a downside,
the federated setting makes the model vulnerable to various adversarial attacks in
the presence of malicious clients. Specifically, an adversary can perform back-
door attacks to control model predictions via poisoning the training dataset with
a trigger. In this work, we propose a mitigation for backdoor attacks in a fed-
erated learning setup. Our solution forces the model optimization trajectory to
focus on the invariant directions that are generally useful for utility and avoid se-
lecting directions that favor few and possibly malicious clients. Concretely, we
consider the sign consistency of the pseudo-gradient (the client update) as an esti-
mation of the invariance. Following this, our approach performs dimension-wise
filtering to remove pseudo-gradient elements with low sign consistency. Then, a
robust mean estimator eliminates outliers among the remaining dimensions. Our
theoretical analysis further shows the necessity of the defense combination and
illustrates how our proposed solution defends the federated learning model. Em-
pirical results on three datasets with different modalities and varying number of
clients show that our approach mitigates backdoor attacks with a negligible cost
on the model utility.

1 INTRODUCTION

Federated learning enables multiple distrusting clients to jointly train a machine learning model
without sharing their private data directly. However, a rising concern in this setting is the ability
of potentially malicious clients to perpetrate backdoor attacks. To this end, it has been argued that
conducting backdoor attacks in a federated learning setup is practical (Shejwalkar et al., 2022)) and
can be effective (Wang et al.| 2020). For instance, the adversary can connect to a federated learning
system as a legitimate user and conduct a backdoor attack that forces the model to mispredict. The
impact of such attacks is quite severe in many mission-critical federated learning applications. For
example, anomaly detection is a common federated learning task where multiple parties (e.g., banks
or email users) collaboratively train a model that detects frauds or phishing emails. Backdoor attacks
allow the adversary to successfully circumvent these detection methods.

The most common backdoor attack embeds #riggers in the data samples and forces the model to
make an adversary-specified prediction when the trigger is observed (Liu et al., 2018; |Bagdasaryan
et al.l 2020). Thus, an adversary can conduct a backdoor attack by generating a trigger that statisti-
cally correlates with a particular label. Once the adversary injects these trigger-embedded backdoor
data samples into the training data, the model can entangle the trigger-label correlation and predict
as the adversary specifies. Meanwhile, the backdoor attack often does not degrade the predictive
accuracy on the benign samples, making backdoor detection difficult in practice (Wang et al.l[2020).

In federated learning, the server aggregates only the client-level updates (a.k.a. pseudo-gradient
or gradient for short) without control over the training procedure or any data samples. Such lim-
ited visibility of the federated learning server on the client-side training makes defending against
backdoor attacks challenging. Common defenses against backdoor attacks aim at identifying the
backdoor data samples or poisoned model parameters and usually require access to at least a subset
of the training data (Tran et al., 2018} [L1 et al.| |2021a), which is prohibitive for a federated learning
server. Other defense methods against untargeted poisoning attacks that degrade the model utility



(Shejwalkar et al., 2022) are applicable but lack robustness against backdoor attacks, as discussed
in Section

Our approach. Our defense leverages the observation that learning from the poisonous data does
not benefit the model on benign data and vice versa. Therefore, focusing on the invariant directions
that are generally beneficial in the model optimization trajectory helps defending against the afore-
mentioned backdoor attack (which often lead to non-invariant directions). To this end, we develop a
defense by examining each dimension of the gradients on the server-side and checking whether the
dimension-wise gradients point in the same direction across the clients. Here, a dimension-wise gra-
dient can point to a positive or negative direction, or have a zero value. In the case of small learning
rates and for a specific dimension, two gradients pointing in the same direction means that taking
the direction of one gradient can benefit the other. As such, the invariance of a direction depends on
how many dimension-wise gradients align with that direction. Following this intuition, we define
the sign consistency of a dimension by the average gradient sign. The higher the sign consistency is,
the more invariant direction the gradient dimension may have.

Designing such a method carefully selecting only the invariant gradient directions is non-trivial,
especially given the non-i.i.d. gradient distributions across benign clients and the presence of ma-
licious clients. Hence, our approach enforces two separate treatments for each gradient dimension.
First, we employ an AND-mask (Parascandolo et al.,[2021)), a dimension-wise filter setting the gra-
dient dimension with sign consistency below a given threshold to zero. However, this alone is not
enough: the malicious clients can still use outliers to mislead the aggregation result in the remaining
highly consistent dimensions. To address this issue, we propose using the trimmed-mean estimator
(Xie et al., [2020b; [Lugosi & Mendelson, [2021), as a means to remove the outliers. Our analy-
sis suggests that the AND-mask complements the trimmed-mean estimator well, motivating their
composition.

We support the proposed approach with a theoretical analysis under a conventional linear regime
(Rosenfeld et al., 2021;|Wang et al.,[2022} Zhou et al.,|2022; Manoj & Blum|[2021), showing that the
composition of the AND-mask and the trimmed-mean estimator is necessary for defending against
backdoor attacks. Our analysis starts with feature invariance and discusses the connection between
feature invariance and gradient sign consistency. Then, we outline conditions under which trigger-
based backdoor attacks can lead to non-invariant directions and decrease the sign consistency of
a dimension. Further analysis results demonstrate the necessity for the combination of both the
AND-mask and the trimmed-mean estimator. Simulation results in Appendix [D.1]further verify our
theoretical results.

Our empirical evaluation employs the strong edge-case backdoor attack (Wang et al.| 2020), as de-
tailed in Section [6.1] to test our defense. Empirical results on tabular (phishing emails), visual
(CIFAR-10) (Krizhevskyl [2009; McMahan et al., |2017), and text (Twitter) (Caldas et al., 2018)
datasets demonstrate that our method is effective in defending against backdoor attacks without de-
grading utility as compared to prior works. On average, our approach decreases the model accuracy
on backdoor samples by 61.6% and only loses 1.2% accuracy on benign samples compared to the
standard FedAvg aggregator (McMabhan et al., 2017).

Contributions. Our contributions are as follows:

* We develop a combination of defenses using an AND-mask and the trimmed-mean estima-
tor against the backdoor attack by focusing on the dimension-wise invariant directions in
the model optimization trajectory.

* We theoretically analyze our strategy and demonstrate that a combination of an AND-mask
and the trimmed-mean estimator is necessary in some conditions.

* We empirically evaluate our method on three datasets with varying modality, model archi-
tecture, and client numbers, as well as comparing the performance to existing defenses.

2 RELATED WORK

Backdoor Attack. Common backdoor attacks aim at misleading the model predictions using a
trigger (Liu et al| [2018). The trigger can be digital (Bagdasaryan et al., |2020), physical (Wenger
et al., [2021), semantic (Wang et al., 2020), or invisible (L1 et al., 2021b). Recent works extended



backdoor attacks to the federated learning setting and proposed effective improvements such as
gradient scaling (Bagdasaryan et al.,[2020) or generating edge-case backdoor samples (Wang et al.,
2020). The state-of-the-art edge-case backdoor attack shows that using backdoor samples with low
probability density on benign clients (i.e., unlikely samples w.r.t. the training distribution) are hard
to defend in the federated learning setting.

Centralized Defense. There is a line of work proposing centralized defenses against backdoor
attacks where the main aim is either detecting the backdoor samples (Tran et al.,|2018) or purifying
the model parameters that are poisoned (Li et al., 2021a). However, applying such centralized
defense to federated learning systems is in practice infeasible due to limited access to the client data
in many implementations.

Federated Defenses. Several recent works have attempted to defend against backdoor attacks in
federated learning systems. [Sun et al| (2019) shows that weak differential-private (weak-dp) fed-
erated averaging can mitigate the backdoor attack. However, the weak-dp defense is circumvented
by the improved edge-case federated backdoor attack (Wang et all 2020). Nguyen et al.| (2021)
suggest that the vector-wise cosine similarity can help detect malicious clients performing backdoor
attacks. The vector-wise cosine similarity is insufficient when the backdoor attacks can succeed
with few poisoned parameters, incurring little vector-wise difference (Wu & Wang, 2021). Other
defenses against untargeted poisoning attacks (Blanchard et al., [2017; Xie et al.l 2020b) lack ro-
bustness against the backdoor attack. Sign-SGD with majority vote (Bernstein et al., [2018} [2019) is
similar to our approach, but it always takes the majority direction instead of focusing on the invariant
directions. Section [6.2] discusses the limitation of previous defenses in more detail, along with the
empirical evaluation. Unlike existing works, our defense encourages the model to pursue invariant
directions in the optimization procedure.

Certification. Unlike the above discussed defenses, certification (Xie et al., 2021) aims at extin-
guishing backdoor samples within a neighborhood of a benign sample. A direct comparison between
certification and our defense is not meaningful due to the different evaluation metrics. Certification
considers the certification rate of benign samples as the metric, while our defense aims at reducing
the accuracy of the backdoor samples. However, it would be interesting to investigate whether the
proposed defense can ease the certification of a model.

3 PROBLEM SETUP

Notation. We assume a synchronous federated learning system, where N clients collaboratively
train an ML model f : X — ) with parameter w coordinated by a server. An input to the model
are the data samples € X = RY with d features indexed by k and a label 3. There are N/ < %
adversarial clients aiming at corrupting the ML model during training (Shejwalkar et al., [2022).
The i**, i € [1,..., N], client has n; data samples, being benign for i € [1,..., N — N’] or being
adversarial for i € [N — N’ + 1,..., N]. The synchronous federated learning is conducted in T°
rounds. In each round ¢ € [1, ..., T, the server broadcasts a model parameterized by w;_1 to all the
participating clients. We omit the subscript ¢ while focusing on a single round. Then, the i*" client
optimizes w;_ on their local data samples indexed by j and report the locally optimized w; ; to
the server. We define pseudo-gradient g, ; = w;_1 — w; ; being the difference between the locally
optimized model and the broadcasted model from the previous round. Note, for simplicity, that we
often use the term “gradient” to refer to the pseudo-gradient. Once all gradients are uploaded, the
server aggregates them and produces a new model with parameters w; using the following rule:

g

wy = Wi_q1 — Z¢:1 ng. The goal of federated learning is to minimize a weighted risk
i=1 T

function over the N clients: F(w) = SN, %Fl(w) =N 253:“1 —Bop, [0(f (z;w),y)].

where ¢ : R x ) — Ris a loss function. ® denotes the Hadamard product operator.

Threat Model. The adversary generates a backdoor data sample ' by embedding a trigger in a
benign data sample @ and correlating the trigger with a label 3’, which is different from the label y
of the benign data sample. We use D’ to denote the distribution of backdoor data samples. Then, the
malicious clients connect to the federated learning system and insert backdoor data samples into the
training set. Since the goal of federated learning is to minimize the risk over all clients’ datasets, the
model can entangle the backdoor while trying to minimize the risk over backdoor samples on the
malicious clients. Appendix [A|visualizes some backdoor samples.
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(a) Failure Mode 1 (AND-Mask) (b) Failure Mode 2 (Trimmed-mean)

Figure 1: Failure modes of AND-mask (a) and trimmed-mean estimator (b). Note that an aggregator
fails if the malicious value flips the sign of the aggregation result compared to the true aggregate.
Blue dots are benign values. Red crosses are malicious values. The is an arithmetic
mean and the is a trimmed-mean. In (a), the adversary uses outliers to flip the sign of
the arithmetic mean when the benign values have the same sign. (b) shows that the trimmed-mean
estimator may bias toward the malicious value when the average is supposed to be zero, but the
benign values have diverse signs.

To simplify tedious notation, we assume all users have the same number of samples i.e., n; =
Ny Vi 7é 7.

4 METHOD

This section presents the proposed server-side defense operating on the gradients. We start with an
overview of the idea, then introduce the two complementary components of our defense and outline
the invariant aggregator steps.

4.1 OVERVIEW

In the proposed defense, we aim at finding invariant directions to optimize the federated learning
model, such that the model is generally utilitarian for most of clients and can exclude the directions
that benefit a subset of potentially malicious clients. Since our defense operates with the gradients,
we consider the invariant direction from a first-order perspective (Parascandolo et al.| [2021). Ex-
panding the loss function around the current weight w on client ¢, for a parameter update g, we
have:

EDi [6(33’ Yy w + g)] = Equ V(% Y; w)} + ]EDi [V'we(wa Y; w)]Tg + RQ(w + g)a (D

where Ry(w + g) is a second-order Taylor remainder. With a reasonably small ||g|| (achievable
with small learning rates), the remainder term Ro(w + g) is negligible and the change of the loss
function mainly depends on the first-order gradient and the parameter update g. Since learning the
trigger benefits the malicious clients exclusively, there exists at least one gradient dimension &k and
one benign client ¢ € {1,...,N — N’} where Ep/ [V, £(x, y; w)] # 0 and the dimension-wise
gradient have inconsistent signs, i.e.,

Ep, [V, (@, y; w)] X Ep/ [V, L2, y'; w)] < 0. 2)

If the condition in Equation[Z]is not true, then learning the trigger would always benefit the model on
benign data, thereby contradicting common empirical observation. A more detailed analysis of the
condition in Equation 2]is in Section[5.2] The proposed methods show how to treat the inconsistent
signs and defend against the backdoor attack by only allowing invariant directions. A dimension-
wise analysis is necessary because backdoor attacks can succeed by poisoning few inconsistent
dimensions (Wu & Wangl 2021) without incurring much vector-wise difference, as Section will
show.

We consider two treatments for each gradient dimension to help the model avoid the direction spec-
ified by Ep/ [V l(2',y'; w)]: (Treatment 1) setting the dimension with inconsistent signs to zero
using an AND-mask (Parascandolo et al, 2021)) such that no client benefits or (Treatment 2) em-
ploying a robust mean estimator (e.g., trimmed-mean (Xie et al.,|2020b)) to remove the malicious
values that cause the inconsistent sign. To achieve a better result, we combine these two treatments
to avoid their failure modes. The following examples illustrate the failure mode of each treatment
and motivate the combination of defense.

Failure Mode 1. Figure [T shows an example where the adversary may exploit a dimension by in-
serting outliers where the benign values have a consistent sign. The outliers can mislead the average
toward the non-invariant direction. The robust mean estimator (treatment 2) can trim the outliers



and accurately estimate the mean. In contrast, treatment 1 can fail with a high sign consistency.
Because it either lets the highly consistent dimension pass or has to be over-aggressive in zeroing
out the dimensions, hurting the model’s accuracy on benign data.

Failure Mode 2. Figure [1b| shows some values with inconsistent signs, which treatment 1 can
handle. However, this example can fail the robust mean estimator (treatment 2), whose result has
the same sign as the malicious values.

The following sections shall detail the two treatments and discuss their complementary relationship.

4.2 AND-MASK

The AND-mask (Parascandolo et al.| 2021)) computes a dimension-wise mask by inspecting the
sign consistency of each dimension across clients. For dimension k, the sign consistency is:
| % Zf\; sign(g; x)|- If the sign consistency is below a given threshold 7, the mask element 1y,
is set to 0, otherwise, my, is set to 1. The mask along dimension k is defined as:

Definition 1. (AND-Mask) For the &' dimension in the gradient vector, the corresponding mask
my, 1s defined as:

N
mg =1 l| Zsign(gi7k)| > T] . 3)

i=1

Our defense then multiplies the mask m with the aggregated gradient g element-wise, setting the
inconsistent dimension to zero.

4.3 TRIMMED-MEAN

To complement the AND-mask, our defense broadcasts the trimmed-mean estimator to each gradi-
ent dimension. The trimmed-mean estimator alleviates the outlier issue by removing the subset of
largest and smallest elements before computing the mean. The largest and smallest elements ap-
pear on the two tails of a sorted sequence. Next, we define order statistics and the trimmed mean
estimator.

Definition 2. (Order Statistics) (Xie et al. 2020b) By sorting the scalar sequence {z; : i €
{1,..,N},z; € R}, we get 1.y < To.n < ... < Tn.N, Where ;. is the i*1' smallest element in
{z;:ie{l,...,N}}

Then, the trimmed-mean estimator removes a & X N elements from each tail of the sorted sequence.

Definition 3. (Trimmed Mean Estimator) (Xie et al.,2020b) For « € [0, 1], the a-trimmed mean of
the set of scalars z;.y € {1, ..., N} is defined as follows:

1 N—[a-N]

e N +
N-2-Ta-N]| > @

i=[a-NT+1

TrMean({x1, ...,z }; @) =

where [.] denotes the ceiling function.

4.4 OUR APPROACH: INVARIANT AGGREGATOR

Algorithm [T] outlines the steps of our server-side defense that perform aggregation of invariant up-
dates from the clients. The solution is composed of the AND-mask (treatment 1) and trimmed-mean
estimator (treatment 2). Our defense applies the two components separately based on the sign con-
sistency of each dimension with a threshold 7.

We show how these two components, i.e., the AND-mask and the trimmed-mean estimator, com-
plement each other. Our analysis considers a single dimension and starts with the robustness of the
trimmed mean estimator, which improves the robustness of the AND-mask against outliers. The
following theorem extends the robustness guarantee of a modified trimmed-mean estimator (Lugosi
& Mendelson, 2021)), which is shown in Appendix (B} to the conventional trimmed-mean estimator
(Definition [3).



Algorithm 1 Server-side Defense

Input:
A set of reported gradients, {g; | i € {1,...,N}};
Hyper-parameters 7, «;

Aggregator:

1: Compute the AND-mask m :=1 [\ Zi\; sign(g;)| > ’7':| following Definition ,

2: Compute the trimmed-mean g := TrMean({gs, ..., g~ }; @) under Definition
3: return m © g;

Theorem 4. With the trimmed-mean estimator in Definition[3} for a given set of samples 1, ...,z N,

’ 4
with a corruption level n = NW and a confidence level 6, set the trim level o = 8n+ 12%, leta =
TonN:N and b = xn_oN.N following Deﬁnition x be a random variable with variance o and T be
the estimated mean, with probability at least va:;\,]\ia]v (N;N )0.99"0.01N*Nl*ic*4(1 —de~T5 ),
we have:

1z — Ez]| < (20a + 10v/a + 2¢)o (5)

The proof is in Appendix [B] Theorem 4] bounds the estimation error of a trimmed-mean estimator,
which can increase as the variable’s variance increases. Multiple factors can increase the variance,
such as non-i.i.d. federated data distribution and the stochastic gradient estimation process. In
practice, a threat analysis is necessary to specify the maximum number of malicious clients to be
tolerated, when the number of malicious clients is unknown. Our goal is to prevent the outliers

from misleading the sign. Therefore, the estimation error to expectation ratio, WEE[]”CH

larly relevant. Since the estimator error for a given o depends on the variance, a high expectation-
variance ratio, E[’”], is desirable. Then, we show that AND-mask identifies the elements with high

o
expectation-variance ratios, avoiding the robustness degradation of the trimmed-mean estimator.
The following theorem suggests that dimensions with a higher expectation-variance ratio have high
probabilities of passing AND-mask, and increasing the mask threshold 7 increases the chance of

filtering out dimensions with low expectation-variance ratios.

, is particu-

Efz]

)qﬁ’m, the sign consistency is below T.

Theorem 5. Given a non-zero expectation-variance ratio ¢ = , N’ malicious elements, with
D

probability at most ZE%Tﬁ%TEiVN+TN) (N;.N/
Appendix [B| provides the proof. For the ¢ = 0 case, we may use the probability of the estimated
gradient sign being the same as the malicious gradient to replace ¢p~2. We do not propose directly
using the sample mean-variance ratio due to a potential issue: using the sample mean-variance ratio
can be over-aggressive when the benign value has a consistent sign but varying magnitudes. Our
ablation study in Appendix [D.2] shows that AND-mask can preserve more utility than the sample
mean-variance ratio when combined with the trimmed-mean estimator.

5 ROBUSTNESS ANALYSIS FOR A SIMPLIFIED MODEL

To further motivate our approach, we consider a more direct robustness analysis for a specific gen-
erative model. This analysis discusses how the features impact the gradient sign consistency, when
the two failure modes in Section|4. I|appear, and why we need a combination of defenses guaranteed
by Theorems [ and[3] First, we outline some preliminaries useful for this analysis.

5.1 PRELIMINARIES

We consider a binary prediction task y € {0, 1} with a linear model h(z) = w 'z and a decision

rule § = 1,,74>0(w " ). The training procedure uses a Sigmoid activation function s(z) =
and a logistic loss function £(z,y) = —y - log(z) — (1 — y) - log(1 — z), where z = h(x).

1
14+e—*=

Data Model. We assume that the samples per class are balanced on benign clients. The data samples
come from a non-i.i.d. Gaussian distribution with a diagonal covariance matrix. On the ith client,
for the k&t feature, we have:

- NN((ny 1)~ui,k,ai7k>. ©6)



Backdoor Attack. We consider a single feature backdoor attack where the trigger is the k*" feature
. A backdoor using a specific feature is common (Wang et al., 2020). To backdoor images, the
adversary often selects a pixel pattern or semantic pattern (e.g., blue color on airplanes). For text
data, the trigger could be a dedicated set of characters . The malicious clients attack in collusion
using the same backdoor samples, meaning that pt; ,, = i # 0,Vi,4’ € {N — N'+1,N}. To
simplify the notation, we omit the subscript 7 for simplicity while focusing on a single client. Since
the trigger is not useful or does not appear on benign clients, we assume p; , = 0,Vi € {1, N—N'}

Objective. The backdoor attack is effective if the model entangles the trigger-label correlation. For
a non-zero py, of the trigger xj, wipy, > 0 is a necessary condition for a model to entangle the
trigger-label correlation. Therefore, in the case when p;, > 0, avoiding wj, from increasing and
enforcing wy, to decrease while wy, > 0 can mitigate the backdoor attack.

5.2 CONNECTING FEATURES TO GRADIENTS

We define the invariance of a feature by measuring its feature-label correlation (e.g., positive or
negative) consistency across clients.

Definition 6. For a given feature k, its invariance p is defined as: p = ‘% . Zf\il sign(ui,k)‘.

Similarly, we define the sign consistency of a gradient dimension k:
Definition 7. With a linear model h(z) = w'z,a Sigmoid activation function s, and N clients, a

g-consistent gradient w.r.t. wy, satisfies: |+ - SN | sign (Em,yNDi [V, l(s(wz),y)] )‘ =q.

Under Definitions [6] and [7] we discuss the connection between feature invariance and dimension-
wise gradient sign consistency. First, we need to analyze the behavior of the gradient sign per client.

Theorem 8. For a linear model with a Sigmoid activation function s and the logistic loss ,
under our Gaussian data model, on the k' feature with a non-zero py, if wip, < 0, we

have Sign(Em,yNDi [V l(s(wT - a:),y)]) = sign(uy). In addition, if pr, = 0, we have
Sign(Em,yNDi [Vwkﬁ(g(w—r : :B)ayﬂ ) = Sign(wk:)'

The proof is provided in Appendix [B| The result in Theorem [8|is intuitive. With a non-zero p, if
sign(wy,) agrees with sign(gex), the gradient sign can be indefinite because the weight wy, can be
either larger or smaller than the optimal wj. Otherwise, the gradient has the same sign as py. If
pr = 0, wy, shall shrink to 0. Then, we outline the conditions that lead to inconsistent signs.

Corollary 9. Under Theorem|8| suppose xy represents the trigger, . = 0 on the N — N’ benign
clients and the N' malicious clients share the same non-zero py, if wy, = 0, the gradient w.r.t. wy, is
]]Vvl -consistent. In addition, if wypy, > 0, the gradient w.r.t. wy, is at least (1 — ]]VV/ )-consistent. The
gradient w.r.t. wy, is 1-consistent if wipy < 0.

Counting the gradient signs yields the result. Corollary 0] suggests that if wy, ), > 0 and the model
entangles the backdoor, the expected gradient w.r.t. wj can align with p; on malicious clients
and conflict with g5 on benign clients. Then, employing the trimmed-mean estimator to remove
the malicious values can recover the invariant direction pointed by benign clients (Theorem |4)) and
thereby shrink p. If pp = 0, using AND-mask can mask out the gradients w.r.t. wy, from the
malicious clients (Theorem [5). If w;, remains 0, the model parameterized by w is robust to the
trigger on x. It is worth noting that the gradients w.r.t. wy, is 1-consistent and align to g, when
wyp, < 0. Such a consistent gradient may overshoot and flip the sign of wy,. Reducing the learning
rate can alleviate overshooting and the trimmed-mean estimator will guarantee wj, to shrink after
the overshooting.

Connection to Failure Modes. If wy iy, > 0, the gradients w.r.t. wy, have a consistent but non-zero
expectation among benign clients, causing the failure mode 1 in Section[d.I] On the other hand, the
gradient variance can diversify the estimated gradient sign and cause the failure mode 2.

Appendix [D.T] further provides simulation results under the linear regime (Section [5.I), showing
that the AND-mask can prevent the adversary from exploiting wj, and the trimmed-mean estimator
helps shrink wy.



6 EXPERIMENTS

We evaluate our defense on three realistic tasks on three different data types: (1) object recognition
with visual data, (2) sentiment analysis with text data, and (3) phishing email detection with tabular
data. We employ the state-of-the-art edge-case backdoor attack (Wang et al., 2020) to generate
backdoor samples and evaluate of defense and existing defenses against it.

Additional Results. The simulations, an ablation study, an evaluation of the hyper-parameter sen-
sitivity, evaluations with additional attack strategies, and empirical verifications of the two failure
modes can be found in the Appendix

6.1 EXPERIMENTAL SETUP
We briefly summarize our setup and report more details in Appendix

Metrics. Our experiments employ two metrics: the main task accuracy (Accyy) estimated on the be-
nign samples and the backdoor task accuracy (Accp) over backdoor samples. A defense is designed
to reduce the model’s accuracy on backdoor task and maintain the utility on the main task.

Datasets. The visual data of the object detection task and text data of the sentiment analysis task
are from CIFAR-10 (Krizhevsky, [2009; McMahan et al., [2017)) and Twitter (Caldas et al., |2018)),
respectively. Each phishing email data sample has 45 standardized numerical features of the sender
that represent the sender reputation scores. A large reputation score may indicate a phishing email.
The reputation scores come from peer-reviewers in a reputation system (Jgsang et al., 2007). The
adversary may use malicious clients to manipulate the reputation.

Federated Learning Setup. We consider horizontal federated learning (Kairouz et al.,|2021) where
the clients share the same feature and label spaces. The number of clients are 100 for the three tasks.
The server sample 20 clients at each round on the CIFAR-10 and phishing email experiments. We
reduce the sampled client number to 15 on the Twitter experiment due to limited hardware memory.

Backdoor Attack Setup. The adversary employs the edge-case backdoor attack, where it selects
the data samples with low marginal probability in their data distribution to create backdoor samples.
The visual and text backdoor samples follow the previous work (Wang et al.,|2020). For the tabular
data, we select the 38" feature (reputation), whose value is 0 on most of the data samples. Then, we
let the adversary manipulate the 38" feature to 0.2 that has a low probability density on phishing
emails and flip the label to non-phishing.

The adversary can control 20% clients on the CIFAR-10 and phishing email experiments and 10%
clients on the Twitter experiment. Section [6.2] explains the different experiment configurations.
Such an adversary is considered strong in practice (Shejwalkar et al., [2022)). We consider a strong
adversary because defending against strong adversary yields robustness against weak adversary,
whose effectiveness is already shown (Wang et al.|[2020). The adversary only uses backdoor samples
during training.

6.2 RESULT AND COMPARISON TO PRIOR WORKS

Our results. Table [T] summarizes the performance of each defense on three tasks. Our approach
decreases the backdoor task accuracy by 61.6% on average. The edge-case backdoor attack on the
text sentiment analysis task (Twitter) is more difficult to defend and our approach mitigates the
accuracy increase on the backdoor task by 41.7%. We hypothesize that the text sentiment analysis
task has few invariant and benign features. For example, the shape features (Sun et al., |2021) in
object classification tasks can be invariant across objects. In contrast, the sentiment largely depends
on the entire sentence instead of a few symbols or features. Then, we discuss the limitations of prior
defenses.

Vector-wise. Common vector-wise defenses such as Krum estimate pair-wise similarities in terms
of Euclidean distance (Blanchard et al.,2017) (Krum and multi-Krum) of cosime similarity (Nguyen
et al.| [2021) (multi-Krum¢) between each gradient and others. The gradients that are dissimilar to
others are removed. The vector-wise view is insufficient for defending against backdoor attacks
because backdoor attacks can succeed by manipulating a tiny subset of parameters (e.g. 5%) (Wu
& Wangl 2021)) without incurring much vector-wise difference. In practice, we observe that the
malicious gradients can get high similarity scores and circumvent vector-wise defenses.



Table 1: Accuracy of Aggregators under Edge-case Backdoor Attack. Our approach reduces the
model accuracy on backdoor samples by 61.7% on average, mitigating the backdoor attack, and
achieves a comparable utility on benign samples as the standard FedAvg aggregator.

Method CIFAR-10 Twitter Phishing
Accyg Accp Accy Accp Accyu Accp
FedAvg 679 + 001 717 + 001 |.722 + 001 440 + 001 |.999 + 001 999 + 001
Krum 140 + 001 .275 £.012 [.579 £ 001 .766 £+ 002 |.999 + 001 .999 £ 001
Multi-Krum 541+ 002 .923 £ 021|727 + 001 .656 + 008 |.999 + 001 .999 + 001
Multi-Krum¢e 681 + 002 .821 £ 001 |.594 £ 002 .701 + 001 |.999 + 001 .333 + 333
Trimmed-Mean 687 + 001 512 +.002 |.728 £ 001 .640 £ 016 |.999 + 001 .999 £ o0
Krum Trimmed-Mean |.682 + o001 .607 +.002 |.727 + 001 .641 + 001 |.999 + 001 .999 + 001
Sign-SGD 301 +.005 .000 +.001 |.610 +.003 .751 +.076 |.999 + 000 .667 + 333
Weak-DP A54 1+ 003 .828 +.003 |.667 £ .001 .374 £ 002 |.999 + 001 .999 £ 001
Freezing Layers A15 4001 572 + 002 | N\A N\A N\A N\A
FoolsGold 667 + 001 .109 + 001 |.726 +.002 .357 + 001 |.999 + 001 .999 + 01
RFA .685 + 001 .853 +£.002 |[.718 £ 001 .704 £ 002 |.999 + 001 .999 £ o0
SparseFed .662 + 001 .984 + 001 |.667 + 001 .608 +.002 |.999 + 001 .999 + 01
No Attack 718 + 001 .000 + 001 |.731 +.001 .095 + 001 |.999 + 001 .000 + .01
Ours 677 + 001 001 +.001 |.687 +.001 .296 + 003 |.999 + 001 .000 =+ .001

Note: The numbers are average accuracy over three runs. Variance is rounded up.

Dimension-wise. Failure mode 2 in Section[4.1]shows the limitation of the trimmed-mean estimator,
which was the most effective defense against the edge-case backdoor attack. We also include Sign-
SGD with majority vote (Bernstein et al., 2019)) as a defense, which binarizes the gradient and takes
the majority vote as the aggregation result. However, Sign-SGD struggles to train a large federated
model (e.g., Resnet-18 on CIFAR-10) and can suffer from failure mode 1 where the clients have
diverse signs. Then, the adversary can put more weight on one side and mislead the voting result.

Combination. A naive combination of multi-Krum and the trimmed-mean estimator fails to defend
against the backdoor attack because neither multi-Krum nor the trimmed-mean estimator avoids the
failure mode of the other.

Weak-DP. The weak-DP defense (Sun et al., 2019 first bounds the gradient norms, then add additive
noise (e.g., Gaussian noise) to the gradient vector. The edge-case backdoor attack can work without
scaling up the gradients, circumventing the norm bounding. For the additive noise, we hypothesize
that in some dimensions, the difference between malicious and benign gradients can be too large for
the Gaussian noise to blur their boundary.

Freezing Layers. Since we employ a pre-trained Resnet-18 (He et al.|[2016) on CIFAR-10, freezing
the convolution layers may avoid entangling the trigger. However, this approach lacks empirical
robustness, possibly because the adversary can use semantic features (e.g., blue color on airplanes)
that the pre-trained model already learns as triggers.

Advanced Defenses. FoolsGold (Fung et al. 2020) down-weights an update if that update has a
high cosine similarity with another update. There are many ways to diversify updates. Malicious
clients may leverage the stochastic gradient estimation process or mix backdoor samples with benign
samples, whose distribution can differ across clients. RFA (Pillutla et al.|[2022) computes geometric
medians as the aggregation result, which is shown to be ineffective (Wang et al., [2020). SparseFed
(Panda et al.,2022)) only accepts elements with large magnitude in the aggregation results. However,
benign and malicious updates can contribute to large magnitudes.

7 CONCLUSION AND FUTURE WORK

This paper shows how to defend against backdoor attacks by focusing on the invariant directions
in the model optimization trajectory. Enforcing the model to follow the invariant direction requires
AND-mask to compute the sign-consistency of each gradient dimension, which estimates how in-
variant a dimension-wise direction can be, and use the trimmed-mean estimator to guarantee the
model follows the invariant direction within each dimension. Both theoretical and empirical results
demonstrate the combination of AND-mask and the trimmed-mean estimator is necessary and ef-
fective. Further defending against more advanced backdoor attacks such as invisible backdoors that
add calibrated noise to all the features (L1 et al., 2021b;[Manoj & Blum, |[2021) can be interesting.
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