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ABSTRACT

Balanced representation learning methods have been applied successfully to coun-
terfactual inference from observational data. However, approaches that account for
survival outcomes are relatively limited. Survival data are frequently encountered
across diverse medical applications, i.e., drug development, risk profiling, and clini-
cal trials, and such data are also relevant in fields like manufacturing (for equipment
monitoring). When the outcome of interest is time-to-event, special precautions
for handling censored events need to be taken, as ignoring censored outcomes may
lead to biased estimates. We propose a theoretically grounded unified framework
for counterfactual inference applicable to survival outcomes. Further, we formulate
a nonparametric hazard ratio metric for evaluating average and individualized
treatment effects. Experimental results on real-world and semi-synthetic datasets,
the latter which we introduce, demonstrate that the proposed approach significantly
outperforms competitive alternatives in both survival-outcome predictions and
treatment-effect estimation.

1 INTRODUCTION

Survival analysis or time-to-event studies focus on modeling the time of a future event, such as
death or failure, and investigate its relationship with covariates or predictors of interest. Specifically,
we may be interested in the causal effect of a given intervention or treatment on survival time. A
typical question may be: will a given therapy increase the chances of survival of an individual or
population? Such causal inquiries on survival outcomes are common in the fields of epidemiology
and medicine (Robins, 1986; Hammer et al., 1996; Yusuf et al., 2016). As an important current
example, the COVID-19 pandemic is creating a demand for methodological development to address
such questions, specifically, when evaluating the effectiveness of a potential vaccine or therapeutic
outside randomized controlled trial settings.

Traditional causal survival analysis is typically carried out in the context of a randomized controlled
trial (RCT), where the treatment assignment is controlled by researchers. Though they are the gold
standard for causal inference, RCTs are usually long-term engagements, expensive and limited in
sample size. Alternatively, the availability of observational data with comprehensive information
about patients, such as electronic health records (EHRs), constitutes a more accessible but also
more challenging source for estimating causal effects (Häyrinen et al., 2008; Jha et al., 2009). Such
observational data may be used to augment and verify an RCT, after a particular treatment is approved
and in use (Gombar et al., 2019; Frankovich et al., 2011; Longhurst et al., 2014). Moreover, the
wealth of information from observational data also allows for the estimation of the individualized
treatment effect (ITE), namely, the causal effect of an intervention at the individual level. In this
work, we develop a novel framework for counterfactual time-to-event prediction to estimate the ITE
for survival or time-to-event outcomes from observational data.

Estimating the causal effect for survival outcomes in observational data manifests two principal
challenges. First, the treatment assignment mechanism is not known a priori. Therefore, there may
be variables, known as confounders, affecting both the treatment and survival time, which lead to
selection bias (Bareinboim & Pearl, 2012), i.e., that the distributions across treatment groups are not
the same. In this work, we focus on selection biases due to confounding, but other sources may also
be considered. For instance, patients who are severely ill are likely to receive more aggressive therapy,
however, their health status may also inevitably influence survival. Traditional survival analysis
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neglects such bias, leading to incorrect causal estimation. Second, the exact time-to-event is not
always observed, i.e., sometimes we only know that an event has not occurred up to a certain point in
time. This is known as the censoring problem. Moreover, censoring might be informative depending
on the characteristics of the individuals and their treatment assignments, thus proper adjustment is
required for accurate causal estimation (Cole & Hernán, 2004; Díaz, 2019).

Traditional causal survival-analysis approaches typically model the effect of the treatment or co-
variates (not time or survival) in a parametric manner. Two commonly used models are the Cox
proportional hazards (CoxPH) model (Cox, 1972) and the accelerated failure time (AFT) model (Wei,
1992), which presume a linear relationship between the covariates and survival probability. Further,
proper weighting for each individual has been employed to account for confounding bias from these
models (Austin, 2007; 2014; Hernán et al., 2005). For instance, probability weighting schemes
that account for both selection bias and covariate dependent censoring have been considered for
adjusted survival curves (Cole & Hernán, 2004; Díaz, 2019). Moreover, such probability weighting
schemes have been applied to causal survival-analysis under time-varying treatment and confounding
(Robins, 1986; Hernán et al., 2000). See van der Laan & Robins (2003); Tsiatis (2007); Van der
Laan & Rose (2011); Hernán & Robins (2020) for an overview. Such linear specification makes
these models interpretable but compromises their flexibility, and makes it difficult to adapt them
for high-dimensional data or to capture complex interactions among covariates. Importantly, these
methods lack a counterfactual prediction mechanism, which is key for ITE estimation (see Section 2).

Fortunately, recent advances in machine learning, such as representation learning or generative
modeling, have enabled causal inference methods to handle high-dimensional data and to characterize
complex interactions effectively. For instance, there has been recent interest in tree-based (Chipman
et al., 2010; Wager & Athey, 2018) and neural-network-based (Shalit et al., 2017; Zhang et al.,
2020) approaches. For pre-specified time-horizons, the nonparametric Random Survival Forest (RSF)
(Ishwaran et al., 2008) and Bayesian Additive regression trees (BART) (Chipman et al., 2010) have
been extended to causal survival analysis. RSF has been applied to causal survival forests with
weighted bootstrap inference (Shen et al., 2018; Cui et al., 2020) while a BART is extended to account
for survival outcomes in Surv-BART (Sparapani et al., 2016), and AFT-BART (Henderson et al.,
2020). See Hu et al. (2020) for an extensive investigation of the causal survival tree-based methods.
Alternatively, when estimating the ITE, neural-network-based methods propose to regularize the
transformed covariates or representations for an individual to have balanced distributions across
treatment groups, thus accounting for the confounding bias and improving ITE prediction. However,
most approaches employing representation learning techniques for counterfactual inference deal
with continuous or binary outcomes, instead of time-to-event outcomes with censoring (informative
or non-informative). Hence, a principled generalization to the context of counterfactual survival
analysis is needed.

In this work we leverage balanced (latent) representation learning to estimate ITE via counterfactual
prediction of survival outcomes in observational studies. We develop a framework to predict event
times from a low-dimensional transformation of the original covariate space. To address the specific
challenges associated with counterfactual survival analysis, we make the following contributions:

• We develop an optimization objective incorporating adjustments for informative censoring, as well
as a balanced regularization term bounding the generalization error for ITE prediction. For the
latter, we repurpose a recently proposed bound (Shalit et al., 2017) for our time-to-event scenario.

• We propose a generative model for event times to relax restrictive survival linear and parametric as-
sumptions, thus allowing for more flexible modeling. Our approach can also provide nonparametric
uncertainty quantification for ITE predictions.

• We provide survival-specific evaluation metrics, including a new nonparametric hazard ratio
estimator, and discuss how to perform model selection for survival outcomes. The proposed model
demonstrates superior performance relative to the commonly used baselines in real-world and
semi-synthetic datasets.

• We introduce a survival-specific semi-synthetic dataset and demonstrate an approach for leveraging
prior randomized experiments in longitudinal studies for model validation.
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(a) Counterfactual inference (b) Non-informative (c) Informative

Figure 1: (a) Illustration of the proposed counterfactual survival analysis (CSA). Covariates X =
x are mapped into latent representation r via deterministic mapping r = Φ(x). The potential
outcomes are sampled from ta ∼ p(TA|X = x) for A = a via stochastic mapping hA(r, ε̃), where
randomness is induced with a flow-based transformation, ε̃, of a simple distribution p(ε), i.e., uniform
or Gaussian. (b) and (c) show the proposed causal graphs for non-informative and informative
censoring, respectively.

2 PROBLEM FORMULATION

We first introduce the basic setup for performing causal survival analysis in observational studies.
Suppose we have N units, with N1 units being treated and N0 in the control group (N = N1 +N0).
For each unit (individual), we have covariates X , which can be heterogeneous, e.g., a mixture of
categorical and continuous covariates which, in the context of medicine, may include labs, vitals,
procedure codes, etc. We also have a treatment indicator A, where A = 0 for the controls and
A = 1 for the treated, as well as the outcome (event) of interest T . Under the potential-outcomes
framework (Rubin, 2005), let T0 and T1 be the potential event times for a given subject under control
and treatment, respectively. In practice we only observe one realization of the potential outcomes,
i.e., the factual outcome T = TA, while the counterfactual outcome T1−A is unobserved.

In survival analysis, the problem becomes more difficult because we do not always observe the exact
event time for each individual, but rather the time up to which we are certain that the event has not
occurred; specifically, we have a (right) censoring problem, most likely due to the loss of follow-up.
We denote the censoring time as C and censoring indicator as δ ∈ {0, 1}. The actual observed time
is Y = min(TA, C), i.e., the outcome is observed (non-censored) if TA < C and δ = 1.

In this work, we are interested in the expected difference between the T1 and T0 conditioned on
X for a given unit (individual), which is commonly known as the individualized treatment effect
(ITE). Specifically, we wish to perform inference on the conditional distributions of T1 and T0, i.e.,
p(T1|X) and p(T0|X), respectively, as shown in Figure 1a. In practice, we observe N realizations of
(Y, δ,X,A) for observed time, censoring indicator, covariates and treatment indicator, respectively;
hence, from an observational study the dataset takes the form D = {(yi, δi, xi, ai)}Ni=1. Below, we
discuss several common choices of estimands in survival analysis.

Estimands of Interest We begin by considering survival analysis in the absence of an intervening
treatment choice, A. Let F (t|x) , P (T ≤ t|X = x) be the cumulative distribution function of the
event (failure) time, t, given a realization of the covariates, x. Survival analysis is primarily concerned
with characterization of the survival function conditioned on covariates S(t|x) , 1−F (t|x), and the
hazard function or risk score, λ(t|x), defined below. S(t|x) is a monotonically decreasing function
indicating the probability of survival up to time t. The hazard function measures the instantaneous
probability of the event occurring between {t, t + ∆t} given T > t and ∆t → 0. From standard
definitions (Kleinbaum & Klein, 2010), the relationship between cumulative and hazard function is
formulated as

λ(t|x) = lim
dt→0

P (t < T < t+ dt|X = x)

P (T > t|X = x)dt
= −d logS(t|x)

dt
=
f(t|x)

S(t|x)
. (1)

From (1) we see that f(t|x) , P (T = t|X = x) = λ(t|x)S(t|x), is the conditional event time
density function (Kleinbaum & Klein, 2010).

Given the binary treatment A, we are interested in its impact on the survival time. For ITE estimation,
we are also interested in the difference between the two potential outcomes T1, T0. Let SA(t|x) and
λA(t|x) denote the survival and hazard functions for the potential outcomes TA, i.e., T1 and T0.
Several common estimands of interest include (Zhao et al., 2012; Trinquart et al., 2016): difference
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in expected lifetime: ITE(t, x) =
∫ tmax

0
{S1(t|x)− S0(t|x)}dt = E{T1 − T0|X = x}, difference in

survival function: ITE(t, x) = S1(t|x) − S0(t|x), and hazard ratio: ITE(t, x) = λ1(t|x)/λ0(t|x).
The inference difficulties associated with the above estimands from observational data are two-fold.
First, there are confounders affecting both the treatment assignment and outcomes, which stem from
selection bias, i.e., the treatment and control covariate distributions are not necessarily the same.
Also, we do not have direct knowledge of the conditional treatment assignment mechanism, i.e.,
P (A = a|X = x), also known as the propensity score. Let⊥⊥ denote statistical independence. For
estimands to be identifiable from observational data, we make two assumptions: (i) {T1, T0} ⊥⊥ A|X ,
i.e., no unobserved confounders or ignorability, and (ii) overlap in the covariate support 0 < P (A =
1|X = x) < 1 almost surely if p(X = x) > 0. Second, the censoring mechanism is also unknown
and may lead to bias without proper adjustment. We consider two censoring mechanisms in our
work, (i) conditionally independent or informative censoring: T ⊥⊥ C|X,A, and (ii) random or
non-informative censoring: T ⊥⊥ C. Note that for informative censoring, we also have to consider
potential censoring times C1 and C0 and their conditionals p(C1|X) and p(C0|X), respectively.
Figure 1 shows causal graphs illustrating these modeling assumptions.

3 MODELING

To overcome the above challenges and adjust for observational biases, we propose a unified frame-
work for counterfactual survival analysis (CSA). Specifically, we repurpose the counterfactual bound
in Shalit et al. (2017) for our time-to-event scenario and introduce a nonparametric approach for
stochastic survival outcome predictions. Below we formulate a theoretically grounded and unified
approach for estimating (i) the encoder function r = Φ(x), which deterministically maps covari-
ates x to their corresponding latent representation r ∈ Rd, and (ii) two stochastic time-to-event
generative functions, hA(·), to implicitly draw samples from both potential outcome conditionals
ta ∼ ph,Φ(TA|X = x), for A = {1, 0}, and where ta indicates the sample from ph,Φ(TA|X = x)
is for A = a. Further, we formulate a general extension that accounts for informative censoring
by introducing two stochastic censoring generative functions, νA(·), to draw samples for potential
censoring times ca ∼ pν,Φ(CA|X = x). The model-specifying functions, {hA(·), νA(·),Φ(·)}, are
parameterized via neural networks. See the Supplementary Material (SM) for details. Figure 1a
summarizes our modeling approach.

Accounting for selection bias We wish to estimate the potential outcomes, i.e., event times, which
are sampled by distributions parameterized by functions {hA(·),Φ(·)}, i.e.,

t ∼ ph,Φ(T |X = x,A = a) (2)
ta ∼ ph,Φ(Ta|X = x) (3)

We obtain (3) from (2) via the strong ignorability assumption, i.e., {T0, T1} ⊥⊥ A|X (consis-
tent with the causal graphs in Figure 1b and 1c) and 0 < P (A = a|X = x) < 1, and the
consistency assumption, i.e., T = TA|A = a. A similar argument can be made for informative
censoring based on Figure 1c, so we can also write ca ∼ pν,Φ(CA|X = x). Given (3), model
functions {hA(·),Φ(·)} and νA(·) for informative censoring can be learned by leveraging stan-
dard statistical optimization approaches, that minimize a loss hypothesis L given samples from
the empirical distribution (y, δ, x, a) ∼ p(Y, δ,X,A), i.e., from dataset D. Specifically, we write
L = E(y,δ,x,a)∼p(Y,δ,X,A) [`h,Φ(ta, y, δ)], where `h,Φ(ta, y, δ) is a loss function that measures the
agreement of ta ∼ ph,Φ(TA|X = x) (and ca ∼ pν,Φ(CA|X = x) for informative censoring) with
ground truth {y, δ}, the observed time and censoring indicator, respectively.

For some parametric formulations of event time distribution ph,Φ(TA|X = x), e.g., exponential,
Weibull, log-Normal, etc., and provided the censoring mechanism is non-informative, −`h,Φ(ta, y, δ)

is the closed form log likelihood. Specifically, −`h,Φ(ta, y, δ) , log ph,Φ(Ta|X = x) = δ ·
log fh,Φ(ta|x) + (1− δ) · logSh,Φ(ta|x), which implies that the conditional event time density and
survival functions can be calculated in closed form from transformations {hA(·),Φ(·)} of x. See the
SM for parametric examples of L accounting for informative censoring.

We further define the expected loss for a given realization of covariates x and treatment assignment a
over observed times y (censored and non-censored), and the censoring indicator δ as ζh,Φ(x, a) ,
E(y,δ,x)∼p(Y,δ|X)`h,Φ(ta, y, δ) as in Shalit et al. (2017). For a given subject with covariates x and
treatment assignment a, we wish to minimize both the factual and counterfactual losses, LF and LCF,
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respectively, by decomposing L = LF + LCF as follows

LF = E(x,a)∼p(A,X)ζh,Φ(x, a) , LCF = E(x,a)∼p(1−A,X)ζh,Φ(x, a) . (4)

Let u , P (A = 1) denote the marginal probability of treatment assignment. We can readily
decompose the losses in (4) according to treatment assignments. The decomposed factual LF =
u ·LA=1

F +(1−u) ·LA=0
F , and similarly, the decomposed counterfactual LCF = (1−u) ·LA=1

CF +u ·
LA=0

CF . In practice, only factual outcomes are observed, hence, for a non-randomized non-controlled
experiment, we cannot obtain an unbiased estimate of LCF from data due to selection bias (or
confounding). Therefore, we bound LCF and L below following Shalit et al. (2017).

Corollary 1 Assume Φ(·) is an invertible map, and α−1ζh,Φ(x, a) ∈ G, where G is a family of
functions, pA=a

Φ , pΦ(R|A = a) is the latent distribution for group A = a, and α > 0 is a constant.
Then, we have:

LCF ≤ (1− u) · LA=1
F + u · LA=0

F + α · IPMG(pA=1
Φ , pA=0

Φ )

L ≤ LA=1
F + LA=0

F + α · IPMG(pA=1
Φ , pA=0

Φ ) . (5)

The integral probability metric (IPM) (Müller, 1997; Sriperumbudur et al., 2012) measures the
distance between two probability distributions p and q defined over M , i.e., the latent space of R.
Formally, IPMG(p, q) , supg∈G |

∫
M
g(m) (p(m)− q(m)) dm|, where g : m → R, represents a

class of real-valued bounded measurable functions on M (Shalit et al., 2017). Therefore, model
functions {ha(·),Φ(·)} can be learned by minimizing the upper bound in (5) consisting of (i)
only factual losses under both treatment assignments and (ii) an IPM regularizer enforcing latent
distributional equivalence between the treatment groups. Note that if the data originates from a RCT
it follows (by construction) that IPMG(pA=1

Φ , pA=0
Φ ) = 0.

Accounting for censoring bias Below we formulate an approach for estimating functions hA(·)
and νA(·) for synthesizing (sampling) non-censored ta ∼ ph,Φ(TA|X = x) and censored ca ∼
pν,Φ(CA|X = x) times, respectively. While some parametric assumptions for ph,Φ(TA|X = x)
yield easy-to-evaluate closed forms for Sh,Φ(ta|x) that can be used as likelihood for censored
observations, they are restrictive, and have been shown to generate unrealistic high variance samples
(Chapfuwa et al., 2018). So motivated, we seek a nonparametric likelihood-based approach that
can model a flexible family of distributions, with an easy-to-sample approach for event times ta ∼
ph,Φ(Ta|X = x). We model the event time generation process with a source of randomness, p(ε),
e.g. Gaussian or uniform, which is obtained from a neural-network-based nonlinear transformation.
In the experiments we use a planar flow formulation parameterized by {Uh,Wh, bh} (Rezende &
Mohamed, 2015), however, other specifications can also be used. Note that Miscouridou et al. (2018)
has previously leveraged normalizing flows for survival analysis, however, our approach is very
different in that it focuses on formulating i) a counterfactual survival analysis framework that accounts
for informative or non-informative censoring mechanisms and confounding, and ii) model event
times as a continuous variable instead of discretizing them. Specifically, we transform the source of
randomness, ε, using a single layer specification as follows

ε̃h = ε+ Uh tanh(Whε+ bh) , ε ∼ Uniform(0, 1) , ta = hA(r, ε̃h) , r = Φ(x) (6)

where {Uh,Wh} ∈ Rd×d, {bh, ε} ∈ Rd, d is the dimensionality of the normalizing flow; each
component of ε is drawn independently from Uniform(0, 1), and ε̃h may be viewed as a skip
connection with stochasticity in ε. Further, hA(r, ε̃h) and Φ(x) are time-to-event generative and
encoding functions, respectively, parameterized as neural networks. For simplicity, the dimensions of
r and ε are set to d, however, they can be set independently if desired. In practice, we are interested
in generating realistic event-time samples; therefore, we account for both censored and non-censored
observations by adopting the objective from Chapfuwa et al. (2018), formulated as

LCSA
F , E(y,δ,x,a)∼p(Y,δ,X,A),ε∼p(ε) [δ · (|y − ta|) + (1− δ) · (max(0, y − ta))] , (7)

where the first term encourages sampled event times ta to be close to y, the ground truth for observed
events, i.e., δ = 1, while penalizing ta for being smaller than the censoring time when δ = 0. Further,
the expectation is taken over samples (a minibatch) from empirical distribution p(Y, δ,X,A).
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Informative censoring We model informative censoring similar to (7) but mirroring the censoring
indicators to encourage accurate censoring time samples ca for δ = 0, while penalizing ca for
being smaller than y for δ = 1 (observed events). Specifically, we set an independent source
of randomness like in (6) but parameterized by {Uν ,Wν , bν} and censoring generative functions
νA(r, ε̃ν), parameterized as neural networks, where ca ∼ pν,Φ(CA|X = x) formulated as

`c(ν,Φ) = E(y,δ,x,a)∼p(y,δ,X,A),ε∼p(ε) [(1− δ) · (|y − ca|) + δ · (max(0, y − ca))] . (8)

Further, we introduce an additional time-order-consistency loss that enforces the correct order of the
observed time relative to the censoring indicator, i.e., ca < ta if δ = 0 and ta < ca if δ = 1, thus

`TC(h, ν,Φ) = E(δ,x,a)∼p(δ,X,A),ε∼p(ε) [δ · (max(0, ta − ca)) + (1− δ) · (max(0, ca − ta))] (9)

Note that `TC(h, ν,Φ) does not depend on the observed event times but only on the censoring
indicators. Finally, we write the consolidated CSA loss for informative censoring (CSA-INFO) by
aggregating (7), (8) and (9) as LCSA−INFO

F , LCSA
F + `c + `TC.

Learning Model functions {hA(·),Φ(·), νA(·)} are learned by minimizing the bound (5), via
stochastic gradient descent on minibatches from D, with LCSA

F for non-informative censoring and
LCSA−INFO

F for informative censoring. Further, for the IPM regularization loss in (5), we optimize
the dual formulation of the Wasserstein distance, via the regularized optimal transport (Villani, 2008;
Cuturi, 2013). Consequently, we only require α−1ζh,Φ(x, a) to be 1-Lipschitz (Shalit et al., 2017)
and α is selected by grid search on the validation set using only factual data (details below).

4 METRICS

We propose a comprehensive evaluation approach that accounts for both factual and causal metrics.
Factual survival outcome predictions are evaluated according to standard survival metrics that measure
diverse performance characteristics, such as concordance index (C-Index) (Harrell Jr et al., 1984),
mean coefficient of variation (COV) and calibration slope (C-slope) (Chapfuwa et al., 2020). See the
SM for more details on these metrics. For causal metrics, defined below, we introduce a nonparametric
hazard ratio (HR) between treatment outcomes, and adopt the conventional precision in estimation of
heterogeneous effect (PEHE) and average treatment effect (ATE) performance metrics (Hill, 2011).
Note that PEHE and ATE require ground truth counterfactual event times, which is only possible in
(semi-)synthetic data. For HR, we compare our findings with those independently reported in the
literature from gold-standard RCT data.

Nonparametric Hazard Ratio In a medical setting, the population hazard ratio HR(t) between
treatment groups is considered informative thus has been widely used in drug development and RCT
(Yusuf et al., 2016; Mihaylova et al., 2012). For example, HR(t) < 1,> 1, or≈ 1 indicate population
positive, negative and neutral treatment effects at time t, respectively. Moreover, HR(t) naturally
accounts for both censored and non-censored outcomes. Standard approaches for computing HR(t)
rely on the restrictive proportional hazard assumption from CoxPH (Cox, 1972), which is constituted
as a semi-parametric linear model λ(t|a) = λb(t) exp(aβ). However, the constant covariate (time
independent) effect is often violated in practice (see Figure 2b). For CoxPH, the marginal HR between
treatment and control can be obtained from regression coefficient β learned via maximum likelihood
without the need for specifying the baseline hazard λb(t): HRCoxPH(t) = λ(t|a=1)

λ(t|a=0) = exp(β). So
motivated, we propose a nonparametric, model-free approach for computing HR(t), in which we do
not assume a parametric form for the event time distribution or the proportional hazard assumption
from CoxPH. This approach only relies on samples from the conditional event time density functions,
f(t1|x) and f(t0|x), via ta = hA(·) from (6).

Definition 1 We define the nonparametric marginal Hazard Ratio and its approximation, ĤR(t), as

HR(t) =
λ1(t)

λ0(t)
=
S0(t)

S1(t)
· S
′
1(t)

S′0(t)
, ĤR(t) =

ŜPKM
0 (t)

ŜPKM
1 (t)

· m1(t)

m0(t)
, (10)

where for HR(t) we leveraged (1) to obtain (10) and S′(t) , dS(t)/dt. The nonparametric assump-
tion for S(t) makes the computation of S′(t) challenging. Provided that S(t) is a monotonically
decreasing function, for simplicity, we fit a linear function S(t) = m · t+ c, and set S′(t) ≈ m. Note
that the linear model is only used for estimating S′(t) from the nonparametric estimation of S(t).
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Table 1: Performance comparisons on ACTG-SYNTHETIC data, with 95% HR(t) confidence interval.
The ground truth, test set, hazard ratio is HR(t) = 0.52(0.39,0.71).

Method Causal Factual
εPEHE εATE HR(t) C-Index (A=0, A=1) Mean COV C-Slope (A=0, A=1)

CoxPH-Uniform NA NA 0.97(0.86,1.09) NA NA NA
CoxPH-IPW NA NA 0.48(0.03,7.21) NA NA NA
CoxPH-OW NA NA 0.60(0.53,0.68) NA NA NA
Surv-BART 352.07 77.89 0.0(0.0, 0.0) (0.706, 0.686) 0.001 (0.398,∞)
AFT-Weibull 367.92 133.93 0.47(0.47,0.47) (0.21, 0.267) 6.209 (0.707, 0.729)
AFT-log-Normal 377.76 157.64 0.47(0.47,0.47) (0.675, 0.556) 6.971 (0.707, 0.729)
SR 369.47 88.55 0.38(0.33,0.65) (0.791, 0.744) 0 (0.985, 1.027)
CSA (proposed) 358.72 0.8 0.45(0.39,0.65) (0.787, 0.767) 0.131 (0.985, 1.026)
CSA-INFO (proposed) 344.3 31.19 0.53(0.41,0.67) (0.78, 0.764) 0.13 (0.999, 1.029)

Bias from S′(t) can be reduced by considering more complex function approximations for S(t), e.g.,
polynomial or spline. For the nonparametric estimation of S(t) we leverage the model-free popu-
lation point-estimate-based nonparametric Kaplan-Meier (Kaplan & Meier, 1958) estimator of the
survival function ŜPKM(t) in Chapfuwa et al. (2020) to marginalize both factual and counterfactual
predictions given covariates x. The approximated hazard ratio, ĤR(t), is thus obtained by combining
the approximations ŜPKM

a (t) and ma. A similar formulation for the conditional, ĤR(t|x), can also
be derived. See the SM for full details on the evaluation or ĤR(t) and ĤR(t|x). Note that for some
AFT- or CoxPH-based parametric formulations, HR(t|x), can be readily evaluated because f(ta|x)
and S(ta|x) are available in closed form.

In the experiments, we will use HR(t) to compare different approaches against results reported in
RCTs (see Tables 1 and 3). Further, we will use HR(t|x) to illustrate stratified treatment effects (see
Figure 2). Note that though a neural-based survival recommender system (Katzman et al., 2018)
has been previously used to estimate HR(t|x), their approach does not account for confounding or
informative censoring thus it is susceptible to bias.

Precision in Estimation of Heterogeneous Effect (PEHE) A general individualized estimation

error is formulated as εPEHE =

√
EX [(ITE(x)− ˆITE(x))2], where ITE(x) is the ground truth,

ˆITE(x) = ET [γ (T1)− γ (T0) |X = x] and γ(·) is a deterministic transformation. In our experi-
ments, γ(·) is the average over samples from ta ∼ ph,Φ(TA|X = x). Alternative estimands, e.g.,
thresholding survival times γ(TA) = I{TA > τ}, can also be considered as described above.

Average Treatment Effect (ATE) The population treatment effect estimation error is defined as
εATE = |ATE− ˆATE|, where ATE = EX [ITE(x)] (ground truth) and ˆATE = EX [ ˆITE(x)].

5 EXPERIMENTS

We describe the baselines and datasets that will be used to evaluate the proposed counterfactual
survival analysis methods (CSA and CSA-INFO). Pytorch code including the new semi-synthetic
dataset (see below) will be made publicly available. Throughout the experiments, we use the standard
HR(t) for CoxPH based methods and (10) for all others. The bound in (5) is sensitive to α, thus we
propose approximating proxy counterfactual outcomes {YCF, δCF} for the validation set, according to
the covariate Euclidean nearest-neighbour (NN) from the training set. We select the α that minimizes
the validation loss L = LF + LCF from the set (0, 0.1, 1, 10, 100).

Baselines We consider the following competitive baseline approaches: (i) propensity weighted
CoxPH (Schemper et al., 2009; Buchanan et al., 2014; Rosenbaum & Rubin, 1983); (ii) IPM (5)
regularized AFT (log-Normal and Weibull) models; (iii) an IPM (5) regularized deterministic semi-
supervised regression (SR) model with accuracy objective from (Chapfuwa et al., 2018), as a contrast
for the proposed stochastic predictors (CSA and CSA-INFO); and (iv) survival Bayesian additive
regression trees (Surv-BART) (Sparapani et al., 2016). For CoxPH, we consider three normalized
weighting schemes: (i) inverse probability weighting (IPW) (Horvitz & Thompson, 1952; Cao et al.,
2009), where IPWi = ai

êi
+ 1−ai

1−êi ; ii) overlapping weights (OW) (Crump et al., 2006; Li et al., 2018),
where OWi = ai · (1− êi) + (1− ai) · êi; and iii) the standard RCT uniform assumption. A simple
linear logistic model êi = σ(xi;w), is used as an approximation, êi, to the unknown propensity score
P (A = 1|X = x). See the SM for a details of the baselines.
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Table 3: Performance comparisons on FRAMINGHAM data, with 95% HR(t) confidence interval.
Test set NN assignment of yCF and δCF yields biased HR(t) = 1.23(1.17,1.25), while previous large
scale longitudinal RCT studies estimated HR(t) = 0.75(0.64,0.88) (Yusuf et al., 2016).

Method Causal Factual
HR(t) C-Index (A=0, A=1) Mean COV C-Slope (A=0, A=1)

CoxPH-Uniform 1.69(1.38,2.07) NA NA NA
CoxPH-IPW 1.09(0.76,1.57) NA NA NA
CoxPH-OW 0.88(0.73,1.08) NA NA NA
Surv-BART 14.99(14.9,14.9e8) (0.629, 0.630) 0.003 (0.232, 0.084)
AFT-Weibull 1.09(1.09,1.09) (0.734, 0.395) 8.609 (0.857, 0.89)
AFT-log-Normal 1.55(1.46,1.55) (0.68, 0.56) 10.415 (0.979, 0.732)
SR 0.58(0.53,0.71) (0.601, 0.57) 0 (0.491, 0.63)
CSA (proposed) 1.04(1.00,1.09) (0.763, 0.728) 0.161 (0.891, 0.81)
CSA-INFO (proposed) 0.81(0.77,0.83) (0.752, 0.651) 0.156 (0.907, 0.881)

Table 2: Summary statistics of the datasets.
FRAMINGHAM ACTG ACTG-SYNTHETIC

Events (%) 26.0 26.9 48.9
Treatment (%) 10.4 49.5 55.9
N 3,435 1,054 2,139
p 32 23 23
Missing (%) 0.23 1.41 1.38
tmax (days) 7,279 1,231 1,313

Datasets We consider the following datasets: (i)
FRAMINGHAM, is an EHR-based longitudinal car-
diovascular cohort study that we use to evaluate the
effect of statins on future coronary heart disease out-
comes (Benjamin et al., 1994); (ii) ACTG, is a longi-
tudinal RCT study comparing monotherapy with Zi-
dovudine or Didanosine with combination therapy in
HIV patients (Hammer et al., 1996); and (iii) ACTG-
SYNTHETIC, is a semi-synthetic dataset based on ACTG covariates. We simulate potential outcomes
according to a Gompertz-Cox distribution (Bender et al., 2005) with selection bias from a simple
logistic model for P (A = 1|X = x) and AFT-based censoring mechanism. The generative process
is detailed in the SM. Table 2 summarizes the datasets according to (i) covariates of size p; (ii)
proportion of non-censored events, treated units, and missing entries in the N × p covariate matrix;
and (iii) time range tmax for both censored and non-censored events. Missing entries are imputed
with median or mode if continuous or categorical, respectively.

Quantitative Results Experimental results for two data-sets in Tables 1 and 3, illustrate that AFT-
based methods are high variance, inferior in calibration and C-Index than accuracy-based methods
(SR, CSA, CSA-INFO). Surv-BART is the least calibrated but low variance method. CSA-INFO and
CSA outperform all methods across all factual metrics, whereas CSA-INFO is better calibrated, low
variance but slightly lower C-Index than CSA. Note that we fit CoxPH using the entire dataset; since
it does not support counterfactual inference, we do not present factual metrics. By properly adjusting
for both informative censoring and selection bias, CSA-INFO significantly outperforms all methods
in treatment effect estimation according to HR(t) and εPEHE, across non-RCT datasets, while
remaining comparable to AFT-Weibull on the RCT dataset (see the SM). Further, RCT-based results
on ACTG data in the SM illustrate comparable HR(t) across all models except for AFT-log-Normal
and Surv-BART, which overestimate, and SR, which underestimates risk. For non-RCT datasets
(ACTG-SYNTHENTIC and FRAMINGHAM), CoxPH-OW has a clear advantage over all CoxPH based
methods, mostly credited to the well-behaved bounded propensity weights ∈ [0, 1]. Interestingly, the
FRAMINGHAM observational data exhibits a common paradox, where without proper adjustment of
selection and censoring bias, naive approaches would result in a counter-intuitive treatment effect
from statins. However, there is severe confounding from covariates such as age, BMI, diabetes,
CAD, PAD, MI, stroke, etc., that influence both treatment likelihood and survival time. Table
3, demonstrates that CSA-INFO is clearly the best performing approach. Specifically, its HR(t),
reverses the biased observational treatment effect, to demonstrate positive treatment from statins,
which is consistent with prior large RCT longitudinal findings (Yusuf et al., 2016).

Qualitative Results Figure 2a demonstrates that CSA-INFO matches the ground truth population
hazard, HR(t), better than alternative methods on ACTG-SYNTHETIC data. See the SM for ACTG
and FRAMINGHAM. Figure 2b shows sub-population log hazard ratios for four patient clusters
obtained via hierarchical clustering on the individual log hazard ratios, log HR(t|x), of the test set of
FRAMINGHAM data. Interestingly, these clusters stratify treatment effects into: positive (2), negative
(1 and 3), and neutral (4) sub-populations. Moreover, the estimated density of median log HR(t|x)
values in Figure 2c illustrates that nearly 70% of the testing set individuals have log HR(t|x) < 0,
thus may benefit from taking statins. Further, we isolated the extreme top and bottom quantiles,
HR(t|x) < 0.024 and HR(t|x) > 1.916, respectively, of the median log HR(t|x) values for the
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(a) ACTG-SYNTHENTIC HR(t) (b) FRAMINGHAM log HR(t|x) (c) FRAMINGHAM log HR(t|x) pdf

Figure 2: (a) Inferred population HR(t) compared against ground truth (EMP) on ACTG-SYNTHETIC
data. CSA-INFO-based (b) cluster-specific average log HR(t|x) curves and (c) estimated density of
median log HR(t|x) values on the test set of the FRAMINGHAM dataset. Clusters assignment were
obtained via hierarchical clustering of individualized log HR(t|x) traces.

test set of FRAMINGHAM, as shown in Figure 2c. After comparing their covariates, we found that
individuals with the following characteristics may benefit from taking statins: young, male, diabetic,
without prior history (CAD, PAD, stroke or MI), high BMI, cholesterol, triglycerides, fasting glucose,
and low high-density lipoprotein. There seem to be consensus that diabetics and high-cholesterol
patients benefit from statins (Cheung et al., 2004; Wilt et al., 2004). See SM for additional results.

6 CONCLUSIONS

We have proposed a unified counterfactual inference framework for survival analysis. Our approach
adjusts for bias from two unknown sources, namely, confounding due to covariate dependent selection
bias and censoring (informative or non-informative). Relative to competitive alternatives, we demon-
strate superior performance for both survival-outcome prediction and treatment-effect estimation,
across three diverse datasets, including a semi-synthetic dataset which we introduce. Moreover,
we formulate a model-free nonparametric hazard ratio metric for comparing treatment effects or
leveraging prior randomized real-world experiments in longitudinal studies.
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