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Abstract

Knowledge graph embedding (KGE) models are often used to encode knowledge graphs
in order to predict new links inside the graph. The accuracy of these methods is typically
evaluated by computing an averaged accuracy metric on a held-out test set. This approach,
however, does not allow the identification of where the models might systematically fail or
succeed. To address this challenge, we propose a new evaluation framework that builds
on the idea of (black-box) behavioral testing, a software engineering principle that enables
users to detect system failures before deployment. With behavioral tests, we can specifically
target and evaluate the behavior of KGE models on specific capabilities deemed important
in the context of a particular use case. To this end, we leverage existing knowledge graph
schemas to design behavioral tests for the link prediction task. With an extensive set
of experiments, we perform and analyze these tests for several KGE models. Crucially,
we for example find that a model ranked second to last on the original test set actually
performs best when tested for a specific capability. Such insights allow users to better
choose which KGE model might be most suitable for a particular task. The framework
is extendable to additional behavioral tests and we hope to inspire fellow researchers to
join us in collaboratively growing this framework. The framework is available at https:

//github.com/nec-research/KGEval.

1. Introduction

Knowledge Graphs (KGs) are graph databases that represent information about entities
and their relationships in the form of canonical (head, relation, tail)-triples. KGs are used
in many downstream tasks such as question answering [Huang et al., 2019], recommender
systems [Guo et al., 2020], information extraction [Gashteovski et al., 2020], and named
entity linking [Shen et al., 2012]. A common challenge when working with KGs is that
they suffer from incompleteness [West et al., 2014]. For example, the popular KG DBpe-
dia [Lehmann et al., 2015] contains information about the entities Joe Biden and United

States, but it does not contain the fact expressing the presidentOf relationship between
the two entities. Motivated by the incompleteness of most KGs, there is a large body of
work on link prediction in knowledge graphs, that is, on deriving missing triples from the
set of existing triples.

KG Embeddings (KGE) have been shown to be effective at predicting missing links [Min-
ervini et al., 2015, Ruffinelli et al., 2020]. KGE methods learn low-dimensional representa-
tions of entities and relation types in a vector space (see also the more detailed definition
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in Section 2.1). KGE models are typically evaluated by measuring their ability to rank
candidate entities averaged over triples in a held out test set. This average-based evalua-
tion, however, poses several problems (Bianchi et al. [2020], Kadlec et al. [2017], Sun et al.
[2020b], Mohamed et al. [2020]; for a closer discussion see also Section 2.2) and leaves open
the question of what models fail to learn.

As a step towards a better evaluation of KGE models, we propose the use of behavioral
tests. Behavioral testing, a standard-practice in software engineering, is concerned with
testing behaviors of a (black-box) software system by feeding it various inputs and observing
and analyzing the system’s behavior. Such behavioral tests have several advantages. First,
it is possible to find out if a model makes systematic mistakes for a certain capability of
interest. Second, one can compare different models in a more detailed and fine-grained
manner, allowing us to understand under which circumstances different models offer an
advantage. Third, the tests could be used to uncover particular issues in the training data,
which could then be corrected (e.g. in the context of KGs by adding more entities or relations
of a certain type). Fourth, by using a more rigorous testing approach, we can increase the
trust of stakeholders in production settings.

In this work, we kick-start a new evaluation framework by exploring possible testable
capabilities and by defining detailed tests for two of these capabilities. First, we explore how
well KGE models handle symmetric relations (e.g. the relation spouseOf is symmetric),
which has been a much discussed property (Sun et al. [2019], Peng and Zhang [2020],
Zhang et al. [2020], Trouillon et al. [2016], Wang et al. [2014]; inter alia) but so far lacks
a systematic evaluation. Second, entities in a KG are often associated with an entity
type (e.g. Diane Sawyer is of type Actor) and we evaluate how well KGE models have
learnt to respect entity types. We run these tests on six KGE models and find that the
model ranking on the original test set does not reflect the same ranking when testing for
specific capabilities. For instance, we find that the model ComplEx [Trouillon et al., 2016]
ranks second to last on the original test set but is the best at predicting unseen triples for
symmetric relations.

2. Link Prediction for Knowledge Graphs

A knowledge graph K consists of a set of entities E , a set of relation types R, and a set of
triples d = (h, r, t), with head h ∈ E , relation type r ∈ R and tail t ∈ E . For example, the
triple (Porto, locatedIn, Portugal) represents the information that the entity Porto is
located in the entity Portugal. Knowledge graphs are typically incomplete. Link prediction
is the task of inferring new triples based on the triples contained in the knowledge graph.
This problem can be framed as a tail and head prediction query of the form (h, r, ?) and
(?, r, t), where one seeks to find substitutions for ? that result in a new correct triple.

2.1 Knowledge Graph Embedding Models

A Knowledge Graph Embedding (KGE) model consists of three main components. First,
the KGE model’s parameters w. Typically, the parameters are vectors associated with
each entity and relation type. Second, given the model’s parameters w we have a scoring
function φ(d;w) which maps the parameters of the head, tail, and relation type occurring
in a triple d to a real-valued number. KGE models differ mainly in the particular choice of
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scoring functions. Third, the model’s parameters are learnt based on a training set Dtrain of
known triples, where a commonly used loss function aims to maximize the score of known
triples while minimizing the score of randomly sampled (much more likely to be incorrect)
triples. Once a model is trained, it can predict a score for an unseen triple that indicates
the likelihood of this being true.

2.2 Standard Evaluation Metrics and their Shortcomings

The standard approach for evaluating link prediction methods uses a (held-out) test set
Dtest of correct triples. For each of these (h, r, t)-triples, the model scores all possible sub-
stitutions of the queries (h, r, ?) and (?, r, t). Then, the entities are ranked in descending
order according to their predicted scores. There are two commonly used metrics for evalu-
ating the resulting rankings—MRR and Hits@k (t may be replaced with h for the reverse
direction):

MRR :=
1

|Dtest|
∑

(h,r,t)∈Dtest

1

rank(t)
; Hits@k :=

1

|Dtest|
∑

(h,r,t)∈Dtest

1[rank(t) ≤ k].

The MRR (mean reciprocal rank; lower is better) metric identifies the gold tail t’s rank
rank(t) according to the model’s scores and computes the mean of the reciprocal ranks over
all test triples. The Hits@k metric computes the mean, over all test triples, of the event
that the gold tail occurs in the top k ranked entities.

Using the above metrics as averages over a test set is a global and coarse-grained measure
of accuracy. It conflates different relation and entity types and does not allow the user to
understand the types of errors the KGE model makes on particular groups of triples. For
example, the model could perform poorly on specific relation types, either due to a weakness
of the model or misspecified training data. The need for an evaluation approach that can
analyze and explore the behavior of KGE methods in a more fine-grained manner was also
expressed in prior work [Bianchi et al., 2020]. To move towards a better evaluation paradigm
for KGE models, we propose a new, extendable evaluation framework which can compare
KGE models in a more systematic manner.

In addition to the coarse-grained nature of standard evaluation measures, prior work has
identified additional shortcomings of common evaluation procedures. First, Kadlec et al.
[2017] found that hyperparameter tuning can be more important than model architecture
changes, which caused the authors to raise doubts about the traditional accuracy based
evaluation. By using and extending our framework of more fine-grained behavioral testing,
it will be possible to determine if and under which circumstances different model architecture
perform better. Second, it has been found that recently published (and seemingly superior)
KGE models have been evaluated incorrectly [Sun et al., 2020b]. By introducing a common
test framework, such inconsistency could be avoided. Third, Mohamed et al. [2020] has
shown that the traditional accuracy-based metrics overestimate the performance of KGE
models because they magnify the accuracy on frequently occurring entities and/or relations.
The less frequent, “long-tail” triples, however, are often the triples that one cares the most
about [Ilievski et al., 2020].
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Figure 1: An overview of the proposed framework to analyze KG embedding (KGE) models
and to explore systematic failure modes. Given a KG’s schema (or other external sources),
we can define various system capabilities. To test a capability, various test sets with relevant
triples are created. For each triple in each test set, we can query the KGE model. The
KGE model can be a black-box, which, given a link prediction query (h, r, ?), only outputs
a score for each possible entity. Based on this, a detailed report about the model’s test
behavior is provided.

3. Behavioral Testing

Overview. We propose to use behavioral tests as a new evaluation framework that allows
one to better understand what KGE models succeed or fail to learn. Behavioral testing is a
software engineering principle where capabilities of software systems are tested by treating
them as black boxes and analyzing their behavior for specifically designed inputs. For
example, a software engineer might write a function that expects positive integers inputs.
One behavioral test for this function could be a test that checks what happens if the
function is given a negative integer instead - does the function handle this disallowed case
appropriately?

The idea of behavioral testing has also recently been applied to NLP [Ribeiro et al.,
2020]. For example, Ribeiro et al. [2020] analyzed the robustness of named entity recognition
systems by replacing the city name in specific sentences with different city names, and
observing the resulting change in behavior of the system. Here, we transfer the idea of
behavioral testing to analyze the behavior of KGE models in a more fine-grained manner.

Knowledge graphs are typically associated with a predefined schema [Auer et al., 2007],
which imposes constraints on the set of possible triples. For instance, a given relation type
might have entity type constraints for its domain and range (e.g., the DBpedia relation type
birthPlace must have an entity of type person as head and an entity of type location

as tail). We propose to use such schemas to design behavioral tests and to check the
consistency of KGE models with regards to the schema constraints.

Based on a given KG schema, fine-grained tests can be designed to assess KGE models
with respect to their behavior for particular capabilities. As a result, this type of evaluation
can offer more detailed insights into where KGE models perform well and where they might
make systematic mistakes. A graphical overview of our proposed approach is depicted in
Figure 1.

Possible Capabilities. Our framework can be easily extended by adding new capabilities
and corresponding tests. Adding various such capabilities and tests to one joint evaluation
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framework would ensure better comparison between different KGE models in the future.
Some possible capabilities are:

• Relation symmetry: KGs often contain symmetric relations, where a relation r ∈ R
is symmetric if ∀x, y ∈ E , (x, r, y) =⇒ (y, r, x). For example, if a KGE model was
trained on the symmetric relation (x, spouseOf, y), a test could check if it correctly
predicts (y, spouseOf, x). Ensuring that a KGE model can handle symmetric relations
has been the focus of several recently proposed KGE models (Sun et al. [2019], Peng
and Zhang [2020], Zhang et al. [2020], Trouillon et al. [2016], Wang et al. [2014]; inter
alia). The idea can also be extended to other properties of relation types, such as
antisymmetry, inversion, and composition.

• Entity hierarchy: Entities can be associated with an entity type. For example, the
FB15k-237 entity Diane Sawyer is of type Actor. The entity types themselves are
organized in a hierarchical (hypernym) taxonomy; e.g. Actor → Artist → Per-
son. Various KGE models have specifically been designed to learn entity hierarchies
well [Zhang et al., 2020, Kolyvakis et al., 2020, Balazevic et al., 2019, Chami et al.,
2020, Sun et al., 2020a]. Tests could for example explore how well KGE models work
at different hierarchy levels.

• Entity distributions: Relations can be grouped into 4 categories with regards to
how many correct heads/tails they may have: 1-to-1, 1-to-many, many-to-1 and
many-to-many. For example, some relations by definition can only have one correct
tail as an answer (e.g. birthPlace). Prior work studied how well KGE models
perform in such different scenarios (e.g.[Bordes et al., 2013a, Peng and Zhang, 2020])
and this type of analysis could easily be added to the evaluation framework.

• Robustness to adversarial attacks: Pezeshkpour et al. [2019] study how KGE
models are effected by adversarial modifications. This idea could be transformed into
a capability that checks how prone KGE models are to adversarial attacks.

• Relation/entity frequency: The observation that KGE models perform better on
frequently occurring entities/relations [Mohamed et al., 2020] could be systematically
tested by creating different test sets where this frequency is varied.

The tests defined for a capability explore the behavior of a model under a particular
setting or condition. They can be utilised in two ways. First, they can serve as evaluation
benchmarks with which different systems can be compared to each other. Based on this,
we can choose the best model for a particular capability of interest. Second, they can be
used to determine the failure rate of a system by making a binary decision for each triple,
e.g. by defining a cut-off point for each tested triple.1 With this view, we can determine if
a model is good enough to be deployed. While the latter is ultimately more important in
a production setting, we focus here on the former, with which we explore how known KGE
models can be compared against each other.

1. For example, for a system to succeed a triple’s gold tail has to be in the top 3 of a model’s prediction,
else it is counted as failure.
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Evaluation Setup. To kick-start the new evaluation framework, we define several tests
for two capabilities and then use the tests to evaluate different KGE models. For the evalua-
tion, we employ six KGE models: DistMult [Yang et al., 2015], ComplEx [Trouillon et al.,
2016], RotatE [Sun et al., 2019], HyperKG [Kolyvakis et al., 2020], LinearRE [Peng and
Zhang, 2020], HAKE [Zhang et al., 2020]. For an overview of their scoring functions, see
Table 1 in the appendix.

The first capability we explore is relation symmetry. All proposed methods can, in
principle, learn that a relation type is symmetric. DistMult in particular treats all relation
types as such. However, the main evaluation for these models was conducted on the standard
test sets with averaged metrics. While ablation studies regarding symmetric capability are
sometimes included [Sun et al., 2019, Peng and Zhang, 2020],2 they are neither systematic
nor comparable across papers. Therefore, it is difficult to judge to what degree they can
handle symmetry and which model might be the best with regards to this capability. To
be able to answer this question, we design targeted tests which allow us to measure the
performance specifically for symmetric capability. In turn, we can analyse in detail under
which settings which model performs best.

The second capability we investigate is entity hierarchy. Many KGs are hierarchical by
nature; as an example see Figure 3 for entity types in DBpedia. This encodes important
additional knowledge; for instance, certain relations only apply to certain entity types. For
example, the relation starsIn is typically associated with tail entities of type Actor, which
is at level 4 in the hierarchy (see Figure 3). In contrast, the relation birthPlace can have
tail entities of the higher ranked level 1 type Place (e.g. City or Town, because both
entity types are a type of Place). For this capability, we design tests that explore how well
KGE models have learnt to handle different entity types at varying levels in the entity type
hierarchy. For this capability, we can test whether KGE models that have specifically been
designed to learn hierarchical structure (HyperKG, HAKE) perform better than other
models.

The models are trained on FB15k-273 [Toutanova et al., 2015] and we evaluate the
models which achieved highest performance on the original FB15k-273 test set. All hyper-
parameters are included in Section C of the appendix.

3.1 Capability: Relation Symmetry

Some relations in a knowledge graph are symmetric: given x, y ∈ E and r ∈ R, if (x, r, y)
is true, then (y, r, x) is also true and vice versa. We define four tests to better understand
the extent to which KGE models have the ability to handle symmetry. The first three tests
target symmetric relations and become progressively more difficult. The last test examines
how well models recognize if a relation is not symmetric (or asymmetric).

To set up these tests, the relations of a dataset need to be split into symmetric and
asymmetric relations. For FB15k-237 we report the set of symmetric relations in Table
2 in the appendix. All other relations of the dataset are asymmetric. Based on the set of
symmetric relations, we find 6,220 symmetric triples in the training set and 2,520 triples

2. Sun et al. [2019] supply some example relations where RotatE identifies a relation to be symmet-
ric/asymmetric; Peng and Zhang [2020] note that RotatE performs better than TransE [Bordes et al.,
2013b] on some datasets because they contain more symmetric relations.
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Figure 2: Results for relation symmetry tests. (a) shows a clear disparity between the
different tests. Most interestingly, ComplEx is ranked second to last on the original test
set but performs best when testing unseen triples (Test 3). (b) Both models perform well
on Test 4, with Rotate less likely to mistake an asymmetric relation for a symmetric one.

that occur in both directions. With this knowledge we can now define and instantiate the
four tests.

Test 1: Memorization. The first and easiest test measures the extent to which a model
memorizes training set triples with a symmetric relation type. For each training triple
(x, r, y), if r is in the set of symmetric relations, we add (x, r, y) to the test set for Test 1
and ask the model to predict the tail entity. This test can be considered an upper bound
for the other tests since the data has been seen during training; thus this test constitutes
the easiest scenario.

Test 2: One Direction Unseen. For the second test, we create a test set where a triple
with a symmetric relation was seen in one direction during training but the reverse direction
was not seen: if (x, r, y) is in the training set, but (y, r, x) is not, then (y, r, x) is added to
the test set for Test 2. As these triples are unseen, the test is harder than the previous
one and it will allow us to investigate how well a model has recognized that a relation is
symmetric.

Test 3: Both Directions Unseen. The third test consists of triples that have a sym-
metric relation but were never seen in either direction during training. For this test we
collect unseen triples from the validation and test set and if a relation r is symmetric, we
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add both (x, r, y) and (y, r, x) to the test set for Test 3. Since neither direction was seen by
the model, this test is more difficult than the previous two and measures how well symmetric
relations generalize to unseen triples.

Test 4: Asymmetry. The last test aims to analyze whether a model mistakenly considers
a relation symmetric. For instance, for the triple (George W. Bush, fatherOf, George

H. W. Bush), if the model is given the instance with the head and tail inverted: (George

H. W. Bush, fatherOf, ? ), then George W. Bush should not be among the top pre-
dictions. This implies that a higher MRR is worse for this test. To probe the behavior of
KGE models with respect such asymmetry, we randomly sample triples from the training
set that do not contain a symmetric relation.

Results. Results on the original test set of FB15k-237 and our behavioral tests are shown
in Figure 2 (a). On the original test set LineaRE and HAKE perform best and obtain
comparable MRR. However, the behavioral tests expose interesting differences between the
two models. LineaRE performs far better than HAKE on Test 1 (“Memorization”) and
Test 2 (“One Direction Unseen”). This indicates that LineaRE is better at memorizing
the training set (Test 1) and recognizing symmetric relations (Test 2). However, on the the
test that measures generalization to unseen triples (Test 3, “Both Direction Unseen”), we
find that HAKE outperforms LineaRE. On Test 4 (“Asymmetry”) higher MRR indicates
a worse model. We find that LineaRE and HAKE, along with the other models, perform
well on this test, indicating that they are not likely to mistake an asymmetric relation for
a symmetric one.

Even more surprising are the results of ComplEx. On the original test set it is ranked
second to last (i.e., only DistMult is worse), however, on Test 3 it achieves the best perfor-
mance. It also performs better than expected (based on the original test set) for Tests 1
and 2. This indicates that if generalizing well on symmetric relations is important, Com-
plEx would be a promising model to try out. Based on these results, additional future
investigation into why ComplEx performs better than expected on Test 3 could also lead
to new insights on how to achieve better symmetric capability.

There are two further interesting results. First, DistMult, which treats all relations as
symmetric, performs worst. Second, RotatE performs very well on Test 1 but not on the
other tests, which indicates that RotatE can memorize well, but does not generalize to
more difficult setups. We investigate this further in Figure 2 (b), where we plot the results
of DistMult and RotatE and we evaluate the models for different dimension sizes. For
the first three behavioral tests DistMult is better at lower dimension sizes, whereas for
RotatE higher dimensions sizes bring a small performance increase. For Test 4, we find
that all models in Figure 2(a) perform well (the lower the MRR, the better), showing that
models do not easily mistake asymmetric relations for symmetric ones.

3.2 Capability: Entity Hierarchy

Entities in a KG may be associated with entity types, which can be expressed in a hier-
archical structure. As shown in Figure 3, entity types vary from general and ambiguous
concepts, such as Thing or Agent, to more specific ones such as Actor and Ballet
Dancer. Therefore, entities are associated with types belonging to different hierarchy lev-
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Figure 3: Hierarchy of entity types in DBpedia. Each entity has a entity type.

els. Likewise, KG relations sometimes impose constraints on the entity types about their
domain and range (e.g., birthPlace accepts as head and tail an entity of type Person and
Place respectively).

We define two tests to analyze to what extent KGE models have learnt to respect entity
type constraints when making predictions. The first test explores model performance based
on the entity level of gold tails to investigate how well the models handle different specificity
levels. In the second test we explore how much model performance could be improved if the
model had learnt to associate a relation with the correct entity type. To set up the tests, we
map each entity of a triple from Fb15k-237 to its counterpart in DBpedia, which defines
entity types and arranges them in a hierarchical manner (see Figure 3). A few entities have
no direct mapping and are thus filtered out, we also filter out level 5 entities as they only
occur rarely (21 triples in total).

Test 1: Gold Tail. To test how well KGE models perform at different entity type levels,
we create a test set for each level. For this, we iterate over each triple in the original test
set and look up the level of the gold tail’s entity type. The triple is then added to the test
set of the found level. With this, we can test how performance varies as we move from very
general entity types (Level 0) to more specific ones (Level 4).

Test 2: Type Constraints. Next, we would like to test how model performance changes
if we explicitly restrict the set of possible tail entities based on entity type. If this improves
the results, then this indicates that the models have not yet sufficiently learnt to associate
a relation with the correct entity type. To test this, we use the training data to compile for
every relation the most likely type at each level. For each test set (Level 0 - 4), we apply
entity type restrictions in the following way: (1) At prediction time, given a relation, we
restrict the entity set to have the entity type that occurred most often for this relation in
the training set. For example, for the relation BirthPlace at level 2, we restrict the entity
set to be of type Place or a subtype of Place. (2) We move up in the hierarchy tree,
which causes the restriction to relax with each step up. Moving up to level 0 would then
be equal to not placing any restrictions.
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Test 3: Gold Type Finally, we would like to test if a model has learnt to recognize that
the entity to be predicted should be of a certain type. For instance, for the triple (George

W. Bush, FatherOf, ?), the predicted tail should be of type Person. To investigate this,
we mark the first entity that shares the same type as the gold tail as correct, even if it is
not necessarily the gold tail itself. In the previous example, if the correct answer is ranked
300, meaning that the model only obtains a tail of type Person at rank 300, then the
model clearly struggles with entity types. However, if the model always predicts the correct
type as the first prediction, then the model has successfully learned which type of entity to
expect.
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Figure 4: Results of the hierarchy tests: Figure (a) shows that the difficulty of predicting a
tail differs by their level in the hierarchy. Figure (b) shows that models benefit from type
constraints. Figure (c) shows that it is easier to predict more general entity types.

Results. For the Test 1 (“Gold Tail”), Figure 4 (a) shows the performance for the dif-
ferent entity type levels. The model rankings are consistent across the different levels with
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LineaRE and HAKE performing best. Regarding the different levels, we find that level 1
entity types are the easiest to predict, while more specific levels seem to be more difficult.
In particular, all models perform by far the worst at level 2. The drop of performance in
level 2 compared to the other levels likely stems from the type of relation. The relations
that occur in level 2 rarely occur in other levels and most of the relations expect a tail of the
level 2 type “Person”. We conjecture that the models are particularly bad at predicting in
this scenario because of the large number of entities that have the type “Person” (4,950;
which constitutes 34% of all the entities in the set).

The results for Test 2 (“Type Constraints”) can be found in Figure 4 (b). We see an
improvement in MRR across the board when using type constraints during prediction. For
example, for the level 1 test set, we find an improvement of about 0.05 MRR when restricting
the entity set to belong to a relation’s most common level 1 entity type. Additionally, at all
levels, we find that applying the restriction at the same level helps the most. This shows
that models have not yet fully learnt to associate entity types with relations. One future
direction could be to to investigate how entity type information can be used to further
improve models.

Test 3 results are depicted in Figure 4 (c).3 We find that (1) all models perform similarly
across the different levels; (2) at all levels and for all models we observe relatively high MRR
(≥ 0.6) showing that all models are quite good at correctly predicting the type of the tail
entity; (3) performance slightly drops when moving to deeper levels, which is understandable
as entities at higher levels are more general and more common; therefore easier to predict
(for example, level 1 contains entities of types, e.g. Agent, Deity, while deeper levels are
more specific, e.g. Artist or Musician).

These results of Test 3 contrast with Test 2, where we find that despite correctly pre-
dicting the correct type at level 2 and level 4, it is much more difficult to predict the correct
tail. In the future, we would like to investigate the reason for this discrepancy.

4. Conclusion

Knowledge graphs and knowledge graph embedding (KGE) models can be used for link pre-
diction to infer new triples. However, they are typically evaluated using averaged accuracy
metrics computed over a test set. As a result, it remains unclear what exactly these models
have learnt and which model might be the most suitable for a particular task. We pre-
sented a framework to systematically test the capabilities of KGE models using behavioral
tests. For two initial capabilities we defined several tests and ran them for six KGE models.
Crucially, we find that the model performance on the original test set does not necessarily
mirror the same performance when testing models for a specific capability. For instance,
ComplEx ranked second to last on the original dataset but is the best at predicting unseen
triples for symmetric relations. We hope that this initial framework will also inspire fellow
researcher to contribute by adding more tests, models and datasets.

3. We were not able to confirm the results for the model HyperKG due to its incompatible implementation
for this test.
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Appendix A. Scoring Functions

The scoring functions for various KGE models can be found in Table 1.

Model Scoring Function φ(w; d) Parameters

DistMult 〈h, r, t〉 h, r, t ∈ Rk

ComplEx Re(〈h, r, t̄〉) h, r, t ∈ Ck

RotatE ‖h ◦ r − t‖2 h, r, t ∈ Ck, |ri| = 1
LinearRE

∥∥w1
r ◦ h + br −w2

r ◦ t
∥∥ w1

r ,h, br,w
2
r , t ∈ Rk

HAKE
−‖hm ◦ rm − tm‖2− hm, tm ∈ Rk, rm ∈ Rk

+

λ ‖sin((hp + rp − tp)/2)‖1 hp, rp, tp ∈ [0, 2π)k, λ ∈ R

Table 1: Definitions of the scoring function φ(w; d) for different models; w the weights of
the model, d = (h, r, t) the triple to be scored, k indicates the hidden dimension size, 〈〉 the
inner product, Re() the real value of a complex vector and t̄ the complex conjugate.

Appendix B. FB15k-237 Symmetric Relations

We report the manually extracted symmetric relations for FB15k-237 in Table 2.

FB15k-237 Relations
/base/popstra/celebrity/breakup. /base/popstra/breakup/participant

/base/popstra/celebrity/canoodled. /base/popstra/canoodled/participant
/base/popstra/celebrity/dated. /base/popstra/dated/participant

/base/popstra/celebrity/friendship ./base/popstra/friendship/participant
/celebrities/celebrity/celebrity friends. /celebrities/friendship/friend

/celebrities/celebrity/sexual relationships. /celebrities/romantic relationship/celebrity
/influence/influence node/peers. /influence/peer relationship/peers

/location/location/adjoin s. /location/adjoining relationship/adjoins
/people/person/spouse s./people/marriage/spouse

/people/person/sibling s./people/sibling relationship/sibling

Table 2: FB15k-237 symmetric relations.

Appendix C. Hyperparameters of Trained Models

We train models for DistMult [Yang et al., 2015], RotatE [Sun et al., 2019], Lin-
earRE [Peng and Zhang, 2020] and HAKE [Zhang et al., 2020]. These models differ
in their definition of the scoring function φ(w; d), which may be found in Table 1.

We use the python framework Pykeen [Ali et al., 2021] for all our experiments, it provides
ready-to-use implementations of both the DistMult and the Rotate models.

For the DistMult experiments, we fix the following hyperparameters: 500 negative per
positive samples for the negative sampler, a learning rate of 1e−3. We train the first group
of models for 100 epochs while varying the size of embedding dimensions. For the second
group, we train the models for different epochs while keeping the hidden dimensions at 100.
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Figure 5: Examples from FB15k-237 for each behavioral test to determine the symmetric
relation capability.

For the RotatE model, we use 256 negative per positive samples for the negative
sampler, a learning rate of 5e−5 with the adam optimizer and a training and evaluation
batch sizes of 1,024 and 16, respectively. We either fix the dimensions at 1,000 or the epochs
at 500, similarly to the DistMult trials. For both KGE models, we run 5 independent
experiments for every set of hyper-parameters, we then report the average performance.

For the experiments of ComplEx, we use the official source code of the Rotate model,
where the best model hyper parameters are reported as follows: batch size 1024, negative
sample size 256, hidden dimensions of 1000, γ 200, α 1.0, learning rate 0.001, maximum
steps of 100000 and a test batch size of 16.

For the HAKE model, we use the recommended configurations in the paper, which are
also provided with the source code, with a batch size of 1024, negative sample size 256,
hidden dimensions 1000, γ 9.0, α 1.0, learning rate 0.00005, maximum steps 100000, test
batch size 16, and their custom parameters of modulus and phase weights of 3.5 and 1.0
respectively.

For HyperKG, the negative sample size is 5, λ is 0.8, γ is 0.5 and β is n/2, with n=100.

For LineaRE, α is 0.5, β is 1.0, γ is set to 12, the embedding dimensions are 1000, a
batch size of 2048 and a negative sample size of 128.

Appendix D. Behavioral Tests

D.1 Capability 1: Relation Symmetry

Examples in Figure 5 demonstrate the type of triples that are considered for the relation
symmetry tests.

D.1.1 Test Set Statistics

The symmetry tests have the following number of triples:

Test 1 Test 2 Test 3 Test 4

5,70 1,308 226 3,000
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The original Test Set contains 20,466 triples that represent a variety of relations, both
symmetric and asymmetric.

D.1.2 Additional Results

In the main paper, in Figure 2, we provide the results on the symmetry tests for varying the
embedding dimensions for DistMult and RotatE. In Figure 6a, we provide the results
for varying the epochs.

D.2 Capability 2: Entity Hierarchy

D.2.1 Test Set Statistics

The hierarchy tests have the following number of triples:

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

3,628 7,939 3,408 6264 21 1

Triples from Level 5 and Level 6 were filtered out because of the small data set size. The
original Test Set contains 20,466 triples that represent a variety of relations with tails of
different levels in the entity type hierarchy.

D.2.2 Additional Results

In the main paper, in Figure 4, we provide the results on the hierarchy tests for varying
the Epochs for DistMult. In Figure 6b, we provide the results for varying the embedding
dimensions, and in Figure 7, we provide the same results for RotatE
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Figure 7: RotatE results for the hierarchy tests. Type constraints are most useful at the
selected level of the test set
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