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ABSTRACT

The deployment of Graph Neural Networks (GNNs) on MLaaS platforms makes
them vulnerable to Model Extraction Attacks (MEAs), where an adversary queries
a proprietary model’s API to reconstruct a high-fidelity surrogate. However, the
practicality of current methods is limited by unrealistic assumptions, such as ac-
cess to detailed soft-label probabilities, large initial seed datasets, or permissive
query budgets. To address this gap, this work introduces MIME, a framework
designed for the more stringent and realistic “Cold Start in the Dark” problem,
where an adversary operates with no initial labels and only hard-label feedback
under a tight budget. MIME resolves the critical cold start challenge using un-
supervised pre-training to establish a strong structural baseline from the topology
alone. This bootstraps a query-efficient active learning loop that strategically bal-
ances node uncertainty and diversity, ensuring robustness through adaptive graph
regularization. Extensive experiments show that MIME achieves strong perfor-
mance on both model accuracy and fidelity. The findings demonstrate a practical
and stealthy attack vector, exposing a concrete security risk to production GNNs
by succeeding under realistic adversarial constraints.

1 INTRODUCTION

Graph Neural Networks (GNNs) are foundational to modern machine learning, delivering state-of-
the-art results on graph-structured data in fields like social network analysis (Gupta et al., 2021),
molecular chemistry (Scarselli et al., 2009), and computational biology (Muzio et al., 2021). Their
success has fueled the rise of Graph-based Machine-Learning-as-a-Service (GMLaaS) platforms
that offer access to proprietary GNNs via pay-per-query APIs (Wu et al., 2024). These models,
representing significant investments in data, computation, and expertise, become vulnerable to theft
when exposed through public APIs (Dubey et al., 2022; Hou et al., 2019).

The MLaaS platforms present a core conflict between profitability and security (Kesarwani et al.,
2018). While pay-per-query interfaces are essential for revenue, they also create a primary attack
vector (Carlini et al., 2021). Model Extraction Attacks (MEAs) are a major threat in this context,
driven by clear economic incentives: if the cost of replicating a model is less than the cost of using
the service, an adversary is motivated to act (Dubey et al., 2022; Gong et al., 2020). Attackers
can use black-box queries to train a substitute model, effectively stealing the provider’s intellectual
property (Tramer et al., 2016; Orekondy et al., 2019; Wang & Gong, 2018). A successful MEA is
not just a loss of IP but a security breach, as the stolen model can be used for further attacks, such
as crafting adversarial inputs or inferring sensitive training data (Chandrasekaran et al., 2020).

Despite the clear threat posed by MEAs, a significant gap persists between their theoretical potential
and practical execution, particularly for Graph Neural Networks (GNNs). This gap stems from
a research paradigm built on unrealistic assumptions, revealing four foundational flaws when the
idealized conditions of the literature are contrasted with the harsh constraints of a real-world attack.

Data Assumption. Many model extraction attacks assume a data-rich adversary with a large, un-
labeled dataset similar to the victim’s (Orekondy et al., 2019; He et al., 2023). A more realistic
setting, however, is data scarcity, where an attacker has only a small, random sample of nodes. Such
a sample is insufficient to infer the data distribution and lacks strategic value.
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Feedback Assumption. Much of the literature assumes attackers receive soft-label feedback—
informative probability vectors that show model confidence and offer a strong learning signal
(Orekondy et al., 2019; Krishna et al., 2020). In reality, providers typically return only hard labels,
giving just the top-1 prediction. This minimal, non-differentiable feedback significantly increases
the difficulty of an attack.

Query Assumption. Existing methods often assume a permissive query budget, allowing for a
large number of queries without restriction (He et al., 2021). Real-world scenarios are far more
constrained: APIs use rate limiting and anomaly detection (Cheng et al., 2025), and the pay-per-
query model imposes a strict financial budget. This forces an attacker to be highly efficient, often
limited to single-node queries (Wang et al., 2022).

Seed Assumption. Many attacks require an initial set of seed nodes with known ground-truth labels
to begin (Kipf & Welling, 2017; Zhang et al., 2022). In a true black-box setting, an adversary has
no such labels. Their only source of supervision comes from the victim model’s own predictions,
which serve as potentially flawed pseudo-labels, offering no initially trusted information.

These assumptions are not isolated; they are interconnected “crutches” that have enabled prior work
to bypass significant challenges (Wu et al., 2023). A large dataset reduces the need for a sophisti-
cated query strategy, soft labels facilitate a seed-free start, and an unlimited query budget allows for
brute-force solutions. When these supports are removed, the attacker faces a dilemma: an effective
query strategy is needed, but developing one is nearly impossible with a tight budget, hard labels,
and no trusted seeds for guidance (Li et al., 2018). We formalize this challenge as the Cold Start in
the Dark problem, describing an adversary who starts “cold” (with no ground-truth labels) and op-
erates “in the dark” (with scarce data, hard-label feedback, and a strict query budget). Conventional
strategies fail against this realistic benchmark, necessitating a new approach.

To address the Cold Start in the Dark problem, we introduce MIME (Minimal Information
Model Extraction), a framework engineered to operate with minimal information: no proxy data, no
initial labels, hard-label feedback, and a tight query budget. MIME strategically builds knowledge
from scratch. First, it uses unsupervised pre-training (Deep Graph Infomax) to learn from the graph’s
structure alone, then efficiently queries nodes by sequentially filtering for uncertainty and diversity.
Subsequently, a surrogate model is trained on the acquired hard labels, stabilized by a composite
loss that leverages graph topology to compensate for sparse data. Finally, post-budget self-training
refines the model at no additional cost.

Contributions. Our key contributions are as follows. (i) Problem formulation: We define the
Cold Start in the Dark problem, a stringent and practical attack scenario for GNNs that reflects
real-world constraints. (ii) Novel methodology and baseline: We propose MIME, a framework
for effective model extraction under minimal information. Experiments show MIME consistently
outperforms existing methods in this setting, establishing a new performance baseline. (iii) Security
implications: MIME offers attackers a blueprint for stealthy, low-budget extraction, while providing
defenders a benchmark that highlights the limitations of simple query monitoring.

2 PRELIMINARIES AND PROBLEM FORMULATION

Preliminaries. We consider a graph Gfull = (Vfull, Efull) with features Xfull ∈ R|Vfull|×d, which is
hidden from the attacker. A Graph Neural Network (GNN), f(A,X; θ), learns node representations
via message passing (Gilmer et al., 2017). Our work focuses on transductive node classification,
where a model predicts labels for nodes within a given graph (Kipf & Welling, 2017). Let C be
the number of classes. Our “cold start” strategy uses Deep Graph Infomax (DGI), an unsupervised
method that learns node embeddings by maximizing mutual information between local and global
representations, requiring no label information (Velickovic et al., 2019). For simplicity, we denote
the victim’s output vector for a node v as fv(v) ∈ RC .

Attack Setting. Unlike existing GNN extraction attacks that assume access to shadow datasets or
the victim’s data distribution (Zhuang et al., 2024b), our work focuses on a more realistic, strict
black-box setting. The attacker operates in a strict black-box environment. Their knowledge is
confined to an unlabeled, induced subgraph Gsub = (Vsub, Esub), including its node features Xsub

and local adjacency matrix Asub. The attacker has no initial labels and is entirely unaware of the
global graph structure outside of Gsub. The architecture and parameters of the victim model fv are
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unknown. The attacker interacts with the victim model’s API under two critical constraints often
imposed in MLaaS settings (Guan et al., 2024): (1) a small total query budget B ≪ |Vsub|, and (2)
hard-label feedback, where each query for a node v ∈ Vsub returns only the predicted class label,
denoted yvictim

v . Concretely, the service predicts on the full hidden graph and returns the hard label

yvictim
v = arg max

c∈{1,...,C}
fv(v)c,

while the attacker can only submit node identifiers (or their handles within Gsub). The attacker’s
goal is to train a surrogate model fs that functionally mimics the victim model fv .

Evaluation Metrics vs. Attacker Knowledge. Success is measured by two standard metrics on a
held-out test set Vtest: Accuracy (agreement with ground-truth labels) and Fidelity (agreement with
fv predictions) (Jagielski et al., 2020). Accuracy relies on ground-truth labels and is only used for
offline research evaluation (not available to the attacker), whereas Fidelity is measurable from the
attacker’s interaction with fv .

Formally, let ytrue
v be the ground-truth label for a node v. The metrics are defined as:

Accuracy =
1

|Vtest|
∑

v∈Vtest

1
{
argmax

c
fs(v)c = ytrue

v

}
, (1)

Fidelity =
1

|Vtest|
∑

v∈Vtest

1
{
argmax

c
fs(v)c = argmax

c
fv(v)c

}
. (2)

Here, 1{·} denotes the indicator function.

Problem Formulation. We first formalize the constraints governing our attack setting.

Assumption 1. Attacker Constraints. Let the victim model be an unknown GNN fv . An adver-
sary is given access to an induced subgraph Gsub ⊂ Gfull and a query oracle O(·) with a total
budget B. The oracle is constrained to providing only hard-label feedback (O(v) → yvictim

v =
argmaxc fv(v)c), exposes no internal model states, and provides no ground-truth labels {ytrue

v }.

With these constraints established, we can now formally define the model extraction task.

Definition 1. Model Extraction Task. Given Gsub and budget B, the task involves selecting a
query set Q ⊆ Vsub (with |Q| ≤ B), acquiring a labeled set YQ = {O(v) | v ∈ Q} by querying
the oracle, and subsequently training a surrogate model fs on this data. The objective is to achieve
high Fidelity, fs ≈ fv , on unseen nodes.

This definition of the task naturally leads to a budgeted optimization problem focused on maximizing
a utility function J .

Problem 1. Budgeted Optimization. With an offline utility J combining Accuracy and Fidelity,
the goal is to find an optimal query set Q⋆ that maximizes this utility after training:

Q⋆ = arg max
Q: |Q|≤B

J
(
fs(·; θ⋆s(Q))

)
, where θ⋆s(Q) ∈ argmin

θs
Lsup(Q,YQ; θs) + λRgraph.

This optimization problem is not monolithic; it has an inherent bilevel structure.

Proposition 1. Bi-level Structure. The problem in 1 is a bi-level optimization task that consists of
an outer combinatorial loop that selects the optimal query set Q⋆ from a discrete space to maximize
the final utility, and an inner continuous loop that trains the optimal surrogate parameters θ⋆s(Q)
for a given Q.

3 METHODOLOGY

Our model extraction framework is designed for a realistic black-box setting defined by four key
constraints: (i) data scarcity (an unlabeled subgraph only), (ii) hard-label feedback, (iii) a restrictive
query budget, and (iv) no initial ground-truth labels.
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3.1 OVERVIEW OF THE ATTACK FRAMEWORK

Our attack follows an iterative, three-phase process, as illustrated in Figure 1 and detailed in Ap-
pendix Algorithm 1. This process trains a surrogate model fs from zero initial labels using a small
query budget. It begins by addressing the cold start problem with unsupervised representation learn-
ing for initial node selection. The framework then enters an active learning loop, selecting uncertain
yet diverse nodes for querying through a sequential filter. The surrogate is retrained after each round
using a loss function with adaptive, topology-aware regularization. Once the budget is exhausted, a
final self-training step improves the model at no additional cost.

Figure 1: The three-phase workflow of MIME, progressing from a DGI-based cold start, through an
active learning loop, to a final fine-tuning phase.

3.2 UNSUPERVISED PRE-TRAINING FOR COLD START INITIALIZATION

To address the cold start challenge, where no initial labels exist, we employ DGI to learn structurally-
aware node embeddings. Minimizing the DGI objective, which maximizes a lower bound on mutual
information, is formulated as:

LDGI(θs) = −
∑

v∈Vsub

[
log σ(D(hv, s)) + log σ(−D(h̃v, s))

]
. (3)

DGI Details and Symbols. In Eq. equation 3, an encoder gθ generates node embeddings hv , and the
surrogate fs adds a classification head. The global summary s is the mean of all node embeddings
(s = 1

|Vsub|
∑

u∈Vsub
hu), and negative samples h̃v are created by corrupting input features. D(·, ·)

is a bilinear discriminator and σ(·) is the sigmoid function.

Minimizing this objective produces a static embedding matrix, H(0) = {h(0)
v |v ∈ Vsub}. These

structurally-rich, label-agnostic embeddings are used only in the cold start phase to select an ini-
tial query set Q0. The selection uses a farthest-first k-center algorithm on H(0) (see Appendix A,
Eq. equation 13) with the angular distance metric defined below.

Distance Metric. For diversity-based selection, we use the angular distance d(u, v) =

arccos
(

⟨u,v⟩
∥u∥2∥v∥2

)
, derived from cosine similarity. It is a valid metric satisfying the triangle in-

equality. For numerical stability, the inner product is clipped to [−1, 1] before applying arccos.

3.3 ITERATIVE QUERY STRATEGY: SEQUENTIAL FILTERING

Rounds and Budget. The total query budget is B. Queries are performed in rounds γ = 1, . . . ,Γ,
with a batch size of q nodes per round. The total number of rounds is Γ =

⌈
B−|Q0|

q

⌉
. We set

Q(0) = Q0 and Q(γ) =
⋃γ

t=0 Qt.

Given the strict query budget, each query must be informative. Our selection mechanism adopts a
sequential filtering pipeline: the current surrogate f

(γ−1)
s first identifies a pool of highly uncertain

nodes, and then a diverse, class-balanced batch is chosen from this pool for querying.

Stage 1: Uncertainty-Based Candidate Pooling. For each unqueried node v ∈ Vsub \ Q(γ−1),
we compute a composite uncertainty score from the output distribution pv of f (γ−1)

s (where pv,c

4
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denotes the surrogate’s softmax probability for class c):

U(v) = went

(
−

C∑
c=1

pv,c log pv,c

)
+ wmar

(
1−

(
p(1)v − p(2)v

))
. (4)

The weights are non-negative (went, wmar ≥ 0) and normalized (went +wmar = 1). The terms p(1)v

and p
(2)
v are the two largest probabilities in the vector pv . Since the margin p

(1)
v − p

(2)
v ∈ [0, 1], the

second term also lies in [0, 1], maintaining dimensional consistency with the entropy score. We then
form the candidate pool Pγ by taking the top-mγ nodes with highest U(v), where mγ = κq for
some integer κ ≥ 1.

Stage 2: Diversity-Enforced Final Selection. To avoid redundant queries and leverage the model’s
evolving knowledge, we enforce diversity within Pγ via a k-center objective in the dynamic em-
bedding space of the current surrogate model. Let h(γ−1)

v be the embedding of node v produced by
f
(γ−1)
s . We select a size-q batch Qγ via

Q∗
γ = arg min

Q⊆Pγ

|Q|=q

max
v∈Pγ

min
u∈Q

d
(
h(γ−1)
v , h(γ−1)

u

)
, (5)

which is approximated by a farthest-first greedy procedure. This provides a 2-approximation to the
optimal solution (see Appendix A).

In addition, we apply a per-class quota to reduce selection bias towards a single predicted class. Let
the surrogate’s predicted class for a node u be ŷu = argmaxc pu,c. The per-class cap qc is:

qc = max
(
1,

⌈
β · q

C

⌉)
, ∀ c ∈ {1, . . . , C}, β ∈ (0, 1]. (6)

During the greedy selection, a candidate is added to Qγ only if the number of nodes selected for
its predicted class ŷu has not yet reached the cap. If the class-cap constraint makes the selection
infeasible (i.e., |Qγ | < q after one pass), we gradually relax it by increasing β toward 1 and, if
needed, lifting the cap for the least represented predicted classes until |Qγ | = q.

3.4 SURROGATE MODEL TRAINING AND REGULARIZATION

Training a robust surrogate from a sparse set of hard labels requires a carefully designed objective
function. At each round γ, the model is trained by minimizing the composite loss:

Ltrain(θs) = LCE(Q
(γ), Y

(γ)
Q ) + λlap(γ)Llap. (7)

Let zv ∈ RC denote the logits of node v from the current surrogate, and pv = softmax(zv). All
logarithms are natural. The first term is the cross-entropy loss:

LCE(Q
(γ), Y

(γ)
Q ) = − 1

|Q(γ)|
∑

v∈Q(γ)

C∑
c=1

1
(
yvictim
v = c

)
log(pv,c). (8)

The second term, Llap, is a node-level adaptive Graph Laplacian regularizer:

Llap =
1

|Esub|
∑

(i,j)∈Esub

√
wiwj

∥∥∥∥∥ zi√
deg(i) + 1

− zj√
deg(j) + 1

∥∥∥∥∥
2

2

. (9)

In practice, if the subgraph is edgeless (|Esub| = 0), we define Llap = 0. For directed graphs, this
can be adapted by using a symmetrized adjacency matrix. The components of Eq. equation 9 are
defined as follows. The term zi ∈ RC is the unnormalized logits for node i. The node degree is
deg(i) = |{j : (i, j) ∈ Esub}|. The node weights wv combine normalized degree and clustering
coefficients:

wv = clip[0,1]

(
αnode normdeg(v) + (1− αnode) normclust(v)

)
, αnode ∈ [0, 1]. (10)

Here, cc(v) is the local clustering coefficient of node v in Gsub, and clip[0,1](x) =

min(1,max(0, x)). The normalization functions normdeg(v) and normclust(v) apply min-max
scaling to node degrees and local clustering coefficients over all nodes in Vsub. For min–max nor-
malization, if the denominator is zero, we set the normalized value to 0. The regularization strength
λlap(γ) is scheduled heuristically as described in Appendix A.
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3.5 FINE-TUNING WITH SELF-TRAINING

After the total query budget B is exhausted (at round Γ), we perform a final fine-tuning step via self-
training. We use the final surrogate f

(Γ)
s to generate predictions on all unqueried nodes. A pseudo-

labeled set Vpseudo is curated by selecting nodes whose maximum prediction probability exceeds a
hyperparameter threshold τ⋆ ∈ (0.5, 1):

Vpseudo =
{
v ∈ Vsub \Q(Γ) : max

c
pv,c ≥ τ⋆

}
. (11)

For v ∈ Vpseudo, we define the pseudo-label ypseudo
v = argmaxc pv,c and collect Ypseudo = {ypseudo

v :
v ∈ Vpseudo}. The model is then fine-tuned by minimizing the following loss, with a hyperparameter
weight λpseudo ≥ 0:

Lfinal = LCE(Q
(Γ), Y

(Γ)
Q ) + λpseudo LCE(Vpseudo, Ypseudo). (12)

This step uses confident pseudo-labels to refine the decision boundaries without additional queries.

4 EXPERIMENTAL EVALUATION

In this section, we conduct a series of rigorous experiments to systematically evaluate our proposed
model extraction framework. Our evaluation is designed to address three central research questions:
RQ1: What is the influence of varying query budgets on our model’s effectiveness compared to
baselines, given the same limited initial information? RQ2: How does the amount of initial infor-
mation available to the attacker, specifically the size of the query pool, impact the performance of
the models? RQ3: What are the individual contributions and effectiveness of our framework’s core
components? To answer these questions, we first detail our comprehensive experimental setup.

4.1 EXPERIMENTAL SETUP

Datasets and Attack Scenario. We experiment on five diverse node classification benchmarks:
co-authorship networks Coauthor-CS (CoCS) and Coauthor-Physics (CoP); co-purchase networks
Amazon-Computer (AmzC) and Amazon-Photo (AmzP); and the citation network Cora-Full (Cora).
To simulate a realistic black-box attack, we partition nodes into a 60% set to train the victim model
fv and a 40% global test set, which remains hidden from the attacker. The attacker can query from
a pool of nodes drawn from the victim’s training set. For our primary analysis on query budgets,
this pool is fixed at 10% of the total nodes; to study the impact of prior information, we vary its size
from 1% to 10%.

Victim Model Training Protocol. To ensure reproducibility and fairness, we pre-train the victim
model and freeze its parameters for all experiments. The victim model is a Graph Convolutional
Network (GCN) with hidden dimension 16 and dropout p = 0.5, trained on the exclusive 60%
training partition. Training is performed for Tvic = 1000 epochs using the Adam optimizer with
learning rate ηvic = 1× 10−3 and weight decay λwd = 5× 10−4. These settings ensure consistent
with the standard GCN practice (Kipf & Welling, 2017).

Evaluation Scheme. We evaluate performance under multiple total query budgets B ∈
{5C, 10C, 15C, 20C}, where C is the number of classes. Queries are performed iteratively in
batches of size q, leading to a total of Γ = ⌈(B − |Q0|)/q⌉ active learning rounds. We adopt
two complementary metrics. Accuracy measures surrogate model correctness on the global test set
and reflects practical utility. Fidelity quantifies agreement between surrogate and victim predictions
on the test set, as defined in Eq. equation 2, and serves as the core metric for model stealing success
(Jagielski et al., 2020; Podhajski et al., 2024; Wu et al., 2023). To ensure statistical significance,
all experiments are repeated five times with different random seeds, and we report the mean and
standard deviation of the results.

Baselines. We benchmark against a spectrum of representative methods. The Random baseline
selects nodes uniformly at random from the query pool, serving as a lower bound. AGE (Active
Graph Embedding) is a classic active learning approach that prioritizes nodes expected to maxi-
mally reduce uncertainty or improve embeddings (Cai et al., 2017a). CEGA (Cost-Efficient Graph
Acquisition) is a state-of-the-art framework that selects informative nodes by jointly considering

6
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representativeness, uncertainty, and diversity (Wang et al., 2025). Finally, the Realistic Attack
method incorporates an edge prediction module that adds potential edges within the subgraph to
enhance connectivity based on feature similarity (Guan et al., 2024). To ensure a fair comparison,
all baselines operate under the same minimal information constraints as our framework.

A comprehensive breakdown of our methodology, including all model hyperparameters and com-
plete experimental results, is presented in Appendix E.

4.2 PERFORMANCE UNDER VARYING QUERY BUDGETS

To answer RQ1, we evaluate MIME against the baselines under four distinct total query budgets: 5C,
10C, 15C, and 20C, where C is the number of classes. The comprehensive Accuracy and Fidelity
scores for all methods across the five benchmark datasets are detailed in Table 1.

Consistent High Performance. The results highlight a key trend: while all methods benefit from
larger query budgets, MIME’s performance trajectory is notably steeper and more consistent across
both accuracy and fidelity. Although not always the top performer in every isolated scenario, MIME
establishes a significant and robust overall advantage. This performance gap widens as the query
budget increases, underscoring the framework’s superior query efficiency and its ability to continu-
ously extract value from new information.

Impressive Efficiency at Low Budgets. A key strength of MIME is its remarkable efficiency in low-
budget regimes, which are critical for stealthy attacks. The framework consistently achieves high
performance with a highly restricted number of queries. Most notably, in several instances, MIME’s
effectiveness with a minimal budget meets or even surpasses what baseline methods achieve only at
their maximum budget. This demonstrates a substantial improvement in query efficiency, directly
attributable to its robust cold start initialization and strategic node selection. Consequently, MIME
proves its viability as a real-world attack vector, capable of replicating a target model with high
fidelity at a fraction of the expected cost.

Table 1: Comparison of accuracy and fidelity across methods and total query budgets on five
datasets. The best performance for each budget and dataset is highlighted in bold.

Dataset Method
Accuracy

Query Budget
Fidelity

Query Budget

5C 10C 15C 20C 5C 10C 15C 20C

CoCS

Random 0.7262± 0.03 0.8103± 0.02 0.8396± 0.01 0.8565± 0.01 0.7429± 0.03 0.8327± 0.02 0.8642± 0.01 0.8846± 0.01
AGE 0.7576± 0.03 0.8396± 0.02 0.8617± 0.01 0.8744± 0.01 0.7741± 0.03 0.8634± 0.02 0.8897± 0.01 0.9046± 0.01
CEGA 0.7212± 0.06 0.8419± 0.01 0.8682± 0.00 0.8795± 0.00 0.7336± 0.07 0.8659± 0.01 0.8962± 0.00 0.9117± 0.00
REALISTIC 0.7624± 0.02 0.8280± 0.01 0.8557± 0.01 0.8688± 0.01 0.7824± 0.02 0.8525± 0.01 0.8854± 0.01 0.9000± 0.01
MIME 0.8005± 0.02 0.8913± 0.01 0.9049± 0.01 0.9059± 0.00 0.8203± 0.03 0.9200± 0.01 0.9371± 0.01 0.9363± 0.01

CoP

Random 0.6779± 0.08 0.7870± 0.05 0.8434± 0.03 0.8724± 0.01 0.6846± 0.08 0.7970± 0.05 0.8559± 0.03 0.8868± 0.01
AGE 0.7963± 0.04 0.8336± 0.05 0.8865± 0.04 0.8927± 0.02 0.8053± 0.04 0.8457± 0.05 0.9027± 0.04 0.9087± 0.02
CEGA 0.6744± 0.06 0.8090± 0.04 0.8512± 0.04 0.9046± 0.01 0.6897± 0.06 0.8199± 0.04 0.8537± 0.04 0.9220± 0.01
REALISTIC 0.6863± 0.08 0.7946± 0.05 0.8671± 0.02 0.8854± 0.01 0.6930± 0.09 0.8050± 0.05 0.8807± 0.02 0.9019± 0.01
MIME 0.8347± 0.04 0.9228± 0.01 0.9296± 0.00 0.9331± 0.00 0.8461± 0.04 0.9407± 0.01 0.9483± 0.00 0.9523± 0.00

AmzC

Random 0.5978± 0.07 0.6957± 0.02 0.7343± 0.01 0.7566± 0.02 0.6310± 0.08 0.7361± 0.02 0.7788± 0.01 0.8046± 0.02
AGE 0.5781± 0.06 0.6863± 0.03 0.7295± 0.02 0.7598± 0.02 0.6100± 0.06 0.7278± 0.03 0.7726± 0.02 0.8068± 0.03
CEGA 0.4394± 0.01 0.6686± 0.02 0.7292± 0.02 0.7802± 0.01 0.4545± 0.01 0.7068± 0.03 0.7731± 0.03 0.8301± 0.01
REALISTIC 0.6660± 0.05 0.7067± 0.02 0.7491± 0.00 0.7631± 0.02 0.7024± 0.06 0.7440± 0.03 0.7858± 0.00 0.8058± 0.02
MIME 0.4795± 0.07 0.7242± 0.03 0.7974± 0.02 0.7989± 0.04 0.5026± 0.07 0.7624± 0.04 0.8488± 0.02 0.8487± 0.05

AmzP

Random 0.6694± 0.03 0.7629± 0.03 0.8155± 0.02 0.8389± 0.01 0.6902± 0.03 0.7875± 0.03 0.8442± 0.02 0.8693± 0.02
AGE 0.5152± 0.07 0.7820± 0.04 0.8240± 0.03 0.8363± 0.02 0.5293± 0.08 0.8056± 0.05 0.8508± 0.03 0.8631± 0.02
CEGA 0.4934± 0.13 0.7492± 0.06 0.8383± 0.01 0.8519± 0.01 0.5034± 0.13 0.7676± 0.07 0.8658± 0.01 0.8790± 0.01
REALISTIC 0.7642± 0.04 0.8052± 0.05 0.8431± 0.02 0.8545± 0.02 0.7895± 0.04 0.8350± 0.05 0.8730± 0.02 0.8857± 0.02
MIME 0.4961± 0.16 0.6974± 0.11 0.8242± 0.09 0.8857± 0.02 0.5071± 0.18 0.7143± 0.12 0.8457± 0.09 0.9146± 0.02

Cora

Random 0.3175± 0.03 0.4220± 0.01 0.4773± 0.00 0.5068± 0.00 0.3778± 0.04 0.5104± 0.01 0.5833± 0.01 0.6234± 0.00
AGE 0.2761± 0.01 0.3508± 0.01 0.4190± 0.00 0.4755± 0.00 0.3265± 0.01 0.4198± 0.01 0.5039± 0.01 0.5786± 0.00
CEGA 0.2764± 0.01 0.3640± 0.01 0.4327± 0.01 0.4771± 0.00 0.3235± 0.01 0.4540± 0.01 0.5206± 0.01 0.5804± 0.00
REALISTIC 0.3033± 0.01 0.4055± 0.00 0.4653± 0.01 0.4932± 0.01 0.3623± 0.02 0.4923± 0.01 0.5696± 0.01 0.6065± 0.01
MIME 0.3605± 0.01 0.4608± 0.00 0.5219± 0.01 0.5547± 0.00 0.4258± 0.01 0.5559± 0.01 0.6322± 0.01 0.6755± 0.01

4.3 PERFORMANCE UNDER VARYING PRIOR SIZES

To answer RQ2, we evaluate the performance of MIME under different levels of prior knowledge,
with the initial pool size set to 1%, 3%, 5%, 8%, and 10%. For brevity, Figure 2 shows a represen-
tative subset of these results, plotting Accuracy across three benchmark datasets (CoP, AmzP, and
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Figure 2: Accuracy of different methods under varying prior sizes (1–10%) across three representa-
tive benchmark datasets (CoP, AmzP, and Cora). The results show that MIME consistently outper-
forms baselines, demonstrating strength at both the lowest and highest prior knowledge levels.

Cora). The complete results for both Accuracy and Fidelity across all five datasets are provided in
Appendix Figure 4.

Robustness to Prior Knowledge. Increasing the prior size does not guarantee monotonic perfor-
mance gains. While MIME is the top overall performer, it shows minor fluctuations, likely due to
dataset-specific traits. Crucially, these fluctuations are often smaller than those of the baselines, in-
dicating greater stability. MIME’s advantage is most pronounced at the extremes: with very small
priors (1-3%), where it excels under tight constraints, and at the largest prior size (10%), where it
surpasses most competitors. These results confirm that MIME is both efficient and robust, delivering
reliable performance regardless of the amount of prior knowledge.

4.4 ANALYSIS OF FRAMEWORK COMPONENTS
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Figure 3: Comparison of computational savings
from removing individual MIME components.
Savings are relative to the full MIME, which op-
erates at 14.96 ms/epoch and 7754 MB/epoch.
The analysis reveals that the Laplacian regu-
larizer is the primary source of time overhead,
whereas all components have a minimal and
consistent impact on memory usage.

To answer RQ3 and quantify each component’s
contribution, we conduct an ablation study using
a leave-one-out methodology. This approach as-
sesses the marginal impact of removing a single
module from the full MIME framework. We eval-
uate six ablated configurations by individually re-
moving: (i) DGI pre-training, (ii) diversity-based
query selection, (iii) the class-balancing quota,
(iv) the graph Laplacian regularizer, (v) the final
self-training phase, and (vi) the use of dynamic
embeddings (reverting to static ones). The com-
plete results and detailed configuration descrip-
tions are available in the Appendix Table 5.

Component Necessity and Synergy. The results
in Table 2 confirm that each module is integral
to MIME’s performance. Removing foundational
components like DGI pre-training, the Laplacian
regularizer, the class quota, and self-training con-
sistently degrades performance, validating their
necessity. Likewise, dynamic embeddings prove
superior to static ones. Despite minor dataset-
specific exceptions (e.g., on AmzC), the com-
plete framework is superior on most benchmarks,
demonstrating the robustness of its integrated de-
sign. Full results for both Accuracy and Fidelity
are available in Appendix Table 6.
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Table 2: Ablation study results on accuracy across five benchmark datasets. The best performance
for each dataset is highlighted in bold.

Ablation CoCS CoP AmzC AmzP Cora
MIME 0.9059± 0.00 0.9331± 0.00 0.7989± 0.04 0.8857± 0.02 0.5547± 0.00
No DGI 0.8989± 0.01 0.9317± 0.00 0.7894± 0.00 0.8697± 0.01 0.5513± 0.00
No Diversity 0.9047± 0.00 0.9285± 0.00 0.8128± 0.01 0.8668± 0.00 0.5505± 0.00
No Quota 0.8970± 0.00 0.9238± 0.01 0.7799± 0.02 0.8773± 0.01 0.5517± 0.00
No Laplacian 0.9005± 0.01 0.9282± 0.00 0.7956± 0.00 0.8609± 0.01 0.5500± 0.00
No SelfTrain 0.8935± 0.00 0.9213± 0.01 0.7614± 0.02 0.8514± 0.01 0.5448± 0.00
Static Embeddings 0.9047± 0.00 0.9228± 0.00 0.8054± 0.00 0.8359± 0.01 0.5492± 0.00

Computational Efficiency. Figure 3 analyzes the cost-benefit trade-off of each component. The
full MIME framework is highly efficient, as most modules like the class quota and self-training are
exceptionally lightweight, adding negligible time cost. The only notable overhead comes from the
Laplacian regularizer, but its accuracy benefits justify this trade-off. Crucially, all ablated versions
have nearly identical memory footprints, with the removal of any single component yielding a mem-
ory saving of only about 4.0-4.4%. This confirms that MIME’s components achieve performance
gains with minimal computational overhead.

5 RELATED WORK

GNN Model Extraction and Unrealistic Assumptions. Prior work on GNN model extraction
often relies on unrealistic assumptions that limit practical application. Many methods assume ac-
cess to a large, in-distribution dataset (Wu et al., 2022b; 2021; 2022a), soft-label feedback like
probabilities instead of hard labels (Carlini et al., 2020), or unconstrained query budgets that ignore
real-world costs (Yang et al., 2023). Even recent graph-specific active learning frameworks such as
AGE, GRAIN, and CEGA require an initial set of labeled seed nodes (Cai et al., 2017b; Zhang et al.,
2021; Wang et al., 2025). These simplifying assumptions prevent existing work from addressing the
fully constrained environments faced by real-world adversaries.

Enabling Techniques for “Cold Start in the Dark.” Recent work has started to address this real-
ism gap (Guan et al., 2024; Zhuang et al., 2024a), yet these methods often assume partial supervision
and do not offer a complete cold start solution. Two key technologies are relevant: unsupervised
graph representation learning methods can create high-quality, label-free embeddings from struc-
ture alone (Velickovic et al., 2019; You et al., 2020; Hassani & Khasahmadi, 2020), while active
learning frameworks like AGE, GRAIN, and CEGA can optimize query budgets but still require
initial labeled seeds to function. MIME’s key contribution is to bridge this gap. It is one of the first
to use unsupervised embeddings as a true zero-label initializer for a budget-aware, hard-label active
learning loop. This enables effective extraction under realistic constraints, setting our work apart.

6 CONCLUSION

In this paper, we introduced MIME, a novel framework for practical GNN model extraction. We
formally defined and addressed the stringent “Cold Start in the Dark” problem, a realistic scenario
characterized by minimal initial information, a tight query budget, and hard-label feedback. By
integrating unsupervised pre-training with a query-efficient active learning loop, MIME effectively
overcomes these challenges. Our experiments confirmed its superiority, showing that it consistently
outperforms state-of-the-art baselines in both Accuracy and Fidelity.

MIME’s success closes the gap between theoretical and practical GNN extraction attacks, validating
a potent, low-barrier attack vector by showing how adversaries can leverage graph topology before
any labels are queried. This finding proves that defenses must evolve beyond simple query monitor-
ing. Looking ahead, crucial future work involves not only extending the MIME framework to the
challenging inductive setting but also developing a new class of robust countermeasures capable of
detecting the subtle statistical footprints of such stealthy attacks.

9
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ETHICS STATEMENT

We acknowledge that this work details a model extraction attack, a methodology with potential for
malicious use. Our primary motivation is defensive: by developing and analyzing a more real-
istic and efficient attack vector, we aim to highlight critical vulnerabilities in current GNN-based
MLaaS platforms. This research is intended to serve as a benchmark for the security community,
enabling the development and evaluation of more robust defense mechanisms against such threats.
The described methods were developed in a controlled, simulated environment. We believe that
transparently discussing these vulnerabilities is crucial for motivating and informing the creation of
stronger security protocols. Our work adheres to the principles of responsible research by focusing
on the security implications and providing insights for defenders.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. A detailed description of our
proposed framework, MIME, including the unsupervised pre-training, iterative query strategy, and
surrogate model training, is provided in Section 3. The full algorithm is presented in Algorithm 1
in the appendix. Our complete experimental setup, including dataset descriptions, data partitioning,
and victim model training protocols, is detailed in Section 4.1. The specific hyperparameters used
for all experiments are also listed in the appendix. All datasets used (CoCS, CoP, AmzC, AmzP, and
Cora) are publicly available benchmarks. To facilitate full reproduction of our findings, we provide
our source code, including the implementation of our method and all baselines, in the supplementary
materials.
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APPENDIX

A SUPPLEMENTARY INSTRUCTIONS FOR FORMULAS

K-center Objective Details The k-center objective seeks to select a subset of points Q from a larger
set Pγ that minimizes the maximum distance from any point in Pγ to its nearest point in Q. This is
formally expressed as:

ϕ(Q) = max
v∈Pγ

min
u∈Q

d
(
h(γ−1)
v , h(γ−1)

u

)
, (13)

where d(·, ·) is the distance metric. The farthest-first greedy algorithm provides a 2-approximation
for this NP-hard problem.

Laplacian Regularization Schedule: Intuition The regularization strength λlap(γ) is not static. An
effective schedule starts with a small λlap when the number of queried labels is low to avoid over-
smoothing based on a potentially biased initial surrogate model. As more labels are acquired and the
model becomes more confident, λlap can be increased to enforce greater smoothness and improve
generalization. For instance, a simple schedule could be λlap(γ) = λ0 · min(1, |Q(γ)|/Bthresh),
where λ0 is the base regularization strength and Bthresh is a budget threshold after which the reg-
ularization is fully active. This adaptive approach prevents early, aggressive regularization from
washing out the learning signal from the few available labels.

B NOTATION TABLE

Symbol Description

Gfull = (Vfull, Efull) Full (hidden) graph of the victim model
Gsub = (Vsub, Esub) Induced subgraph observed by the attacker
N,E Number of nodes and edges in Gsub, i.e., N = |Vsub|, E = |Esub|
Asub, Xsub Adjacency and feature matrix on Gsub

d, de Input feature dimension and dynamic embedding dimension
C Number of classes
cc(v) Local clustering coefficient of node v
fv, fs Victim and surrogate GNNs; fv(v) ∈ RC is victim’s output vector
yvictim
v Hard-label returned by the API: yvictim

v = argmaxc fv(v)c
B Total query budget (issued in batches)
q Batch size per round (also |Q0| if B ≥ q)
Γ Number of rounds: Γ = ⌈(B − |Q0|)/q⌉
H(0) = {h(0)

v } DGI pre-trained (static) embeddings (cold start only)
h
(γ)
v Round-γ embedding from f

(γ)
s (dynamic)

Q(γ) Queried set up to round γ; Q(0) = Q0

κ Pool factor in candidate size mγ = κq
β Per-class cap factor (Eq. equation 6)
U(v) Uncertainty score (entropy+margin) in Eq. equation 4
d(·, ·) Angular distance (cosine-induced metric) used in k − center
zv, pv Logits and softmax probability for node v
λlap Laplacian regularization weight (Eq. equation 7)
τ⋆ Confidence threshold for pseudo-labels in self-training
λpseudo Weight for pseudo-label loss (Eq. equation 12)
Tvic, TDGI, Ttr Victim training, DGI pre-training, and per-round training epochs
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C PROOFS AND JUSTIFICATIONS

C.1 Necessity of DGI at Cold Start

We recall the DGI objective from Eq. equation 3, which maximizes a mutual information bound
between local embeddings hv and the global summary s (Velickovic et al., 2019). This ensures H(0)

encodes structural patterns (communities, roles) without labels. The initial query set Q0 is chosen by
farthest-first k-center (Eq. equation 13), which approximates the minimum covering radius within
a factor 2 (Gonzalez, 1985). Thus, Q0 provides diverse, label-free coverage—strictly better than
random seeds. Note: As stated in §3.2, H(0) is used only at cold start.

C.2 Farthest-First (K-Center) for Diversity

We recall the diversity objective in Eq. equation 5, defined over the candidate pool Pγ . Using the
angular distance d(·, ·) (see §3.2), the greedy farthest-first heuristic achieves ϕ(QFF) ≤ 2ϕ(Q∗)
(Gonzalez, 1985). This ensures constant-factor coverage, unlike k-means, which lacks worst-case
guarantees.

C.3 Dynamic Embeddings for Diversity

We recall the uncertainty score U(v) from Eq. equation 4. After uncertainty filtering, diversity
is applied in the dynamic embedding space {h(γ−1)

v } produced by f
(γ−1)
s . Because embeddings

evolve as more labels are queried, this keeps diversity aligned with the surrogate’s current decision
geometry.

C.4 Necessity of Adaptive Laplacian Regularization

We recall the training objective in Eq. equation 7, where Llap (Eq. equation 9) penalizes discrep-
ancies across edges with node-adaptive weights (Eq. equation 10). A spectral view shows that
regularization attenuates high-frequency modes, but excessive smoothing on sparse/heterophilous
subgraphs is harmful. Hence λlap is scheduled adaptively (Appendix A), gated by subgraph connec-
tivity, ramped with labeled fraction, and modulated by homophily/spectral cues.

C.5 Convergence Trend

Accuracy and Fidelity are the main evaluation metrics (Eq. equation 2); for intuition, define a sur-
rogate–victim risk Rγ = E[1{argmax f

(γ)
s ̸= argmax fv}]. Uncertainty sampling reduces error-

prone regions; diversity prevents redundancy. Thus, Rγ decreases monotonically in trend and is
bounded below by 0, consistent with observed empirical convergence.

C.6 Computational Complexity

We recall the round structure and symbols from §3.3. DGI pre-training costs O(TDGIEd). Each
round costs O(Ed+NC+mγqde+TtrEd). The term mγqde arises from the farthest-first selection,
where mγ = κq; its complexity can be optimized in practice with data structures like heaps. Total
cost:

O
(
TDGIEd+ B

q (TtrEd+NC + κq2de)
)
.

Since B ≪ N , training dominates. Space is O(E +N(d+ de +C)), so MIME is polynomial-time
feasible.
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D FULL ALGORITHM SPECIFICATION

Algorithm 1: The proposed framework of MIME

Initialization: Pre-train DGI on (Asub, Xsub) to obtain initial embeddings H(0).
Select initial nodes Q0 by farthest-first on H(0) with |Q0| = min(q,B) from Vsub.
Query victim API to get hard labels YQ0

, where yvictim
v = argmaxc[fv(Afull, Xfull)]v,c.

Train the initial surrogate f
(0)
s on (Q0, YQ0

) by minimizing
Ltrain = LCE(Q0, YQ0

) + λlap(0)Llap for Ttr epochs.
for Cycle γ from 1 to Γ = ⌈(B − |Q0|)/q⌉ do

if |Q(γ−1)|+ q ≤ B then
Evaluate uncertainty score U(v) for all v ∈ Vsub \Q(γ−1) using Eq. equation 4.
Build candidate pool Pγ with top-mγ nodes, mγ = κq.
Obtain dynamic embeddings h(γ−1)

v from f
(γ−1)
s .

Select and query q nodes Qγ via farthest-first on Pγ with class cap (Eq. equation 6).a

Obtain victim labels YQγ and set Q(γ) = Q(γ−1) ∪Qγ .
else

Set Q(γ) = Q(γ−1).
end
Train f

(γ)
s on {Q(γ), Gsub} for Ttr epochs by minimizing Eq. equation 7.

end
Self-training: Form Vpseudo = {v : maxc pv,c ≥ τ⋆} with labels Ypseudo from f

(Γ)
s , and

fine-tune with Eq. equation 12.
Return:
Queried nodes {Q(1), ..., Q(Γ)} and final surrogate ffinal

s .

aIf the remaining budget is less than q, this step selects only the number of remaining nodes allowed by the
budget.
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E SUPPLEMENTARY EXPERIMENTAL DETAILS

This section provides additional details regarding our experimental setup and presents supplemen-
tary results to ensure full reproducibility.

E.1 HYPERPARAMETER SETTINGS

All experiments were conducted using a fixed random seed of 42 to ensure deterministic behavior.
The hyperparameters for the victim model and our proposed MIME framework were kept consistent
across all datasets to ensure a fair and robust evaluation. The specific settings are detailed in Table 3
and Table 4.

Table 3: Hyperparameter settings for the victim GCN model.
Victim Model Parameter Value
Architecture GCN
Hidden Dimension 16
Dropout 0.5
Learning Rate 1× 10−3

Weight Decay 5× 10−4

Training Epochs 1000

Table 4: Hyperparameter settings for the MIME framework.
MIME Parameter Value
Surrogate Hidden Dimension 128
Surrogate Dropout 0.5
Edge Dropout 0.4
Label Smoothing 0.03
Epochs per Round 100
Final Training Epochs 200
Laplacian Lambda (λlap) 5× 10−4

Laplacian Mode prob
K-Center Pool Multiplier (κ) 5
DGI Pre-training Epochs 500

E.2 ADDITIONAL RESULTS AND FIGURES

This subsection contains supplementary figures and tables that provide a more comprehensive view
of our experimental results, including the full performance data under varying prior sizes and the
detailed ablation study outcomes.
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Figure 4: Complete results for accuracy and fidelity under varying prior sizes (1% to 10%) across
all five benchmark datasets. These plots show the performance of MIME and all baseline methods,
providing a comprehensive view of how initial information availability impacts extraction success.

Table 5: Detailed description of ablation study configurations. Each configuration disables or alters
one component from the full MIME framework (referred to as the Baseline).

Configuration Component Modified Description of Change

no-DGI Unsupervised Pre-training Skips the DGI phase; the surrogate model is randomly initialized.
no-Diversity Query Selection Removes k-center diversity logic; selects nodes on uncertainty alone.
no-Quota Query Selection Disables the per-class quota for balancing query batches.
no-Laplacian Model Training Removes the Laplacian regularizer term from the training loss.
no-Self-Training Fine-tuning Omits the final self-training step after the budget is exhausted.
Static Embeddings Query Selection Uses static embeddings from the cold start for all diversity checks.

Table 6: Complete ablation study results on accuracy and fidelity. This table shows the performance
of the full MIME framework and six ablated versions across five benchmark datasets.
Ablation Accuracy Fidelity

CoCS CoP AmzC AmzP Cora CoCS CoP AmzC AmzP Cora

MIME 0.9059± 0.00 0.9331± 0.00 0.7989± 0.04 0.8857± 0.02 0.5547± 0.00 0.9363± 0.00 0.9523± 0.00 0.8487± 0.04 0.9146± 0.00 0.6755± 0.00
No DGI 0.8989± 0.01 0.9317± 0.00 0.7894± 0.00 0.8697± 0.01 0.5513± 0.00 0.9292± 0.01 0.9504± 0.00 0.8364± 0.00 0.8930± 0.02 0.6736± 0.00
No Diversity 0.9047± 0.00 0.9285± 0.00 0.8128± 0.01 0.8668± 0.00 0.5505± 0.00 0.9361± 0.00 0.9454± 0.00 0.8351± 0.01 0.8939± 0.01 0.6721± 0.00
No Quota 0.8970± 0.00 0.9238± 0.01 0.7799± 0.02 0.8773± 0.01 0.5517± 0.00 0.9295± 0.00 0.9425± 0.01 0.8289± 0.02 0.9073± 0.01 0.6717± 0.00
No Laplacian 0.9005± 0.01 0.9282± 0.00 0.7956± 0.00 0.8609± 0.01 0.5500± 0.00 0.9304± 0.01 0.9451± 0.00 0.8429± 0.01 0.8839± 0.01 0.6735± 0.00
No SelfTrain 0.8935± 0.00 0.9213± 0.01 0.7614± 0.02 0.8514± 0.01 0.5448± 0.00 0.9232± 0.00 0.9403± 0.01 0.8084± 0.02 0.8729± 0.01 0.6635± 0.00
Static Embeddings 0.9047± 0.00 0.9228± 0.00 0.8054± 0.00 0.8359± 0.01 0.5492± 0.00 0.9364± 0.00 0.9398± 0.01 0.8574± 0.00 0.8566± 0.01 0.6672± 0.00
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F LLM USAGE STATEMENT

During the preparation of this manuscript, we utilized a large language model (LLM) as an assistive
tool. The LLM’s role was primarily focused on improving the clarity and conciseness of the text.
This included rephrasing sentences and paragraphs for better readability, correcting grammar, and
ensuring a consistent writing style throughout the paper. Additionally, the LLM provided assistance
with LaTeX formatting, helping to structure tables, figures, and other elements in accordance with
the conference template.

The core research ideas, experimental design, analysis, and conclusions presented in this paper were
conceived and executed entirely by the human authors. The LLM did not contribute to the research
ideation. The authors have reviewed, edited, and take full responsibility for the final content and its
scientific accuracy.
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