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Abstract

Named entity recognition (NER) acts as a fun-001
damental task in natural language processing.002
However, its robustness is currently barely003
studied. This paper finds that the conventional004
text attack for sentence classification can re-005
sult in label mutation for NER, due to the natu-006
rally finer granularity of named entity ground007
truth. We therefore define a new style of text008
attack, virtual attack. Virtual indicates that the009
attack does not rely on the ground truth but010
the model prediction. On top of that, we pro-011
pose a novel fast NER attacker, where we try012
to insert a “virtual boundary” into the text. It013
turns out the current strong language models014
(e.g. RoBERTa, DeBERTa) suffer from a high015
preference to wrongly recognize those virtual016
boundaries as entities. Our attack is shown017
to be effective on both English and Chinese,018
achieving a 70%-90% attack success rate, and019
is 50 times faster than the previous methods.020

1 Introduction021

Named Entity Recognition (NER) aims to find pre-022

defined named entities such as locations, persons023

or organizations in a text. As a fundamental task024

in natural language processing (NLP), NER plays025

an important role on various downstream tasks026

such as text generation (Clark et al., 2018), en-027

tity link (Sil and Yates, 2013), machine transla-028

tion (Babych and Hartley, 2003; Nikoulina et al.,029

2012), etc. In recent years, NER has received ex-030

tensive attention and various NER models have031

achieved impressive performances on benchmarks032

such as OntoNotes5.0 (Weischedel et al., 2013),033

WNUT2017 (Derczynski et al., 2017), MSRA034

(Levow, 2006), etc.035

Despite the large number of studies on how to036

improve the prediction accuracy of NER, existing037

research on the robustness of current NER models038

is still lacking. In the text domain, a common prac-039

tice to evaluate the robustness of an NER model040

is adversarial attack. However, a majority of the041

为 了 促 进 世 界 和 平 与 发 展 的 崇 高 事 业 。

为 了 促 进 世 贸 和 平 与 发 展 的 崇 高 事 业 。

Text attack

Ceremonies for the 2000 Sydney Paralymipics .

Tourament for the 2000 soccer Paralymipics .

[GPE]

[ORG]

[O]

[GPE]

[O]

[O]

Figure 1: Examples where the conventional attacker
results in label mutations. The examples are selected
from OntoNotes.

nowadays studies mainly focus on sentence clas- 042

sification (e.g. sentiment analysis, language infer- 043

ence) (Gao et al., 2018; Iyyer et al., 2018; Jin et al., 044

2020; Garg and Ramakrishnan, 2020; Li et al., 045

2021) or question answering (Gan and Ng, 2019; 046

Ribeiro et al., 2018; Tan et al., 2020b). More re- 047

cently, Simoncini and Spanakis first to pay atten- 048

tion to the adversarial attack method for NER and 049

develop a framework called SeqAttack. They de- 050

fine an NER-oriented goal function and adapt the 051

above-mentioned sentence classification and ques- 052

tion answering methods from the TextAttack (Mor- 053

ris et al., 2020) framework to NER. Lin et al. sub- 054

sequently propose RockNER, where they combine 055

entity-level and context-level word substitution to 056

obtain the adversarial examples. However, there 057

are still several key issues that remain to be solved: 058

• Label Mutation. The current attack meth- 059

ods for NER apply word insertion, swapping or 060

substitution to the original example while keeping 061

its ground truth unchanged by restricting the se- 062

mantic difference. It is reasonable for text clas- 063

sification tasks, since the risk of modifying indi- 064

vidual words to reverse the semantic of the entire 065

sentence is low. However, for NER, the ground 066

truth is weakly subject to semantic. Thus, it is 067

more likely to obtain an unreliable adversarial ex- 068
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ample that do not match its ground truth, which069

we call label mutation. We show an example of070

label mutation in Figure 1, where a GPE entity071

Sydney (geopolitical) in the original example is re-072

placed by soccer, and world (世界) is replaced by073

WTO (世贸). However, soccer obviously cannot074

be a GPE and WTO is an entity of organization075

(ORG). As a result of label mutation, we can not076

obtain a valid example, but a noisy example with077

unmatched labels.078

• Evaluating NER Attack. Still in Figure 1,079

following the traditional criterion, if the model080

fails to predict soccer as GPE or predict WTO as a081

none-entity (O), such an attack will be deemed suc-082

cessful (i.e. the model is not robust against such083

an example). Due to the potential label mutation084

problem, it is hard for the current attack methods085

to justify the obtained adversarial examples since086

one by no means label them manually. Therefore,087

a more efficient method for evaluating the robust-088

ness of an NER model is urgently needed.089

• High Attacking Expense. Existing attack090

methods usually require a large number of loops091

to search for the adversarial examples. For ex-092

ample, for substitution-based methods, they first093

need to generate a candidate vocabulary according094

to some pre-defined rules, and then try to replace095

the word in each position of the original sentence096

with every word in the candidate vocabulary. Such097

a manner leads to a huge computation cost.098

To overcome the above issues, in this work,099

we propose a novel effective virtual attack called100

ViBA: Virtual Boundary Attack. (1) We first pro-101

pose a new style of attack named Virtual Adver-102

sarial Attack which is agnostic to the ground truth103

and evaluate the robustness of an NER model by104

comparing the two model predictions before and105

after being attacked, thus free from label muta-106

tion. (2) Based on the idea of Virtual Adversarial107

Attack, our ViBA generates high-quality adversar-108

ial examples by inserting the “virtual boundary”109

into the text and the NER model will be fooled110

due to the co-occurrence of boundaries and enti-111

ties. (3) Our ViBA has a very low search complex-112

ity and is 50 times faster than previous methods,113

while achieving an 80% attack success rate on the114

widely-used benchmarks. We also conduct empir-115

ical experiments to interpret the effectiveness of116

ViBA and verify the rationality of the motivation117

to insert boundary. Moreover, we propose two118

defense strategies to help the NER model defend119

以 色 列 两 个 星 期 后 将 举 行 总 理 选 举 。

以 色 列 两 个 星 期 后 将 以 举 行 总 理 选 举 。

[MASK] ... 两 个 星 期 后 将 以 举 行 总 理 选 举 。

[GPE]

This is an entity! Yes!

Emmm... This
should not
be an entity.

This is also an entity!

This is not an entity. ???

[GPE]

[O]

(c)

(b)

(a)

Figure 2: An example of virtual boundary attack (text
in (a): Israel will host the prime ministerial election
in two weeks.). The attacker tries to fool the model,
leading to the paradox as depicted in (b) and (c), where
the model mistakenly recognizes the boundary as an
entity due to the co-occurrence.

against ViBA. 120

An example of ViBA is shown in Figure 2. 121

There are two unrobust phenomena: 1. For (a) 122

and (b), when inserting boundary to generate an 123

adversarial example, the model will recognize the 124

boundary as an entity due to the co-occurrence of 125

entity and boundary. 2. For (b) and (c), if the orig- 126

inal entity is masked out, the model will not con- 127

sider this boundary to be an entity. We regard an 128

attack as successful if the adversarial example can 129

cause one of these two paradoxes. 130

2 Method 131

This section lays out the background of the tradi- 132

tional adversarial attack. On top of that, we in- 133

troduce virtual adversarial attack and then propose 134

virtual boundary attack for NER. 135

2.1 Adversarial Attack 136

Generally, adversarial attack seeks to find out the 137

worst-case modification on the original example 138

which fools the model prediction. Specifically, let 139

x and y be the input text as well as its ground truth, 140

and F be the victim model, then the adversarial at- 141

tack aims to find a specific neighbor of x that sat- 142

isfies: 143

F(x + δ) ̸= y (1) 144

where x + δ refers to the adversarial example and 145

δ is to a slight modification. Significantly, Eq.(1) 146

is grounded on the label invariance (i.e. y) before 147
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and after the attack. In sentence classification (e.g.148

sentiment analysis, language inference), for exam-149

ple, δ is always bounded by semantic in the hope150

that the attack will not change the sentence label.151

2.2 Virtual Adversarial Attack152

Despite sentence classification, for NER, the se-153

mantic bound can no longer keep the invariance of154

y, since the named entities are largely pre-defined155

by human. As a result, imposing δ to x is more156

likely to cause label mutation (e.g. Table 1), where157

the adversarial example x+δ does not meet the sat-158

isfaction of Eq.(1). Inspired by virtual adversarial159

training (Miyato et al., 2018), we propose virtual160

adversarial attack (Vttack) where virtual means the161

attack is agnostic to the ground truth.162

Given x and a victim model F , Vttack aims to163

find a neighbor of x that satisfies:164

F(x + δ) ̸= F(x) (2)165

where F(x) refers to the original model predic-166

tion. Eq.(2) indicates that the attack seeks to find167

out the worst-case that flips the current model pre-168

diction. Such a process is independent of y.169

The traditional attack attempts to find out the in-170

put point that pushes the model prediction away171

from the ground truth. However, Vttack attempts172

to find out the local unsmoothness of two model173

predictions. Thus, we can define a generalized cri-174

terion of Vttack:175

F(x + δ1) ̸= F(x + δ2) (3)176

where x + δ1 and x + δ2 are both neighbors of x.177

Though independent of the ground truth, both178

Eq.(2) and Eq.(3) should be grounded on the label179

invariance of two input points (i.e. x and x + δ180

or x + δ1 and x + δ2). Fortunately, our practice181

showcases that it can be satisfied more easily.182

2.3 Virtual Boundary Attack183

We now present Virtual Boundary Attack (ViBA).184

ViBA is a specific NER attack algorithm that be-185

longs to Vttack, which inserts a specific boundary186

into the text and seeks to let the model mistakenly187

recognize it as an entity. The backbone is that the188

current NER model is highly sensitive to the left189

and right boundaries of each entity on which it re-190

lies for recognition. We thus exploit this property191

to fool the model.192

We also call the inserted boundary “virtual193

boundary”, which has the following two implica-194

tions. (1) The inserted boundary may not be a real195

Algorithm 1 Virtual Boundary Attack

Input: Victim model F , input example X , safety
distance w.

Output: Adversarial example X.
1: Y ← F(X )
2: E ← Extract each entity in X following Y
3: L ← Locate each entity in X following Y
4: S ← Decide safety area following L and w
5: for e in E do
6: for j in {1 ∼ n} \ S do
7: for b in {eleft, eright} do
8: X ′ ← Insert b before X[j] in X
9: X ′

m ←Mask e in X ′

10: Y ′ ← F(X ′)
11: Y ′

m ← F(X ′
m)

12: if Y ′ \ Y ′
[j] ̸= Y then

13: return X ′

14: end if
15: if Y ′

[j] ̸= Y
′
m[j] then

16: return X ′

17: end if
18: end for
19: end for
20: end for
21: return None

entity. Actually, it is hard to know. (2) The sec- 196

ond is closely related to the definition of Vttack. 197

ViBA does not need to care about whether it is 198

a real entity. What it cares about is whether the 199

model prediction of that boundary will be affected 200

by another entity that contains the boundary. As 201

shown in Figure 2 (b) and (c), the model recog- 202

nizes Is (the prefix of Israel) as an GPE. Paradox- 203

ically, it is no more after Israel is masked. It in- 204

dicates that the model pathologically assumes the 205

co-occurring boundaries are relevant, which is not 206

the way human does. This is exactly what happens 207

in Eq.(3). Algorithm 1 summarizes the ViBA algo- 208

rithm. 209

(1) Generate Original Prediction (line 1-3). 210

Given an input sentence X = x1, x2, · · · , xn, 211

we first feed it into the victim model to obtain the 212

original prediction Y . which is a list of predicted 213

named entity tags and has the same length with 214

X . Each tag in Y is a pre-defined abbreviated la- 215

bel such as “PER” for “Person”, “LOC” for “Loca- 216

tion”, etc. Following the common usage of NER, 217

we also use “O” to denote that a token is not a 218

named entity. Then we extract the named entities 219
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Test set WNUT OntoNotes
Examples 686 / 1287 4561 / 9479
Entities per ex. 1.57 2.45
Tokens per ex. 19.67 24.08
Test set MSRA OntoNotes
Examples 2344 / 4365 2392 / 4472
Entities per ex. 2.61 3.13
Tokens per ex. 47.34 45.06

Table 1: Statistics for each used test set. The situation
for the training set is similar.

E as well as their corresponding locations L.220

(2) Decide Safety Areas (line 4).221

请 听 美 国 之 音 的 特 邀 记 者 康 妮 在 加 拿 大 温 哥 华 发 来 的 报 道 。

[ORG] [PER] [GPE] [GPE]

w=2
Safety area Safety area

Figure 3: An example of safety areas.

To prevent the inserted boundary from destroy-222

ing the original entities and their context, we set223

safety areas for the entities based on safe distance224

w. Any boundary can not be inserted in a safety225

area. That is, it is not allowed to insert a boundary226

inside a named entity and the distance between the227

inserted boundary and any named entity cannot be228

less than w. An example is shown as Figure 3.229

(3) Generate Candidate Adversarial Example,230

Masked Example and their Predictions (line 5-231

11).232

Next, we try to generate adversarial examples233

based on each named entity in the original predic-234

tion. For each named entity e in E , its left and235

right boundaries are extracted first. Then, we go236

through every position outside the safety areas and237

insert the boundary to generate a candidate adver-238

sarial example X ′. To verify that it is indeed the239

co-occurrence of the inserted boundary and that240

the named entity causes a change to model predic-241

tion, we replace the named entity in the adversarial242

example with [MASK] token and get X ′
m. Subse-243

quently, X ′ and X ′
m are fed into the victim model244

to obtain two predictions.245

(4) Check Success (line 12-17).246

According to the definition of virtual adversar-247

ial attack, we use the following two criteria to248

judge whether an attack is successful:249

Criterion 1 (line 12-14). This criterion corre-250

sponds to the Eq.(2) and we need to check the con-251

sistency of Y and Y ′. Since the boundary inserted252

at the current position j does not exist in the orig- 253

inal sample, this position is ignored in Y ′ during 254

comparison. 255

Criterion 2 (line 15-17). This criterion corre- 256

sponds to the Eq.(3). We regard X ′,X ′
m as X with 257

two different perturbations. And then compare 258

whether the model’s predictions for the currently 259

inserted boundary have changed. Meanwhile, this 260

scenario is also in line with human intuition, that 261

is, only the co-occurrence of the inserted boundary 262

and the original entity will cause the model to be 263

unrobust in the judgment of the insertion position. 264

3 Experiments 265

3.1 Datasets 266

We explore the effectiveness of our ViBA on three 267

widely used public benchmarks of Chinese and En- 268

glish: 269

• OntoNotes5.0 (Weischedel et al., 2013) is a 270

multilingual NER dataset which contains three lan- 271

guages: Chinese, English and Arabic. There are 272

eighteen types of named entities in this dataset, 273

eleven of which are types like Person, Organiza- 274

tion, etc and seven are values such as Date, Per- 275

cent, etc. In this paper, we select the popular Chi- 276

nese and English versions for our experiments. 277

•MSRA (Levow, 2006) is one of the most used 278

Chinese NER datasets which accommodates three 279

named entity types. The data in MSRA is col- 280

lected from the news domain and is used as a 281

shared task on SIGNAN backoff 2006. 282

• WNUT2017 (Derczynski et al., 2017) is an 283

English NER dataset which has six named entity 284

types. This dataset focuses on identifying unusual, 285

previously-unseen entities in the context of emerg- 286

ing discussions and it is more difficult to identify 287

the entities in this dataset. 288

We present some statistical data of the above 289

benchmarks, as shown in Table 1. The total num- 290

ber of the sentences containing at least one entity 291

and the total number of the sentences in the dataset 292

are shown in the Examples row. It is worth noting 293

that all results in this paper are evaluated on the 294

samples containing at least one entity. In addition, 295

we also count the average number of entities con- 296

tained in each sample and the average length of 297

each sample. The split of training, test and devel- 298

opment sets for the above three datasets is consis- 299

tent with previous NER works. 300
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English Chinese
WNUT OntoNotes MSRA OntoNotes

ASR SS ASR SS ASR SS ASR SS
BERTbase 57.1 98.0 73.2 98.1 91.2 98.8 85.5 98.7
RoBERTalarge 65.6 97.9 70.0 98.1 91.7 98.8 86.9 98.1
DeBERTalarge 56.1 98.0 70.7 98.1 - - - -
MacBERTlarge - - - - 93.2 98.8 89.4 98.6

Table 2: The attack success rate (ASR) and semantic similarity (SS) across different models on both English and
Chinese NER datasets. A higher ASR suggests that the attacker is more effective in fooling the model.

3.2 Metric301

• Attack Success Rate (ASR) is the main mea-302

surement of the attacker’s effectiveness towards303

the victim model (i.e. the ratio of the achieved304

eligible adversarial examples over all examples).305

• Semantic Similarity (SS) serves as a mea-306

surement of the similarity between two examples307

(i.e. cosine similarity). We usually expect the ad-308

versarial example to fool the model while main-309

taining a high similarity to the original one. In this310

paper, we leverage text2vec for both English and311

Chinese (Xu, 2022).312

3.3 Settings313

We evaluate our ViBA on the BERT-base (Devlin314

et al., 2019), RoBERTa-large (Liu et al., 2019b)315

models of Chinese and English versions. In addi-316

tion, DeBERTa-large (He et al., 2020) is leveraged317

for evaluation on the English datasets. MacBERT-318

large (Cui et al., 2020) is used for evaluation Chi-319

nese datasets.320

Specifically, we first fine-tune the models on the321

training set and then use ViBA to generate adver-322

sarial examples on the test set. We set the hyper-323

parameter safety distance w = 2 for all the experi-324

ments. All experiments are conducted on a single325

NVIDIA RTX 3090 GPU.326

3.4 Main Results327

We evaluate our ViBA method for multiple mod-328

els on different Chinese and English datasets, and329

the results are shown in Table 2. Among them,330

we evaluate the Chinese and English versions of331

BERT-base and RoBERTa-large on the Chinese332

and English datasets, respectively. MacBERT-333

large is only valid for Chinese, while DeBERTa-334

large has an only English version. Overall, as can335

be seen from our results, ViBA achieves a high336

success rate when attacking both Chinese and En-337

glish datasets. The ASR on the Chinese datasets is338

as high as 85% - 93%. Although relatively lower 339

on the English dataset, the ASR is ranging from 340

55% to 73% which is still an ideal performance. 341

It is noteworthy that the English datasets gener- 342

ally have shorter sentences whose safe area will 343

be smaller as we defined. So the smaller search 344

space for ViBA will lead to a poor ASR on the En- 345

glish datasets. Overall, ViBA is a great attacker on 346

the above benchmarks. 347

Table 2 also lists the average SS between the ad- 348

versarial and original examples. It can be seen that 349

the ASR of all datasets exceeds 98, which guaran- 350

tees that (1) the semantics of the adversarial exam- 351

ples are nearly the same as the original sentences 352

and (2) the adversarial examples are natural and 353

look close to the original samples. 354

3.5 Time Analysis 355

The time complexity of ViBA to attack a sentence 356

is about O(m × n), where m is the number of 357

named entities in this sentence. Usually, m is 358

much smaller than the sentence length n. There- 359

fore, the time complexity is almost linear with 360

the length of the sentence, which makes the at- 361

tack speed very fast. To verify it, we reproduce 362

the BAE (Garg and Ramakrishnan, 2020) adapted 363

for NER in Seqattack (Simoncini and Spanakis, 364

2021) and compare it with our ViBA on the MSRA 365

dataset. The results are shown in the Table 3. 366

ASR Speed (sec per ex.)
BAE 87.2 7.32
Ours 91.2 0.13 (×56)

Table 3: Comparison of time cost.

Compared to the TEXTFOOLER (Jin et al., 367

2020), CLARE (Li et al., 2021), etc., BAE is al- 368

ready a fast attack algorithm. However, in addi- 369

tion to the obvious advantages of our ViBA over 370

BAE in ASR, our ViBA is 56 times faster than 371
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ASR
Original 95.8
Mask Boundary 69.6
Mask Inner 86.4

Table 4: Compare the effects of mask boundary/inner
words on model recognition performance.

BAE which demonstrates its speed superiority.372

4 Discussion373

4.1 Interpretation374

This section will interpret the effectiveness of our375

ViBA based on empirical experiments.376

4.1.1 Boundary as Trigger377

As mentioned in (Lin et al., 2021), the NER mod-378

els tend to memorize the entity patterns instead of379

recognizing the entities by context-based reason-380

ing. Following this view, we also imagine that the381

NER models may memorize some patterns of orig-382

inal named entities and cause ViBA to be effective.383

Some previous works (Peng and Dredze, 2016;384

Liu et al., 2019a; Tan et al., 2020a) have proven385

that integrating the boundary information into the386

NER models will enhance the ability of the mod-387

els, which makes us suspicious of the boundary388

words. Thus we separate the boundary and inner389

words of the entities to probe which part may be390

the pattern memorized by the models.391

Specifically, we first fine-tune the BERT-base392

model on the training set of the MSRA and eval-393

uate its recognition performance of named entities394

on the test set. Then we mask out the boundary395

words and inner words of the entities in the test396

set respectively, and then evaluate the recognition397

performance of the model. The results are shown398

in Table 4, where all the results are F1. When cal-399

culating F1, we regard a named entity as correctly400

recognized only if its boundary and type are both401

recognized accurately.402

As we can see from the results that BERT-base403

achieves 95.8 F1 on the original MSRA test set,404

which is an excellent performance. However, af-405

ter masking the boundary words of all the named406

entities, the F1 of the model on the test set drops407

sharply by 26.2, compared with the 9.4 F1 drop408

of the inner words. Such a phenomenon indeed409

verifies that the NER model is more sensitive to410

the boundary words than the inner words, and it411

tends to recognize the named entities relying on412

the boundary words. This is also the reason why413

OntoNotes-en OntoNotes-ch
Boundary Tokens 0.95 0.93
Other Tokens 0.96 0.95

Table 5: The cosine similarity of the hidden-states.

our ViBA chooses to insert the boundary of the 414

entity into the sentence. The above analyses jus- 415

tify the motivation of our ViBA to insert sentences 416

with boundaries. 417

4.1.2 Robustness of Encoder and Decoder 418

The structure of the BERT-style NER models can 419

be summarized as the encoder-decoder structure. 420

The encoder usually leverages a strong pre-trained 421

language model, and the decoder is usually served 422

by the models such as MLP classifier, conditional 423

random field (CRF), etc. The encoder encodes the 424

input sentence into contextual hidden-states. The 425

subsequent decoder performs token-level classifi- 426

cation and classifies each word into a pre-defined 427

NER label according to the hidden-state of each 428

word. In this section, we want to figure out why 429

our ViBA can attack successfully. 430

Our most concerned key question is why the 431

phenomenon in Figure 2 occurs for a successful 432

adversarial example. That is, the adversarial ex- 433

ample can make the victim model recognize the 434

inserted boundary as a named entity, but if the orig- 435

inal entity is masked and does not co-occur with 436

the inserted boundary, then the model will not pre- 437

dict the inserted boundary as an entity. 438

Since hidden-states are the only medium be- 439

tween them, we analyze the robustness of the en- 440

coder and decoder from the stability of the hidden- 441

states. Specifically, first we generate successful ad- 442

versarial examples. For each adversarial example 443

X, it is fed into the NER model to obtain its hidden- 444

states H. Then we mask out the original entity in 445

this adversarial example to get the Xm and also in- 446

put it into the NER model to obtain hidden-states 447

Hm. Then we select the representations of the 448

inserted boundary from the H,Hm and calculate 449

the cosine similarity between them. Similar to this 450

dosage, we also calculate the cosine similarity for 451

other tokens. We conduct experiments with BERT- 452

base on OntoNotes-en and OntoNotes-ch datasets. 453

The average values of the cosine similarities are 454

shown in Table 5 . 455

From the results, we figure out that for the in- 456

serted boundary tokens, the cosine similarity of 457

the hidden-states between the H and Hm reaches 458
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OntoNotes-en OntoNotes-ch
ASR F1 ASR F1

FreeLB 70.5 89.5 86.0 85.2
ASA 72.2 89.3 86.8 85.3
p ASR F1 ASR F1

0 72.9 89.2 85.5 85.0
0.3 63.7 88.8 87.1 84.7
0.5 67.7 88.3 85.4 83.6
0.8 69.8 83.1 71.5 63.0

Table 6: The results of masking out the boundary to-
kens for the encoder.

0.93 in two datasets. It is worth noting that the459

hidden-states of BERT-base are as high as 768 di-460

mensions, and the cosine similarity so close to 1461

shows that the inserted boundary does not result462

in a significant deviation of the encoder. Similar463

to this phenomenon, other tokens also obtain an464

average similarity of 0.95 in two datasets, which465

further verifies that the encoder is relatively sta-466

ble to the two sentences X and Xm. According to467

the above analysis, it can be concluded that when468

the representation output by the encoder changed469

slightly in the position of the inserted boundary,470

the prediction of this boundary by the decoder471

will be confused. We summarize that for such an472

encoder-decoder NER model, our ViBA mainly at-473

tacks the unrobustness of the decoder.474

4.2 Defense Strategy: Boundary Cut475

As concluded in Section 4.1, there are two main476

reasons why our ViBA is effective (1) The NER477

model is very sensitive to the boundary words of478

the named entities that tends to recognize the en-479

tities depending on the boundary words, and it480

perhaps also memorizes some boundary patterns.481

(2) For the NER model of the encoder-decoder482

structure, its decoder is not robust and even if the483

hidden-states input to it change slightly, the predic-484

tion will be converted.485

In this section, we propose a Boundary Cut strat-486

egy that can enhance the model’s resistance to487

ViBA from two aspects: (1) Decouple the informa-488

tion of boundary and inner words on the encoder489

side, thus reducing the model’s sensitivity to entity490

boundary tokens. (2) Dropout the hidden-states to491

improve the robustness of the decoder.492

4.2.1 Mask Out the Boundary for Encoder 493

Since the NER model is sensitive to boundary to- 494

kens, a very straightforward idea is to decouple 495

boundary words and inner words. We achieve this 496

goal with the simplest way of masking out the 497

boundary words at the input of the encoder. In 498

detail, we randomly mask out the left and right 499

boundary tokens of an entity with a probability 500

p during the fine-tuning phase. Then we evalu- 501

ate the attack effect of the model on the test set. 502

In addition, to explore whether masking out the 503

boundary words during training has an impact on 504

the model’s ability to recognize the named entities, 505

we also evaluate it on the test set. We apply BERT- 506

base to conduct experiments on the OntoNotes5.0- 507

en and OntoNotes5.0-ch datasets. The results are 508

shown in Table 6. 509

It can be seen from the results that compared 510

with the case without masking (p = 0), after 511

masking out the boundary words, almost all ASR 512

has a significant decrease, which shows that the 513

dosage of masking out boundary words is useful 514

for decoupling the boundary information and inner 515

words information and can indeed help the NER 516

model to resist ViBA. An exception happens when 517

p = 0.3 which makes the model more fragile. Our 518

explanation for this anomaly is that masking out 519

the boundary words will cause a trade-off. On 520

the one hand, it can reduce the model’s sensitivity 521

to the boundary by decoupling information of the 522

boundary and the inner words, thus to decrease the 523

ASR. On the other hand, it will also bring noise, 524

which may lead to insufficient training and makes 525

the model fragile. In this case, it may be that the 526

former outweighs the latter. When observing the 527

recognition effect on NER, the F1 of all experi- 528

ments just slightly decreases as p = 0.3, 0.5 which 529

indicates that the noise introduced by masking out 530

boundary does not cause much loss of recognition 531

performance. And when p = 0.8, it is not so sur- 532

prising that there is a large drop in the recognition 533

performance with such big noise. Overall, when 534

the probability is within a reasonable range, the 535

practice of masking out boundary can effectively 536

help the NER model to resist ViBA without signif- 537

icantly reducing the performance of recognition. 538

Based on our experiments, p = 0.5 works best. 539

We select two adversarial training (AT) methods 540

that are FreeLB (Zhu et al., 2020) and ASA (Wu 541

and Zhao, 2022) as our baselines. Compared with 542

them, although our F1 is relatively lower, we have 543
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OntoNotes-en OntoNotes-ch
ASR F1 ASR F1

WP 70.4 88.4 88.4 84.7
p ASR F1 ASR F1

0 72.9 89.2 85.5 85.0
0.3 70.2 88.8 85.7 85.1
0.5 70.8 88.7 84.7 85.0
0.8 75.1 87.6 80.4 84.3

Table 7: The results of applying the dropout to the
hidden-states for the decoder and the weight perturba-
tion baseline.

a significantly more advantageous ASR.544

4.2.2 Dropout the Hidden-States for Decoder545

Since the decoder is relatively unrobust to the546

hidden-states output by the encoder and ViBA547

mainly fools the decoder, improving the robust-548

ness of the decoder is also a direct idea. There-549

fore, we propose to apply dropout (Hinton et al.,550

2012) to the hidden-states in order to alleviate this551

problem. Specifically, while also considering that552

the NER model is sensitive to boundary words, we553

randomly dropout the left and right boundaries of554

an entity on top of the output hidden-states with555

a probability p. Following Section 4.2.1, we also556

conduct experiments on the OntoNotes5.0-en and557

OntoNotes5.0-ch datasets. The victim model is558

BERT-base with a vanilla MLP decoder. We take559

a classic weight perturbation (WP) method (Wen560

et al., 2018) which can improve model robustness561

as the baseline.562

As shown in Table 7, ASR drops significantly563

on both OntoNotes-en and OntoNotes-ch when564

p = 0.5, 0.3, meanwhile the F1 on the test set is al-565

most unaffected. Compared with weight perturba-566

tion, we also outperform it with a lower ASR and567

higher F1. We can conclude that such a concise568

dropout method can help the victim model resist569

ViBA without affecting its recognition accuracy.570

Also, the model is fragile due to the undertrain-571

ing problem, and it is understandable to have poor572

ASR and F1 when p = 0.8.573

5 Related Work574

Current works on adversarial attack concentrate575

on text classification, question answering (QA),576

machine translation, machine reading comprehen-577

sion, etc. For examples, Gao et al. propose578

a DeepWordBug algorithm which can effectively579

fool the deep-learning classifier by small pertur- 580

bations in a black-box scenario. Iyyer et al. pro- 581

pose a SCPNs network which generates adversar- 582

ial examples based on syntactic information for 583

text classification task. Jin et al. present a fa- 584

mous TEXTFOOLER baseline which attacks the 585

BERT-style models with excellent effectiveness, 586

utility-preserving ability and efficiency. BAE is 587

proposed by Garg and Ramakrishnan, which is a 588

black box attack aiming at text classification and 589

generates adversarial examples by contextual per- 590

turbations. CLARE (Li et al., 2021) produces flu- 591

ent and grammatical outputs through a mask-then- 592

infill procedure. (Gan and Ng, 2019) attacks the 593

question paraphrasing in the question answering 594

dataset. Tan et al. perturb the inflectional morphol- 595

ogy of words to generate plausible and semanti- 596

cally similar adversarial examples. However, none 597

of them aim at the NER task. 598

Recently, many researchers begin to focus on 599

the robustness of NER models. For example, May- 600

hew et al. study the impact of capitalization in 601

NER on the model. Das and Paik explore the in- 602

fluence of the surrounding context perturbation on 603

the entity. But none of them propose an algorithm 604

to efficiently generate NER adversarial examples. 605

Nowadays, there are only a few studies that pro- 606

pose adversarial examples generation methods for 607

NER which are still very lacking. Although Seqat- 608

tack (Simoncini and Spanakis, 2021) adapts some 609

above-mentioned attack methods for text classifi- 610

cation text to NER, it does not propose a new ap- 611

proach. RockNer (Lin et al., 2021) and Breaking 612

BERT (Dirkson et al., 2021) are rare works of ad- 613

versarial example generation for NER. But essen- 614

tially, they will bring up the three problems as we 615

mentioned in the introduction. 616

6 Conclusion 617

This paper targets to study the robustness of cur- 618

rent dominant NER models. Due to label muta- 619

tion, existing evaluation methods for NER robust- 620

ness are unreliable. Therefore, we propose Virtual 621

Adversarial Attack which bypasses the problem of 622

label mutation. On top of that, we present Vir- 623

tual Boundary Attack (ViBA) for NER by insert- 624

ing a specific boundary into the text, which is able 625

to generate high-quality adversarial examples effi- 626

ciently. Moreover, we interpret the effectiveness 627

of ViBA and further propose a boundary cut strat- 628

egy that can help the model defend against ViBA. 629
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