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Abstract

From paleoclimate records we know that during the last 100,000 years parts of
the North Atlantic ocean circulation have collapsed and recovered frequently.
Only recently has the climate community been able to reproduce these Dansgaard-
Oeschger events with numerical simulations of Earth System Models. However,
simulations are computationally expensive and since an analytical framework for
this circulation 1s missing, it 1s not yet clear what causes recovery or collapses.
Here, we use sparse regression framework to build a set of stochastic differential
equations that emulate the Earth System Models™ behavior and use it to show that
collapses are deterministic, but recoveries are stochastically forced.

1 Introduction

The Atlantic Meridional Overturning Circulation (AMOC) 1s a system of ocean currents that plays a
key role in Earth’s climate in the past and present [1]. Greenland ice core records provide evidence for
Dansgaard—Oeschger (D—0O) events that are characterized by abrupt warming into warm interstadial
periods followed by gradual cooling into cold stadial periods [2], and Community Earth System
Model (CESM) simulations suggest that these dramatic climate change events were linked to sudden
transitions in the AMOC [3]. There 1s no analytical framework for the AMOC, and although there
are various hypotheses about the mechanisms that drive AMOC changes, a unifying theory that fully
explains them 1s still lacking [4]. Thus, we explored data-driven tools to derive a set of interpretable
coupled differential equations that are computationally efficient to emulate the AMOC, and hopefully
allow for a dynamical interpretation.

A previous parsimony analysis of CESM simulations identifies surface freshwater flux (SFWEF),
potential density at 200 meters (PD_200m, both averaged between 50°N and 70°N) and AMOC
strength (the maximum at 40°N) as the simplest coupled set of controlling variables (published by
the present authors). In the present work, we use the time series data of these three key variables as
input, employ sparse regression with a polynomial dependency structure, similar in spirit to symbolic
regression approaches such as Sparse Identification of Nonlinear Dynamical systems (SINDy) [5],
and apply regularization to control complexity. We obtain a discrete-time dynamical system with
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three stochastic differential equations that can be used to test hypotheses about the cause of AMOC
transitions. Below we discuss the various steps and decisions that lead to the final set of equations.

2 Methods

This work uses the annual time series of three key variables (SFWE, PD_200m, and AMOC) from
four 8000-year long CESM simulations with glacial boundary conditions that reproduce the observed
structure of D-0O events [6, 7]. The time series to be studied in this work have several important
features, including irregular transitions and a low signal-to-noise ratio. We note that the system’s
evolution 1s strongly influenced by stochastic variability through drift—diffusion estimation [8—12]
(Appendix A.1, Figure A.1). By constructing a polynomial dependency structure up to the fourth
order, symbolic regression builds candidate functions for key variables and their nonlinear interactions,
with added random noise to perturb the system for simulation [13—17]. Sparse regression is then
applied using an ¢;-regularized (lasso) formulation that performs variable selection and coefficient
shrinkage, balancing model accuracy with simplicity and thereby controlling equation complexity
[18, 19]. The data-driven discrete-time stochastic differential equation (SDE) model can be written as

AMOCt+1 — f(AMOCt PDtj SFWF{;) T EAMOC

PDIH—I — g(AMOCt, PDtj SFWFt) T €PD,
SFWFt+1 — h(AMOCt, ].:}Illjt:| SFWFt) T €ESFWF-

(1)

with f, g, h being learned via symbolic regression, and ¢ representing normally distributed Gaussian
noise whose range 1s defined by these residuals. It should be mentioned that for this specific problem,
the SINDy method which assumes deterministic dynamics and 1s computationally expensive, did not
perform well [5].
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Figure 1: Schematic of the basic workflow. Time series of AMOC, PD_200m, and SFWF from four
CESM simulation runs serve as inputs (I) to an equation discovery framework (2). The resulting
data-driven SDE model simulates system evolution from an initial value marked by a red star and
1s evaluated using spectral and asymmetry metrics, enabling applications in climate prediction and
analyses of system characteristics.

This set of equations reproduce the CESM fields, as demonstrated by a comparison of power spectra
and time-reversal asymmetry [20-22]. These simulations are further extended using large ensembles
to obtain a distribution of possible outcomes under stochastic forcing, enabling the feasibility of
theoretical prediction tests and analyses of dynamical stability and attractor basins [23, 24]. Both
Gaussian and empirically derived noise terms € are assessed to evaluate the system’s response to
stochastic perturbations, with values randomly sampled from residual-based distributions defining



the noise range. This basic workflow 1s illustrated in Fig. 1. All experiments were run in an online
Jupyter Notebook environment (Intel Xeon 2.20 GHz CPU x 2 cores, 13.6 GB RAM, no GPU).
Each polynomial regression model required approximately 1 minute, and the full analysis workflow
1s completed in under 15 minutes, making it computationally efficient relative to the numerically
intensive and computationally demanding CESM simulations [25], which need approximately 160
cores for a throughput of 100 year/day - or 3 months for a 10,000 year simulation.

3 Results

Our model successfully obtains bounded continuous solutions of Eq. (1) and emulates the co-evolution
of the coupled variables. Using only the 1nitial values, it reproduces the sudden transitions observed
in CESM simulations and proxy records (Fig. 2a). As shown in Appendix A.2, the polynomial model
of degree 4 with 30-year smoothing applied to the input data and perturbed with Gaussian noise best
reproduces the transition dynamics. Compared with the SDE model derived from intuition based
on a stochastic FitzHugh—Nagumo—type system with physics-motivated nonlinearities [6, 7], our
data-driven model learned directly from CESM outputs better reproduces the realistic D-O events
(Fig. 2b), with the cold stadial and warm interstadial phases and the sudden transitions between them
(Tables A.1-A.3). Note that when the stochastic forcing amplitude 1s increased in the conceptual
model of [6], the bimodality of the AMOC distribution tends to vanish, whereas our model preserves
distinct states.

(a) A simulation with only arbitrary initial values (AMOC, PD_200m, SFWF))
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Figure 2: (a) Our model simulation initialized with only the initial values (red star) and driven by
normally distributed Gaussian noise. The inset on the left shows the co-evolution of SFWF and
PD_200m, while the inset on the right displays the noise distribution obtained from the residuals of
the polynomial fits. (b) Power spectra of AMOC from CESM simulations, our model simulation, and
the SDE model of [6].

We now take this SDE model as emulator of the AMOC in CESM, and study its sensitivity to noise,
1.e., variability of climate on time scales smaller than 30 years like El Nifio or the North Atlantic
Oscillation [26]. The results show that the model 1s sensitive to initial conditions (Fig. 3a). As a
concrete example, we demonstrate that the deterministic solutions (i1.e., model evolution without
noise perturbations) fails to reproduce off-on transitions, but can capture on-off transitions, whereas
when perturbed with normally distributed noise, cold-to-warm transitions become possible and the
simulated AMOC can reach the strength characteristic of the alternate state (Fig. 3a). We perform
Monte Carlo rollouts (ensemble size N = 50) by integrating the stochastic system with independently
sampled perturbations €spmoc, €pp- €Espwr. 2enerating an ensemble of trajectories that approximate the
posterior distribution of system states, from which quantile bands (50% and 95%) are computed to
quantify the range of possible outcomes under noise (Fig. 3a). We perform prediction tests using



deterministic and noisy simulations to evaluate the probability of correctly predicting AMOC states
50 years ahead across different dynamical regimes, showing that D—O events are primarily noise-
driven rather than purely internally oscillatory (Fig. 3b). We now turn to the fixed-point and attractor
basin analysis, where the deterministic part from the data-driven equations (Eq. (1)) 1s iteratively
solved to 1dentify equilibrium states and visualize their local stability structure in 3D phase space
[23]; stochastic and deterministic trajectories are compared, showing that while the deterministic
system remains confined near stable equilibria, stochastic perturbations enable transitions between
coexisting AMOC states, reflecting the presence of multiple attractor basins in the system’s phase
space (Fig. 3¢).
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Figure 3: (a) Warm-to-cold and OFF/ON AMOC transitions are simulated using deterministic
and stochastic models, where the deterministic solution, Monte Carlo rollouts, and quantile bands
show the deterministic behavior, ensemble spread, and uncertainty. (b) The probability of correctly
predicting AMOC states (stadial, interstadial, and transitions) for deterministic and noisy simulations
indicates noise-driven transitions, especially during cold-to-warm phases. (¢) Dynamic analysis of
model trajectories and fixed points in the AMOC-SFWE-PD phase space, with corresponding basins
of attraction.

4 Summary and discussion

We use a 32,000-year-long record of CESM simulations to learn a set of 3 SDEs that describe
the AMOC behaviour, 1n particular its sudden transitions between on and off states. This set 1s
computationally efficient so that it allows to study the importance of high-frequency variability, or
noise, on the transitions. It also has much more realistic statistical properties than the simple sets of
SDEs that are typically used for these problems (i.e., van-deer Pole or FitzHugh-Nagumo oscillators).
We find that for the noise levels found in CESM, the off-on transitions require stochastic forcing [26].
whereas on-off transitions are deterministic as proposed by [3]. Current and future work will explore
how to further improve the quality of our SDEs with better data processing techniques and more
sophisticated evaluation metrics. Moreover, we need to explore how robust the present results are to
variations in structure and magnitude off the noise. We will then have a tool to explore the potential
of the AMOC to undergo rapid transitions in the future.
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A Technical Appendices and Supplementary Material

A.1 Connection between deterministic and stochastic representations of the system

Define the temporal evolution of the variable of interest X (¢) as governed by a stochastic differential
equation (SDE), where f(X) denotes the deterministic drift term, g(X') the diffusion amplitude, and
I'(¢) a Gaussian white noise process representing random forcing in Eq.(2). The system is therefore
stochastic, containing both deterministic and statistical components that jointly control its evolution
in time [9-12]. The goal 1s to quantify both deterministic and stochastic contributions by estimating
f(X) and g(X) directly from the time series data.

dX
X~ F(X) +9(X)T (), 2)
dr = f(x,t)dt + G(z,t) dw, (3)
Xiy1 = Xi + f(Xe) At + g( X)) AWy, AWy ~ N(0, At), (4)

BX(t 4+ At) — X(1) | X(t) = ]

f(x) =~ a3 : (5)
2(z) ~ L[(X (¢ + At) — ift(fi))2 | X (1) = -“f]j (6)
X(t)=T(t) + R(t), (7)

T(t) = LocalPolynomialFit(X (¢), degree = d). (8)
L~ fualX), Var(R) m g (X) ©)

From Eq.(3) to Eq.(9), the equations describe the transition from the continuous stochastic formulation
to 1ts data-driven discrete estimation. The system can be expressed in the standard stochastic form.,
where f(z,t) denotes the deterministic drift, G(z, t) the diffusion coefficient that controls how noise
intensity depends on the system state, and w(t) a standard Wiener process representing random
forcing. From this representation, a discrete-time approximation allows estimation of the drift f(X)
from the conditional mean of observed increments and the diffusion g(X') from their conditional
variance [8]. Uncertainty in these estimates 1s quantified by bootstrap resampling, producing upper
and lower confidence bounds that correspond to the shaded regions in the plots. When the signal
is further decomposed into a deterministic trend 7'(¢) and residual fluctuations R(t), the derivative
of T'(t) represents the deterministic drift f4e (X ), and the variance of R(t) corresponds to the
deterministic diffusion g2, (X).

Smoothing 1s applied using a 30-year moving-average filter, which suppresses short-term fluctuations
while preserving long-term trends, thus clarifies the underlying deterministic structure of the system.
The resulting plot quantifies the deterministic and stochastic components of the system, where the drift
reflects the mean directional tendency, the diffusion indicates variability strength, and the confidence
intervals capture estimation uncertainty across the system states (Figure A.1). We note that in the
unsmoothed panels, drift and diffusion estimates show high variability and wide confidence intervals,
reflecting strong stochastic fluctuations, while the smoothed panels exhibit reduced diffusion and
clearer drift, indicating suppressed short-term noise and preserved large-scale dynamics.
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Figure A.1: Estimated drift f(z) and diffusion g(x) functions for unsmoothed and smoothed data
using polynomial degrees 3 and 4. The z-axis represents the system state x, the current value of the
variable, and the y-axis represents the corresponding drift or diffusion magnitude. Blue points and
shading indicate stochastic estimates with bootstrap confidence intervals, whereas pink dashed lines
and shading represent deterministic components derived from the smoothed trend.
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A.2 Model Evaluation

As there 1s not yet a universal way to evaluate a model’s out-of-sample extrapolation performance,
we compare the errors between the power spectra of the four different CESM simulation runs and
our data-driven SDE model simulation. All polynomial and ¢;-regularized polynomial models up
to degree 3 and up to degree 4, with and without 30-year smoothing and driven by Gaussian or
empirical noise, are evaluated with the CESM AMOC baseline (Fig. A.2). The power Spectra are
estimated from normalized Fourier transforms of each time series, averaged over positive frequencies,
and plotted as spectral energy density versus frequency on log—log scales to compare continuum
variability and scaling behavior [20, 22](Fig. A.3).
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Figure A.2: Comparison between CESM AMOC baseline and all polynomial and ¢;-regularized
polynomial models up to degree 3 and up to degree 4, with and without 30-year smoothing and driven

by Gaussian or empirical noise.
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Figure A.3: Power spectra of AMOC segments from four CESM runs and all polynomial and /-
regularized polynomial models up to degree 4, showing spectral energy density versus frequency on
log—log scales to compare continuum variability and scaling behavior.
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Spectra are estimated using the discrete Fourier transform to obtain normalized spectral energy density
P(f), representing the distribution of variance across frequencies (Eq. 10, Eq.11). The Wasserstein
distance W (P;, P,) measures the displacement of spectral energy between CESM runs and model
spectra (Eq. 12). The mean Wasserstein distance W is computed across four CESM segments to
evaluate the overall similarity in continuum variability between model simulations and CESM spectral
estimates (Eq. 13). Tables A.1-A.3 show spectral pairwise Wasserstein distances between model
simulations and CESM segments for the three key variables. We show polynomial model of degree 4

with 30-year smoothing and Gaussian noise best reproduces the transition dynamics observed in the
CESM record.

Table A.1: Spectral Pairwise Wasserstein distances between model simulations and CESM segments
for AMOC_40N (bold = better than CESM internal variability < 5.3e — 9)

Model CESM Runl CESM Run2 CESM Run3 CESM Run4
gﬂiﬂfﬁéd:ls éd;g é)aumun it 1.12¢-4 1.37e-4 5.2¢-5 1.14e-4
gﬂiﬂfﬁédéédjf gnp rical Noise 233674 2.59¢-4 2.69¢-4 2.23¢-4
‘;;gﬂ”j?;;egﬂpjf’g‘;fg;‘}uﬁl‘_’;gﬂ;‘;e 3.05¢-4 3.17e-4 3.20e-4 2 98¢-4
§;gu“j§;;ff§0f’j?g;“;;j}§ CY 2354 2 63¢-4 2 73e-4 2 Dde-4
§§1gﬂ”jf§;fl‘?§0pj?gjfjj}d§ ;gﬂ?se 3.01e-4 3.13e-4 3.16e-4 2.94e-4
E;i”j;‘;;ff§§;’§’g;"g‘i‘;}c§}ﬂ§ji; . 2.35¢4 2 63¢-4 2.73e-4 223e-4
E?lli?l?)l;fe]d(:i E%ﬂ?iﬂiﬂﬂ Noise 2.29e-4 1.97e-4 1.94e-4 2.47e-4
E{ﬂf;lzﬁféd(fi E%n?))iric‘al Noise 1D 1.99e-4 1.75e-4 7.5€-5
Eifﬂiﬁffjdpgﬁiﬂ?ﬁgfi » 2.41e-4 2.63¢-4 2.66e-4 2.33e-4
Regularized Polynomial (deg 3) [ 39e.4 5 1864 — R

Unsmoothed, Empirical Noise
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Table A.2: Spectral Pairwise Wasserstein distances between model simulations and CESM segments
for SFWF (bold = better than CESM internal variability < 5.4e — 5)

Model CESM Runl CESM Run2 CESM Run3 CESM Run4
PS’EEEEEEIS [(]d:E é)aumun Sniae 1.28e-4 1.30e-4 4.00e-5 1.25e-4
Eﬂﬁﬂfﬁ;dggdj : é;lp?rica] N 222644 2.69e-4 2.70e-4 .96¢-4
‘S‘;i”jf;;fg{jf’g‘;gj}ugfggjge 2.93¢-4 3.13¢-4 3.12e-4 2.61e-4
ls‘ggu”j;‘g;ffgopjﬁg‘;";‘;}i BY 22404 2 75¢-4 2 74e-4 1.98¢-4
l;;guujfﬁ;fgapiygﬂf}dﬁ ;gﬂf ) 2894 3.10e-4 3.08¢-4 2.57e-4
‘;;i”j?g;ff§0Pj§f’g‘;;g;§‘}(g}ﬂ§ D 224e4 2 75¢-4 2 74e-4 1.97¢-4
E?llf;?)ﬁlféd(:i Egm?zsian Noise 2.41e-4 1.99e-4 1.86e-4 2.09¢e-4
E{f;zﬁf;;déiﬁmdl _— 6.50¢-5 2.10e-4 . 74e-4 8.90e-5
Ei%‘;i;ﬁffjdpglﬁ;ﬂ;‘ﬁjfi 5) 2.32¢-4 2.69¢-4 2.66¢-4 2.03¢-4
Regularized Polynomial (deg 3) [ 3ded 5 3064 e i

Unsmoothed, Empirical Noise

Table A.3: Spectral Pairwise Wasserstein distances between model simulations and CESM segments
for PD_200m (bold = better than CESM internal variability < 7.2e — 5)

Model CESM Runl CESM Run2 CESM Run3 CESM Run4
gﬁggfliz(lld;[()d:ﬁ 4G)ausz-;iun Noise L05e-4 l.48e-4 5.70e-3 7.80e-5
gﬂiﬂfﬁféﬁf Qﬂp rical Noise 206" 2.89e-4 3.09¢-4 2 80e-4
E;gﬂ”j?;;fg{gf’g‘;fg;‘}uﬁl‘_’;gjge 3.28¢-4 3.38¢-4 3.42e-4 3.33¢-4
giguuéfﬁéiegopﬁf Einﬁffﬁlcﬁf Rone  270e-4 2.93¢-4 3.13¢-4 2 84e-4
5;%“33;;52{3?3:33}5 ;gu?ge 3.24¢-4 3.34e-4 3.38¢-4 3.29¢-4
Sreded 307 Frmidel Nohe T4 2.92¢-4 3.12¢-4 2 84e-4
E‘ﬂf;ﬂﬁf;;déiimﬂ _ 2.43e-4 2.18¢-4 2.17e-4 2 54e-4
E{ﬂ‘f{;ﬁﬁféédﬁiﬂm - 1.01e-4 2.19¢-4 2.19¢-4 | 47¢-4
Eifﬁzﬁfffdpgﬁiﬁ?ﬁgfi 2) 2.76¢-4 291e-4 3.03¢-4 2 81e-4
Regularized Polynomial (deg 3) | 674 5 3804 & e

Unsmoothed, Empirical Noise

The time-reversal asymmetry statistic M (7) in Eq. 14 quantifies the saw-tooth shape of Dansgaard-
Oeschger (D-O) events in the §'°O record, representing the tendency for rapid warming transitions
followed by gradual cooling [21]. Consider a time series x (%), the time-reversal asymmetry can be
measured by the skewed difference statistic
3
(lz(t) —=(t+7)]°)

MO = GO ==+ 9
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where (-) is the expectation value over the time series and 7 represents a characteristic time scale
[21]. We note that the polynomial model of degree 4 with 30-year smoothing and Gaussian noise

best reproduces the observed time-reversal asymmetry, consistent with the results from the spectral
analysis (Figure A.4).
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Figure A.4: Time-reversal asymmetry M (7) for AMOC_40N, SFWF, and PD_200m, comparing
CESM baselines with polynomial and ¢;-regularized polynomial models up to degree 3 and degree 4.
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