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ABSTRACT

We propose Sanitizer, a framework that protects against sensitive information
leakage to facilitate task independent data release with untrusted parties. This
is done in a two-step process: first, we develop a framework that encodes unstruc-
tured data into a structured representation bifurcated by sensitive and non-sensitive
representation. Second, we design mechanisms that transform the sensitive fea-
tures such that the leakage of sensitive information is minimal. Instead of re-
moving sensitive information from the unstructured data, we replace the sensitive
features by sampling synthetic sensitive features from the joint distribution of the
sensitive features in its structured representation. Hence, using this method one
can share a sanitized dataset that preserves distribution with the original dataset re-
sulting in a good utility-privacy trade-off. We compare our technique against state-
of-the-art baselines and demonstrate competitive empirical results both quantita-
tively and qualitatively.

1 INTRODUCTION

In the current paradigm of data driven decision making, data sharing between untrusted parties is
paramount for collaboration. Few such examples include training machine learning model on crowd-
sourced data, prediction and analytics over user data by cloud based service providers, etc. This data
sharing has been fundamentally inhibited due to the leakage of sensitive and private information as-
sociated with individuals participating in data sharing. In this work we consider the problem of
sanitization where sensitive information from a dataset is obfuscated in a task independent manner
and then released to untrusted parties. This task independence allows the data analyst on the receiv-
ing end to ask any arbitrary query related to the dataset. Some of these queries can be invasive to
the privacy of the data sharing entity, for example - the query of estimating the sensitive information
itself. Therefore, the problem of protecting sensitive information while releasing data comes with
an unavoidable privacy-utility trade-off. We study different constraint emerging from this problem
setup and propose a framework and show its efficacy by evaluating privacy-utility trade-off under
different experimental constraints.

While we focus on protecting sensitive attributes, some of the existing works in this area focusing
on protecting against membership inference attacks using formal privacy guarantee obtained by dif-
ferential privacy. This is a common and pertinent problem when a machine learning (ML) model
trained on private data is accessible to adversary. In this work, we focus on data release instead
of model release and provide a framework for the protection against sensitive information leakage
instead of membership inference. The problem of context dependent information leakage is differ-
ent than the traditional definitions used in the privacy community like differential privacy (Dwork
et al., 2014) that provides uniform privacy guarantee. This problem is also referred as attribute in-
ference (Jia & Gong, 2018) and has been studied quite well from both defense (Jia & Gong, 2018;
Raval et al., 2019; Edwards & Storkey, 2015) and attack (Kosinski et al., 2013; Chaabane et al.,
2012; Jia et al., 2017) perspectives. There are several variants of differential privacy (Huang et al.,
2017; Doudalis et al., 2017; Kifer & Machanavajjhala, 2014; He et al., 2014; Liu et al., 2017) that
factor in the notion of sensitive attributes in their privacy definition.

Sanitization concerns with transforming a data sample to remove sensitive attribute information
while retaining every other information with a goal of keeping its utility high for any arbitrary down-
stream task. Existing methods achieve sanitization by transforming the input in one of two ways: i)
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Figure 1: Sanitizer pipeline: First, we utilize publicly available (in green) datasets to train sanitizer
models. Then we learn some particular parameters from the sensitive dataset (in pink) to design
sanitizing mechanisms that is applied on the sensitive dataset to obtain sanitized data that could
be potentially sensitive or not (in yellow). We evaluate the performance by measuring utility and
leakage, and then the sanitized embedding and samples are released (in blue).

sanitization by information removal or ii) sanitization by sampling from data distribution. The first
category of methods remove information using adversarial learning (Huang et al., 2018a; Li et al.,
2020), adding noise to representations (Kotsogiannis et al., 2020; Kifer & Machanavajjhala, 2014;
He et al., 2014). The second category of approaches typically learn a generative model (Jordon et al.,
2018; Beaulieu-Jones et al., 2019; Xin et al., 2020; Takagi et al., 2020; Rosenblatt et al., 2021) to
synthesize new samples from the same underlying data distribution but are not the exact samples
from the sensitive dataset. Both sets of methods provide relatively low privacy-utility trade-off due
to their inability to preserve the non-sensitive information while eliminating the sensitive informa-
tion. The methods in the first category requires removing a lot of correlated features to achieve
satisfactory sanitization. Furthermore, the methods in the second category are unable to preserve
any non-sensitive information for the training datapoints since they re-sample from the distribution.
At a high-level there are four key categories that differentiates our work in the existing landscape
- Output: We release a sanitized version (embedding and sample) of each and every data sample
instead of a parametric model. Input: While the input could be (high-dimensional and unstructured)
data like images, our mechanisms apply transformation over (structured and low-dimensional) fea-
ture representation. Threat model: We protect against attribute inference instead of membership
inference. Mechanism: Our mechanisms apply transformations that results a new synthetic sensi-
tive feature which is released along with unperturbed embedding. We view this as a bridge between
obfuscation based mechanisms (that aim to remove sensitive information completely) and synthetic
data sampling (that re-synthesize all features).

In this work, the proposed method seeks to provide better privacy-utility trade-offs by integrating
the two diverse perspectives: (i) removing local sensitive information and (ii) sampling alternatives
from the attribute distribution to sanitize the sensitive datapoints. This workflow is summarized in
figure 1. Central to this work is the insight that a dataset can be decomposed into a set of semantic
concepts in the latent space. To this end, we design a regularized variational autoencoder (called αβ-
VAE) which decouples the sensitive semantic concepts in latent space and samples their alternates
from the corresponding label distributions. The sanitized datapoints can be regenerated from the
decoder and used for downstream tasks. We also note that, for dataset specific queries, this approach
can shift the privacy-utility frontier since the sanitized dataset can still be used to train models on
the sensitive attributes while protecting the sensitive information of individual’s sensitive attributes.

The contributions of this work can be summarized as follows:

• We introduce sanitizer, a generic framework that semantically decouples sensitive and non-
sensitive representation from data. We empirically demonstrate its efficacy on multiple
datasets.

• Using our framework, we design mechanisms that allow dataset release while protecting
against leakage of sensitive information.

• We quantitatively and qualitatively show superior privacy-utility trade-off than existing
works and also demonstrate that sanitized mechanisms make it possible to learn the distri-
bution of sensitive attributes while preventing leakage of sensitive attribute of an individual.

• We release a dataset of sanitized representation for our proposed technique and other base-
line approaches for future benchmarking to enable rigorous evaluation of attacks and de-
fenses.
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2 RELATED WORK

The work focuses on protecting leakage of sensitive information when data is released to unstrusted
third parties. Correspondingly, we outline the landscape of research in privacy protection (i) and note
relevant work for private data release (ii) including literature to protects against attribute inference
attacks (iii). To motivate our protblem formulation and method, we also draw parallels to relevant
research in fairness and semantic manipulation (iv).

Data Privacy Protection methods focus on providing privacy during model training (Abadi et al.,
2016; Papernot et al., 2016), at inference (Roy & Boddeti, 2019b; Singh et al., 2020) or for re-
lease of training data (Huang et al., 2018a; Ping et al., 2017). First, methods have been developed
for protecting training data when either training data is distributed over clients or computation for
training the model is out-sourced. For the former, distributed learning techniques such as federated
learning (Kairouz et al., 2019; Konečnỳ et al., 2016) and split learning (Gupta & Raskar, 2018;
Vepakomma et al., 2018a) are used, where the clients communicate with a centralized server using
weights and activations and the latter relies on homomorphic encryption (Gentry & Boneh, 2009;
Brakerski et al., 2014) and secure enclaves (Zhang et al., 2020; Ferraiuolo et al., 2017). Second,
private inference methods focus on collaborative setup where model is distributed across a net-
work and communication is based on privateized intermediate activations. To achieve this, methods
have sought to either decouple features of private and task attributes by minimize distance corre-
lationVepakomma et al. (2020), mutual information using adversarial lossRoy & Boddeti (2019a);
Xiao et al. (2020), or entirely prune out sensitive features (Singh et al., 2020). Finally, methods for
private data release focus on protecting data before externally sharing it for arbitrary downstream
use. Techniques for this can be clustered as: i) (Kotsogiannis et al., 2020; Kifer & Machanava-
jjhala, 2014; He et al., 2014; Li et al., 2020; Huang et al., 2018a) which add noise to the datapoint,
ii) (Jordon et al., 2018; Beaulieu-Jones et al., 2019; Xin et al., 2020; Torkzadehmahani et al., 2019;
Takagi et al., 2020; Rosenblatt et al., 2021) which (first learn and then) re-sample the underlying
joint distribution of the datapoints for release and, iii) (Abadi et al., 2016; Papernot et al., 2016; Wu
et al., 2019; Pichapati et al., 2019; McMahan et al., 2017; Nasr et al., 2018; Jia et al., 2019) which
release privatized models, instead of original data.

Private Data Release methods work under two threat models, in context of machine learning: i)
membership inference (Shokri et al., 2017) or ii) attribute inference (Jia & Gong, 2018). Member-
ship inference attacks aim to identify whether a data sample was present in the training dataset of
a machine learning model. Attribute inference attacks aim to infer private attributes for a public
released datapoint. Methods routinely propose to obfuscate (add noise to datapoints) (Kotsogian-
nis et al., 2020; Kifer & Machanavajjhala, 2014; He et al., 2014; Li et al., 2020; Huang et al.,
2018a) or (re)generate (learn and re-sample underlying distribution of datapoints) (Jordon et al.,
2018; Beaulieu-Jones et al., 2019; Xin et al., 2020) datapoint for privatized release, largely under
the threat of membership inference. Some obfuscation-based methods (Li et al., 2020; Huang et al.,
2018a) have been adapted to defend against attribute inference but have provide limited utility. In
particular, (Li et al., 2020) obfuscates in activation space and is not equipped to release privatized
natural images. In this work, we also focus on data release under threat of attribute inference and
propose sanitization techniques that bridges work in obfuscation and generative techniques to pro-
vide improved privacy-utility trade-offs when releasing image samples.

Privacy against Attribute Inference For private release of data under attribute inference threats,
research has focused on both attack and defense schemes. Defense methods have proposed adding
various forms of differentially private (Dwork et al., 2006a) noise and often for tabular (structured)
data. We seek to extend attribute privacy to image data which presents distinct challenges. Specifi-
cally, adding DP-noise to images has been shown (Li & Clifton, 2021; Singh et al., 2020) to provide
poor privacy-utility trade-offs due to lack of structure in input modality and high sensitivity. This
is because DP provides uniform protection to all sensitive and non-sensitive attributes, significantly
hampering utility of transformed input. This work alleviates the same through a sanitization scheme
that seeks to only remove (by suppressing, obfuscating or re-sampling) sensitive attribute informa-
tion in latent space and then (re)generating the transformed datapoint for privatized release.

Fairness and Semantic Manipulation Our problem formulation for sanitization is similar to learn-
ing fair and unbiased representations (Zemel et al., 2013; Sarhan et al., 2020; Creager et al., 2019;
Zhang et al., 2018; Mehrabi et al., 2021) and the formalism of sensitive information also aligns to
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notion of ”nuisance variable” in domain adaptation (Louizos et al., 2015). However, in constrast
to methods that seek to learn latent representations that are invariant to nusiance variable, sanitizer
aims to prevent leakage from released input data. Hence, in this work, the sanitization problem
is stronger setup and cannot directly utilize ideas designed for fairness. Our proposed method for
sanitization is similar to work in semantic manipulation (Shen & Liu, 2017; Chen et al., 2019). We
note that while this has resulted in some relevant work in privacy, there are is primarily restricted
to faces and methods are designed with objective to support a specific utility attribute like identity
(Othman & Ross, 2014; Chhabra et al., 2018; Mirjalili et al., 2018; Morales et al., 2020; Mirjalili
et al., 2020; Li et al., 2021; Mirjalili et al., 2019; Othman & Ross, 2014; Raynal et al., 2020). This
is very different from sanitizer which is agnostic of target utility and only depends upon sensi-
tive attribute. We also note some recent work on sensitive attribute which uses uncertainty based
techniques Wang et al. (2021) and Martinsson et al. (2020) to obfuscate sensitive attribute in latent
space using adversarial training but hence, unlike sanitizer, generates highly unrealistic images due
to high uncertainty.

3 PROBLEM FORMULATION

Input Im
age

Encoder

Decoder
SPAP

!

"

#!

$#( )#, #!)

#!

$$( )#, #!)

$"(!, '! )

'!

SP: Sensitive Predictor
AP: Adversarial Predictor

Training Phase

"!"%!

$&("!, "%!)

D
ecorrelator

Figure 2: Training scheme for the pro-
posed αβ-VAE. x is the input sample, ŷ
and are the predicted and ground-truth
sensitive attribute(s) respectively. and
are the latent representations for sensi-
tive and non-sensitive information. The
four objectives used are detailed in Sec-
tion 3

Terminology: Consider a data holder A with access to
a dataset D = {X,Y} with N datapoints. Let x ∈ X
and y ∈ Y represent a pair of input sample (x) and cor-
responding set of labels that describe distinct attributes
of the input. For instance, given x is a face image of an
individual, the set y may include the age, keypoints and
ethnicity for that individual. From standpoint of the data
holder, certain attributes in the label set y may represent
sensitive information (called yS) while others are non-
sensitive (yNS) such that y = {yS ∪ yNS}. This sensi-
tive attributes often represents private information which
A does not want to share. Hence, if the dataset D is
to be released for external modeling, a key challenge is
to protect privacy of the sensitive information while pre-
serving utility of the non-sensitive information. Enabling
this private data-release while ensuring optimal privacy-
utility trade-offs is the central focus of this work. Our
proposed method achieves this through two key phases:
i) semantic decoupling in the latent space of x, the rep-
resentations of sensitive (zS for yS) and non-sensitive at-
tributes (zNS for yNS) using a regularized β-VAE called
αβ-VAE (section 4.1) and ii) sanitizing the sensitive rep-
resentation z̃S = f(zS) using a mechanism (f ) that ob-
fuscates the sensitive attributes (yS) to generate ỹS (sec-
tion 4.2). Finally, we concatenate (zNS ||z̃S) and obtain
the sanitized embedding z̃ and sanitized sample x̃ which can be released for downstream tasks.

Threat Model: We assume the untrusted data-receiver B can act as an adversary by obtaining ac-
cess to a subset of the dataset D̃ = {X̃, {YS ,YNS}}. Note that this leaked dataset contains a
mapping from sanitized inputs X̃ to sensitive labels YS and not ỸS . Thus, the attacker can train
an ML model on the leaked dataset and then infer sensitive attributes. Since the goal of this work is
to preserve utility for dataset specific queries, we also assume that the attacker knows a prior on the
sensitive attribute distribution (p(yS ,yNS)).
Defining information leakage: Information leakage for sanitization has been typically defined
through information theoretic terms (Makhdoumi & Fawaz, 2013; Sankar et al., 2010), however, es-
timating these terms requires estimation of probability distributions which is not tractable for higher
dimensions therefore we use a data driven approach to quantify leakage. The goal of our framework
is to minimize the change in belief before (prior p(yS)) and after (posterior p(yS |x̃)) observing the
sanitized data (x̃) as measured by the prediction performance over the sensitive attribute over the
test sample. This notion has been formalized in anonymization literature as information theoretic
privacy (Rebollo-Monedero et al., 2009) and bayes-optimal privacy (Machanavajjhala et al., 2007).
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Desiderata: We want the following three properties from our sanitizer framework: P1)
q(zS , zNS |x) = q(zS |x)q(zNS |x) (Independence among the sensitive and non-sensitive latent rep-
resentation), P2) p(x|z̃) is maximized, and P3) q(z̃S) is similar to q(z). The first property would
enable semantic decoupling, while the second property allows high utility and the third property
ensures the distribution of sensitive information is preserved. We utilize variational auto-encoders
(VAEs) as our building block to attain these three properties and discuss it below.

VAE: Given a dataset X, Variational autoencoders (VAE) (Kingma & Welling, 2013; Rezende
et al., 2014), are used to model the distribution of samples p(x)∀x ∈ X by learning parameters φ
of approximate posterior qφ(z|x) and θ for the likelihood pθ(x|z). Higgins et al. (2016) improve
the disentanglement between the components of samples from qφ(z|x) by regularizing the KL di-
vergence between the prior pθ(z) and approximate posterior qφ(z|x). To obtain the property P2, we
need a high degree of disentanglement between zS and zNS . To improve disentanglement, existing
works such as Kim & Mnih (2018) and Chen et al. (2018) regularize total correlation of q(z) that
is measured as KL(q(z)||Πm

i=1q(zj)) where KL refers to KL divergence and m is the total number
of components of z. Since none of our desired properties require disentanglement between every
component of z but rather only the disentanglement between zS and zNS (property P1), we propose
a new regularized αβ-VAE.

A key characteristics of VAE is that the decoupled latent representations are unordered. This means
that there is no explicit control on which dimensions encode which semantic attribute. This is a
challenge for our work that ideally requires that representations encoding the sensitive attributes be
contiguous to avoid information leakage. To realise this, we reformulate the objective with a aligner
gu(·, ) parameterized by u that is trained to estimate yS from zS , the intuition is that backproping
aligner’s gradient from q(φ) will force to maximize relevant information between p(yS |x) and
q(zS |x). Since all latents are known to be correlated with each other to a certain extent, we need to
prevent information leakage about yS in q(zNS). Instead of regularizing total correlation between
each dimension, we propose to regularize correlation between q(zS) and q(zNS). We use distance
correlation (Székely et al., 2007; Székely & Rizzo, 2013; Székely et al., 2014; Vepakomma et al.,
2018b) as the target objective to be minimized. Since directly estimating probability density is
intractable for high dimensional representations, various measures such as HSIC (Gretton et al.,
2005; Sejdinovic et al., 2013), MMD (Borgwardt et al., 2006) and distance correlation (Roy &
Boddeti, 2019b; Sadeghi et al., 2019; Huang et al., 2018b; Li et al., 2019) are used. In particular,
we use distance correlation (dcorr) since it enables enables measuring nonlinear correlations
between samples from random variables of arbitrary dimensions ( zS and zNS can have different
dimensionality), allows for efficient gradient computation and does not require any kernel selection
or parameter tuning unlike HSIC and MMD. However, we do note that dcorr is measured between
samples and hence larger sample size is desirable for the unbiased sample statistic to represent the
population notion of distance correlation. The final objective can be summarized as:

L1(θ, φ) = Eqφ(z|x)[logpθ(x|z)]− βDKL(qφ(z|x)||p(z)) (1)
L2(φ, u) = `1(gu(zi ∼ qφ(x)|i≤k),yS) (2)

L3(φ) = dcorr(zi ∼ qφ(x)|i≤k, zi ∼ qφ(x)|k<i≤m) (3)
Here L1 is the β-VAE (Higgins et al., 2016) formulation of VAE’s lower bound. L2 is the objective
for training the parameters of the aligner model and L3 is the training objective for minimizing
correlation between zS and zNS . Optimizing L2 and L3 jointly help us in achieving the desired
property P1 and P2. This can be further regularized by an adversarial prediction network hv(·, )
parameterized with v which constrains zNS to diverge from yS . However, as shown later in the
experiments, this adversarial regularizer does not significantly impact the leakage.

L4(φ, v) = `2(hv(zi ∼ qφ(x)|k<i≤m),yS) (4)

The loss functions l1, l2 can be cross-entropy or lp-norm (often p = 2) depending upon yS .

Finally, the parameters φ, θ, u are trained jointly as specified in the equations 1-4 under a simul-
taneous optimization (Mescheder et al., 2017) framework. The overall training objective is given
as:

arg min
θ,φ,u

α1L1(θ, φ) + α2L2(φ, u) + α3L3(φ)− α4L4(φ, v) (5)

where α1, α2, α3, α4 are scalar hyper-parameters. This completes our description of the proposed
α− βVAE. Now we discuss the mechanisms for designing f .
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Method Fairface ↑ CelebA ↑ UTKFace ↑
TIPRDC (Li et al., 2020) 0.441 0.465 0.453

Adversarial (Huang et al., 2018a) 0.447 0.442 0.450

Noise 0.438 0.422 0.435

Adversarial Noise (Huang et al., 2018a)* 0.432 0.422 0.420

Ours 0.476 0.483 0.476

Table 1: Privacy-Utility comparison: We report normalized hypervolume scores (higher is better)
to compare the privacy-utility trade-offs for our sanitizer framework against baseline. ‘*’ we adapt
the method in original paper for this task with implementation details in section 4.2. Proposed
method outperforms all baselines in all experiments.

3.1 SANITIZING THE SENSITIVE SPLIT

Here, the key idea is to apply function z̃S = f(zS) where zS , zNS ∼ qφ(x). We consider four
alternate mechanisms for transforming sensitive features zS which we describe below. We compare
these schemes, qualitatively and quantitatively, in section 5.

a) Suppression: In this scheme, we explicitly remove the sensitive information by replacing zS with
a zero vector (i.e. z̃S is a zero vector). Since the prior on p(z) = N (0, I), setting up z̃S = 0 still
results in plausible reconstructions by the likelihood parameter θ.

b) Obfuscation: Inspired by noise based mechanisms used in differential privacy (Dwork et al.,
2006b), we add laplace noise to zS , i.e. f(zS) = zS + r where elements of r are sampled iid from
laplace distribution. This is represented as r ∼ Lap(∆

ε ) here ∆ is the sensitivity and ε is the privacy
budget. We ensure the norm of zS is always clipped to a prescribed value prior to the release. This
ensures the global sensitivity is always known before hand with respect to the architecture. This
holds as long as the model and the sanitizing pipeline remains with the model owner and only the
sanitized samples produced by the system are released to the user. Note that the noise is added
dimension wise and is precisely known as the multidimensional Laplace mechanism (Dwork et al.,
2006b). A caveat however is that, since the noise is directly proportional to the dimensionality of the
zS i.e. k, the amount of noise scales up quickly with the increase in k. Since linear transformation
in the latent space of VAE is amenable to reconstruction quality (Kingma & Welling, 2013), our
obfuscation mechanism results in realistic samples from the data distribution. Note that this only
gives privacy guarantee for releasing zS , however, zNS can still carry sensitive information.

c) Generalization: In this mechanism, we obtain the k clusters of ZS and then obtain z̃S as a vector
of sensitive features that is uniformly chosen as one of the cluster mean. While this approach can
attain good reconstruction quality, the reconstructed dataset would lack diversity that could arise
from intra-cluster features of zS since we only use centroids.

d) Joint sampling: For this sampling mechanism, we sample sensitive features for each data point
from the joint distribution of the sensitive features p(zS). While the prior pθ(z) is an isotropic
gaussian, the approximate posterior q(z) takes on a joint distribution with a non-diagonal covariance
matrix. Sampling from the prior pθ(z) could result in objectives related to fairness but the goal of
this work is to preserve prior statistics of a sensitive dataset to ensure good performance on dataset
specific query. Therefore, we learn this joint distribution using a gaussian mixture model (GMM).
The main reason to use GMM is efficient sampling and its capability to learn small dimensional
datasets (ZS in this case). Therefore in this case, the function f is parameterized by πc, µc,Σc for
every component c. We obtain Pr[z̃S ] =

∑
c πcN (z̃S |µc,Σc)) by sampling from the GMM model.

With the newly obtained z̃S , we compute ỹS = gu(z̃S) and x̃ ∼ pθ(z̃)). Each sample x ∈ X is
obtained independently and finally the sanitized dataset D̃ = {X̃, {ỸS ,YNS}} is shared with B.
We note that, in contrast to prior work (Huang et al., 2018a; Li et al., 2020; Liu et al., 2017), a key
benefit of this strategy is in providing the flexibility to protect the sensitive information for individual
data points while learning a classifier for the sensitive attribute using the privatized dataset.

4 EXPERIMENTS

In this section, we first introduce the datasets, baselines, implementation details, evaluations and
metrics. Finally, we compare our method with the state-of-the-art and baselines methods through
quantitative and qualitative evaluation. While the proposed techniques are task independent, we
choose utility attribute for every dataset.
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(a) FairFace (b) CelebA (c) UTKFace

Figure 3: Privacy-utility trade-off evaluation on different datasets: We plot sensitive information
leakage as a proxy for privacy and one of the task attribute as a measure of utility for the sanitized
dataset. Each point in this plot corresponds to training a sanitizer model and then evaluating its per-
formance by training adversary model and utility model on the sanitized dataset. Sanitizer performs
better than all existing methods on all three datasets. We report the normalized hyper-volume in
table 1 as a metric to compare the privacy-utility trade-off for different methods.

4.1 DATASETS

UTKFace (Zhang & Qi, 2017) consists of 20,000 face images. We use the cropped and aligned ver-
sion of the dataset and generate a random split of 90%− 10%, training and testing data. The dataset
has ethnicity, gender, and age as categorical labels. For our experiments, we keep the sensitive at-
tribute as ethnicity which has 5 unique labels and due to class imbalance, best possible performance
without access to the image is 44%. We use gender as the utility attribute.
CelebA (Liu et al., 2018) is a large scale dataset of 202,599 celebrity face images 10,177 unique
identities, each with 40 binary attribute annotations. For our experiments, we define gender as the
sensitive attribute. We use mouth open as an attribute for utility evaluation.
FairFace (Kärkkäinen & Joo, 2019) dataset consists of 108,501 images, with three different at-
tributes race, gender, and age. The dataset was curated to overcome the class imbalance in ethnicity
present in the majority of the existing Faces datasets. We use ethnicity as sensitive attribute and
gender as utility attribute for our experiments.
Dataset and benchmark release: To encourage further work in private data release, we create
a benchmark dataset of 1-million sanitized images by applying baselines on existing datasets and
baselines. This will enable rigorous evaluation of different mechanisms and their privacy-utility
trade-off. The benchmark will serve as a continuously improving evaluation pipeline for researchers
to study both attack or defense techniques. We plan to release the benchmark and datasets after
receiving the feedback from reviewers.
All of our experiments are implemented using PyTorch (Paszke et al., 2019) and conducted using
NVIDIA 1080 Ti GPUs. We use Adam optimizer (Kingma & Ba, 2014) for training all of the neural
networks. We perform all of our experiments in three phases similar to the pipeline described in the
figure 1. In the first phase we train the sanitizer and similar analogous networks for our baselines.
Second, we sanitize the target dataset based on the mechanism. Finally, we train two separate ML
models on the sanitized dataset for evaluating utility and information leakage. We plan to release all
of our experimental code, datasets, models and experimental configurations post review process as
part of the benchmark.

4.2 BASELINES

We compare our proposed method with state-of-the-art visual sanitization techniques GAP (Huang
et al., 2018a) and TIPRDC (Li et al., 2020), and introduce new baselines for exhaustive comparison.
The key baselines are described next: i) GAP (Huang et al., 2018a): is trained adversarially to
maximize loss for a proxy adversary trying to infer sensitive attribute on the sanitized images.
We tune the hyperparameter λ for controlling reconstruction quality vs the proxy adversary
performance. We modify the architecture proposed in the original paper to improve their results for
the datasets used in our paper. ii) Learned Noise: is built upon the TCNND architecture described
in GAP (Huang et al., 2018a) where small dimensional noise is fed to a decoder that generates a
vector of the same dimensionality of the raw image and sanitized image is obtained by adding up
the two. iii) TIPRDC (Li et al., 2020): is used as a baseline without any modification, here again we
vary the parameter λ to obtain trade-off. While we make quantitative comparison with TIPRDC,
it is not possible to compare it in our qualitative results since the sanitized dataset released by
TIPRDC is activations of an intermediate layer of a neural network and not images. iv) Noise:
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UTKFace CelebA

Utility Leakage Utility Leakage

Uniform Noise 0.667 0.501 0.576 0.712

Adversarial 0.615 0.499 0.723 0.686

Adversarial Noise 0.801 0.695 0.746 0.663
Sanitizer 0.86 0.474 0.9022 0.6955

Table 2: Classification Accuracy Score (CAS)
evaluation: We train classifier on privatized data
samples and evaluate them on non-privatized sam-
ples.

UTKFace CelebA

Utility Leakage Utility Leakage

Suppression 0.208 0.498 0.7042 0.7177

Generalization 0.387 0.672 0.8764 0.821

Obfuscation 0.208 0.491 0.62 0.7129

Sampling 0.521 0.474 0.817 0.6955

Table 3: CAS on sensitive attribute estimation as
utility. Note that this setup is not possible for the
baselines hence we only evaluate our proposed four
mechanisms.

baseline sanitizes the image by adding gaussian noise in the pixel space of raw image directly. We
keep the mean 0 and vary standard deviation σ to obtain trade-off.

4.3 EVALUATION AND METRICS

Learned
NoiseNoise GAPOriginal Sanitizer

Sampling

Pr
iv
ac
y

U
til
ity

Sanitizer
Suppression

Sanitizer
Obfuscation

Sanitizer
Generalization

Figure 4: Qualitative demonstration of privacy-utility trade-off:
We tune trade-off parameter for the sampling mode of sanitizer and
baseline techniques on the UTKFace dataset. This results in different
reconstruction quality and sensitive information leakage for the gen-
erated images. The privacy axis here is measured based on adversary
performance on the sensitive attribute (ethnicity) prediction over the
test set.

We report performance us-
ing Privacy-Utility trade-
off which compares the ca-
pability of an adversary to
correctly infer sensitive in-
formation from the sani-
tized representation which
is concurrently used by a
user to infer task infor-
mation. For this analy-
sis, we simulate a worst
case adversary that has
the chance to dynamically
adapt to the privatization
scheme, which is modeled
by finetuning the adversary
on a privatized validation
set and then evaluating of a
disjoint test set.
Experiment E1: We evalu-
ate privacy and utility trade-off using accuracy of adversary and user, respectively, and represent
the trade-off using a normalized hyper-volumue (HV) (Ishibuchi et al., 2018) (inspired by (Roy &
Boddeti, 2019b)).
Experiment E2: To measure the usefulness and sample quality, we experiment with training sanitizer
and other baselines on privatized images and test it on non-privatized images. A good result on the
test set would indicate a reasonable amount of domain transfer. This is referred as Classification
Accuracy Score(CAS) in the generative model community (Ravuri & Vinyals, 2019). Note that it is
not possible to include TIPRDC since their output is constrained to embedding sharing.
Experiment E3: We perform a similar experiment as E2 but this time the attacker tries to estimate
sensitive information of sanitized data while a user computes CAS on sensitive dataset during the test
phase. This setup is motivate by a practical scenario where data is crowdsourced between untrusted
users and then deployed on trusted devices.

5 RESULTS

Quantitative Results: We compare privacy-utility trade-off on all three datasets with our baselines
by varying the corresponding trade-off parameter and plotting it in figure 3. Our sanitizer frame-
work obtains a better privacy-utility trade-off as measured by the normalized hyper-volume. For
evaluating the plausibility of building ML models using the sanitized dataset, we train a standard
ResNet-34 (He et al., 2015) on sanitized datasets obtained by our sanitizer framework and baselines.
Then we compare its test set performance on the unsanitized version of the dataset.
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Qualitative Results: We obtain different sanitized samples for our method and baselines by ad-
justing trade-off parameters. We visualize the sanitized images in the figure 4. There are two key
inferences from this result - i) our sanitizer protects image semantics while obfuscating the sensitive
information (ethnicity); this is made possible by our mechanism’s capability to transform semantics
associated with sensitive attribute instead of obfuscating that inadvertently disrupts other semantic
information not associated with the sensitive information such as emotion, pose etc. ii) adversar-
ial learning based approaches do not offer any privacy protection in the high utility regime as the
sensitive information (ethnicity) gets disclosed to a reasonable extent.

6 DISCUSSION

Here, we quantitatively analyse effect of the regularized introduced in αβ-VAE and discuss some
architectural limitations. We discuss connections with existing privacy frameworks in appendix.

i) Impact of regularizers used: We perform ablation on each of the component described in the
architecture in figure. 2. We measure the change in the sensitive information leakage by comparing
performance with and without each component in the loss function. This can be interpreted as set-
ting up αi = 0 for the i’th component during the training phase of VAE.
First we measure sensitive information leakage with all components of our regularizer connected,
the sensitive attribute prediction accuracy is 22.16%.
—Distance correlation (dcorr): Removing distance correlation results in the sensitive information
leakage as 29.7% depicting that removing distance correlation increases the information leakage of
the sensitive attribute (yS) in zNS .
—Adversarial predictor (h): Similar to ablating the distance correlation loss function, we see in-
crease in the information leakage of sensitive attribute in the zNS as the accuracy of sensitive at-
tribute prediction goes to 28.04%.
—Sensitive predictor (g): Ablating this component results results in marginal change in performance
(sensitive attribute prediction accuracy increase to 23.5%) indicating its contribution might be lesser
than the other two components for protecting against leakage.

ii) Architectural Limitations: The key goal of this work is to introduce systematic framework and
mechanisms for sanitizing data that could be useful for as many downstream tasks as possible under
the privacy-utility trade-off. While we seek to achieve that, here, we note two key limitations of
the presented results, emerging from the generative modeling framework: i) input sample size -
This stems from need of sufficient datapoints of to learn the semantic representation. We note that
designing VAEs that can capture the distribution with few samples is active area of research in few-
shot learning which will improve impact of our results but is orthogonal to scope of this work. ii)
output sample quality - This can be improved using hierarchical VAEs and we consider this as part
of future work. We also mention that while GANs are known for high fidelity image synthesis, we
specifically use VAEs due to their ability to disentangle semantics in latent space, which is key to
the primary objective of this work in enabling private data release.

6.1 CONCLUSION

In this work we presented sanitizer: a framework for protecting against sensitive information leak-
age for data release. We achieve this objective by a two step process - i) creating semantic splits
and applying mechanisms that aim to preserve the underlying data distribution. While our approach
demonstrates a good privacy-utility trade-off, it is possible to further decrease the sensitive infor-
mation leakage in the sanitized version by improving regularization and the training method used
in this paper. We presented four different mechanisms that are possible under our framework and
we believe this can open up an avenue for the future researchers to develop new mechanisms that
leverage the benefits semantic splits proposed in our paper. One possible future direction of this
work can be to extend it to other tasks where unstructured data is involved such as speech, NLP and
time series data. Finally, our framework takes first steps in the direction of bridging obfuscation and
generative modeling based methods for private data release.
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A APPENDIX

A.1 CONNECTION WITH K-ANONYMITY BASED MECHANISMS

The key idea in k-anonymity (Sweeney, 2002) is to separate columns of a database into two parts
- non-sensitive columns (also referred as quasi-identifiers) and sensitive columns. Then a transfor-
mation is applied to the database such that any given record in the non-sensitive column should be
indistinguishable from k-1 records. Our suppression and generalization based mechanisms can be
viewed as instantiation of k-anonymity in the representation space. However, there are two ma-
jor differences with traditional k-anonymity. First, our sensitive features represent non-sensitive
columns from the point of view of k-anonymity literature and vice-versa. Second, sensitive columns
are supposed to be categorical with high diversity in order to achieve good privacy, however, in
our case sensitive columns (non-sensitive features) are unique to every individual and hence not
offering identity protection explicitly. It is worth noting that under our threat model only sensitive
attributes are supposed to be protected and our framework can provide protection against leakage of
any arbitrary sensitive attribute including identity.
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