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ABSTRACT

Humans usually show exceptional generalisation and discovery ability in the open
world, when being shown uncommonly new concepts. Whereas most existing
studies in the literature focus on common typical data from closed sets, and open
world novel discovery is under-explored in videos. In this paper, we are interested
in asking: what if atypical unusual videos are exposed in the learning process?
To this end, we collect a new video dataset consisting of various types of un-
usual atypical data (e.g. sci-fi, animation, etc.). To study how such atypical data
may benefit representation learning in open-world discovery, we feed them into
the model training process for representation learning. Taking out-of-distribution
(OOD) detection as a task to evaluate the model’s novel discovery capability, we
found that such a simple learning approach consistently improves performance
across a few different settings. Furthermore, we found that increasing the categor-
ical diversity of the atypical samples further boosts OOD detection performance.
These observations in our extensive experimental evaluations reveal the benefits
of atypical videos for visual representation learning in the open world, together
with the newly proposed dataset, encouraging further studies in this direction.

“The most beautiful thing we can
experience is the mysterious.”

— Albert Einstein

1 INTRODUCTION

Human cognition excels at generalising from limited information and discovering new concepts in
dynamic and unpredictable environments (Lieder & Griffiths, 2020; Saxe et al., 2021). This ability to
adapt to unfamiliar stimuli in an open world contrasts with the limitations faced by current machine
learning models (Heigold et al., 2023), especially in the field of video understanding. Current models
operate mainly in closed hypothetical environments where all possible categories are predefined
during training, which limits their ability to handle the variety of unpredictable scenarios often
encountered in real-world applications (Zhou et al., 2021; Kejriwal et al., 2024). The question
remains whether models can be enhanced to navigate the open world with the same adaptability as
human cognition.

Previous advancements in video understanding have largely focused on closed-set environments,
where the model is trained and tested on well-curated (Zhu et al., 2022), typical datasets such
as UCF101 (Soomro, 2012), Kinetics400, and HMDB51 (Kuehne et al., 2011). Although these
models perform well within known distributions, they encounter significant difficulties when ex-
posed to out-of-distribution (OOD) data (Acsintoae et al., 2022; Rame et al., 2022), thereby limit-
ing their applicability to open-world environments where new and unknown categories frequently
emerge (Chen et al., 2023; Ming et al., 2022). There are also ways to use generative modelling, such
as GANs (Kong & Ramanan, 2021; Grcić et al., 2021) to generate virtual data or virtual features to
help with OOD detection (Du et al., 2022). Existing datasets, despite being useful benchmarks, do
not encourage models to generalise beyond the constraints of the training distribution (Zhang et al.,
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2021). As a result, the challenge of detecting and adapting to novel instances in the open world
remains an underdeveloped area in video representation learning.

The above-mentioned observations and limitations in current closed-set studies raise a crucial ques-
tion: Would that help the models’ capability in open-world scenarios if introducing atypical and
uncommon video data during training? By exposing models to data that lies outside the typical
distribution, we argue that it may lead to a more robust capacity for OOD detection and novel dis-
covery (Salehi et al., 2022). Addressing this question necessitates a reconsideration of traditional
video classification datasets and opens the possibility of utilising more diverse and atypical data
during training.

Atypical data, characterised by its departure from common real-world categories, offers a unique
avenue to challenge and enhance model generalisation. Unlike conventional datasets, which largely
comprise trivial, everyday activities, atypical data refer to a wide range of unusual and outlier sce-
narios, such as those found in science fiction, animation, and anomalous real-world situations. These
atypical samples present a broader spectrum of visual content, providing an opportunity for models
to learn from examples that deviate from the norm (Rame et al., 2022). We anticipate that incorporat-
ing this type of data during training will allow the model to better handle open-world environments.

In order to systematically investigate the effectiveness of training with atypical data, we leverage a
simple yet fundamental task – out-of-distribution (OOD) detection (Hendrycks & Gimpel, 2017). It
is a critical problem in deep learning, especially in open-world settings where models are frequently
exposed to data that diverges from the distribution they were trained on (Chen et al., 2023). The
primary objective of OOD detection is to identify when a sample originates from an unseen or novel
distribution, which is crucial for downstream tasks such as new class discovery and incremental
learning (Yang et al., 2024). This capability is fundamental for models operating in open-world
environments, where the ability to detect and adapt to novel inputs is critical for robust perfor-
mance (Morteza & Li, 2022). An illustration is shown in Figure 1.

Din

DOE

Din

DOE

(a) Close set OOD detection (b) Open world OOD detection

Figure 1: Illustration about the close-set OOD detection and open-world OOD detection. Din and
DOE denote already known in-distribution samples and outlier exposed samples used to enhance
learning capabilities, respectively. (a) denotes that the samples used for learning are still explored in
a closed set despite their different distributions. (b) denotes that we open this closed set to explore a
more open-world setting.

To incorporate atypical data during training, we adopt the well-established outlier exposure (OE)
strategy (Hendrycks et al., 2019), which was designed to enhance models’ ability to recognise OOD
inputs (Papadopoulos et al., 2021; Zhu et al., 2023a; Zhang et al., 2023). The core concept behind OE
is to leverage auxiliary outliers during training, enabling the model to learn to distinguish between
in-distribution (ID) and OOD samples more effectively (Ming et al., 2022). However, addressing
the essential distribution gap between surrogate OOD data and the unseen OOD inputs remains
challenging (Zhu et al., 2023b), as it is hard to know the prior knowledge of potential OOD inputs
that would be encountered at the inference stage, and intentionally collect them (Zhu et al., 2023a).
Our approach seeks to mitigate this by using a diverse and atypical dataset during the training phase,
aiming to better equip models to handle a wide range of potential OOD scenarios.

Extensive experiments validate the effectiveness of incorporating auxiliary outlier samples in the
video domain, which significantly improves model performance. Furthermore, our analysis shows
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that exposure to atypical video data (e.g. sci-fi, animation, abnormal, and unintentional) during
training significantly improves the model’s ability to detect OOD inputs compared to training with
only traditional video datasets. Notably, we observe that the diversity of atypical samples plays
a crucial role in this process. Models trained with more diverse atypical datasets show greater
robustness in identifying novel and unseen distributions. These findings highlight the potential and
effectiveness of the introduced atypical data in visual representation learning in the open-world
setting, suggesting future investigation in this direction.

2 RELATED WORK

2.1 OPEN-WORLD LEARNING AND OOD DETECTION

Open-world learning (Kong & Ramanan, 2021; Yang et al., 2022; Vaze et al., 2021), which requires
models to recognise and adapt to novel inputs, has been a key challenge. OOD detection is an es-
sential task dedicated to handling unknown and unseen data (Yang et al., 2022). The main purpose
of this task is to determine whether a sample is derived from the learned distribution Din. A sample
in Din is called in distribution, otherwise it is called out of distribution, denoted as Dout. The OOD
distribution Dout often simulates unknowns encountered during deployment, e.g. samples from un-
related distributions (Zhu et al., 2023a), so that the Dout label set does not intersect with Din in the
OOD problem setting. Out-of-distribution (OOD) detection and open set recognition (OSR) (Vaze
et al., 2021; Geng et al., 2020) are closely related tasks in machine learning, both aim to deal with
unknown or unseen data, but OOD is a binary classification problem that focuses more on deter-
mining whether a sample belongs to ID or OOD, whereas OSR is an additional multiclassification
problem with the need to detect unknown classes (Yang et al., 2024; Salehi et al., 2022).

2.2 OUTLIER EXPOSURE FOR OOD DETECTION

While the test time OOD distribution Dout remains inherently unknown (Zhu et al., 2023a), recent
studies, notably by Hendrycks et al. (2019), have demonstrated the effectiveness of using Daux

drawn from an auxiliary unlabelled dataset, to regularise the model during training. This approach
leverages auxiliary outliers to encourage the model to reduce its confidence in anomalous inputs.
By exposing the model to these auxiliary outliers during training, the model can better generalise to
detect unknown OOD samples at test time (Hendrycks et al., 2019; Zhu et al., 2023b).

Previous studies (Ming et al., 2022; Zhang et al., 2023; Zhu et al., 2023a; Wahd, 2024) have shown
that introducing auxiliary unlabelled data for OOD detection of outlier exposures in the text and
image domains is very effective. However, in the same setting as the text and image domains,
relatively less work has been done on OOD detection using anomaly exposure for the video domain,
which may be related to the existence of a dedicated video anomaly detection (VAD) task (Sultani
et al., 2018; Acsintoae et al., 2022; Nayak et al., 2021) for the video domain. However, the biggest
difference between the OOD task for video action recognition and the VAD task is the difference
in their purpose, where VAD is more concerned with deviations and anomalies in behaviour or
patterns. In contrast, the goal of OOD for video category recognition is to expand the categories and
the identification of unknown categories (Yang et al., 2024).

2.3 VIDEO DATASETS

Video datasets have played a crucial role in advancing computer vision research, especially in recog-
nising human behaviour through video analysis. The success of this field has been largely due to
the various video datasets released to support this research (Kuehne et al., 2011; Kay et al., 2017;
Soomro, 2012; Wang et al., 2014). Most contemporary datasets are designed for tasks such as hu-
man movement classification and localisation, aiming to distinguish between various human activi-
ties (Poppe, 2010; Kong & Fu, 2022; Sun et al., 2022). Although these datasets provide benchmarks
for evaluating model performance, they are limited in their representation of atypical data—rare,
extreme, or fictional events that occur in real-world applications (Acsintoae et al., 2022).To address
this, in this paper, we propose to explore unusual atypical data, including videos from anomaly de-
tection, unintended actions, and fictional or animated media. We argue such atypical data is essential
to open-world learning (e.g. OOD detection) in the video domain by exposing models to a broader
range of variability.
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3 ATYPICAL VIDEO DATASET

As aforementioned, we are interested in unusual atypical video data. Here we introduce, to our
knowledge, the first atypical video dataset, consisting of various kinds of scenarios that are not
common in real life. We then use this dataset for the following open-world learning study. Specifi-
cally, the dataset consists of 5,486 videos collected from existing datasets and YouTube. These clips
contain both abnormal, unintentional and uncommon activities in the real world, as well as unreal
video clips such as sci-fi movies and animations. Different from existing action classification and
video understanding datasets, our atypical data focuses on rare/uncommon video activities, and even
activities that are non-existing in the real world.

3.1 DATA SOURCES

The atypical videos dataset is composed of several subsets, each representing data that significantly
deviates from typical behavioural patterns or normal visual content seen in real-world videos. These
subsets include the following categories.
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Figure 2: Examples from the proposed atypical video dataset.

Sci-fi: Sci-fi videos are collected from live-action sci-fi film trailers that are publicly available on
YouTube. These clips feature futuristic or supernatural elements such as humanoid robots, space
battles, or otherworldly environments. We cleaned and trimmed these videos in order to focus
on targeted, action-packed, non-realistic clips that are very different from typical human behaviour.
These videos differ significantly from real-world scenes in the training distribution, providing unique
visual characteristics for anomaly detection.

Animation: In recent years, advancements in animation technology have enabled animated films to
achieve a level of realism comparable to live-action footage, while simultaneously incorporating a
diverse range of anthropomorphic action sequences. A notable example is Love, Death & Robots,
which employ techniques such as Computer-Generated Imagery to create visually realistic yet un-
conventional scenarios. Additionally, trailers from widely popular animated films, such as Kung Fu
Panda, have been included in our atypical dataset.

Unintentional: The unintentional behaviour subset is sourced from the Oops Dataset (Epstein et al.,
2020), a large-scale video dataset that captures human actions involving accidental or unintentional
events. We specifically used the labelled “unintentional” actions from the dataset, where the videos
involve mistakes, accidents, or unexpected outcomes. By introducing this type of data, we simulate
scenarios where the model may encounter unplanned or erroneous actions, enhancing its ability to
handle unintended behaviours.

Abnormal: This subset includes videos commonly used in anomaly detection tasks. The abnormal
videos are sourced from well-established video anomaly detection datasets, including Ped2 (Ma-
hadevan et al., 2010), CUHK Avenue (Lu et al., 2013), ShanghaiTech (Luo et al., 2017), and UCF-
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Crime (Sultani et al., 2018). These datasets contain surveillance footage that captures rare or unusual
behaviours (e.g. accidents, criminal activities) that deviate significantly from normal actions seen in
standard datasets like UCF101.

3.2 DATA PRE-PROCESSING

To prepare the atypical videos dataset for effective OOD detection, a rigorous and targeted pre-
processing pipeline was implemented. Initially, all videos were manually reviewed to remove non-
informative content, such as extended periods of inactivity or irrelevant scenes, ensuring focus on
essential visual information. Videos were then temporally trimmed to retain action-rich segments
that prominently feature atypical behaviours or scenarios, thus minimising redundant or extrane-
ous frames. The selection of clips was guided by the presence of clear and distinguishable targets
exhibiting behaviours significantly deviating from those seen in conventional datasets like UCF101.

Table 1: Statistical details of the proposed atypical video dataset.

Subset Type Number of Videos Average Video Length Key Characteristics
Sci-fi 898 4.00s Hyper-realistic, futuristic scenes
Animation 859 4.04s Exaggerated, non-realistic actions
Unintentional 2,835 9.77s Unplanned, accidental behaviour
Abnormal 894 7.53s Unusual, anomaly patterns

3.3 DATASET STATISTICS

To ensure comprehensive coverage of
anomalies in the atypical video dataset,
we conducted a detailed analysis of the
characteristics within each subset. As
summarised in Table 1, we categorised the
data according to its origin, content, and the
diverse action scenarios it encompasses. Our
dataset incorporates a wide array of scenes,
targets, actions, and other elements that are
typically rare in well-defined and system-
atically curated datasets. This diversity is
further illustrated in Figure 3, highlighting
the breadth of anomalous behaviours repre-
sented in the atypical samples.
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Figure 3: Illustration of the introduced atyp-
ical dataset composition.

4 HOW TO LEARN FROM ATYPICAL VIDEOS?

4.1 OUTLIER EXPOSURE

Out-of-distribution (OOD) detection is a critical component of open-world learning, where the goal
is not only to classify known categories but also to recognise when inputs come from novel, unseen
categories, enabling the system to adapt and incorporate new knowledge over time (Yang et al.,
2024). It can be formulated as a binary classification problem. In the test set, the goal of the OOD
detection model is to determine whether a sample x ∈ X id from Din (ID) or not (OOD) (Hendrycks
& Gimpel, 2017).

OOD(x) =

{
1, if P (x | ID) < τ

0, if P (x | ID) ≥ τ
(1)

where P (x | ID) denotes the probability or some confidence score that the sample x belongs to
the ID distribution. This is usually estimated from the softmax (Liang et al., 2018) or posterior
probability (Ming et al., 2022) of the model output. τ is a pre-defined threshold to distinguish
between ID and OOD data.

Since it is difficult to cover all OOD data in real-world applications, in the outlier exposure (OE)
approach (Hendrycks et al., 2019; Ming et al., 2022; Zhu et al., 2023a), we introduce outlier data
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DOE
out to inspire the model to find OOD signals, so as to better distinguish between in-distribution

and OOD data. The goal of outlier exposure is to make the model more robust to OOD samples
by learning to distinguish between normal and abnormal inputs during training (Salehi et al., 2022).
Given a model f and the original learning objective L, we can thus formalise outlier exposure as
minimising the objective

E(x,y)∼Din

[
L(f(x), y) + λEx′∼DOE

out
[LOE(f(x

′), f(x), y)]
]

(2)

Hendrycks et al. (2019) have demonstrated the effectiveness of the method in the text and im-
age domains, and we validate its effectiveness in the video domain. From the video multi-class
classification OOD task, let the input video clip be denoted as x, and its corresponding label as
y ∈ 1, 2, . . . , k, where k is the number of action categories. The classifier is represented by the
function f : X → Rk, such that for any input x, the following holds:1⊤f(x) = 1 and f(x) ≥ 0.

We use the Maximum Softmax Probability (MSP) (Hendrycks & Gimpel, 2017) baseline to detect
OOD samples. Specifically, for a given input x, the model calculates the OOD score based on the
maximum softmax output: OOD score = −maxc fc(x).where fc(x) is the softmax probability for
class c.

In the context of video classification, we perform outlier exposure by fine-tuning a pre-trained clas-
sifier f so that its posterior distribution on outlier samples DOE becomes more uniform. The fine-
tuning objective is defined as: E(x,y)∼Din [− log fy(x)] + λEx∼DOE [H(U ; f(x))], where H is the
cross entropy out and U is the uniform distribution over k classes.

4.2 DATASETS

4.2.1 IN-DISTRIBUTION DATASET

UCF101. The UCF101 (Soomro, 2012) dataset consists of 13,320 video clips from 101 human
action categories. These actions range from sports to daily activities (e.g. “biking”, “swimming”,
“jumping”). UCF101 serves as the primary in-distribution dataset for training the model.

4.2.2 OUT-OF-DISTRIBUTION DATASET

Gaussian Noise. The Gaussian noise dataset consists of artificially generated video frames where
pixel values are perturbed with noise drawn from a normal distribution N (0, δ2). This dataset is
used to test the model’s robustness against random noise.

Bernoulli Noise. This dataset is composed of binary noise, where each pixel is randomly set to 0 or
1 according to a Bernoulli distribution. It introduces a more structured yet synthetic noise pattern to
challenge the model’s OOD detection.

HMDB51. The HMDB51 (Kuehne et al., 2011) dataset contains 6,766 video clips across 51 action
categories. The dataset includes a range of human activities like “punching”, “climbing stairs”, and
“kicking”. It serves as a natural OOD dataset for evaluating the model’s performance on unknown
human actions.

MiT-v2. The Moments in Time (MiT-v2) (Monfort et al., 2019) dataset includes videos covering
a wide variety of events and actions not present in UCF101, such as natural phenomena and non-
human actions. The dataset provides a diverse set of OOD examples, offering a broad assessment of
the model’s generalisation ability.

4.2.3 OUTLIER EXPOSURE DATASET

Kinetics400. The Kinetics400 (Kay et al., 2017) dataset is a large-scale video dataset widely used
in the field of human action recognition. The dataset consists of approximately 240,000 video clips,
each lasting approximately 10 seconds, sourced from YouTube, and is one of the most comprehen-
sive action categorisation resources available, covering 400 different human action categories. Each
video is labelled with an action category, capturing a wide range of different activities, from com-
mon actions such as “walking” and “jumping”, to more complex activities such as playing a musical
instrument and so on.
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The proposed atypical. To further enhance OOD detection, we introduce four atypical datasets: (i)
anomaly detection videos from Ped2, CUHK Avenue, and ShanghaiTech, (ii) unintentional actions
from the Oops dataset, (iii) science fiction scenes sourced from movie trailers, and (iv) animated
content. These diverse sources of atypical video data allow the model to learn from outliers that are
visually distinct from typical action recognition datasets.

To ensure a clear distinction between intra-distributional (ID) and extra-distributional (OOD) cate-
gories, we followed the method proposed by (Hendrycks et al., 2019; Cen et al., 2023) to remove
the overlap between dataset categories. Specifically, we removed 6 overlapping action categories in
HMDB51 and UCF101, as well as 93 overlapping actions between Kinetics400 and UCF101 and
HMDB51. In addition, 33 categories from the MiT-v2 dataset that were not present in the other three
datasets were selected for testing as OOD data. Detailed information can be found in Appendix A.

This means that the categories in UCF101, HMDB51, Kinetics400, and MiT-v2 do not overlap at all
in the experiment. Furthermore, the atypical dataset is significantly different from the categories in
these common video datasets in terms of conceptual and visual features. By implementing category
orthogonality, we effectively ensure that the OOD data are truly representative of the anomalous
samples and avoid potential information leakage between the ID data and the OOD data, thus en-
hancing the validity and reliability of OOD detection.

4.3 EVALUATION METRICS AND IMPLEMENTATION DETAILS

Evaluation metrics. Following the methods of (Hendrycks et al., 2019; Yang et al., 2022; Zhu
et al., 2023a; Ming et al., 2022), We evaluate the OOD detection methods based on their ability
to identify OOD samples, treating OOD examples as the positive class. We use three metrics:
FPR95 (False Positive Rate at 95% True Positive Rate), AUROC (Area Under the ROC Curve),
and AUPR (Area Under the Precision-Recall Curve). AUROC and AUPR are holistic metrics that
summarise performance across multiple thresholds. FPR95 measures the false positive rate when
the true positive rate is fixed at 95%, reflecting how robust the detection method is in practical
scenarios. AUROC represents the probability that an OOD example receives a higher score than an
in-distribution example, where a higher AUROC is better, with 50% indicating random performance.
AUPR is particularly useful in imbalanced datasets with few OOD examples, as it considers the base
rate of anomalies.

Implementation details. All experiments are based on the ResNet3D-50 (Kataoka et al., 2020)
architecture as our backbone. The baseline is trained using only ID data with a cross-entropy loss
for multi-class classification over 100 epochs. The initial learning rate is set to 0.1 and decays
following a cosine learning rate schedule. For OOD sample testing, we use the MSP method. In the
outlier exposure setting, we fine-tune the pre-trained baseline model by introducing various outlier
datasets, optimising the objective function as shown in equation 2. The fine-tuning process lasts for
5 epochs. During fine-tuning, we again apply a cosine learning rate schedule with an initial learning
rate of 0.001. Standard data augmentations, such as random flipping, cropping and normalisation,
are applied, along with Nesterov momentum and l2 weight decay with a coefficient of 5× 10−4.

4.4 RESULTS

In this part, we evaluate the OOD detection performance using several representative outlier ex-
posure (OE) datasets to validate the effectiveness of the proposed atypical data. Specifically, we
expose various commonly used data to the baseline model to compare the impact of different OE
sources. It should be noted that our Gaussian noise data and Bernoulli noise data undergo the same
data enhancement and normalisation as the video data, and thus it’s also a kind of OOD data worth
exploring. To explore the impact of the temporal uniqueness of the video data on OOD detection,
we introduce diving48 (Li et al., 2018) as DOE to test the performance of OOD. diving48 serves as a
dataset of 48 fine-grained diving actions, which contains more than 18,000 video clips. Kinetics400
as a large-scale common action data is also used as one of the methods we compare.

As can be seen in Table 2, we present the overall results using different OE data for OOD detection.
Since exposing the noisy data will allow the model to fit the pattern of out-of-distribution noisy data,
the model will typically achieve better empirical performance in terms of OOD detection of noise as
Dout, as reflected by the evaluation metrics. It is also for this reason that the mean metrics for AUPR
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Table 2: OOD detection performance on four OOD datasets using different outlier data for outlier
exposure (FPR95↓, AUROC↑, AUPR↑).

Method OOD Dataset FPR95 ↓ AUROC ↑ AUPR ↑

Baseline

Gaussian Noise 15.95 87.01 39.26
Bernoulli Noise 14.57 90.11 45.39
HMDB51 77.08 63.85 22.54
MiT-v2 77.73 64.94 23.76
Mean 46.33 76.48 32.74

+OEGaussian

Gaussian Noise 0.00 100.00 100.00
Bernoulli Noise 0.00 100.00 100.00
HMDB51 81.11 63.36 23.03
MiT-v2 77.51 65.14 24.12
Mean 39.65 82.13 61.79

+OEdiving48

Gaussian Noise 1.06 99.46 92.74
Bernoulli Noise 6.54 95.60 63.53
HMDB51 81.14 64.84 24.04
MiT-v2 80.87 65.46 27.24
Mean 42.43 81.34 51.89

+OEK400

Gaussian Noise 7.73 93.53 54.69
Bernoulli Noise 15.26 87.56 40.26
HMDB51 75.52 66.84 25.13
MiT-v2 67.72 72.53 30.86
Mean 41.56 80.12 37.73

OEatypical

Gaussian Noise 2.99 97.83 76.14
Bernoulli Noise 7.16 94.82 59.84
HMDB51 73.07 69.43 27.07
MiT-v2 66.62 74.01 32.59
Mean 37.46 84.02 48.91

achieve the best performance of all the exposed data. However, for the real OOD datasets HMDB51
and MiT-v2, the model performance improvement is limited, suggesting that random noise makes it
difficult to effectively simulate real-world complex OOD scenarios. With the introduction of Div-
ing48 (Li et al., 2018), a fine-grained action dataset, the model’s detection performance on Gaussian
and Bernoulli noise was improved. However, due to the relatively homogeneous action variety of
diving48, its performance improvement on the more complex realistic OOD datasets HMDB51 and
MiTv2 is limited. This suggests that fine-grained data, while useful for pattern-specific learning, is
not diverse enough to improve generalisation. In contrast, Kinetics400 (Kay et al., 2017) provides
a wide range of action categories, and its use as OE data allows the model to perform better in all
Dout tests. This is because the data diversity of Kinetics400 helps the model learn more robust OOD
detection boundaries and enhances the generalisation ability. Better performance can be obtained by
exposing our atypical data for fine-tuning and then evaluating OOD detection, which validates the
effectiveness of our data for probing out-of-distribution data.

5 WHAT CAN WE LEARN FROM ATYPICAL VIDEOS?

Which type has the greatest impact? To investigate this question, we conduct an ablation study
by combining different categories of atypical data and evaluating their performance against various
Dout datasets. The results of combining any two categories are presented in Table 3, while further
experimental results are provided in Table 4 and 5 of Appendix A. Notably, for each test dataset, we
observe that nearly all category combinations, with the exception of the combination of animation
and abnormal data, yield either the best or second-best OOD detection performance. Although
the combination of animation and abnormal data does not always achieve the top performance, it
is important to emphasise that its AUROC performance on real Dout datasets still surpasses the
baseline results. Thus, from the experimental results it is clear that for the four OOD detection
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Table 3: OOD detection results across various finetuning strategies and datasets (FPR95↓ / AUROC↑
/ AUPR↑).

Dout
test Metric +OEab sci +OEab un +OEab ani +OEani sci +OEani un +OEsci un

Gaussian
Noise

FPR95 ↓ 4.83 5.43 22.87 65.32 12.41 2.18
AUROC ↑ 96.57 95.60 81.92 38.38 89.43 98.53
AUPR ↑ 68.55 62.84 32.12 13.27 43.76 81.97

Bernoulli
Noise

FPR95 ↓ 35.72 6.64 42.93 71.52 12.59 3.13
AUROC ↑ 72.35 94.89 63.31 31.48 89.98 98.13
AUPR ↑ 24.20 59.84 19.75 12.19 44.97 79.28

HMDB51
FPR95 ↓ 81.86 78.36 80.72 82.06 79.06 76.77

AUROC ↑ 65.50 65.77 66.63 66.03 68.09 69.97
AUPR ↑ 29.38 23.39 28.40 30.49 25.93 28.67

MiT-v2
FPR95 ↓ 79.98 68.26 78.49 79.70 61.40 64.83

AUROC ↑ 63.89 73.46 67.23 65.35 75.30 74.87
AUPR ↑ 24.36 31.82 26.91 25.36 32.94 33.16

Mean
FPR95 ↓ 50.59 39.67 56.26 74.65 41.36 36.73

AUROC ↑ 74.58 82.43 69.77 50.31 80.70 85.38
AUPR ↑ 36.62 44.47 26.80 20.33 36.90 55.77

datasets we tested, the combination of atypical categories from different data sources allows for
better and more consistent OOD detection performance. Although animation data and sci-fi data
contain a large amount of virtual data, they can achieve better performance when combined with
abnormal and unintentional datasets, which are composed of real-world events.

Categorical diversity of the atypical samples. In this experiment, we incorporated various cate-
gories of atypical data, and the results are presented in Figure 4 and Figure 5. In Figure 4, each
sub-figure, from left to right, represents a sequential increase in the number of atypical categories.
It can be observed that the OOD detection performance generally improves as the number of atyp-
ical categories increases. A similar trend is evident in Figure 5, where we also note a progressive
increase in the stability of OOD detection across different test datasets as the categorical diversity
of the atypical samples expands.
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Figure 4: Result of the effect of the number of categories of atypical data on the performance of
OOD detection. atypical-n corresponds to the results for n categories in atypical outlier exposure
data only, respectively.
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Figure 5: Result of the effect of the number of categories of atypical data on the performance of
OOD detection. atypical-n corresponds to the results for n categories in atypical outlier exposure
data only, respectively.
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Closeness of Dtest
out , DOE

out , and Dtest
in . In this study, we utilise t-SNE to visualise the feature distribu-

tions of different datasets, as illustrated in Figure 6, to examine the relationships between Din, Dout,
and DOE and to explore the impact of outlier exposure data on OOD detection performance. The
visualisation results indicate that UCF101, as the Din dataset, forms distinct feature clusters. In con-
trast, MiT-v2, representing Dout, displays a markedly different feature distribution from UCF101,
owing to its broader range of action categories and more diverse scenarios. Additionally, the feature
distributions of noisy data (Gaussian noise, Bernoulli noise) exhibit statistical properties that are
more aligned with real data, likely due to similar regularisation and data augmentation processes.
This similarity increases the challenge of detecting noisy data as OOD samples, highlighting the
complexities involved in distinguishing these data types during OOD detection.

For DOE , Kinetics400 and atypical data (unintentional, sci-fi, animation, abnormal) are used as the
OE dataset, and their distributions in the feature space are more discrete compared to Kinetics400.
This diverse feature distribution drives the model to learn a wider range of atypical feature patterns,
which in turn enhances its ability to discriminate between OOD samples. In particular, the diversity
of atypical data effectively improves the robustness of the model in the face of unseen scenarios
or anomalous patterns by expanding the decision boundary of the model, verifying the key role of
diverse anomalous exposure data in enhancing the performance of OOD detection.

UCF101

kinetics400

Atypical_unintentional

Atypical _sci-fi

Atypical _animation

Atypical _abnormal

MiT-v2

Figure 6: Feature visualisation results of Din: UCF101; Dout: MiT-v2, Gaussian noise, Bernoulli
noise; DOE : Kinetics400, Atypical.

6 CONCLUSION

In this paper, we propose a novel dataset, termed atypical, which contains a large collection of
video data that deviates from conventional, well-defined categories. This dataset was introduced
to better address the challenges of open-world scenarios and to explore its impact on the critical
task of OOD detection. We investigated how incorporating atypical video data enhances OOD de-
tection in open-world settings. Our experiments suggest that training with a smaller, yet diverse
set of atypical samples—such as those depicting science fiction, animation, unintentional actions,
and abnormal events—substantially improves the model’s robustness in identifying unseen distribu-
tions. The diversity within the atypical dataset played a crucial role in driving these improvements,
underlining the importance of extending traditional datasets with more varied and unconventional
content. Looking ahead, atypical data presents several promising avenues for future research. One
key direction is the continued enrichment of these datasets to better capture the unpredictability
of real-world environments. Furthermore, developing adaptive learning techniques that integrate
new atypical samples during inference could enable models to evolve dynamically, maintaining re-
silience in ever-changing conditions. The integration of multimodal data, such as audio and text,
with atypical video also holds the potential for enhancing models’ ability to capture the complexity
of open-world scenarios. Ultimately, research on atypical data opens new possibilities for advancing
open-world learning and improving OOD detection.
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A APPENDIX

A.1 DETAIL ABOUT DATASETS PREPROCESSING

The categories below were removed before the train. HMDB51: 35, Shoot bow; 29, Push up; 15,
Golf; 26, Pull up; 30, Ride bike; 34, Shoot ball; 43, Swing baseball; 31, Ride horse.

UCF101: 2, Archery; 71, PushUps; 32, GolfSwing; 69, PullUps; 10, Biking; 7, Basketball; 6,
BaseballPitch; 41, HorseRiding.

Kinetic400: 3, applauding; 5, arm wrestling; 18, auctioning; 19, baby waking up; 22, balloon blow-
ing; 27, beatboxing; 31, bending back; 36, biking through snow; 40, blowing leaves; 45, bookbind-
ing; 48, bouncing on trampoline; 49, bowling; 57, brushing teeth; 66, carrying baby; 67, cartwheel-
ing; 68, catching or throwing baseball; 77, catching or throwing frisbee; 91, catching or throwing
softball; 93, celebrating; 99, changing oil; 100, changing wheel; 101, checking tires; 102, cheer-
leading; 107, chopping wood; 108, clapping; 109, clay pottery making; 110, clean and jerk; 111,
cleaning floor; 112, cleaning gutters; 113, cleaning pool; 114, cleaning shoes; 115, cleaning toilet;
116, cleaning windows; 117, climbing a rope; 138, climbing tree; 141, cooking chicken; 142, cook-
ing egg; 143, cooking on campfire; 147, counting money; 148, country line dancing; 151, cracking
neck; 153, crawling baby; 154, crossing river; 158, cutting pineapple; 159, cutting watermelon;
166, dancing ballet; 169, dancing gangnam style; 171, deadlifting; 174, decorating the christmas
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tree; 175, digging; 176, dining; 179, disc golfing; 180, diving cliff; 182, dodgeball; 188, dribbling
basketball; 220, dunking basketball; 221, dying hair; 223, eating cake; 227, eating ice cream; 230,
egg hunting; 231, exercising arm; 232, exercising with an exercise ball; 237, feeding fish; 241, fill-
ing eyebrows; 246, fixing hair; 250, folding clothes; 251, folding napkins; 255, front raises; 258,
gargling; 259, getting a haircut; 260, getting a tattoo; 273, giving or receiving award; 278, golf chip-
ping; 296, grooming horse; 297, gymnastics tumbling; 305, hammer throw; 306, headbanging; 307,
headbutting; 308, high jump; 309, high kick; 310, hitting baseball; 311, hockey stop; 312, holding
snake; 322, hugging; 323, hula hooping; 325, ice climbing; 329, ice skating; 330, ironing; 339,
javelin throw; 340, jetskiing; 345, juggling balls; 357, kissing; 367, laying bricks; 378, long jump;
395, making a sandwich; 396, writing.

And the categories of MiT-v2 below were selected.

MiT-v2: 2, burying; 3, covering; 4, flooding; 12, submerging; 13, breaking; 16, destroying; 17,
competing; 18, giggling; 21, flicking; 34, locking; 37, flipping; 38, sewing; 39, clipping; 47, con-
structing; 50, screwing; 51, shrugging; 53, cracking; 54, scratching; 56, selling; 60, clinging; 87,
bubbling; 88, joining; 97, kneeling; 151, peeling; 153, wetting; 159, inflating; 168, launching; 172,
leaking; 205, overflowing; 221, storming; 255, combusting; 296, cramming; 297, burning.

A.2 EXPERIMENT RESULTS

Table 4: OOD detection performance for a randomly selected atypical category.

Dout
test Metric +OEabn +OEani +OEsci +OEuni

Gaussian
Noise

FPR95 ↓ 13.33 36.44 22.56 8.97
AUROC ↑ 88.54 67.34 81.61 92.13
AUPR ↑ 41.97 21.66 31.80 50.31

Bernoulli
Noise

FPR95 ↓ 26.61 66.58 53.13 8.05
AUROC ↑ 80.78 36.01 52.37 93.42
AUPR ↑ 30.84 12.92 16.24 54.28

HMDB51
FPR95 ↓ 84.41 80.41 79.06 81.29

AUROC ↑ 60.81 67.01 68.14 66.05
AUPR ↑ 21.73 28.09 32.36 23.84

MiT-v2
FPR95 ↓ 83.63 75.75 81.93 61.05

AUROC ↑ 61.98 66.86 62.85 74.39
AUPR ↑ 22.98 25.42 23.45 31.48

Mean
FPR95 ↓ 52.00 64.80 59.17 39.84

AUROC ↑ 73.03 59.30 66.24 81.50
AUPR ↑ 29.38 22.02 25.96 39.98

Table 5: OOD detection performance with random selection of three atypical categories.

Dout
test Metric +OEani abn sci +OEani abn uni +OEani sci uni +OEabn sci uni

Gaussian
Noise

FPR95 ↓ 19.37 6.81 4.37 2.16
AUROC ↑ 84.33 94.60 96.78 98.42
AUPR ↑ 35.11 58.68 69.44 81.05

Bernoulli
Noise

FPR95 ↓ 20.46 7.61 4.37 2.61
AUROC ↑ 84.58 94.64 96.95 98.23
AUPR ↑ 35.50 59.10 70.56 80.01

HMDB51
FPR95 ↓ 80.53 73.21 75.68 76.51

AUROC ↑ 66.84 67.19 69.44 67.77
AUPR ↑ 29.81 24.49 27.79 25.61

MiT-v2
FPR95 ↓ 77.76 68.28 65.06 66.24

AUROC ↑ 67.12 72.64 73.89 73.98
AUPR ↑ 25.85 30.40 31.59 32.35

Mean
FPR95 ↓ 49.53 38.98 37.37 36.88

AUROC ↑ 75.72 82.27 84.26 84.60
AUPR ↑ 31.57 43.17 49.84 54.75
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