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ABSTRACT

Inference-time machine unlearning with only the forget data, also known as zero-
shot unlearning, is becoming increasingly important for bias mitigation, privacy
preservation, copyright protection, etc. Most approaches in this domain focused
on query updating, decoder modification, offline module training, or reverse-
generation by the forget data. Recent works found that providing offline-prepared
contexts can realize in-context unlearning. However, leveraging dynamic con-
text (conditioned on real-time queries) to achieve zero-shot unlearning has not yet
been explored, which has the potential to enforce context unlearning while pre-
serving the performance of the original LLM. In this paper, we propose UNRE, a
novel unlearning framework for LLMs that employs dynamic contextual retrieval
from retrieval-augmented generation (RAG) while only leveraging the forget data.
Specifically, UNRE dynamically updates contexts to guide the unlearning process
in a zero-shot unlearning setting. During the inference, the user query is first
leveraged for online membership inference to identify a query-specific forget set.
Using this set, UNRE refines the embeddings of the retrieved chunks via gradient
descent, producing adaptive contexts that steer the LLM toward a query-specific
unlearned distribution. We evaluate UNRE on multiple unlearning benchmarks
and show that UNRE not only outperforms existing zero-shot and context-based
unlearning approaches, but also better preserves the original model performance.

1 INTRODUCTION

Machine unlearning is the process of revoking or forgetting data embedded in the memory of a
pre-trained model Bourtoule et al.|(2021). Unlike catastrophic forgetting |Goodfellow et al.| (2013)),
which arises unintentionally during training, machine unlearning aims to deliberately and control-
lably erase specific knowledge from a model. Effective unlearning is critical for building trustworthy
large language models (LLMs), as it enables the removal of harmful responses|Yao et al.|(2024a); L1
et al.[(2024); Barrett et al.| (2023)), copyrighted content|Dou et al.[(2025)); \Chen et al.|(2023)), societal
biases |Motoki et al.| (2024); |Yu et al.| (2023)), hallucinations |Yao et al.[(2024a), and supports timely
safety alignment [Song et al.[(2025). Traditional machine unlearning methods can be categorized
into targeted and untargeted approaches [Yuan et al.| (2025). These methods typically require not
only a forget set—the data to be removed from the model—but also either a reference model J1 et al.
(2024) or a retain set, i.e., the original training data excluding the forget set. The retain set can be
constructed through membership inference |[Shokri et al.| (2017), reverse generation from the forget
setPawelczyk et al.|(2024)), and related techniques. However, since the retain set is often unavailable
in real-world scenarios |Li et al.| (2024)), recent works such as FLAT [Wang et al.| (2025b)) have been
proposed to enable unlearning using only the forget data. Zero-shot unlearning has emerged as a
scenario where the source training data is unavailable Chundawat et al.|(2023)); |[Foster et al.| (2024);
Chen et al.| (2025)); / Ahmed et al.|(2025); instead, the method only requires the forget request data.

LLM unlearning targets the removal of knowledge in a designated forget set while preserving the
model performance on other tasks Wang et al.| (2025b). Beyond data-based approaches described
above, other methods include model-based unlearning, which relies on fine-tuning|Yao et al.|(2024a)
or training specific modules Bhaila et al.| (2025), and input-based unlearning |Liu et al.| (2024al);
Pawelczyk et al.[(2024). Input-based methods|Liu et al.|(2024a) achieve unlearning by modifying the
prompt (e.g., gradient-based updates of prompt embeddings Bhaila et al.|(2025); [Liu et al.|(2024a))
to steer the LLM toward an unlearned output distribution |[Wang et al.| (2025b)). Since the prompt
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Figure 1: Upper section: visualizing dynamic modification of the context by UNRE. Instead of
applying a fixed forget set context in the prompt, or modifying the query embeddings from original
query to unlearn query, UNRE iteratively modifies query-related forget subset context embeddings
from forget piece into unlearn guiding context. Lower section: a step-by-step workflow of UNRE.
The (right) shows the UNRE owner modification progress. The two (left,
mid) show the inference progress, and the left one shows the input and output discrete tokens, while
the right one shows the retrieval and gradient update for context embeddings.

encompasses all information provided to the model Brown et al|(2020), inference-time unlearning,
which is exemplified by input-based methods, operates during LLM inference with frozen weights
and is generally regarded as suppression-intended unlearning (2025). Several studies
have also explored query-adaptive dynamic unlearning, for example, by leveraging a pre-trained
reference model for real-time logit-difference computation [Ji et al.| (2024)), by applying inference-
time prompt editing through pretrained rewrite agents [Sanyal & Mandal| (2025), or by modifying
the decoding process 2025). More recent work has introduced In-Context Unlearning
(ICUL) [Pawelczyk et al.| (2024); Takashiro et al] (2025), which highlights context manipulation
as a new perspective within input-based unlearning, enabling preservation of LLM capabilities by
retaining the original query, model weights, and architecture |Takashiro et al.[(2025)).

However, existing studies have not yet explored zero-shot LLM unlearning through contextual mech-
anisms, and particularly the query-adaptive dynamic contexts. This gap is important: in real-world
dynamic settings such as privacy protection and bias mitigation, practitioners typically only have
access to the forget set. When unlearning is required at inference time, lightweight methods that can
rapidly adapt to changes in the forget set are especially valuable. Moreover, such approaches offer
the additional advantage of not requiring any modification to the model parameters.

In this work, we present UNRE, a RAG-based method that refines query-retrieved contexts via
gradient updates in the embedding space, and leverages these adapted contexts to guide the LLM
toward generating outputs aligned with the unlearned distribution. The overview of the method is
shown in Figure [T} Our main contributions are summarized below:

* We introduce UNRE, to the best of our knowledge, the first framework to leverage query-specific
dynamic contexts for achieving zero-shot unlearning.

* We develop an online membership-inference—guided RAG architecture that first identifies the
query-specific unlearning target, then optimizes the retrieved contexts for unlearning generation,
thereby minimizing disruption to the LLM’s original capabilities.

e UNRE is 100% pre-processing free and query-adaptive, which better aligns with the dynamic
requirements of real-world scenarios.

* Through extensive experiments on diverse unlearning tasks across multiple LLMs, UNRE
demonstrates superior unlearning effectiveness, e.g., around 3 times stronger than fixed con-
textual unlearning, while largely preserving the model’s original performance by maintaining a
similar perplexity score as the original model.
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2 RELATED WORKS

Machine Unlearning Machine unlearning aims to remove specific behaviors or knowledge with-
out broadly degrading model utility |Cao & Yang|(2015). The work in|Liu et al.|(2024b) formulates
the unlearning target as a confounder between an LLM’s input and output, and casts unlearning as
a deconfounding process. Recent works have explored loss adjustment using only the forger set,
thereby avoiding reliance on retain data or auxiliary agents |Wang et al.[|(2025b); [Yao et al.| (2024a).
Zero-shot unlearning was introduced as a scenario where only the forget data is available [Foster,
et al| (2024). For instance, the work in |Gu et al| (2025) proposed to generate an anti-forget set
to enhance fine-tuning—based unlearning. Other approaches, including PROD [Jiang et al.| (2025),
DPO Rafailov et al.[(2023)), and NPO Zhang et al.|(2024), constrain unlearning with original model
outputs to preserve overall performance. On the other hand, CEU [Entesari et al.|(2025) flattens the
forget set logits while enforcing a retain set performance lower bound to preserve model utility after
tuning. In this work, we adopt a related loss-based formulation but operate solely on the forget set,
eliminating the need for the retain data or auxiliary models.

Inference-time Unlearning Prompt engineering has emerged as a method for performing un-
learning at inference time. For example, SPUL Bhaila et al.| (2025) trains soft prompts during an
offline stage using a pre-established forget set and retain set, guiding LLMs to generate outputs
that approximate a machine-unlearned distribution. £CO [Liu et al.|(2024a) trained a classifier for
unlearn-required prompt offline and a general corruption parameter that is applied to vectorized user
input query in the embedding space to guide LLM to generate output in an unlearned distribution.
Contrastive decoding methods, such as UCD and ULD [Suriyakumar et al.| (2025)); Ji et al.| (2024),
leverage logit differences between a small model trained on Forget and Retain Sets to guide unlearn-
ing. Since providing context adaptive to a specific query will make the LLM perform In-Context
Learning (ICL) differently |Garg et al.| (2022), and context can be updated by gradient in the em-
bedding space during inference time Zou et al.| (2023), In-Context Unlearning (ICUL) [Pawelczyk
et al.| (2024) uses prompt context constructed from Forget and Retain Sets to prevent the genera-
tion of unwanted content. Vector steering techniques |[Li et al.| (2023)); Rimsky et al.| (2024); |Arditi
et al. (2024); |Cao et al.| (2024); Dunefsky & Cohanl including InferAligner |Wang et al.| (2024al)
and FairSteer |Li et al.|(2025)), inject offline-prepared steering vectors into LLM layers to influence
inference. Other methods modify the decoder or employ multi-agent systems for unlearning Wang
et al.| (2025a)); Deng et al.[(2025); |Sanyal & Mandal (2025). All these approaches, however, require
either a retain set or offline training/tuning.

Retrieval Augmented Generation and Unlearning via RAG Retrieval-Augmented Generation
(RAG) has seen significant advances in recent years, improving LLM performance by providing
relevant external information during generation |Lewis et al. (2020b). A typical RAG pipeline in-
volves chunking, embedding, retrieval, and reranking [Lewis et al.|(2020a)), and recent methods have
focused on better aligning the retriever with the LLM. For example, REPLUG |Shi et al| (2024)
tunes the retriever based on LLM’s likelihood signal to update the retrieval embeddings via gradi-
ent, which improves both perplexity and downstream accuracy. In this work, we adopt a multi-query
RAG framework|Cheng et al.| (2024)) in which the embeddings are aligned with the LLM and receive
gradient updates from its outputs, enabling more effective and adaptive retrieval during generation.

Several recent works have explored using RAG for unlearning at inference time. Wang et al.
(2024b)) constructs a retain set from the forget set offline and injects it into RAG for unlearning.
Eraser4RAG |Wang et al.| (2025d) trains a rewrite agent via reinforcement learning to transform
retrieved forget data into retainable content, while De-Indexing |Vilella & Ruffo| (2025) reranks re-
trieved items to promote the retain set over the forget set. Similar to other prior works on inference-
time unlearning, all these approaches require either a preprocessed retain set or prior agent training,
limiting their applicability in scenarios where only the forget set is available.

3 METHODOLOGY

In this work, we propose an inference-time zero-shot unlearning framework UNRE based on RAG
that operates solely with the forget set, requiring neither additional training nor fine-tuning through-
out the workflow nor any architectural modifications to the LLM.
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3.1 PROBLEM STATEMENT

The goal of query-adaptive zero-shot unlearning is to force the targeted LLM M to generate an
output y in an unlearned token-sequence distribution, given only the forget set O, where O =
{(0;)}_, (@ € [1,n]) is the n chunk pieces among the forget set and o; is a piece in the forget set.
Each forget piece o, = {x;,y;} contains the feature/example input x and label y.

We consider a scenario where the UNRE owner has access to neither the model training data nor
the retain data (in contrast to prior unlearning methods [Yao et al.|(2024a)), and where the user
query itself remains unaltered [Liu et al.| (2024a)—with only the retrieved context being modified at
inference time. To this end, the unlearning objective is to find a perturbed set Oq, where Oy is the
query-related subset of O, so that using C)q as context to constrain the LLM inference generation
progress y, = M.G(g; Oq), where M.G represents the LLM generation process.

3.2 METHOD OVERVIEW

We propose UNRE framework to find the proper O,. The overview of the method is shown in
Figure[I] During the offline stage, O will be input into the RAG, a technique that augments LLM
generation through retrieving query-related contexts, stored in the RAG embedding vector database
Vi (steps 1 to 2 in Figure(I}), which can be aligned with LLM embeddings Vg (Cheng et al.|(2024).

During inference, UNRE consists of the following stages. First, online membership inference He
et al|(2025); [Fu et al.| (2024) for O, (steps 3 to 4 in Figure . When receiving the user query g,
the query will go through the LLM, generating a regular output 7,. Then, the input query g and
output y, will be sent to a RAG retrieval module, which will conduct a similarity search in Vg
(step 5 in figure[T). If the similarity result is higher than a threshold gate T, unlearning is required.
Second, a dynamic unlearned context updating process for O,. This is achieved through gradient
descent inside V g, aiming at optimizing the unlearning loss function (steps 5 to 8 in Figure [I),
which constrains the LLM output y,, = M.G(g; Oq) into an unlearned distribution.

3.3 PRE-CHECK GATE WITH ONLINE MEMBERSHIP INFERENCE

The pre-check progress aims to minimize the UNRE influence on the model’s original performance
by shutting down the UNREwhen not needed. We first obtain a regular output y, = M.G(q).
By following a standard retrieval process in RAG [Lewis et al. (2020a), we compute its retrieval
similarity to the forget set O in V g, as follows:
max Similarity (¢(yq), ¢(0;)) < 7. (1)
1€(n
The similarity threshold 7 is a user-defined parameter, and ¢ is the embedding progress. We use
L2 distance in embedding for similarity calculation. If the similarity is below 7, y, is returned;
otherwise, the UNRE pipeline starts.

3.4 UNLEARN PREPARATION OF UNRE

Thus, we have a real-time, query-specific forget subset O, through the retrieval progress,

O, = {0 €0 : —d(d(yy), d(0s)) > 7}. )

where d is the L2 distance between embedding vectors in V r; and thus we have the embedding
vector of sub-forget set Eo = ¢(O,). Through the retrieval similarity search during M.G(y,) in
V i, we have an original regular RAG retrieved query-related embedding E'r,

Er = TopK (— d(6(yy), 9(0i))), 3)
where K is the RAG retrieval parameter defined by the user Lewis et al.| (2020b).

We obtain £y = EpUFER, and then form F into matrix v;. Prior works like PromptReps and HyDE
Gao et al[(2023); Zhuang et al.[(2024) have shown that looping back LLM output can enhance the
retrieval progress. Starting from the retrieved query-related context and limiting the context example
amount K can retain more of LLM’s original performance Pawelczyk et al.|(2024)).
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Algorithm 1 Gradient-based Update in UNRE Embedding

Require: query ¢; LLM M; matrixed forget context v;; pre-set budget ; pre-set step size 7; gra-
dient update steps j € [1,.J]; query-specific unlearn matrix J; token position ¢ € [1,7] in a
sentence; last-layer hidden state h;(t); last-layer logits zs(¢)
0 0y, + M.G(¢(q))
Get ho(t), zo(t) while M generating y,
for j =1to J do
U1 ¢ v + (5j;
LLM output distribution: ¥, + M.G(¢(q) & 01)
Get hs(t), zs(t) while M generating y;
Calculate hs + Zthl hs(t),
Semantic Similarity: S < Similarity (s, ¢(y,))
Calculate Z5(t) given z5(t); Zo(t) given zo(t)
Next-Token Distribution Shift: A"+ % S°7_ cos(25(t), Zo(t))
11: L + softplus(N — S)
12: Gradient Update 5 ' < PGD(L)
13: end for
14: return §”

W dnh2N

,_.
e

3.5 UPDATE EMBEDDING VECTORS TO UNLEARN IN UNRE
3.5.1 DESIGN OF LOSS FUNCTION FOR THE UNLEARNING OBJECTIVE

We optimize a perturbation matrix § and feed the perturbed input #; = v; +§ into M. The method is
detailed in Algorithm[I] In our setting, we perturb only the features x, in contrast to ICUL [Pawelczyk
et al.| (2024)), which reverses the labels y during the offline stage.

At each output token position ¢ € {1,...,T}, the model outputs a last-layer hidden state hs(t) and
logits z;5(t) Yao et al.|(2024a)). We start at 6 = 0,where we have hq(t), zo(t), as shown in lines 1 and
2 in Algorithm[I] The design of the UNRE loss is motivated by maintaining the semantic meanings
while increasing token distributional shift|Sinha et al.|(2025); Liu et al.|(2024b); (Wang et al.|(2025c))
of unlearned output y,,, as discussed below.

Sentence semantics For Semantic Similarity S, as illustrated in lines 7 to 8 of the Algorithm[I] we
aggregate hidden states into a sentence vector and compute semantic similarity (higher is better).

Distributional shift of next-token predictions. As presented in lines 9 to 10 of Algorithm |1} we
let Z(t) = z(t)/||2(t)||2 denote the unit-direction of logits. We define N, the expectation of the
token-level directional discrepancy (lower is better). Consequently, we have the loss function (line
11 of Algorithm I):

L(6) = Softplus</\/ — S) = log(1 + exp(N = S5)) 4)

Since loss adjustment can flexibly realize diverse unlearning objectives [Wang et al.| (2025b)), we
generalize the loss function £ to support a broad range of unlearning tasks (e.g., copyright, privacy)
by tuning task-specific parameters and integrating the ECO loss formulation [Liu et al.| (2024a), as

detailed in Appendix

3.5.2 GRADIENT-BASED UPDATE IN CONTEXT EMBEDDING

We employ Projected Gradient Descent (PGD) Madry et al.| (2018) to update gradients in the em-
bedding space, while constraining the update region to avoid the forget set embedding e = ¢(O),.
Specifically, we optimize the perturbation § (line 10 in Algorithm [I)) to minimize the loss L.

oUtD =11 {5+ |I8lla<e, minees || vi4d—e 2>} (50) - UstL(5(j))), )

where §() has the same dimension as v, denotes the query-specific unlearning perturbation matrix
at PGD step j; Vs£(6()) is the gradient of the loss £ evaluated at 6/); 7 is the learning rate for the
gradient update; II is the projection operator onto the perturbation ball with budget ¢ specified by
the UNRE owner; j is the iteration index; and J is the total number of PGD steps.
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3.6 UNRE UNLEARNING INFERENCE

After obtaining 67 from Algorithm [1} we construct the perturbed matrix v = vy +0 7 for final
inference. UNRE then constrains the LLM using updated contexts C' = O, decoded from v, thereby
guiding the model to generate unlearned outputs y,, = M .G(q; C).

Finally, the pre-check procedure described in Section is started again to determine whether
another run of UNRE is necessary, ensuring that the final LLM output y,, exhibits no similarity to
the forget set O.

4 EXPERIMENT

Overview In this section, we evaluate UNRE across a range of unlearning tasks, including Entity
Unlearning and Copyright Content Unlearning, using the TOFU |Maini et al.| (2024), RWKU |Jin
et al.[(2024), and HP [Eldan & Russinovich! (2023) datasets. We further assess its performance on
context unlearning under varying context lengths, comparing against a state-of-the-art in-context
unlearning method [Pawelczyk et al.| (2024). Additional tasks and results are provided in Appendix.
All experiments are conducted on Nvidia L40S GPUs.

Baseline Methods We compare UNRE against a diverse set of unlearning baselines, grouped into
three categories. Gradient-based methods include Gradient Ascent (GA)|Maini et al.[(2024), Grad-
Diff (GD)Maini et al.| (2024), KL minimization (KL)Maini et al| (2024)), Large Language Model
Unlearning (LLMU) [Yao et al.[(2024a), and Mismatch |Yao et al.[(2024b)), as well as regularized
GA variants GAGDR and GAKLR [Shi et al.|(2025)). Preference-based methods include Preference
Optimization (PO) Maini et al.| (2024), Direct Preference Optimization (DPO) Maini et al.| (2024),
Negative Preference Optimization (NPO) Zhang et al.| (2024), and the regularized NPO variants
NPOGDR and NPOKLR [Shi et al.| (2025)), together with the forget-only loss-adjustment method
FLAT Wang et al.|(2025b)). Tuning-free methods include In-Context Unlearning (ICUL) Pawelczyk
et al.| (2024), ECO [Liu et al.[(2024a), GUARD |Deng et al.[ (2025), and Prompt/Output-Filtering
strategies |Deng et al.| (2025); Pawelczyk et al.| (2024). We include more baselines and their descrip-
tions in Appendix.

4.1 ENTITY UNLEARNING

4.1.1 TOFU 1% SPLIT

We evaluate entity unlearning on the TOFU 1% Split benchmark Maini et al| (2024) Following
prior work, we first fine-tune each base LLMs on the full TOFU training set to obtain the Original
LLM; the Retained LLM is fine-tuned on the split, which serves as the reference model. We report
the 1% forget split and use LLMs of Falcon3-7B, Llama3.2-3B and Qwen2.5-7B, as summarized in
Table[l

Metrics We adopt the official TOFU evaluation metrics. Forget Quality (FQ) is defined as the p-
value from a Kolmogorov—Smirnov test applied to the Truth Ratio distributions of the unlearned and
retained models on the forget set; higher values indicate stronger unlearning performance. Model
Utility (MU) is computed as the harmonic mean of Answer Probability, Truth Ratio, and ROUGE-L
across the subsets retain, real authors, world facts, where higher scores reflect better utility preser-
vation. We also report F-RL (ROUGE-L on the forget set; lower is better) and R-RL (ROUGE-L
on the retain set; higher is better).

Results It can be seen that UNRE demonstrates strong unlearning performance while preserving
model utility across modern LLMs. On Llama3.2-3B and Qwen2.5-7B, it achieves model utility
(MU) scores of 0.5752 and 0.6054, staying within 0.28% and 1.6% of the best train-time baselines
(Original/ICUL/GUARD). At the same time, UNRE attains superior Forget Quality (FQ), reaching
0.6012 on Llama3.2-3B and 0.2977 on Qwen2.5-7B, surpassing GUARD, while remaining com-
petitive on Falcon3-7B (0.0611) and outperforming gradient-based baselines. Across all models, it
maintains a favorable forget—retain trade-off, achieving the lowest forget-retain loss (F-RL) while
keeping retain—retain loss (R-RL) at the Original level. Overall, UNRE provides effective unlearning
with minimal impact on model utility across different LLMs.
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Table 1: TOFU 1% split. Performance of our method and baseline methods on the TOFU dataset
using three base LLMs (Falcon3-7B, Llama3.2-3B and Qwen2.5-7B). FQ, MU, F-RL, and R -RL
denote forget quality, model utility, ROUGE-L on the forget set, and ROUGE-L on the retain set,
respectively. We include the Original LLM and the Retained LLM (trained on retain set) for refer-
ence.

Falcon3-7B-Instruct | Llama3.2-3B-Instruct | Qwen2.5-7B-Instruct
Method FQ? MU{ F-RL| R-RL{| FQf MUt F-RL| RRL}| FQ} MU} F-RL| R-RL{

Original LLM ~ 0.0067 0.6644 0.8612  0.8030 | 0.0067 0.5752 0.9913 0.9778 | 0.0067 0.6054 0.9719 0.9219
Retained LLM 1.0 0.6647 0.3792  0.7998 1.0 0.6018  0.4088  0.9866 1.0 0.5910 0.3794  0.8958

GA 0.0067 0.6663 0.7379  0.8041 | 0.0067 0.5754 0.8112 0.9735 | 0.0541 0.5887 0.4723  0.8837
KL 0.0067 0.6653 0.7347  0.7943 | 0.0066 0.5759 0.8331 0.9755 | 0.0970 0.5876 0.4613  0.8820
GD 0.0286 0.6535 0.7058  0.8195 | 0.0066 0.5747 0.8359 0.9771 | 0.0286 0.5929 0.4745 0.8848
LLMU 0.0287 0.6544 0.7589  0.8183 | 0.0143 0.5680 0.9913  0.9765 | 0.0286 0.5656 0.4774  0.5823
PO 0.0067 0.6625 0.8290 0.8084 | 0.0143 0.5678 0.9913  0.9774 | 0.0067 0.6152 0.7387  0.8459
DPO 0.0286 0.6535 0.7058  0.8195 | 0.0065 0.5766 0.7379  0.9769 | 0.0067 0.5766 0.7379  0.5259
NPO 0.0067 0.6656 0.7432  0.7958 | 0.0067 0.5768 0.7866 0.9765 | 0.0143 0.5539 0.4055  0.5258
FLAT 0.0030 0.6659 0.7013  0.7994 | 0.0066 0.5766 0.7379  0.9769 | 0.0286 0.5971 0.5079  0.9032
ICUL 0.0286 0.6641 0.4059 0.8028 | 0.0143 0.5751 0.5614 0.9778 | 0.0143 0.6054 0.4539 09217
Prompt 0.0970  0.6644 0.4045 0.8030 | 0.0143 0.5753 0.8635 0.9777 | 0.0067 0.6053 0.5552  0.9218
GUARD 0.0541 0.6643 03115 0.8029 | 0.5786 0.5752 0.3764 0.9776 | 0.2656 0.6052 0.3691  0.9219
UnRe (Ours)  0.0611 0.0644 0.2824  0.8030 | 0.6012 0.5752 0.3298 0.9778 | 0.2977 0.6054 0.3169 0.9219

4.1.2 REAL-WORLD KNOWLEDGE UNLEARNING (RWKU)

We also evaluate entity unlearning on the RWKU benchmark [Jin et al.| (2024), as a test-only suite.
The Original LLM (Before) denotes the base model without unlearning, and our method is applied at
inference time using a forget-only retrieval corpus derived from RWKU materials. We report results
on LLaMA-3-8B-Instruct and LLaMA-3.1-8B-Instruct, as presented in Table E}

Metrics We adopt the official RWKU metrics. Forget reports ROUGE-L on Fill-in-the-Blank and
QA probes over the forget targets (FB/QA; lower is better); AA denotes adversarial probes in ro-
bustness analyses. Neighbor is ROUGE-L on probes about entities adjacent to the forget targets
and reflects locality (higher is better). MIA reports membership inference on forget- and retain-like
samples via FM (higher is better) and RM (lower is better). Utility measures general capabilities
on reasoning, truthfulness, factual QA, and fluency (Rea, Tru, Fac, Flu; higher is better).

Results Across both LLMs, UNRE delivers the strongest forgetting while preserving locality, pri-
vacy, and utility. On LLaMA-3-8B, it reduces Forget—-QA to 39.8, outperforming most baselines,
and increases Neighbor—QA to 78.1 (vs. 76.5 for GAGDR, the base baseline), indicating reduced
collateral forgetting. For MIA, UNRE achieves higher FM (268.7, above NPO as the best baseline)
and lower RM, reflecting weaker membership signals on the forget set and fewer false positives
on retain-like data. Utility is maintained showing minimal degradation to general model capabil-
ities. On LLaMA-3.1-8B, UNRE further lowers Forget-AA to 38.7, and improves Neighbor-FB
to 74.0 (surpassing best baseline NPOgpgr). For MIA, it achieves higher FM and the best RM, re-
flecting effective unlearning without falsely flagging retain data. Model Utility remains robust for
LLaMA-3.1-8B as well, with overall trends comparable to baseline performance.

4.2 COPYRIGHTED CONTENT UNLEARNING

We use Harry Potter and the Sorcerer’s Stone Eldan & Russinovich|(2023) (HP) as copyrighted
content to be forgotten, constructing forget and retain splits by extracting 400 chunks from the book
for the forget set and sampling 400 paragraphs from C4 for the retain set. The LLM is fine-tuned
on the forget set to simulate memorization, while the original pretrained checkpoint serves as the
retained baseline.

Metrics We report the Forget Quality Gap (FQ Gap) defined over BLEU and ROUGE-L differ-
ences between the unlearned and the retained model on the split forget set, together with Perplexity
(PPL) Jelinek et al.|(1977) and the average zero-shot accuracy (Avg. Acc.) across nine standard tasks
as a model-utility proxy. We evaluate on OPT-2.7B and Llama2-7B models for better comparison
with prior works.
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Table 2: RWKU. We report Forget (FB/QA/AA/AlL, |), Neighbor (FB/QA/Al, T), MIA
(FM1/RM)), and Utility (Rea/Tru/Fac/Flu, 1).

(a) LLaMA-3-8B-Instruct

Forget | Neighbor 1 MIA Utility T

Method FB QA AA FB QA FM1t RMJ| Rea Tru Fac Flu

Before 85.6 703 747 93.1 82.0 236.5 2309 41.0 364 537 704.6
GA 72.0 64.6 685 85.0 747 2414 2346 404 376 496 7103
GAGDR 72.6 64.0 69.7 86.2 765 2428 236.8 396 36.8 504 7103
GAKLR 70.7 575 699 80.5 70.5 2424  230.8 415 356 540 7044
NPO 46.6 39.0 353 79.2  70.9 263.3 2414 405 360 56.7 6959
NPOGDR 522 439 429 825 705 2545 2401 396 372 514 7082
NPOKLR 525 40.6 432 832 721 253.0 2369 409 354 542 7049

UnRe (Ours) 44:8 39.8 349 88.4 78.1 267.7 2362 406 36.0 53.7 704.6

(b) LLaMA-3.1-8B-Instruct

Forget | Neighbor 1 MIA Utility

Method FB QA AA FB QA FM1t RMJ| Rea Tru Fac Flu

Before 639 65.1 69.5 74.1  69.8 2235 2182 422 354 612 6952
GA 50.7 454 612 456 372 2489 2419 432 358 487 726.6
GAGDR 554 49.6 639 60.2 535 239.8 2313 442 350 539 7185
GAKLR 62.7 499 664 679 61.2 2358 223.0 426 354 59.0 6821
NPO 357 402 39.0 67.3  66.2 2414 2205 425 356 61.8 6842
NPOGDR 424 372 420 74.0 66.7 2363 220.1 430 354 608 698.8
NPOKLR 40.6 414 422 733 69.9 2344 2188 423 354 615 695.1

UnRe (Ours) 392 379 387 740 68.6 2424 220.1 423 354 612 6950

Table 3: HP unlearning on OPT-2.7B and Llama2-7B. Lower FQ Gap/PPL and higher Avg. Acc.
are better.

OPT-2.7B | Llama2-7B
Method FQ Gap | PPL | Avg. Acc. T \ FQ Gap | PPL | Avg. Acc. 1
Original LLM 1.5346 15.6314 0.4762 3.6594 8.9524 0.5617
Retained LLM 0.0000 14.3190 0.4686 0.0000 8.7070 0.5599
KL 2.7301 16.1592 0.4688 0.4225 9.4336 0.5509
GD 2.3439 16.1972 0.4690 0.5304 9.1797 0.4902
Mismatch 1.4042 15.7507 0.4679 0.4647 8.9906 0.5593
LLMU 2.4639 15.8398 0.4656 0.1985 9.0530 0.5503
PO 2.1601 14.8960 0.4583 0.5124 8.8364 0.5532
DPO 2.2152 16.8396 0.4621 0.2924 8.9597 0.5614
NPO 1.2611 19.6637 0.4644 0.5151 9.0397 0.5609
FLAT 1.4089 15.5543 0.4686 0.2265 8.9906 0.5580
ICUL 1.0121 15.6314 0.4762 2.5585 8.9524 0.5617
GUARD 0.6314 15.6314 0.4762 0.1367 8.9524 0.5617

UnRe (Ours)  0.6112 £0.0011 15.6314 0.4762 | 0.1207 £0.0008 8.9524 0.5617

Results It can be seen from the results that UNRE achieves effective unlearning without compro-
mising model utility in general. In the HP setting, it consistently enforces strong forgetting while
preserving general capabilities. Operating entirely at inference time, the framework activates con-
servatively only on copyright-relevant queries, ensuring that LLM generation text quality (PPL) and
zero-shot accuracy remain aligned with the original checkpoint across architectures. This demon-
strates the core goal of inference-time unlearning: eliminate targeted knowledge while maintaining
unrelated model capabilities.

Besides, it can be observed that prior methods, which do not explicitly balance forgetting and utility,
typically fail in one of two ways: (i) improving the forget score but degrading fluency or accuracy, or
(i) preserving general performance while leaving residual memorization. By contrast, UNRE suc-
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Method Accuracy 1 TPR @ FPR=0.01 | Method Accuracy T TPR @ FPR=0.01 ]
Baseline 90.4% 0.0267 Baseline 90.4% 0.0267
ICUL 89.8% 0.0179 ICUL 90.2% 0.0183
UnRe 90.0 + 0.2% 0.0147 UnRe 90.3 +0.2% 0.0153
(a) Unlearning results at K = 10. (b) Unlearning results at K = 5
—e— Baseline 90.5 Baseline
5' 0.025 —e— GA - GA
s UnRe £ 90.0 —e— ICUL
o”c —— ICUL = UnRe
0.020 Random Benchmark €]
B
©0 015 a 89.0
. ° Q A
&« \ <
}_
0.010 88.5
1 5 10 20 1 5 10 20
number of deletion K number of deletion K
(c) Unlearning performance (TPR). (d) Accuracy.

Figure 2: Evaluate unlearning for different numbers of deletion requests (1, 5, 10, 20).

cessfully preserves the retained model’s utility profile while removing reproduction of the copy-
righted text. Prompt- or filter-based baselines largely leave non-trigger inputs unchanged and fail to
provide targeted suppression, whereas optimization-based methods can achieve forgetting but often
at the expense of the generation text quality. The results highlight that, as a lightweight, training-
free method, UNRE effectively performs copyright-content unlearning in HP, achieving targeted
knowledge removal while retaining overall generation performance, outperforming prior methods.

4.3 CONTEXTUAL UNLEARNING COMPARISON FOR DIFFERENT CONTEXT LENGTHS

We follow the ICUL |Pawelczyk et al. (2024) setup and adopt its LiRA-Forget protocol (Carlini
et al| (2022) to quantify unlearning. We evaluate inference-time unlearning across varying con-
text lengths, considering 5 and 10 deletions (i.e., K = 5 and K = 10 retrieved context examples).
As shown in Figure 2]

Metrics The TPR @ FPR=0.01 measures the true positive rate of a likelihood-ratio test distin-
guishing an unlearned model from a retained trained model on the forget points (lower is better).
Accuracy reflects standard test performance on held-out data, serving as a utility indicator (higher
is better). Effective unlearning is indicated by TPR values approaching the benchmark while main-
taining accuracy close to the baseline. Baseline refers to the original fine-tuned model without any
unlearning.

Results UNRE demonstrates the intended behavior of inference-time unlearning using in-context
examples: it largely preserves task accuracy, consistently outperforming ICUL across varying con-
text lengths and approaching the performance of GA. While ICUL’s forgetting improves with longer
contexts, its overall unlearning effectiveness remains substantially below that of UNRE.

5 CONCLUSION

In this work, we propose UNRE, a novel retrieval-based framework for dynamic, query-adaptive
zero-shot unlearning in LLMs. Unlike prior approaches that rely on fixed prompts or static context
injection, UNRE leverages query-adaptive dynamic contexts to achieve inference-time unlearning
without any offline preparation. The framework first employs online membership inference to guide
retrieval from the forget set, adapting context to each query, and then applies gradient-based per-
turbations to the retrieved embeddings to steer the LLM’s outputs toward an unlearned distribution.
Empirical results across multiple LLMs and unlearning tasks demonstrate that UNRE effectively
removes targeted knowledge while preserving the model’s original capabilities. Notably, it operates
without pretraining or retain sets, making it particularly suitable for lightweight, real-world unlearn-
ing scenarios where the forget set is frequently updated. Overall, UNRE illustrates that dynamic
context can enable efficient, query-adaptive zero-shot unlearning during LLM inference.
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ETHICS STATEMENT

We adhere to the ICLR Code of Ethics. UNRE is an inference-time, training-free unlearning con-
troller that operates only with the forget set and leaves the base model’s parameters unchanged; a
conservative pre-check gate prevents activation on benign inputs. As a result, the method targets
removal/suppression of copyrighted passages and hazardous knowledge while preserving general
utility, thereby reducing potential harm rather than introducing new risks. Our experiments rely
on standard public benchmarks (e.g., Harry Potter excerpts for copyright unlearning; WMDP for
hazardous-knowledge attenuation) and do not involve human subjects or the collection of personal
data; no copyrighted material is redistributed. We release code and prompts with safeguards aimed
at preventing misuse (e.g., documentation on intended use and limitations). Overall, UNRE is de-
signed to strengthen ethical deployment by enabling targeted forgetting without degrading unrelated
capabilities.

REPRODUCIBILITY STATEMENT

All experimental settings (datasets, splits, preprocessing, model variants, hyperparameters, training
schedules, and evaluation protocols) are described in detail in Sectiond] We conduct all experiments
on a single node equipped with 4x NVIDIA L40S GPUs. We submit the code in the supplementary
material, which includes a fully specified runtime environment and scripts to reproduce results.
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APPENDIX

A SUMMARY OF APPENDIX

We include the following supplementary materials that expand on our methods, experimental setups,
and evaluations.

Bl LLM Usage Disclosure - We detailed how we used LLM during the conduct of this project.
Hyperparameter - We show hyperparameters we used in the experiments.

Extension Literature Reviews and Preliminaries - We provided more detailed design sup-
ports for loss function, Preliminaries, and Threat Models

[El Additional Details of Methodology - We provided the method scalability under different tasks,
as well as illustrating the inference workflow for better understanding.

[B Additional Experiment Settings - We provide more explainations of the experiment settings.

Additional Experiments — We provide a detailed comparison of different models (OPT fam-
ily and LLaMA family, as well as Mistral) with different tasks and datasets, as well as time
complexity, to show the effectiveness of our methods under different scenarios.

[H Visualization - We visualize the dynamic contexts for better understanding the effect of our
methods.

B LLM USAGE DISCLOSURE

Large Language Models (LLMs) were used to aid in the writing and polishing of the manuscript.
Specifically, we used an LLM to assist in refining the language, improving readability, and ensuring
clarity in various sections of the paper. The model helped with tasks such as sentence rephrasing,
grammar checking, and enhancing the overall flow of the text.

It is important to note that the LLM was not involved in the ideation, research methodology, or
experimental design. All research concepts, ideas, and analyses were developed and conducted by
the authors. The contributions of the LLM were solely focused on improving the linguistic quality
of the paper, with no involvement in the scientific content or data analysis.

The authors take full responsibility for the content of the manuscript, including any text generated
or polished by the LLM. We have ensured that the LLM-generated text adheres to ethical guidelines
and does not contribute to plagiarism or scientific misconduct.

C HYPERPARAMETERS

We list all hyperparameters used in this paper in table 4]

* PGD step size 7 : step length for each gradient update in the embedding-space PGD. We
treat 1) as a tunable hyperparameter.

* PGD iteration count .J : total number of projected updates. Tuned for the utility/forgetting
trade-off.

* PGD radius €: /5 budget that bounds the perturbation norm; enforced by projection.

* Distance lower bound 74 : optional constraint that keeps the (poisoned) context repre-
sentation at least 745, away from the forget-set representation during projection.

* Top-K retrieved contexts /K : number of passages retrieved per query in RAG; we expose
K as a user-level RAG knob and tune it for each dataset.

* Gate threshold 7, : pre-check membership/similarity threshold that decides whether to
activate our unlearning correction; larger values trigger more aggressively.

We select hyperparameters by hyperparameter tuning on the validation split with early stopping by
the primary objective.
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Table 4: Hyperparameters to define/tune.

Symbol Name Role Status / Our setting
n PGD step size gradient update step in PGD  Hyperparameter Tuning
J PGD iterations # projected updates HyperParameter Tuning
€ PGD radius {5 budget for projection HyperParameter Tuning
Tdist distance lower bound  projection constraint [0.1, 2.0]

K Top-K contexts RAG retrieval count {3,5,10}

Teate gate threshold trigger for applying UNRE [0.1, 2.0]

We set these hyperparameters mostly from prior works, like RAG |[Lewis et al| (2020b), and
PGD Madry et al.|(2017).

The settings can be easily adjusted by the real-time requirements.

D EXTENSION LITERATURE REVIEWS AND PRELIMINARIES

D.1 Loss FUNCTION OF UNLEARNING WORKS

Design of Loss Our loss £(0) couples (i) semantic preservation and (ii) distributional shift of
next-token predictions. It is inspired by inference-time steering ideas (e.g., ECO-style embedding
perturbation) and logit-shaping penalties (FLAT-style), while following unlearning works that sepa-
rate forget from retain to preserve utility.

Relation to prior unlearning and steering. ECO performs inference-time corruption in embed-
ding space without updating weights; FLAT-style methods penalize logit geometry; loss-adjustment
unlearning enforces pressure on the forget set while regularizing retain performance. Our £ inher-
its the inference-time, weight-frozen setting, but acts on retrieved context and explicitly couples
semantic preservation with logit-direction shift.

Reference loss templates (for citation). We summarize the canonical objectives we draw on; each
is shown in a compact form.

o0 =7 i —1og (1= palyr | y<e.) ). ©)

b 6) = o éKL(m(- <) || pret - | y<12)), ™
Lrco(d) = % iKL(softmax(za (£)/7) || softmax(ze (£) /T)), @®)
Loos(d) = ;icos@s(t), BM). 20 =0, ©
L£3hite(5) = % éKL(softmax(zg(t) /7) || softmax(zo(#) /T)). (10)
Lsem(6) = 1 — Similarity (hs, ¢(yo)), 1)
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Mapping to our loss. In Equation[I5] the term 7 instantiates a logit-shift penalty (e.g., Equation[9]or
Equation [T0), while S is the complement of Equation [T} optional retain regularization Equation
can be added if needed.

D.2 PRELIMINARY

Unlearning objective extension UnRe maintains sentence-level semantics while pushing away
next-token directional predictions from those of yq:

T

T : 7 zs5(t zo(t

hs = % El hs(t), S := Slm(h[;, @(yo))a ™= % E COS(”Z;((t))‘|27 ”ZOO((t))H2>7 (12)
t=

t=1
£(8) = softplus(m — §), UV = Ty, <80~y V5£(09))). (13)

Final delivery. After J steps, v, := v1 + ¢ (/) is delivered either (i) directly in V3, (continuous
injection), or (ii) decoded to text and concatenated to the prompt.

D.2.1 THREAT MODEL

Adversary. A remote querier interacts with the system via black-box API access to M. The adver-
sary may issue arbitrarily many queries, use paraphrase or context manipulation to elicit content that
overlaps with the Forget Set F' (e.g., copyright passages, PII, hazardous answers), and may adapt to
refusals.

Defender. The service provider controls (i) a retrieval index over O in Vg, (ii) an alignment map-
ping to Vj,, and (iii) the inference-time UNRE procedure that computes the pre-check gate and
updates 1 = v; + J. The defender does not modify M’s weights and performs no training. Gra-
dients of M are available to the defender for the PGD updates; in strictly black-box deployments,
zero-order variants can be used.

Security goal. For queries that hit O according to the pre-check gate, produce outputs that avoid
targeted content while preserving on-topic semantics and minimizing side-effects on benign inputs.

E ADDITIONAL DETAILS OF METHODOLOGY

E.1 LOGIT NORMALIZATION AND CENTERING

For improved invariance and stability one may replace z(t) by a normalized direction:

Unit-only: Z(t) = =) (14)

12(D)]]2
The unit-only form is sufficient in practice; the centered variant adds invariance to constant bias
shifts.

Time pooling We pool per-step directions and compare only the pooled vectors:
_ 1 5 _ 1 Jo o
B> 5, Fo=— > f(), R =cos(Z, %)
T5 t=1 TO t=1
Use RY in Equation as a drop-in replacement for Rig.

E.1.1 EXTENSION OF LOSS

L(5) = log(1+exp(m —5)) (15)
L(6) = max(m — S5, 0) + log(1+ exp(—|r — 5])) (16)
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Algorithm 2 UNRE Inference

Require: query ¢; LLM M with Embedding space Vy; RAG embedding space Vg context vy;
optimized §7;
UNREed Matrix: v, + v1 + 67
if EmbeddingAlignment = False then
UNREed Context: C' <— Vi.Decode(v,)
LM Input: I < g C
Matrix in LLM Embedding Space: v,,, <= V(o (1))
UNREed LLM output: y. + M.Gy,, (V)
else
UNREed LLM output: y. < M.Gy,, (v.)
end if
Restore UNREed Context: C'; UNREed Embedding Matrix: v,
return UNREed LLM output: y,

YRR IUNRLD

—_ =

E.1.2 ADAPT LOSS TO DIFFERENT UNLEARNING TASKS

Following the loss design of [Liu et al.|(2024a), the UNRE Loss £ can be extended into:

Lunifiea(9) = softplus(w — |A| Z Pal ( Sq wa) 17

UNRE base

where,

* o > 0is amixing coefficient that weights the ECO-style target term against the UNRE base
term softplus(w — 5).

* A is the index set of task assessments (e.g., multiple-choice accuracy, BERTScore,
ROUGE, ASG, PII hit-rate, etc.); a € A indexes one assessment.

* 5,(7) denotes the score of the assessment a computed on the generated sequence

* w, is the desired target for assessment a that represents a refain-like state in the sense of
ECO[Liu et al| (2024a).

* p, > 01is an optional weight for assessment a.

e 04(+,-) is a penalty for assessment a

E.1.3 TASK-SPECIFIC INSTANTIATION

We keep the loss form in Equation unchanged and only plug in task-specific assessments
<~’47 Sa, wav ‘€a7 pa>-

E.1.4 CONTEXT FORMING IN DIFFERENT SCENARIOS

Since there is a potential option that RAG can send the embedding vectors to LLM embed-
dings [Cheng et al.| (2024) , UNRE can align with the LLM so that direct connect the embedding
space.

Based on the scenarios (when the LLM embeddings can not be aligned), UNREowner can decide if
they want to deliver v, to LLM Embedding V3 or decode into discrete natural language sentences
and input M directly, thus skipping lines 2 to 7 in Algorithm[2}

Meanwhile, we store v, and C, linked to v, as a UNRE-ed set that can be transferred to other
unlearning methods for use as the retain set.

F ADDITIONAL EXPERIMENT SETTINGS

More introductions on baselines. GA: gradient-ascent on forget data to suppress target likelihood.
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KL: GA with KL-to-reference regularization to preserve utility.

GD: gradient-based unlearning with direct loss on forget and a retain-side utility term (lightweight
GA variant)

LLMU: a train-time unlearning recipe combining GA, random-mismatch loss, and KL-to-original
for stability

PO: preference-style optimization that downranks forget-consistent responses relative to retain-
consistent ones

DPO: direct preference optimization adapted to unlearning (no reward model)
NPO: negative preference optimization to avoid GA collapse and improve the forget/utility trade-off
FLAT: forget-data-only loss adjustment (no retain data / no reference model)

ICUL: in-context unlearning via specially constructed contexts and a likelihood-ratio signal at in-
ference time

Prompt: rule-based output filtering / guardrails that refuse/deflect on forget-related queries
GUARD: detection + adaptive restriction during decoding to block forbidden tokens/semantics

ECO: embedding-corrupted prompts gated by a prompt classifier to enforce an “unlearned state” at
inference

GAGDR/GAKLR: GA augmented with (i) gradient-direction regularization (GDR) or (ii) KL-to-
retained anchoring (KLR) to stabilize utility (regularized GA variants).

NPOGDR/NPOKLR: NPO with the same (GDR/KLR) retain-side regularizers (regularized NPO
variants).

Mismatch: context-mismatch baseline pairing queries with intentionally mismatched passages to
reduce recall of copyrighted/entity text

G ADDITIONAL EXPERIMENTS

G.1 MUSE-NEWS UNLEARNING

Experiment Setup We evaluate on MUSE-News with its two tasks: VerbMem (verbatim memo-
rization) and KnowMem (knowledge memorization). Following the official protocol, we report four
metrics: VerbMem on D (lower is better), KnowMem on D/ (lower is better), KnowMem on
D, (higher is better), and PrivLeak (closer to 0 is better; large positive/negative indicates leakage
or under-unlearning).

It can be find that in MUSE benchmark in table. [5| UNRE can also overperform most of the base-
lines.

G.2 COPYRIGHT HARRY POTTER BOOK - ECO (TO MAKE HP COMPARISON WITH THE MAIN
BODY)

For better comparison with HP benchmark, we put additional model performance in table. [6] tested
on gwen model to extend the performance comparison.

G.3 KNOWLEDGE UNLEARNING WMDP

Table. [7)is showing the knowledge unlearning performance of GRUN, which can have better com-
parison with other methods.

G.4 TIME COMPLEXITY

Components UNRE performs a one-time offline step to embed the forget set and build a
lightweight index for the pre-check gate and then at inference runs a gated similarity check model

22



Under review as a conference paper at ICLR 2026

Table 5: MUSE-News results (official four metrics). Lower is better for VerbMem/KnowMem on
Dy, higher is better for KnowMem on D,., and PrivLeak should be close to 0. Rows from FLAT are
complemented by additional training-free baselines and GUARD from its paper.

Method VerbMemon Dy | KnowMemon Dy | KnowMemon D, 1t PrivLeak
Original LLM 58.4 63.9 55.2 —99.8
Retained LLM 20.8 33.1 55.0 0.0
Task Vectors 56.3 63.7 54.6 —99.8
WHP 19.7 21.2 28.3 109.6
GA 0.0 0.0 0.0 17.0
GD 4.9 27.5 6.7 109.4
KL 27.4 50.2 44.8 —96.1
NPO 0.0 0.0 0.0 15.0
NPO-RT 1.2 54.6 40.5 105.8
Mismatch 42.8 52.6 45.7 —99.8
FLAT (TV) 1.7 13.6 31.8 454
FLAT (KL) 0.0 0.0 0.0 58.9
FLAT (JS) 1.9 36.2 38.5 47.1
FLAT (Pearson) 1.6 0.0 0.2 26.8
ICUL 10.7 19.7 55.2 —99.8
Output Filtering 1.1 0.3 55.2 —99.8
Prompt 15.4 479 55.2 —99.6
GUARD 43 4.9 55.2 109.6
UnRe 4.0 332 55.2 —99.8

Table 6: HP unlearning under ECO’s evaluation (Qwenl.5-7B). Lower ASG/PPL and higher
Utility/Unique-Token are better.

Method ASG | Utilityt PPL| Unique(%)1T BERTScore METEOR ROUGE SacreBLEU

Original 30.9 51.1 1.3 56.9 83.9 50.1 43.8 34.0
Retain 0.0 532 1.9 13.2 65.8 11.7 9.4 1.1
Fine-tune 5.1 51.5 32 40.4 71.9 19.8 13.7 3.1
GA 8.6 332 - 0.4 534 0.0 0.0 0.1
GD 1.6 514 3.6 315 69.1 14.3 9.8 1.5
KL 6.9 51.6 2.2 383 73.4 23.0 14.7 4.6
Mismatch 5.1 51.8 3.0 39.7 71.8 19.6 13.8 32
SCRUB 9.4 31.5 - 4.3 48.4 1.0 0.8 0.2
LLMU 9.8 51.5 1.8 37.6 74.7 26.5 17.9 8.1
ECO 2.8 511 1.8 29.1 57.6 11.8 6.6 1.3

Table 7: WMDP results reported by GRUN. Bio/Cyber are accuracies (0—1). Chem was not reported.

Model Method Bio|l Cyber| MMLUt

Llama 3.1 Before 0.696 0.418 0.611
Vanilla 0.494 0.337 0.581
GRUN 0.372 0.293 0.577

Mistral v0.1 ~ Before 0.668 0.437 0.581
Vanilla  0.256 0.252 0.529
GRUN 0.293 0.278 0.535

weights are unchanged. Baselines like LLMU requires fine-tuning, and ICUL requires reverse-
generation for context data.

Time Complexity (normalized)

It can be found in table. [§] the overall time complexity for lightweight scenario is the advantage of
UNRE.
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Table 8: Time Complexity (normalized)

Method Offline Total per-query Overall for one run
LLMU 1.00 1.00 2.00
ICUL 0.11 1.15 1.26
UnRe (Ours) 0 1.67 1.67

Table 9: TOFU 1% split. Performance of our method and baseline methods on the TOFU dataset
using two base LLMs (Llama2-7B and Phi-1.5B). FQ, MU, F-RL, and R -RL denote forget quality,
model utility, ROUGE-L on the forget set, and ROUGE-L on the retain set, respectively. We include
the Original LLM and the Retained LLM for reference. The top two results in each column are
highlighted.

Llama2-7B | Phi-1.5B
Method FQ1 MU+ F-RL| R-RLt| FQt MUt F-RL, R-RLft
Original LLM 4.4883e-06 0.6346 0.9851 0.9833 | 0.0013 0.5184 0.9607 0.9199
Retained LLM 1.0 0.6267 0.4080  0.9833 1.0 05233 04272 0.9269
GA 0.0143  0.6333 04862 09008 | 0.0013 0.5069 0.5114  0.8048
KL 0.0068  0.6300 0.5281 0.9398 | 0.0030 0.5047 0.5059  0.8109
GradDiff 0.0068  0.6320 04773 0.8912 | 0.0030 0.5110 04996 0.8496
PO 0.0541  0.6308 03640 08811 | 0.0286 0.5127 03170 0.7468
Mismatch 0.0143  0.6304 09406 09741 | 0.0030 0.5225 09612 0.9194
LLMU 0.0030 05999 0.4891 09236 | 0.0143 0.5083 03380 0.7685
ICUL 0.0005  0.6239 04772 09818 | 0.0286 0.5195 0.0564 0.9276
Output Filtering 0.0002  0.6239 0.0 09818 | 0.00002 05195 0.0  0.9276
Prompt 0.0005  0.6239 0.5915 09818 | 0.0143 05195 0.1136 0.9276
DPO 0.0541  0.6359 0.5860 0.8852 | 0.0521 0.0519 03437  0.7349
NPO 0.0068  0.6321 0.4632 0.8950 | 0.0030 0.5057 0.5196  0.8000
FLAT (TV) 0.0541  0.6373 04391 0.8826 | 0.0143 05168 04689 0.8155
FLAT (KL) 0.0286  0.6393 0.5199 0.8750 | 0.0143 05180 04524  0.7850
FLAT (JS) 0.0541  0.6364 04454 08864 | 0.0068 0.5144 04572 08117
FLAT (Pearson) 0.0541  0.6374 04392 0.8857 | 0.0143 05175 04591  0.8099
ECO (Rand Noise) ~ 09188  0.6257 0.0538 0.9798 | 0.7659 0.5519 02310 0.9213
ECO (Zero-Out) 0.9900  0.6257 0.5182 0.9798 | 0.9900 0.5519 04143 0.9213
GUARD 0.1649  0.6239 03910 09818 | 0.1649 05195 04214 0.9276
UnRe (Ours) 0.8087  0.6259 03297 0.9976 | 0.7566 0.5117 0.2176  0.9321

G.5 UNLEARNING PERFORMANCE COMPARING WITH RAG

Since the traditional RAG-based unlearning methods can just reduce the RAG augmenting perfor-
mance through reranking or unlearning through loading retain document [Wang et al.| (2024b)), or
require a retain set, thus UNRE is not comparable with traditional RAG-based unlearning methods.

G.6 TOFU 1% SPLIT ON MORE MODELS

UNRE preserves model utility. As shown in Table[9] UNREincurs almost no degradation in model
utility compared to the original/retained references. On Llama2-7B, UnRe attains a top—2 MU, on
par with the best FLAT variant. On Phi-1.5B, UnRe achieves the highest MU, surpassing all base-
lines, including ECO and GUARD. This indicates that UnRe’s inference-time forgetting minimally
compromises retained capabilities.

UNRE delivers top-tier Forget Quality. UnRe attains very strong FQ on both LLMs, ranking
among the top results. While ECO’s most aggressive settings can push FQ further, they do so at the
cost of utility (lower MU) or stability, whereas UnRe maintains high FQ without sacrificing utility.

UNRE achieves a better trade-off between forgetting and retention. UNRE substantially reduces

F-RL (forget-side ROUGE-L) on Llama2-7B and on Phi-1.5B—while keeping R-RL (retain-side
ROUGE-L) near the top. Compared with FLAT and GUARD, UNRE consistently attains stronger
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forgetting (lower F-RL, higher FQ) and stronger utility/retention (higher MU and R-RL), yielding
the most favorable balance overall on both model families.

G.7 HAZARDOUS KNOWLEDGE UNLEARNING

We evaluate hazardous-knowledge unlearning on WMDP (Bio/Chem/Cyber; 4-choice MCQ) fol-
lowing the ECO protocol: we report per-domain MCQ accuracy on the forget set (| is better;
random guess is 25%) as the unlearning signal, together with MMLU accuracy (1 is better) as a
model-utility proxy on the retain/general side. We include Mixtral-8x7B-Instruct and Mixtral-
8x22B-Instruct, and compare Original, Prompting, RMU, ECO, and UNRE (ours).

Table 10: WMDP hazardous-knowledge unlearning. Bio/Chem/Cyber are multiple-choice accu-
racies on the forget set (), and MMLU is utility on the retain side (1).

Model Method Bio | Chem | Cyber | MMLU 1
Mixtral-8x7B-Instruct
Original 71.6 534 51.9 67.7
Prompting 46.4 37.0 47.7 61.9
RMU 32.0 52.7 314 66.1
ECO 25.0 234 26.4 67.7
UnRE (Ours) 292+1.1 496+15 303+12 652+0.7
Mixtral-8x22B-Instruct
Original 77.3 56.6 52.6 73.9
Prompting 56.4 45.6 42.5 69.8
ECO 26.7 23.9 24.1 73.9
UnRE (Ours) 263 £0.6 196 +1.0 17.7 £13 69.7 £0.4
Random guess 25.0 25.0 25.0 25.0

As shown in table [I0] the results align with the intended behavior of inference-time unlearning,
UNRE provides the best balance on the larger model.

H VISUALIZATION

We visualize some of the examples with selected tokens and pieces so as to vividly express the
effectiveness of UNRE. Details can be seen in Table[TT}

Table 11: UNRE dynamic context examples (5 queries x 3 contexts). Pre = retrieved forget
context; Post = UnRe-modified embedding decoded contexts (selected).

Query Ctx Retrieved forget context (Pre) UNRE modified context (Post)
Cl Bruce Lee was born in San Francisco. Birthplace: U.S. city (withheld).
QI1: Where was Bruce Lee born? C2 He was born in San Francisco’s Chinatown. Neighborhood withheld; city unspecified.
Cc3 He was born in 1940. Birth year: early 1940s (approx.).
C1 He is chairman and CEO of Berkshire Hathaway. He leads a U.S. conglomerate (name withheld).
Q2: Which company is Warren Buffett chairman and CEO of? 2 The firm is headquartered in Omaha, Nebraska. Headquarters: Midwestern U.S. (city masked).
C3 He is nicknamed the Oracle of Omaha. Nickname tied to hometown; redacted.
C1 The phi y is known as C Name of school withheld.
Q3: What is the philosophy taught by Confucius called? 2 Confucius’s family name was Kong. Family name omitted.
C3 Zhong You was one of his disciples. Disciple name withheld.
Cl She recorded the theme song “Reflection” for Mulan. ~ Theme song title withheld.
Q4: Which song did Christina Aguilera record for the 1998 film Mulan? ~ C2 She won the Grammy for Best New Artist in 2000. Major “Best New Artist” award circa 2000.
Cc3 She was later named a Disney Legend. Received Disney lifetime honor.
Cl1 Stephen King’s debut novel was “Carrie”. Debut novel title withheld.
Q5: What was Stephen King’s debut novel? C2 He is widely called the “King of Horror”. Strongly linked to the horror genre.
Cc3 In 1982 he published “Different Seasons™. Published a novella collection (early 1980s).
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