Errors? Not Too Worrisome. Exploring the Effects of Errors in Speech
Transcription

ABSTRACT

This paper presents two user studies that investigate how errors that
occur during speech recognition affect users’ text entry performance
and experience. For our work, we used a speech recognition system
that injects believable errors in a controlled manner, and where
users could fix errors by re-speaking a small part of their original
utterance. Participants were asked to transcribe a set of phrases
using our system, either with or without the insertion of errors, In
the first study, we injected up to 33% errors, but saw no substantial
results. Yet, participants commented consistently on the used phrase
set, which did not correspond well with spoken English. Thus, we
created a novel phrase set based on spoken phrases. In our second
study, we used this phrase set and inserted errors into the speech
recognition results with either 25% or 50% probability. The results
showed that inserting errors in the speech recognition system had
a significant effect on participants’ perceived mental workload. In
addition, we find that inserting errors increased the number of errors
users made during the task. According to our findings, users have a
fairly high tolerance for errors encountered in speech transcription.

Index Terms: Human-centered computing—Interaction design and
evaluation methods—Speech recognition—Re-speaking;

1 INTRODUCTION

In today’s digital era, text entry has become an indispensable aspect
of both our social and professional lives. Hence, efficient text entry
has become vital for effective communication. Commonly used
state-of-the-art technologies to improve text entry efficiency include
auto-correction and word prediction. However, these features are
not always perfect. In fact, some studies have shown that auto-
correction and predictive features rarely increase text entry speed
significantly, due to the time required to manually fix wrong pre-
dictions, corrections, and/or the higher cognitive load required to
fix such errors [5,7,17,22]. When such errors occur, users also
experience an increase in frustration as well as physical and mental
workload [5,22,23].

Beyond predictive features and autocorrection for typing-based
input, voice-to-text has become another widely used feature for
text entry [10,27]. With recent advances in Automatic Speech
Recognition (ASR), voice assistant tools such as Google Home
and Amazon Alexa have gained popularity, and today most digital
devices support built-in dictation. A body of research has shown
that entering text through voice can be much faster than typing
[12,16,26,30]. Yet, there has been a lack of studies that investigate
how errors encountered during speech recognition can affect users’
text entry performance and also their frustration.

The central objective of our work is to understand how users
respond to errors encountered in speech transcription tasks. Ac-
cordingly, we present a quantitative analysis of user responses to
different error frequencies, complemented by qualitative user feed-
back and observations. In addition, based on feedback from users
when encountering traditional text entry phrase sets, we also created
a new phrase set that is (better) suited for speech transcription tasks.

2 RELATED WORK

In this section, we review prior work that is relevant for our work.
Previous research mainly focuses on hands-free techniques to correct
errors, rather than how users respond to the errors.

2.1 Error correction with voice input

Error correction plays a critical role in text entry. Advances in error
correction algorithms have enabled improvements in the efficiency
of typing-based text entry and the users’ experience [24, 28, 35].
Still, voice-based text input can afford much higher text entry rates
compared to typing [8, 12,16,26,30]. However, the level of accep-
tance of speech as a means of text input is not as high as typing,
one of the major causes being the difficulty to correct text entry
errors [18]. Previous work identified that using multi-modal input,
i.e., multiple modes of input, might improve error correction in
speech recognition [21,30]. For example, combining voice input
with a mouse or keyboard can aid error correction better compared
to using voice-only [15]. In real-world text entry scenarios, there is
a tendency to start with voice-based text entry first, and then switch
to the keyboard to manually correct the text [14, 18]. This switch of
modality can greatly impact the user experience, and is especially
challenging for visually impaired users [8]. Azenkot et al. found
that visually-impaired participants spent more than 80% of their
time editing speech recognition results, with most edits using the
backspace key and reentering text with the keyboard [8]. Similarly,
sighted people spent 66% of their time editing the text on a desktop
dictation system [16].

Unfortunately, accurate error correction via voice is more chal-
lenging than through typing, due to the linear and temporal nature of
audio making it more prone to errors [11]. The major challenge in
voice-based error correction is specifying the location and the size
of the erroneous (part of the) phrase [9, 16,21].

To address this issue, McNair and Weibel [20] proposed an ef-
fective error correction technique that only requires re-speaking the
erroneous part of a sentence (or longer text). With this, users simply
re-speak the erroneous word(s), e.g., correcting “I will bang it over
tomorrow” by saying only “bring”, instead of re-speaking the full
sentence. Given that matching the re-spoken part to the original
utterance can be challenging and can yield ambiguous results, this
technique was further improved by Ghosh et al. [13] (more specifi-
cally their technique outlined in the appendix available in the ACM
Digital Library). Their approach lets users provide a bit more con-
text by re-speaking more than the erroneous part. The additional
words enables the system to detect the incorrect part of the phrase
more accurately, making error correction more reliable. In the above
example, users could thus, e.g., say “bring it over” to correct the text
in an unambiguous manner. We adopted this re-speaking technique
of Ghosh et al. [13] for our evaluation. To ensure that the begin-
ning/end of any speech act (be it the initial utterance or an error
correction) was detected reliably, we combined it with minimal use
of the mouse. We discuss the details of our implementation in the
Apparatus section.

2.2 Measures of user performance and user experience

To assess participants’ interaction with the system, we used two
different types of measures: text entry efficiency and subjective
experience measures. To quantify the entry efficiency, we measure



the entry speed, verification time, and accuracy of the entered phrase
relative to the prompt. To assess the subjective experience, we
measure participants’ self-reported mental and physical demand, and
their frustration levels. According to the results of previous studies
on error correction, we expect to see impaired entry efficiency and
an increase in perceived workload and frustration as the number of
errors increases [5-7].

2.2.1 Entry Efficiency

The two most commonly used measures for text-entry efficiency
are word per minute (WPM) and error rate (ER). WPM measures
the speed of the text entry, with faster WPM indicating more entry
efficiency. In voice-based typing, it also refers to how fast users
speak. ER measures the accuracy of the text entry, where we com-
pare the given text (in transcription tasks) with the final text users
entered, with lower ER indicating more entry efficiency. Both WPM
and ER have been frequently used in literature to measure text-entry
efficiency [4,5,7,8,16]. We also added another metric called verifi-
cation time (VF) to measure how long it took participants to decide
that the result is correct, after they finished entering the text [6].

2.2.2 Subjective Experience

The NASA TLX is a well-validated questionnaire that was originally
designed to measure workload in the military [23], but it has been
applied in a variety of settings in HCI research [19]. The NASA TLX
combines six different scales including mental demand, physical
demand, temporal demand, effort, performance, and frustration. In
our studies, we were only interested in the perceived mental and
physical demand, and the frustration experienced by users, and thus
used only the corresponding questions.

3 STuDY 1

Our first study used a between-subject design with the injected error
rate (two levels, 0%, and 33%) as the independent factor. The
dependent factors included entry speed (WPM), error rate (ER),
as well as self-reported frustration, physical demand, and mental
demand (NASA TLX). Participants were randomly assigned to one
of the 0% error and 33% error conditions. We collected 29 phrases
for each participant, for a total of 348 phrases.

3.1 Participants

Twelve participants (six females, six males), aged between 21-29
years old, with an average of 24.5 (SD = 2.15) participated in this
study. All participants were either completing or had completed a
bachelor’s degree in an English-speaking university in Canada. All
data were collected over Zoom. Participants generally shared their
screen, except for two who did not agree to share the screen.

3.2 Apparatus

The experiment used a web application housed on a local university
server. We implemented the system using HTML, CSS, JavaScript,
and the Google speech recognition API [3]. Fig. 1 shows the inter-
face of our system. Normally, such a system would show the most
likely recognition result for the user’s utterance, but we injected er-
rors (with a controlled frequency) by showing the second-most likely
result returned by the Google API, which yields a very believable
misrecognition. For instance, instead of showing “How was your trip
to Florida?” (the most likely result), the system would then display
“How was your train to Florida?” (the second-most likely result). In
the two experimental conditions, we injected such an error either 0%
or 33% of the time. We chose 33% in this study as a compromise be-
tween being able to observe sufficient errors and avoiding excessive
frustration. For error-correction through the re-speaking feature, we
permitted users two attempts for transcribing each phrase. For the
first attempt, users were required to speak the whole phrase in full,
while the second attempt was reserved for correcting any errors that

remained after the first attempt. Errors were only injected for the
first attempt, and the system always showed the most likely result in
the second attempt.

3.3 Task and Procedure

All phrases were randomly selected from the Enron MobileEmail
phrase set [34]. We removed all punctuation marks in the recogni-
tion results, as they might introduce a confound in the dependent
variables, which might undermine internal validity [7,29].

At the start of this study, participants were allowed to choose the
most appropriate accent among English-US, English-UK, English-
India, and English-Canada. Participants were then asked to speak
each phrase that appeared on the screen. Participants clicked on
“Start Recording” to start recording their utterance (Fig. 1 left), fol-
lowed by a click on “Stop Recording”. If the speech was transcribed
incorrectly, then they could repeat part of the sentence by clicking
on the “Start re-recording” button on the same page (Fig. 1 right),
and then again “Stop Recording”.

Instruction on the Re-speaking Feature We asked partici-
pants to (generally) re-speak the incorrect phrase from at least one
word before the incorrect word and end at least one word after the
incorrect word. If the correction involved the ending or starting
word, then they were asked to repeat two words after or before.
The system did not enforce this instruction, instead the algorithm
matched whatever participants used to correct an error. Participants
were only given a single error correction attempt for each phrase,
after which they had to proceed to the next phrase.

After participants completed all 29 phrases, they completed a
NASA TLX 7-point Likert scale questionnaire (with 1 = lowest, 4 =
neutral, and 7 = highest). Each participant was asked to self-report
their subjective experience, followed by a brief interview at the end
to assess participants’ familiarity with speech-to-text systems and
their experience with the re-speaking interface.

3.4 Quantitative Results

To analyze the error rate, we compared participants’ final submitted
transcription results with the phrases they were given. We considered
three types of errors in our study: user-caused errors, the errors we
injected, and the errors that resulted from the occasional glitch in
the speech-recognition system (i.e., the Google Speech-to-text API).
For our study, we are specifically interested in the first type—the
errors that are caused by the insertion of the second type.

Fig. 2 shows the results for all dependent variables. Overall,
error rates for participants in the 33% error condition (M = 29.9%,
SD = 13.7%) were higher than with 0% errors (M = 23.6%, SD =
6.3%). However, there was no significant difference between the
two conditions, t(7.03) = 1.02, p = 0.34.

Overall, participants exhibited a higher WPM in the 0% error
condition (M = 119.90, SD = 13.77) compared to 33% errors (M =
116.08, SD = 10.10). Yet, a Wilcoxon test revealed no significant
difference for entry speed (Z = -1.04, p = .30).

In the 0% error condition (M = 1.50, SD = .55) participants
reported lower physical demand than with 33% errors (M = 1.67,
SD = 1.63), but the difference was not significantly different (Z = -
76, p = 44).

The mental demand for participants in the 33% error condition
(M =3.50, SD = 1.60) was higher than with 0% (M = 2.50, SD =
1.52). However, the result was not significantly different, t(0.74) =
1.02,p=0.48.

Overall, frustration for participants in 33% error condition (M =
3.17, SD = 1.72) was higher than in the 0% condition (M = 1.33,
SD =.52). A Wilcoxon signed-rank test between the 0% and 33%
error conditions revealed only a marginally significant difference for
frustration (Z = 1.95, p = .05, nI% =.03).
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Figure 1: Interface of the speech-to-text system in the first study.

3.5 AQualitative Results

All participants reported at least some level of familiarity with
speech-to-text tools during our interview. When we asked about
their experience with our system compared to other systems they
had used before, participants had very diverse responses, regardless
of which condition they experienced. For example, a participant
in the control condition reported the system as “very dumb, needs
more development”, whereas another participant in the experimen-
tal condition said: “It has better accuracy, understood me better.”
When we asked them about the most challenging part of the study, a
majority—7 out of 12 participants—reported disliking the phrases we
used in the study. Some said the phrases felt weird and unnatural,
took them a long time to read, and they also made more mistakes.
Others mentioned that some of the phrases were too long.

4 DISCUSSION

One of the most striking findings from our study was the lack of
significant difference, even though we induced a non-trivial amount
(33%) of errors. While we found some marginal significance for
frustration, the effect size was small, which indicates that the differ-
ence between the two groups was not substantial. Yet, one of the key
takeaways from the qualitative result was the apparent inappropriate-
ness of the phrase set for a task that involves speaking. Based on our
participants’ responses, we believe that the properties of the phrase
set could be one of the most likely explanations for our results.

4.0.1 Spoken vs. written language

Most current text entry studies employ transcription to evaluate
text entry efficiency. Yet, the most widely used phrase sets in such
studies were all designed for typing, not for speaking [19,31, 34].
Relative to text transcription, text composition is more representative
of real-world text entry scenarios. Although the composition task
has higher external validity than the transcription task, the latter can
outperform the former in experimental evaluations due to its higher
internal validity and lower variability [33]. A recent study [12] let
participants compose their own phrases, and use them for transcrip-
tion tasks with other participants, which increased the logistic effort
substantially. According to Foley et al., [12], phrases for transcrip-
tion tasks have to fulfill the following characteristics: memorable
(users can enter a phrase after the prompt without referring to it),
representative (resemblance of the actual text entered by people),
and replicable (the phrase set is publicly available).

Based on the results of the first study reported above, it seems that
a set of written phrases might not be suitable for speech-based text en-
try evaluation. Thus, we believe that using such an un-representative
phrase set might introduce confounds into a study. Spoken and writ-
ten language contrasts in various aspects: spoken language is less
abstract, has more finite verbs, and has fewer nouns of abstraction.
There is also a contrast in syntax and sentence structure, and in terms

of the manner and speed of production [4]. Moreover, entering text
by tying versus speaking can lead to very different experiences for
users [11,26]. Neuroscience research also found that written and
spoken language involves two distinct systems that are controlled by
different parts of the brain [23]. Therefore, phrase sets for spoken
and written language are likely not interchangeable.

4.0.2 Phrase set for speech-based text entry

We collected a new phrase set from spoken English corpora. Un-
like in the majority of text-entry research, where the phrases were
(largely) selected from written text, such as the Enron MobileEmail
phrase set [25], we selected our phrases only from spoken English
corpora, using the Santa Barbara Corpus of Spoken American En-
glish (SBCSAE) [2] and https://www.english-corpora.org [1]. We
initially selected about 1000 phrases, but removed all phrases that
contain inappropriate language, uncommon names, or complex vo-
cabulary, to avoid potential confounds within speech-based text entry
evaluations. We ended up with 784 phrases, all with generally short
to medium length, on average 11.5 words (SD 4.14, ranging from 6
to 27).

5 STUDY 2: RE-EVALUATION OF THE SYSTEM USING THE
NEW PHRASE SET

After finding a generally negative opinion of the phrases used for
study 1, we decided to re-conduct our study with the new phrase set
we collected.

5.1 Study Design

In this study we used a within-subject study design, with every
participant participating in all three conditions, which only varied in
terms of the frequency of injected errors. The order of the conditions
was counterbalanced among participants. In this second study, we
injected an error 0% (control condition), 25%, or 50% of the time in
the three conditions.

5.2 Apparatus

We adapted the system from Study 1, with an improved user interface
(see Fig. 3), and also added support for all sixteen English accents
supported by Google Speech-to-Text API. We also included the
option for participants to either use the mouse/trackpad to control
the buttons or press keys on the keyboard (space bar for start/stop
recording and right-arrow key for the next phrase).

5.3 Participants

We recruited eighteen participants from the local university (mean
age = 23 years, SE 5.12, 15 female) via on-campus flyers and word-
of-mouth. All participants reported intermediate to professional
levels of English-speaking skills. Most participants had had some
experience with speech-to-text systems, and only one reported that
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Figure 2: Average responses for Study 1. From top to bottom: ER,
WPM, Physical Demand, Mental Demand, Frustration.

they had never used such systems before. Ten participants reported
English was not their first language.

5.4 Procedure

After the consent procedure, we gave participants detailed verbal
instructions for the task, followed by a brief demonstration of how
the system works. Participants then were given practice trials until
they demonstrated an adequate understanding of the system, which
all participants were able to achieve within five phrases. Due to the
limitation of the Google Speech-to-Text APIL, participants were told
to ignore all punctuation marks, contraction issues, and spelling in-
consistencies such as Canadian versus US spelling. Each participant
performed a block of phrases in each of the three conditions, with
each block containing 30 phrases. Thus, each participant completed
90 phrases. All participants experienced the phrases in random order,
with the order of conditions counterbalanced across participants. In
total, we collected 90 x 18 = 1620 phrases.

At the start of the experiment, participants were asked to choose
their preferred English accent among sixteen English-speaking coun-
tries and regions, as supported by the Google Speech-to-Text APIL.
As in study 1, participants then were asked to speak each phrase that
appeared on the screen. Participants clicked on “Start Recording” to
start recording their utterance, followed by a click on “Stop Record-
ing”. If the speech was transcribed incorrectly, then they could
repeat part of the sentence by clicking on the “Start re-recording”
button on the same page (Fig. 3), and then again “Stop Recording”.

We asked participants to (generally) re-speak the incorrect phrase
from at least one word before the incorrect word and end at least
one word after the incorrect word. If the correction involved the
ending or starting word, then they were asked to repeat two words
after or before. The system did not enforce this suggestion, instead
the algorithm matched whatever participants corrected. Participants
were only given a single error correction attempt for each phrase,
after which they had to proceed to the next phrase.

Immediately after each block, we asked participants to fill out
a NASA TLX questionnaire assessing their perceived workload
on the respective block. After they completed all three blocks,
we conducted a short, semi-structured interview with participants
regarding their overall experience with the system.

6 RESULTS

‘We summarize the results of our second user study in this section. We
removed all log entries where the system had not worked correctly
due to a small implementation issue (less than .03% of the data).
We then ran a one-way repeated-measure ANOVA with Tukey’s
Honest Significant Difference (HSD) for all quantitative analyses.
We use partial eta squared to calculate the effect size. We begin by
examining participants’ overall performance in the three conditions
in terms of entry speed, verification time, and error rates. We then
examine the participants’ subjective experience of the system using
NASA TLX. Finally, we review the qualitative observation and
interview results.

6.1 Entry Efficiency

‘We used the word-per-minute metric (WPM) to measure participants’
entry speed. Speed was calculated based on the number of words
participants entered and their total completion time. We did not find
significant differences across conditions, F(2,34.02) = 1.20, p = .31.
See Fig. 4a.

For the analysis of the user-caused error rate, we disregarded
any spelling variations due to different English spellings, such as
“honour” versus “honor”; contractions such as “we’re” versus “we
are”’; and common word combination issues such as “on to” versus
“onto”. The results indicated a significant difference across three
conditions, F(2,111.9) = 15.43, p < .0001, n; =.23. Specifically,
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Figure 3: Interface of the speech-to-text system used in the second study.

the posthoc test revealed significant differences between the no-
error and 25% conditions (p < .0001) and the no-error and 50%
conditions (p < .001), but not between the two error conditions (ps
> .05). With a mean error rate of .17 (SE .09), the error rate in the
no-error condition, was lower than in the 25% condition (.24, SE
.06) and in the 50% condition (.29, SE .11). See Fig. 4b.

We also logged the verification time (VT), which refers to the
time that participants took to review the phrases. We logged three
VTs, with VT1 indicating the time elapsed from when participants
saw their first recognition result and when they clicked either the
“Start Re-recording” or the “Next Phrase” button; VT2 indicating
the time elapsed from when participants saw the phrase resulting
from the second speech recognition, i.e., the error correction, and
when they clicked on the “Next Phrase” button; and the total VT
adding these two times together. The results indicate that there were
no significant differences across all conditions for VT1 (Fig. 4b) and
the total VT (Fig. 4e, ps > .05). Fig. 4d illustrates the statistically
significant difference for VT2, F(2,34) = 4.44, p = .02, T[[% =.009.
Post-hoc test revealed the difference was only significant between
the no-error and 50% conditions (p = .02), but not between the other
pairs (ps > .05).

6.2 Subjective Experience

To assess the participants’ subjective experience, we asked partic-
ipants to rate their perceived workload (NASA TLX) for the three
conditions on a 7-point scale (with 1 = lowest, 4 = neutral, and 7
= highest). Fig. 5a shows the significant difference in participants’
self-reported mental demand across conditions, F(2,34) =3.69, p =
.04, n; = .03. Yet, there was no significant differences for physical
demand (Fig. 5b) nor frustration (Fig. 5c), all ps > .05. A posthoc
test revealed that only the difference between the no-error and 50%
conditions to be significant(p = .03), but not between the other condi-
tions (ps > .05). The average mental demand rating for the no-error
condition (mean 2.22, SE 1.06) was also significantly lower than the
50% condition (mean 2.72, SE 1.34).

6.3 Qualitative Observations

Although the Google Speech-to-Text API supports sixteen different
English accents, 15 out of 18 participants selected American or
Canadian English, and only three participants chose to actively look
for the variant that corresponds to their native language. In the
end, only a single participant selected a non-North-American accent
(Indian accent). The other two participants stated that they did not
find their preferred accent listed as an option. Some participants
commented that they did not know whether they had an accent or
not.

During the task, we observed that participants tended to review
the given phrase before they started speaking it, but this tendency
only occurred when they encountered longer phrases. Also, it was

not uncommon for participants to overlook errors in their recog-
nition results, especially for shorter words such as “and” or “the”,
especially when transcribing longer phrases. For such small words,
they occasionally failed to notice errors related to them and then
proceeded to the next phrase, not even using the second step, i.e.,
the correction attempt.

Although we provided the option to control the buttons using
either keyboard or mouse/track-pad, we observed a strong preference
for the mouse.

6.4 Qualitative Interview

Overall, participants rated their experience with the system between
neutral to positive. More than half of the participants directly men-
tioned that they liked the re-speaking feature, as it was convenient
and time-saving. Since 17 out of 18 participants reported occasional
usage of speech-to-text systems, we focused on the comparative
experience of our system with other systems they had used in the
past. When we asked them to name a few systems they have used,
i0S built-in dictation, Google’s pages/apps (Translation, Search, and
Google Home), and Microsoft Word were the most frequent answers.
There was a tendency to use such systems only when their hands
were busy, such as while driving or cooking. Since the majority
of the participants were university students, using such systems for
lecture transcription or essay writing was also a common answer.
For social purposes such as texting, there was a clear preference
for typing, as they perceived it to be more accurate. In terms of
accuracy, 11 out of 18 participants commented positively on the
accuracy of our system, and 4 of them even thought the system was
more accurate than the speech-to-text systems they had used in the
past.

On the other hand, we received diverse responses in terms of
negative feedback. For example, participant 2 said “It was hard
that I had to only use voice to correct the sentences, I wish I could
type.” Participant 17 said “When I have a longer pause, the system
won't pick up properly, or add extra words to my sentences. When
there was slang in the sentence, it keeps changing to formal English.
For example, I say ‘gonna’ but the system keeps recognizing it as
‘going’. I prefer a more slang-friendly system.” Two participants also
mentioned that the re-speaking feature did not work well when there
were two incorrect parts in the first recognition result (which was
indeed a limitation of our implementation, as we supported only a
single correction “action”).

We also asked participants what they thought was the most chal-
lenging part of the task, and two participants responded that it was
challenging for them to get used to the re-speaking feature. Other
participants had more diverse responses, for example, participant 3
said: “When sentences were long, I had to read it before I started
recording. If I didn’t go through it first, I might not pronounce some
of the words very well, especially since English isn’t my first lan-
guage.” Participant 9 said, “I had to make sure I speak really slowly
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and clearly for the system to work. This was the first time I use a
speech-to-text system, and I don’t see the need to use it in the future.”
Some participants also mentioned that sometimes the re-speaking
failed to correct the phrase as they intended. Beyond the limitation
to a single correction action mentioned above, such (rarely occuring)
system failures sometimes duplicated text rather than replacing it;
added extra words to the phrase; or failed to correct the phrase when
the erroneous part was at the very beginning of the phrase. Such
systems failures occurred in less than 1% of all trials.

Participant 18 said “When there was an error, I first had to pin-
point the error and then changed my speech style for it to recognize.
But this is just how I talk, I don’t know what to change. I feel like
technology should adapt to us, instead of the other way around.”
Some participants also mentioned the difficulty of getting homonyms
(words with the same pronunciation but different meanings) to be
recognized correctly, such as “sight” versus “site”.

Additionally, we asked participants if there are any other ways
they could think of to edit the phrases using voice. Two participants
said they would rather just re-speak the entire phrase, instead of
having to locate the erroneous part and correct it. Four participants

directly mentioned using voice instruction to correct the phrase, and
participant 5 suggested: “It might be better to have something like
the ‘Hey Siri feature’, you can then just say something like ‘Correct
this word to that.”” Two participants stated that they would like to
have a third attempt to correct the phrases, “Especially when there
are two incorrect parts” (participant 15). Participant 11 suggested
that: “Maybe you can say a keyword to put you in the error correc-
tion mode. For example, you say ‘correction [keyword]: A [wrong
word] to B [correct word] .’

We did not receive any negative feedback regarding the phrase
set. Some participants commented that the given phrases felt often
more conversational than the transcribed result (also because the
speech recognition changed their recognition result to more formal
English).

7 DiscuUSsSION AND FUTURE DIRECTIONS

Among all conditions and all text entry efficiency metrics we mea-
sured, we only observed a significant difference with a large effect
size on the user-generated error rate, with no-error condition produc-
ing the lowest amount of errors, relative to the two other conditions.
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Figure 5: NASA TLX scores for a) Average mental demand, b) average
physical demand, c) average frustration.

It seems obvious that the final text tended to contain more mis-
takes when more errors were inserted by the system. Since we
only inserted errors during the first attempt, we can conclude that,
as system-generated errors increase, a re-speaking feature is not
sufficient enough for error recovery.

Still, a larger percentage of injected errors in the system did not
lead to longer verification times or a slower entry speed. Although
we discovered a significant difference in the second verification time
(VT2) between the no-error and 50% error conditions, the effect
size was small, which might indicate a potentially spurious result.
The increased second verification time might also indicate that users
were more careful during the text correction phase when a larger
number of errors were present.

Given these results, the most surprising outcome of our study
is that even though we injected a relatively large amount of errors
50%, users did in general not perform substantially different with
the system. In other words, they encountered on average an error on
every second phrase.

In regards to the NASA TLX results, we only observed a signif-
icant difference in mental demand between the no-error and 50%

conditions. Still, the effect size was rather small for this result, too.
In fact, participants’ ratings tended to be generally low for the NASA
TLX scores (Fig. 5).

Moreover, we found a positive correlation between the length of
the given phrase and WPM, 1(425.23) = .46, p < .002, suggesting a
moderate correlation between the two variables. This might suggest
some link between the phrase length and WPM. Yet, we expect to
see this relationship plateau at some limit.

All participants in our study had never used a re-speaking feature
before. Although we did receive some positive feedback, some
participants also mentioned that they would prefer re-speaking the
entire phrase, rather than checking the recognition and locating the
erroneous part.

From our qualitative results, we noticed that participants gener-
ally exhibited a relaxed attitude toward the errors they encountered.
When we asked for a comparison between our system and other
voice-to-text systems they had used, participants often brought up
scenarios where other systems make errors. The general consensus
among participants was along the lines of “Although your system
sometimes makes errors, other systems also make errors—even more
errors. So your system isn’t that bad.” This suggests that participants
are more used to errors in speech transcription systems.

From the interview results, we also found that users noticed some
imperfections in the re-speaking feature, especially surrounding is-
sues with the matching algorithm (even though this occurred rarely).
Indeed, a re-speaking feature can be prone to alignment issues [32],
which can be confusing for users as they then have no indication of
how much text they need to re-speak [11].

Overall, our results suggest that the insertion of errors in speech
transcription might have some effect on the entry efficiency and
perceived workload. However, in contrast to our expectations, the
effect seems to be small. The results suggest that, compared to
typing-based text entry tasks, users seem to have a higher tolerance
to errors in speech transcription tasks.

In the future, we plan to re-evaluate our system using other error
correction methods, such as direct voice commands. We also plan
to include the third attempt for the error correction, as suggested by
some participants in the interviews.

8 CONCLUSION

Through two user studies on speech-based transcription, we explored
the effect of errors on entry efficiency and subjective experience,
using both quantitative and qualitative measures. We evaluated
the efficiency of the re-speaking feature for error correction. Our
results identify that users are more likely to make errors in their
final submitted recognition results when more errors occur in the
system. We also found that users might be more likely to have
higher frustration and mental workload as the rate of errors increased.
Based on our findings for the second verification time (VT2), we
also identified that the re-speaking feature is likely not sufficient for
error recovery, especially when a high number of errors occurs in
the system.

Overall, our findings suggest users have a fairly high tolerance for
errors in speech transcription. Our findings are thus potentially good
news for speech interface designers and programmers, as a limited
amount of errors in the systems might not affect the user experience
in a substantial way.
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