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Abstract

The era of vision-language models (VLMs) trained on web-scale datasets chal-
lenges conventional formulations of “open-world" perception. In this work, we
revisit the task of few-shot object detection (FSOD) in the context of recent foun-
dational VLMs. First, we point out that zero-shot predictions from VLMs such as
GroundingDINO significantly outperform state-of-the-art few-shot detectors (48
vs. 33 AP) on COCO. Despite their strong zero-shot performance, such foundation
models may still be sub-optimal. For example, trucks on the web may be defined
differently from trucks for a target application such as autonomous vehicle per-
ception. We argue that the task of few-shot recognition can be reformulated as
aligning foundation models to target concepts using a few examples. Interestingly,
such examples can be multi-modal, using both text and visual cues, mimicking
instructions that are often given to human annotators when defining a target con-
cept of interest. Concretely, we propose Foundational FSOD, a new benchmark
protocol that evaluates detectors pre-trained on any external data and fine-tuned
on multi-modal (text and visual) K-shot examples per target class. We repurpose
nuImages for Foundational FSOD, benchmark several popular open-source VLMs,
and provide an empirical analysis of state-of-the-art methods. Lastly, we discuss
our recent CVPR 2024 Foundational FSOD competition and share insights from the
community. Notably, the winning team significantly outperforms our baseline by
23.3 mAP! Our code and dataset splits are available on GitHub and HuggingFace.

1 Introduction

Vision-language models (VLMs) trained on (often proprietary) web-scale datasets have disrupted
traditional notions of the “open-world”, particularly for few-shot recognition. In this paper, we
revisit few-shot object detection (FSOD) in the context of these foundation models, propose a new
benchmark protocol that allows foundation models to “enter the conversation”, and present several
simple baselines.

First, we highlight that zero-shot predictions from VLMs like GroundingDINO [33] demonstrate a
remarkable improvement over state-of-the-art few-shot detectors (48.3 vs. 33.1 AP) on COCO [31],
as shown in Table 1. In hindsight, this is not surprising, as the former is pre-trained on far more data
(that may include visual examples of the target concept), while the later is pre-trained on data that
is explicitly curated to avoid target concepts of interest. From this perspective, VLMs violate the
current training protocol of few-shot benchmarks, suggesting that such protocols need to be rethought
in the foundational era.

Concept Alignment. Despite their impressive performance, foundation models used in a zero-shot
fashion can still be sub-optimal. For example, trucks as defined for a particular target application
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Poor Concept Alignment between VLM and Dataset Annotations

➔ Vehicles primarily designed to haul cargo 
including pick-ups, lorries, trucks and 
semi-tractors. Trailers hauled after a semi-tractor 
should be labeled as trailer.

➔ A pickup truck is a light duty truck with an 
enclosed cab and an open or closed cargo area. 

➔ Human or electric powered 2-wheeled vehicle 
designed to travel at lower speeds either on road 
surface, sidewalks or bicycle paths. 

➔ If there is a rider, include the rider in the box
➔ If there is a pedestrian standing next to the 

bicycle, do NOT include in the annotation

Multimodal Annotation Instructions

Truck, 84%
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Figure 1: Poor Alignment Between Vision Language Models (VLMs) and Target Concepts. Although
VLMs show impressive zero-shot performance, they struggle when the target class is different from concepts
encountered in web-scale training. On the left, we see that the nuImages dataset [2] defines the cab of the truck
as a separate concept from its trailer (shown in red). In contrast, the VLM predicts the entire vehicle as a
truck (shown in green). Similarly, nuImages annotations dictate that a person riding a bicycle must also be
labeled as part of bicycle (shown in red) unlike the VLM prediction (in green). On the right, we present
the actual class definitions given to the nuImages annotators, provided as both textual descriptions and visual
examples. Just as human annotators learn concepts from few-shot multi-modal examples, we argue that VLMs
should be aligned with K vision-language examples.

like perception for autonomous vehicles may differ from trucks as found on the web (cf. Fig. 1).
Indeed, this well-known observation has created the ad-hoc practice of prompt engineering, where
users actively search for a textual prompt that elicits the desired zero-shot behaviour. Instead, we
argue that one can principally address the challenge of aligning foundation models to target concepts
through the lens of few-shot recognition, by presenting VLMs with a few examples of the target
concept. Crucially, such examples can be multi-modal, using both text and visual cues, mimicking
the natural few-shot multi-modal instructions that are often given to human annotators when defining
a target concept of interest [3]. Before introducing our new protocol, we first review the conventional
FSOD setup below.

Conventional FSOD. Existing FSOD benchmarks partition object detection datasets like PASCAL
VOC [8] and COCO [31] into base and novel classes. Detectors pre-train on base classes and
then learn to identify novel classes given K examples (or K-shots). Current protocols enforce
base and novel to be disjoint to prevent concept leakage, allowing one to evaluate generalization to
the “open-world". However, as most detectors are pre-trained on ImageNet [5], we point out that
concept leakage already occurs in the current FSOD protocol. For example, cat and person are
deemed novel for COCO-FSOD but are present in ImageNet data used to pre-train detectors [49].
Moreoever, car is deemed novel, but similar concepts like sports car and race car are present
in ImageNet, illustrating the difficulty of even defining leakage.

Foundational FSOD. We believe that concept leakage should be embraced. Our Foundational FSOD
protocol replaces the base pre-training stage with web-scale pre-training, where such data may be
proprietary and not fully disclosed [44]. We argue that pre-training on large-scale data will be

the key enabler for generalization to the open world. Note that this hypothesis is difficult to even
evaluate under the conventional few-shot protocol, motivating our setup. Moreover, another key
property is that K-shot instances may include multi-modal examples spanning both images and text,
motivating a multi-modal adaptation stage that aligns the VLM to target concepts (cf. Fig. 2). We
repurpose nuImages [2], a challenging dataset due to open-world categories such as debris and
pushable-pullable, for our Foundational FSOD benchmark.

We present three major contributions.

• We modernize FSOD benchmarks by embracing foundational VLMs that are pretrained
on internet-scale data. We highlight the practical challenge of using multi-modal few-shot
examples to define target semantic concepts (as shown in Fig. 1).

• We adapt nuImages for Foundational FSOD, evaluate popular open-source VLMs, and
present an empirical analysis of leading methods.

• We highlight the results from our recent CVPR 2024 challenge hosted in conjunction with
the Workshop on Visual Perception via Learning in An Open World.
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Figure 2: Foundational Few-Shot Object Detection (FSOD). Conventional FSOD protocols (left) allow
for pre-training on base classes (with many examples per class) and then fine-tuning on K-shots of novel
classes, where novel and base are designed to be disjoint. However, we point out that pre-training datasets
such as ImageNet often contain classes similar to novel classes, highlighting the issue of concept leakage. As
preventing concept leakage is difficult (if not impossible) and appears to be artificial in the foundational era, we
propose Foundational FSOD (right). Our setup allows for pre-training on massive (and potentially proprietary)
datasets, typical for foundational vision-language models. Since these models can process both text and images,
one can utilize such multi-modal K-shot examples to align VLMs with the target concepts of interest.

2 Related Works

Few-Shot Object Detection aims to detect new categories with limited training data [26]. Recent
work explores two primary approaches: meta-learning and transfer learning. Meta-learning-based
methods focus on acquiring generalizable features from a set of base classes, which can then be
applied to identify novel classes. For example, Kang et al. [23] proposes a technique that re-weights
features from base classes to predict novel classes. Xiao et al. [56] propose a framework addressing
both few-shot object detection and few-shot viewpoint estimation. Fan et al. [9] introduces a general
FSOD network that learns a matching metric between image pairs, while Wu et al. [53] enhances
object features using a universal prototype. More recently, Xu et al. [58] propose a generative
approach that is robust to noisy object proposals for novel classes. In contrast, transfer learning
involves partially freezing network weights pretrained on a base dataset to improve a model’s
ability to generalize to novel classes with limited data. Transfer learning approaches often follow
a two-stage fine-tuning strategy: first train on base classes and then fine-tune the box classifier
and regressor with K-shots from novel classes. This strategy has historically outperformed meta-
learning approaches [49]. Recent work has primarily focused on improving classification performance.
Sun et al. [48] utilizes a contrastive proposal encoding loss to encourage instance-level intra-class
compactness and inter-class variance. Similarly, Li et al. [29] applies a class margin loss to balance
inter and intra-class margins.

Vision Language Models are trained on a large-scale collection of weakly-supervised image-text
pairs collected from the web. These models embed images and text into a shared space, enabling
open-vocabulary detection. Early works adapt VLMs for object detection by either distilling the
model’s predictions for specific image regions [13, 14] or directly incorporating detection components
into frozen [27] or fine-tuned [40, 39, 7] encoders. In contrast, RegionCLIP [64] employs a multi-
stage training approach, which involves generating pseudo-labels from captioning data, conducting
region-text contrastive pre-training, and fine-tuning on detection data. GLIP [30] uses a single text
query for the entire image and frames detection as a phrase grounding problem. More recently, Detic
[67] addresses long-tail detection performance by leveraging image-level supervision. In the context
of open-vocabulary detection, there may be some overlap between categories seen during training
and testing. We use the term “zero-shot” when a model has never been trained on the target dataset.

Fine-Tuning Foundation Models is of significant interest across many application areas [20, 62, 11].
Standard fine-tuning procedures employ both linear probing [4, 17, 18] and full-finetuning [50, 55,
25, 34] to adapt models to downstream tasks. However, such methods may be suboptimal as they
can be computationally expensive. Instead, recent works like CLIP-Adapter [11] and Tip-Adapter
[63] fine-tune CLIP using parameter-efficient methods [19, 61, 21] which optimize lightweight MLPs
while keeping the encoder frozen. Similarly, inspired by the success of prefix-tuning in language
models [6, 22, 16, 12], prompt adaptation [35, 69, 57, 65] replaces hand-crafted prompts like "a photo
of a {cls}" with learned word embeddings. CoOp [66] and other prompting methods [35, 69, 65]
finetune CLIP via prefix-tuning. Different from most prior work, we investigate fine-tuning strategies
for VLM-based detectors using few-shot multi-modal examples.
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3 Foundational FSOD Benchmark

As shown in Fig 2, our proposed Foundational FSOD benchmark utilizes vision-language models
(VLMs) pre-trained on diverse, large-scale datasets, which are then aligned to K examples of each
target class. We contrast our proposed setup with standard benchmarks and present simple strategies
for fine-tuning VLMs below.

3.1 Foundational FSOD Benchmark

Existing FSOD benchmarks repurpose well-established datasets like PASCAL VOC [8] and COCO
[31] by partitioning them into base and novel classes for pre-training and fine-tuning, respectively.
For COCO, the 60 categories disjoint with PASCAL VOC are used as base classes and the remaining
20 are used as novel classes [49]. However, this setup is artificial and does not reflect how FSOD is
deployed in practice. First, FSOD benchmarks construct a set of novel classes that include common
concepts such as car and person, and require FSOD methods to detect these common classes by
assuming they have only few examples. Importantly, VLMs like GroundingDINO [33] can already
detect common categories with high accuracy on COCO without fine-tuning (cf. Table 1). Therefore,
we focus on benchmarking Foundational FSOD on more realistic and challenging datasets like
nuImages [2]. Second, existing FSOD benchmarks require that datasets are partitioned into base and
novel classes, which is infeasible for large-scale (often private) foundational datasets. For example,
although CLIP’s [44] model weights are publicly available, its pre-training dataset is not. Instead,
FSOD methods should only fine-tune VLMs on K-shot annotations for C target classes (or novel,
as termed in conventional FSOD benchmarks), and also evaluate performance on these C classes.

3.2 Few-Shot Multi-Modal Concept Alignment

Although VLMs achieve strong zero-shot performance on common classes, they struggle when the
target class is different from concepts encountered on the web (cf. Fig. 1). For example, nuImages
[2] defines the cab of a truck as a separate concept from its trailer. However, Detic [67] detects
the entire vehicle as truck. This fine-grained distinction is provided to human annotators with visual
examples and textual descriptions. We explore seven methods for alignment (either explicitly by
updating model weights via gradient-based fine-tuning or in-context via prompting) below.

Prompt Engineering uses expressive descriptions, attributes [38], or synonyms [41, 42] in the text
prompt to manually improve the alignment of foundation model outputs to target concepts of interest.
In our case, we prompt VLMs with synonyms of the nuImages classes to improve detection accuracy.
For example, we augment the language query for pushable-pullable with synonyms like cart
and wheel barrow. We provide a full list of synonyms in Table 6.

Standard Fine-Tuning updates the last few layers of a model to adapt to new target classes. For
two-stage object detectors, this typically requires training the box regression and classifier head.
However, we find that standard fine-tuning is sub-optimal, motivating our proposed approach below.

Federated Fine-Tuning leverages a simple but evidently underappreciated observation: few-shot
object detection datasets are actually federated datasets [15]. A federated dataset is comprised of
smaller mini-datasets, where each mini-dataset is exhaustively annotated for only a single category.
For example, cars may or may not appear in the background of the K images annotated with
motorcycles. However, existing FSOD methods incorrectly assume that no cars are present in the
background of non-car images. We devise a simple loss that incorporates this insight, discussed
further in the supplement.

Language Prompt Tuning is an established parameter-efficient strategy [47, 28] for updating text
embeddings with few-shot examples via fine-tuning. Concretely, for a given language query (e.g.
stroller), we first extract a text embedding P 0 and only fine-tune the text embedding [30].

Visual Prompting uses images of target concepts that are difficult to describe through text as prompts
to learn novel concepts in-context. For example, although debris is a difficult catchall category to
define through text, we can use image examples to improve concept alignment. Typically, visual
prompts are tokenized and fed as inputs to a frozen VLM.

Multi-Modal Prompting combines language and visual prompting to leverage multi-modal features.
Intuitively, multi-modal cues can yield better alignment than uni-modal cues alone; in the above
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Table 1: VLM Zero-Shot Inference Is a Strong FSOD Baseline. Zero-shot inference with VLMs like
GroundingDINO resoundingly outperforms state-of-the-art FSOD methods on the COCO FSOD benchmark,
motivating the need to re-frame FSOD to embrace foundation models.

Approach 30-shots
AP Base AP Novel AP

FRCN-ft-full [60] 18.6 20.6 12.5
FRCN-BCE [60] 30.2 36.8 10.3
TFA w/ fc [49] 29.3 34.5 13.5
TFA w/cos [49] 29.9 35.3 13.6
MPSR [54] 17.1 18.1 14.1
Meta-RCNN [60] 7.8 7.1 9.1
FsDetView [56] 10.0 9.3 12.0
Retentive R-CNN [10] 32.9 39.3 13.8
DiGeo [36] 33.1 39.4 14.2

GroundingDINO (Zero-Shot) [33] 48.3 46.3 54.3

case, ambiguous concepts such as debris can be clarified with both textual descriptions (e.g trash

can and tree branch) and visual examples (similar to the multi-modal annotator instructions in
Fig. 1!). Here, visual and language prompts are tokenized and separately fed as inputs to a frozen
VLM. Specifically, MQDet [59] introduces a lightweight Gated Class Scalable Perceiver module that
fuses visual cues and text descriptions in the text encoder via class-wise cross attention layers.

Multi-Modal Chat Assistants can accomplish many of the same tasks as multi-modal prompting
through a multi-modal turn-by-turn conversational interface. However, unlike multi-modal prompting,
conversational interfaces allow users to iteratively refine concept definitions, similar to how human
annotators often require several rounds of feedback to fully understand the target concept.

4 Experiments

We conduct extensive experiments to validate that zero-shot inference from VLMs significantly
improves over state-of-the-art FSOD approaches, suggesting that existing benchmarks should be
re-framed to allow foundation models to “enter the conversation”. Moreover, we demonstrate that
leveraging language cues, especially those available for free (e.g., class names), are crucial to
improving performance on data-constrained tasks like FSOD.

Datasets and Metrics. We repurpose nuImages [2] to support the study of Foundational FSOD. This
dataset annotates 18 classes, which are divided into groups with many, medium, and few examples [43,
37]. We report average precision (AP) for each cohort. Although this dataset is not traditionally
used for FSOD, nuImages’ open-world categories like debris and pushable-pullable make it
particularly challenging (even for VLMs), and is a realistic benchmark for Foundational FSOD. We
follow the K-shot dataset creation process established by [49], described below. To construct a
K-shot dataset, we select a target class c and an image at random. If the total annotations for class c
in the image are less than or equal to K, we add the image to our dataset. We repeat this process for
all classes until we have exactly K annotations per class. Since the specific K examples can have a
significant impact on the overall performance, we run each experiment over three random data splits
and report the average.

4.1 Zero-Shot Inference Is A Strong FSOD Baseline

We compare state-of-the-art FSOD methods with zero-shot inference from GroundingDINO [33]
on COCO in Table 1. Surprisingly, GroundingDINO outperforms DiGeo [36] by 16.2% AP av-
eraged across both base and novel categories despite never being trained on COCO images.
GroundingDINO’s impressive performance is due to its large-scale multi-modal pre-training on
Objects365 [45], GoldG [24] and Cap4M [30]. It is worth noting that GroundingDINO achieves
higher AP on novel classes than base, suggesting that novel classes in existing benchmarks (e.g.,
car and person) are actually not rare in the real world. Therefore, FSOD benchmarks should be
re-framed to reflect real-world applications, motivating our setup.
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Table 2: Impact of Large-Scale Pre-Training and Language. We repurpose nuImages for FSOD following
the dataset creation process established by [49]. We group categories by frequency into many, medium and few

examples per class [43, 37]. We fine-tune TFA on K examples, but find low performance, < 3AP. However,
by simply pre-training on more data (LVIS, COCO and ImageNet-21K) and leveraging language cues via a
CLIP classifier, 5-shot performance improves from 2.02 AP to 15.12 AP. However, rare (or few) classes like
strollers, pushable-pullable, and debris remain challenging, motivating our task of VLM alignment.

Approach Average Precision (AP)
All Many Medium Few

5-shot

TFA [49] w/ COCO-base 1.33 2.78 1.43 0.23
TFA [49] w/ LVIS-base 2.02 1.69 4.08 0.58
TFA [49] w/ LVIS,IN-21K,

15.12 22.74 18.99 4.25
COCO + CLIP Classifier

10-shot

TFA [49] w/ COCO-base 1.21 2.55 1.19 0.31
TFA [49] w/ LVIS-base 2.27 2.05 4.51 0.58
TFA [49] w/ LVIS,IN-21K,

16.09 25.46 20.00 3.73
COCO + CLIP Classifier

30-shot

TFA [49] w/ COCO-base 1.14 2.81 0.84 0.23
TFA [49] w/ LVIS-base 2.23 1.48 4.98 0.45
TFA [49] w/ LVIS,IN-21K,

17.22 25.98 21.64 4.78
COCO + CLIP Classifier

4.2 Foundational FSOD with nuImages

In the context of foundational models, we argue that partitioning datasets into base and novel

classes no longer makes sense. Instead, FSOD methods should only fine-tune on K-shot annotations
for C target classes, and also evaluate performance on these C classes. We pre-train TFA [49] on
diverse datasets and fine-tune on K examples per class and highlight model performance in Table
2. We train two variants of TFA trained on COCO-base and LVIS-base and fine-tune both models
on K examples of the nuImages classes. Surprisingly, both variants of TFA achieve less than 3 AP
(cf. Table 2). We posit that this is largely due to poor classification performance. Since both LVIS
and COCO classes do not significantly overlap with nuImages classes, learning a classifier from
few examples is extremely difficult. However, we find that simply re-training TFA with a frozen
CLIP-based classifier (similar to Detic) dramatically increases performance, reiterating the utility of
language and web-scale pre-training in data-constrained settings.

4.3 Empirical Analysis of Results

We evaluate several popular VLMs on the nuImages Foundational FSOD (10-shot) benchmark and
present salient insights from Table 3 below.

Zero-Shot Detection. Somewhat unsurprisingly, we find that (1) greater pre-training data scale and
diversity, along with (2) larger backbones result in better zero-shot performance. Notably, GLIP
achieves 17.01% zero-shot performance, surpassing all other methods trained with less data and
smaller backbones.

Prompt Engineering. We attempt to improve zero-shot performance using synonyms for class names
derived from the annotator textual instructions. We see minor improvements (e.g., Detic improves
from 14.40 mAP → 14.92 mAP), indicating that leveraging rich textual descriptions beyond class
names can improve concept alignment.

Federated Fine-Tuning. Standard fine-tuning is sub-optimal for FSOD, as all unannotated classes
are treated as negatives. Therefore we use our zero-shot predictions to generate pseudo-labels on
training images. We extract pseudo-negatives based on these pseudo-labels by identifying classes not

in each image (by using detector confidence scores), and leverage pseudo-negatives in our fine-tuning.
Notably, we improve over Detic’s standard fine-tuning by 1.15 mAP (16.09 mAP → 17.24 mAP).
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Table 3: Empirical Analysis of Baselines (10-Shot) on our Benchmark. We evaluate popular VLMs on the
nuImages FSOD Benchmark and find that MQ-GLIP performs the best among all baseline models. Notably, it
achieves 17.0 mAP zero-shot language-only performance, and achieves 21.4 mAP via zero-shot multi-modal
prompting averaged over all classes. We can iteratively prompt GPT-4o for synonyms to describe each of the
few-shot examples to expand MQ GLIP’s text prompts, further improving performance by 0.6%. Remarkably,
our 2024 competition winners further improved performance to 45.4 mAP, beating our best baseline by 23.3%.

Approach Backbone Pre-Train Data Average Precision (AP)

All Many Med Few

Zero-Shot Detection

RegionCLIP [64] RN50 CC3M 2.50 3.20 3.80 0.40
Detic [67] SWIN-B LVIS, COCO, IN-21K 14.40 25.83 16.59 2.32
GroundingDINO [33] SWIN-T Objects365, GoldG, Cap4M 12.05 17.29 15.45 3.72
GLIP [30] SWIN-L FourODs,GoldG,Cap24M 17.01 23.36 19.86 8.40
MQ-GLIP-Text [59] SWIN-L Objects365, FourODs, GoldG, Cap24M 17.01 23.36 19.85 8.41

Prompt Engineering

Detic [67] SWIN-B LVIS, COCO, IN-21K 14.92 26.48 17.29 2.53
GLIP [30] SWIN-L FourODs, GoldG, Cap24M 17.15 23.82 19.36 9.02

Standard Fine-Tuning

RegionCLIP [64] RN50 CC3M 3.86 6.08 5.13 0.54
Detic [67] SWIN-B LVIS, COCO, IN-21K 16.09 25.46 20 3.73

Federated Fine-Tuning (Ours)

Detic [67] SWIN-B LVIS, COCO, IN-21K 17.24 28.07 20.71 4.18
Detic [67] w/ Prompt Engineering SWIN-B LVIS, COCO, IN-21K 17.71 28.46 21.14 4.75

Language Prompt Tuning

GLIP [30] SWIN-L FourODs,GoldG,Cap24M 19.41 22.18 25.16 10.39

Visual Prompting

MQ-GLIP-Image [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 14.07 24.39 15.89 3.34

Multi-Modal Prompting

MQ-GLIP [59] SWIN-L Objects365,FourODs,GoldG,Cap24M 21.42 32.19 23.29 10.26

Multi-Modal Chat Assistants

GPT-4o Zero-Shot Classification [1] Private Private 9.95 16.81 12.11 1.71
MQ-GLIP Iterative Prompting Private Private 22.03 33.42 24.72 9.41

CVPR 2024 Competition Results

PHP_hhh Private Private 45.35 64.25 53.43 20.19

NJUST KMG SWIN-L Objects365V2, OpenImageV6, GoldG, V3Det, COCO2014, COCO2017,
LVISV1, GRIT, RefCOCO, RefCOCO+, RefCOCOg, gRef-COCO 32.56 50.21 34.87 15.16

zjyd_cxy_vision SWIN-L Objects365V2, COCO2017, LVIS, GoldG, VG, OpenImagesV6, V3Det,
PhraseCut, RefCOCO, RefCOCO+, RefCOCOg, gRef-COCO 31.57 46.59 33.32 17.03

Multi-Modal Prompting. We observe that Multi-Modal Prompting (MQ-GLIP) achieves the best
performance (21.42 mAP) out of all open-source methods in Table 3. We attribute this to its large
pre-trained dataset, bigger backbone (SWIN-L) and multi-modal prompts used during inference.
Notably, the benefit of multi-modal prompts can be seen by comparing MQ-GLIP (21.42 mAP)
against MQ-GLIP-Image (14.07 mAP), which uses visual prompting and MQ-GLIP-Text (17.01
mAP), which uses language prompting. Interestingly, MQ-GLIP does not require gradient-based
fine-tuning, which differs from all existing conventional few-shot methods. Therefore, we posit that
future few-shot methods should further explore in-context learning. Just as multi-modal examples aid
human annotator alignment, multi-modal prompting significantly improves VLM concept alignment.

Multi-Modal Chat Agents. As shown in Figure 3, we explore the idea of iteratively prompting
multi-modal chat assistants like ChatGPT to mimic the real-world workflow of human annotators.
Given the strong performance of GPT-4o for general visual understanding, we repurpose it for our
task by prompting the model to re-classify image patches from Detic’s RPN. Specifically, we ask
GPT-4o to predict a class and confidence for each image crop. Surprisingly, we observe reasonable
performance (9.95 mAP). However, we find that GPT-4o often incorrectly classifies many image
crops with high confidence. Therefore, we prompt GPT-4o to generate its own text descriptions of
the few-shot examples according to its “web-scale knowledge”. Finally, we use the class names,
generated text descriptions, and few-shot visual examples to prompt MQDet to predict new instances
of target classes in the test-set. We find that expanding MQDet’s in-context prompt with class names,
ChatGPT generated text descriptions, and few-shot visual examples improves performance by 0.67%
(21.42 mAP → 22.09 mAP) over the MQ-GLIP baseline. Interestingly, although debris accuracy
does not change when prompted with generated text descriptions, pushable pullable (3.6 AP →
15.29 AP) and barrier (11.6 AP → 15.31 AP) accuracy improve significantly. We posit that this
improvement is due to the reduction in confusion (or over-confident incorrect predictions) between
debris and pushable-pullable (and barrier). Surprisingly, a top submission to our CVPR
challenge also used ChatGPT to generate meaningful text descriptions to improve concept alignment.
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Given the list of nuImages classes [car, truck,...,], classify the given images and 
also output confidence score.

Image 1: Barrier, 0.95
Image 2: Pushable Pullable, 0.95

Those outputs seem to be incorrect with high confidence. Could you summarize 
concepts across these new given images and list the four best class names

Traffic Control Signs, Temporary Warning Signs, Road Signs, Warning Board

Zero Shot Classification
for Crops of “debris” 

Highly Confident, yet Incorrect Labels

Few-Shot Training Examples 
of ”debris”

VLM

Few-Shot 
Training Set

Improved text descriptions for “debris”

Prediction

Figure 3: Iteratively Prompting ChatGPT. Despite its large-scale pre-training, multi-modal models like
ChatGPT-4o also suffers from concept misalignment. Specifically, GPT-4o makes highly confident but incorrect
predictions for debris. We propose an iterative prompting strategy to better align the model to a target concept.
Given a few visual examples per-class from the training-set, we query ChatGPT to use its “web-scale knowledge”
to generate text descriptions. We then augment the input to MQDet to incorporate this additional context for
zero-shot evaluation.

CVPR 2024 Challenge. Our inaugural Foundational FSOD competition (hosted on Eval AI) received
submissions from seven teams (some submissions are private). We present a ranked list of participants
at the close of our competition on June 7th 2024 AOE in Table 4. Notably, three teams beat our
baselines, with the winning team achieving 45.35 AP! Unfortunately, the top performing team was
not willing to publicly share details about their method. We summarize contributions from the other
two top teams below.

NJUST KMG presents a method that leverages both VLMs and multi-modal chat agents for Foun-
dational FSOD. To address the challenge of misalignment between GroundingDINO and the target
concepts of interest, authors generate descriptive referential expressions by prompting ChatGPT to
provide descriptive terms for each few-shot instance. The best referential expression for each category
is selected by maximizing the Intersection over Union (IoU) between predictions and the ground truth
in the few-shot training set. These referential expressions are then used to generate pseudo-labels for
all training images. Lastly, GroundingDINO is fine-tuned on a combination of pseudo-labels and
ground-truth instances. The full technical report is available here.

ZJYD CXY Vision proposes Instruction DINO (ISD), a DETR-based detector architecture that
incorporates early fusion of image and text information using a Swin-L visual backbone and EVA02-
CLIP-L text encoder. Authors use VLMs like CLIP, TAP, and Llava for negative sample generation
(similar to our Federated Fine-Tuning). Authors find that prompt tuning and text encoder fine-tuning
generalize better than visual encoder fine-tuning. Similar to NJUST KMG, authors first generate
pseudo-label annotations for unlabeled categories before fine-tuning on a combination of pseudo-

Table 4: CVPR 2024 Foundational FSOD Competition Results.

Team Name Average Precision (AP)

All Many Medium Few

PHP_hhh 45.35 64.25 53.43 20.19
NJUST KMG 32.56 50.21 34.87 15.16
zjyd_cxy_vision 31.57 46.59 33.32 17.03
Baseline (MQ-GLIP) 21.51 32.25 23.35 10.41
team_anon 17.36 25.29 21.93 5.42
youyouqiu 13.16 11.29 19.20 7.68
zhao 11.38 11.16 16.76 5.30
zjdcxy 7.80 5.44 13.43 3.20
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Table 5: Random Split vs “Best” Split. We construct the “best" split by selecting per-class few-shot examples
that lead to the highest performance on a held-out set. Unsurprisingly, the best split performs better than any
random split, especially for very limited data settings (e.g., 5-shot detection). This evaluation setting closely
mimics how human annotators are “aligned” to target concepts, since annotator guides are constructed using
hand-picked iconic visual examples.

Approach Average Precision (AP)

All Many Medium Few

Detic (Zero-Shot) [67] 14.40 25.83 16.59 2.32

Detic w/ Federated Fine-Tuning (5-shots, Random Split) 16.58 27.12 19.71 4.13
Detic w/ Federated Fine-Tuning (5-shots, Best Split) 18.30 28.66 21.81 5.56

Detic w/ Federated Fine-Tuning (10-shots, Random Split) 17.24 28.07 20.71 4.18
Detic w/ Federated Fine-Tuning (10-shots, Best Split) 18.24 28.63 22.00 5.19

Detic w/ Federated Fine-Tuning (30-shots, Random Split) 18.64 29.13 22.44 5.46
Detic w/ Federated Fine-Tuning (30-shots, Best Split) 18.75 28.07 23.18 5.81

labels and ground truth instances. The final method combines prompt tuning and negative sampling,
significantly improving mAP. The full technical report is available here.

4.4 Analysis of Iconic Few-Shot Images

The specific examples used during few-shot fine-tuning significantly impacts target class performance
[49]. However, prior work constructs few-shot splits by randomly sampling K examples per class.
In contrast, when creating annotator instructions, selecting the right examples to “align" human
annotators [3] to subtle aspects of the target concept is carefully considered. To more closely
match VLM concept alignment with human annotator alignment, we design a simple algorithm to
construct the best K-shot split for fine-tuning. This allows us to understand which examples are most
informative and measure an upper bound in performance.

We construct our best split by picking examples corresponding to the best class-wise performance,
based on the evaluation of each split on a held-out validation set. For instance, out of 3 random
splits for the 5-shot task, one may pick car examples from split 1, bicycle from split 3 and debris

from split 2. In Table 5, we observe that the best-split performance is always better than its random
counterpart. As expected, the choice of examples in 5-shot case is more important than the 30-shot
case (1.72 AP difference for 5-shot vs 0.11 AP for 30-shots). We visualize the difference in the splits
for strollers in nuImages (cf. Figure 4). Unsurprisingly, iconic examples are large and unoccluded.

4.5 Limitations and Future Work

Despite using VLMs pre-trained on large-scale datasets, we find that performance for rare categories
(defined by the cardinality of each class in the original dataset) is considerably lower than for common
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Figure 4: Visualizing Random and Best Split. In the top row, we visualize the 5-shot training examples of
strollers from a random split. Similarly, we visualize the 5-shot training examples from the best split in the
bottom row. We observe that strollers in the random split are often occluded, small in size and blurry, making
few-shot learning harder. On the other hand, the best split examples are larger, have better visual quality and
are relatively un-occluded. This visual difference directly translates into better few-shot performance. We
achieve 13.09 Stroller AP for the random split and 18.54 Stroller AP for the best split. We show a more
comprehensive evaluation in Table 5.
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classes. We posit that VLMs are pre-trained with imbalanced data which includes many examples of
common categories like truck but few examples of rare categories like stroller [42]. Our work
does not explicitly improve detection performance on rare classes. Interestingly, since VLMs like
Detic [67], GLIP [30], and GroundingDINO [33] are trained with different data sources, each model
has dramatically different zero-shot performance on novel categories like stroller. Ensembling
predictions from different VLMs may yield better detection accuracy for rare categories. In addition,
although our work motivates the use of rich textual descriptions found in instructions for multi-modal
alignment, our current results use only nouns (class names and synonyms) as text prompts.

Benchmarking in the Era of Foundation Models. Although we argue that pre-training on large-
scale data will be the key enabler for generalization to the open-world, understanding how to
appropriately benchmark such methods remains challenging. It is readily accepted that in order
to accurately evaluate generalization, one should not train on test data. However, it is difficult to
guarantee that foundation models have never seen our specific test data. We address this in our
challenge by explicitly prohibiting participants from training on nuImages (and nuScenes). However,
should we allow participants to train on similar in-domain data (e.g., other autonomous vehicle
datasets such as Argoverse [52])? We argue ‘yes’! With enough scale, novel test examples may still
be similar to the training set.

Out-of-Domain Benchmarks. Another way to address benchmarking is to collect test scenarios that
are designed to be dissimilar from internet images. For example, out-of-domain images may include
medical data (though foundational performance is still surprisingly effective [51]). We admittedly
did not take this route, since urban imagery is similar to images found online and arguably many
applications of interest fall under this category. Moreover, there exist ample opportunity for technical
innovation in this setting (as suggested by our CVPR 2024 challenge results!). Alternatively, one
can manually collect and sequester images that will never be released on the internet. Since ensuring
privacy may itself be challenging, yet another approach is to leverage the continual learning paradigm
[32], where new test sets are continually constructed over time.

Comparing Models. Fairly comparing foundation models requires careful consideration. Although
accuracy is a valuable metric, it is intrinsically tied to the scale of pre-training data and model
architecture. Notably, the LLM community already ranks models via a Pareto frontier of accuracy vs.
parameter count. We advocate for a similar approach for Foundational FSOD that considers backbone
architecture (e.g., ResNet-50 vs. Swin-B) and pre-training datasets (e.g., CC4M, GoldG, LVIS).

5 Conclusion

We revisit few-shot object detection (FSOD) with vision-language models (VLMs) and find that zero-
shot inference from web-scale VLMs significantly outperforms leading FSOD methods. However,
such foundational models do not fully address few shot recognition because of the concept alignment

problem; particular concepts in target applications may be different than their use on web-scale
datasets. Just as human annotators require concept alignment via multi-modal text and visual
examples, we argue that VLMs should be aligned with such few-shot data, formalizing the problem
of Foundational FSOD.
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