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Abstract

We find that at sequence length 512 padding tokens represent in excess of 50% of
the Wikipedia dataset used for pretraining BERT (Bidirectional Encoder Represen-
tations from Transformers). Therefore by removing all padding we achieve a 2x
speed-up in terms of sequences/sec. To exploit this characteristic of the dataset, we
develop and contrast two deterministic packing algorithms. Both algorithms rely
on the assumption that sequences are interchangeable and therefore packing can
be performed on the histogram of sequence lengths, rather than per sample. This
transformation of the problem leads to algorithms which are fast and have linear
complexity in dataset size. The shortest-pack-first histogram-packing (SPFHP)
algorithm determines the packing order for the Wikipedia dataset of over 16M
sequences in 0.02 seconds. The non-negative least-squares histogram-packing
(NNLSHP) algorithm converges in 28.4 seconds but produces solutions which are
more depth efficient, managing to get near optimal packing by combining a maxi-
mum of 3 sequences in one sample. Using the dataset with multiple sequences per
sample requires additional masking in the attention layer and a modification of the
MLM loss function. We demonstrate that both of these changes are straightforward
to implement and have relatively little impact on the achievable performance gain
on modern hardware. Finally, we pretrain BERT-Large using the packed dataset,
demonstrating no loss of convergence and the desired 2x speed-up.

1 Introduction

Since its introduction in 2019, BERT [5] has been the backbone driving the most exciting advances
in Natural Language Processing (NLP). Pre-training BERT from scratch requires substantial compu-
tational resources which may be out of reach for researchers and industry professionals. To some
extent this has been addressed by the public release of pre-trained models of different sizes and
depths [20]. Available sizes range from tiny (2 layers with hidden size 128) to large (24 layers with
hidden size 1024)[6,15]. The introduction of ALBERT [14] further improved the accessibility of larger
models. However, the dependence on pre-trained models limits the ability of researchers to explore
new backbone architectures. Furthermore, it limits the extent to which practitioners in industry
can leverage internal datasets and adapt the model to their particular needs. Hence, any approach
that speeds up the pre-training process is desirable from an economical as well as environmental
perspective.

In this paper, we present some methods to enable researchers to accelerate the pre-training of BERT
by as much as 2x. The de-facto pre-training dataset Wikipedia, as well as many other NLP datasets,
show a positively skewed distribution of sequence lengths. We show that padding tokens (wasted
compute) represent 50% of all tokens of the Wikipedia pre-training dataset at sequence length 512.
Overall, the sample lengths range between 5 tokens up to 512 (see Figure[I). Samples of length 512
represent only 23.5% of the dataset.

While processing the padding tokens wastes compute, it is the most standard approach for leveraging
modern massively-parallel compute especially on GPUs. These are most efficient when applying
the same operation to each sequence in a batch. By padding all sequences to the same maximum
sequence length, they can easily be batched. The most obvious way to reduce the extent of padding
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in the dataset is to group samples by size before batching, i.e., process the shorter samples together
and longer samples together. Typically such an approach would still involve padding but less than if
padding all sequences to the same maximum length. For example BERT [3] is pre-trained in two
phases, where the first phase uses sequence length 128 for 900K steps and the second phase uses
sequence length 512 for 100K steps. However even by splitting the training in this way, the wasted
compute due to padding is approximately 20% (see Figure ). Another example of this approach is
Faster Transformer [18] which groups samples of similar size together in one batch and fills up with
padding only to the maximum length in this batch.

More advanced approaches for reducing the padding overhead rely on custom computational kernels.
Loosely these are referred to as “un-padding” approaches. In Effective Transformer [4], the input
batch is provided as a padded matrix but padding values are dynamically removed and restored during
different calculation stages. While un-padding implementations are highly sophisticated and are able
to completely circumvent the processing of padding tokens, they introduce a significant overhead due
to the multiple GPU kernel launches (i.e. one kernel per sequence rather than one kernel per batch).
Additionally the time to process each batch will fluctuate depending on the sequence lengths in each
batch i.e. batches with only shorter sequences will typically be processed faster. When working with
more than one accelerator, this variability in throughput results in all devices in the cluster waiting
for the device with the most compute intensive batch to finish processing. As such, un-padding
approaches are not appropriate for deployment on large clusters.

The “packing” based approach introduced in this paper offers significant advantages over un-padding
approaches. Firstly, packing is implemented directly at the framework level and requires no additional
custom kernel implementations. Secondly, the processing time for each batch is independent of the
content of the batch, allowing the packing based approach to maintain the same speed-up whether
running on a single device or thousands. Third, each batch now contains a consistent number of real
tokens.

While we demonstrate the effectiveness of packing specifically on the Wikipedia dataset, packing
SQUaD [19] or GLUE datasets [22} 23] for BERT also leads to significant speed-ups (some in excess
of 9x) [ 1] (sections E and . The effectiveness of packing is a result of both the length distribution
of the documents in the source datasets as well as the different text preprocessing steps for BERT
[7]. The use of bi-directional self-attention in BERT implies that the input sequences should contain
complete sentences. If a sentence is abruptly cut short, the hidden state on other (preceding) tokens
in the sequence will be affected. Language models with causal attention (only attending to previous
tokens in the input) do not have this issue. For such models, if a sequence is cut short at an arbitrary
token, the other tokens (which occur earlier in the sequence) will not be affected. This ability to cut
sequences arbitrarily completely trivializes the packing problem. For instance, GPT-3 [3] is trained
with a maximum sequence length of 2048 where a single sequence may contain multiple segments
separated by a special end of segment token. The last segment in each sequence is simply cut to meet
the sequence length requirement. In the interest of computational efficiency GPT-3 does not mask the
attention between different segments in a sequence. In contrast, the packing approach presented in
this paper introduces a mask in the attention layer (see Section[3.2) to prevent cross-contamination
between examples in a pack. This ensures that the characteristics of the original dataset and model
are matched as closely as possible.

In summary, the contributions of the paper are as follows. In Section 2, we produce histograms of
the Wikipedia pre-training dataset showing the high percentage of padding tokens. We present two
new deterministic packing algorithms which easily pack datasets with millions of sequences in a
matter of seconds (or less). We empirically show that the proposed packing algorithms produce a
nearly-optimal packing scheme for Wikipedia pre-training dataset. We show how to compute the
per-sequence loss by inexpensively un-packing the loss. We provide code for building an attention
mask which prevents attention between tokens of different sequences in the pack. We demonstrate that
the convergence of the BERT large model on the packed dataset is equivalent to that on the un-packed
dataset. We show that with the packed dataset, we are able to achieve a nearly 2x throughput increase
on the Wikipedia sequence length 512 pre-training dataset.



2 Wikipedia BERT pre-training dataset

BERT is pre-trained using masked-language modelling and next-sentence prediction on a large corpus
of Wikipedia articles [15]. Each sequence is composed of one <CLS> token followed by the first part
of sentences, followed by a <SEP> token, and then finally the second part of sentences. Because parts
are created in sentence-level increments there is no token-level control of sequence length. Together
with already short parts, empirically, this leads to significant levels of padding, especially for longer
maximum sequence lengths (see Figure[I). At sequence length 128 (commonly used in phase 1 of
pre-training) the theoretical speed-up is around 1.2, at sequence length 384 this increases to 1.7, and
finally at sequence length 512 (commonly used for phase 2 of pre-training) it is 2.0. Despite the
widespread use of the Wikipedia dataset for pre-training BERT such histograms have, to the best
of our knowledge, not been published previously. This has perhaps lead to the underestimation of
the speed-up opportunity available. To put things into perspective, the sequence length 512 dataset
contains 8.33 billion tokens, of which 4.17 billion are padding tokens.
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Figure 1: Wikipedia BERT pre-training dataset sequence length histograms (token count excluding
padding) for different maximum sequence lengths. Based on the Wikipedia article dump from
October 1st 2020. The theoretical speed-up relates to not using any padding tokens and not having
any overhead from processing the different lengths.

3 Methods

Our approach consists of three distinct components. Firstly, we pack the data efficiently during pre-
processing to make full use of the sequence length (Sections[3.1.1]and [3.1.2] see also [1]] Section D).
Secondly, we adapt the self-attention mask to prevent the model from attending between different
sequences in the same pack (Section [3.2). Other components of the model, such as the feed-forward
layer [21]], operate on a per-token basis and do not require any modification. Thirdly, we compute the
loss and accuracy on a per-sequence basis to match the canonical BERT implementation (Section [3.3).
This is achieved by unpacking the per-pack loss at the framework level, without the use of custom
kernels. Additionally, we provide suggestions for hyperparameter adjustment (Section that lead
to analogous convergence behavior between the packed and un-packed BERT implementations.

3.1 Packing algorithms

The problem of optimally concatenating multiple sequences of different length until a maximum
combined length is reached can be directly framed as a bin-packing or stock cutting problem. Since
an exact solution is strongly NP-complete [[13]], we propose two new heuristic algorithms that are
tailored to this particular instance. A detailed introduction to packing is provided in [I[](Section D).

3.1.1 Shortest-pack-first histogram-packing (SPFHP)

Shortest-pack-first histogram-packing (SPFHP) consists of three main components. First, the packing
algorithm works on the bins in the sequence length histogram (with bin size 1) rather than the
individual samples. Second, we operate on the sorted data from longest to shortest sequences. This
comes basically for free due to the use of histograms. Third, we apply the worst-fit algorithm [11}[26]



onto this histogram, where the currently observed sample goes to the pac that has the most space
left to reach maximum packing depth (“shortest-pack-first”). If the sample does not fit, a new pack is
created. A variant is to limit the packing depth, in other words the maximum number of sequences
that are allowed in a pack. Therefore, we only extend an existing pack if it is not already at maximum
packing depth. The detailed code for the algorithm is provided in [1]] (listing 3).

3.1.2 Non-negative least squares histogram-packing (NNLSHP)

The proposed NNLSHP algorithm is based on re-stating the packing problem as a (weighted) non-
negative least squares problem (NNLS) [2] of the form wAx = wb where x > 0. The vector b is the
histogram containing the counts of all the sequence lengths in the dataset. Next, we define the A
matrix (the “packing matrix*) by first generating a list of all possible sequence length combinations
(“strategies”) that add up exactly to the maximum sequence length. We focus specifically on strategies
that consist of at most 3 sequences per pack (independent of b) and encode each strategy as a column
of the sparse matrix A. For example, a strategy consisting of the sequence length 128, 128, and
256 in represented a column vector that has the value 2 at the 128th row, the value 1 at the 256th
row, and zero at all other rows. The variable  describes the non-negative repetition count for each
strategy. So a 24 in the ith row of = means that the strategy represented by the ith column of A should
repeat 24 times. Moreover, in the un-weighted setting, Az = b states that we would like to “mix” the
pre-defined strategies (columns of A) such that the number of samples matches the histogram b, and
where each strategy is used x > 0 times. We use the residual weight w to control the penalization
of the Ax — b residual on different sequence lengths (different rows of b). Heuristically, we set
the weight of 0.09 for all sequences of length 8 or smaller because they are considered acceptable
padding sequences. All other sequence lengths get weight 1. After solving wAz = wb forz > 0
using an off-the-shelf solver we obtain a floating point solution, which means that the repetition
counts are not necessarily integers. Since we cannot use a non-natural number of strategies, we round
the solution Z to the nearest integer. The error introduced by this rounding is found to be negligible.
Further details are provided in [I](Section [D.4).

3.2 Attention masking for packed sequences

To maintain an implementation that is consistent with the un-packed version, we need to be able
to prevent attention between tokens in the pack which belong to different sequences. Other imple-
mentations use custom attention kernels which reconstruct padding. Instead, we propose directly
masking the attention matrix with a block-diagonal mask to be applied before the attention. This is
straightforward to implement in modern frameworks (see Figure[2). Naturally, there is a cost to both
the mask construction and applying it to the attention matrix (see Table[I} Section[d.T).
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Figure 2: Attention mask code sample [left] and example zero-one mask [right].
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3.3 Calculating per-sequence loss and accuracy

Canonical implementations of BERT compute the cross-entropy loss for the masked language model
on a per-sequence basis. Simply feeding packs of sequences to the same implementation of cross-
entropy would consequently result in per-pack weighting of the loss. In other words, the overall loss
on the micro-batch would sum-up the losses on the individual packs, rather than individual sequences.
As a result the packed BERT model would converge to a different optimum. For instance, a pack of a
single sequence would contribute to the loss to the same extent as a pack of three sequences. In other
words, the long sequence (single per pack) is given the same weight as the three shorter sequences
in the pack of three. Empirically, a degradation of masked-language modelling accuracy on shorter
sequences is indeed observed when not modifying the loss to account for packing.

'We avoid the ambiguous terms “bin” and “sample/sequence”and us “pack” instead for the entity that the
document parts get aggregated in during packing. We use bin for the histogram and sequence could be a
document part.



To recover the per-sequence averaging behavior of the canonical un-packed BERT implementation,
it is not sufficient to simply weight the loss (accuracy) on each pack by the number of sequences it
contains, because the sequences in the pack have different lengths and therefore should not use the
same weight.

To implement per-sequence loss, we effectively “unpack” the incoming logits and labels by working
with the per-token loss. We compute the loss on all tokens belonging to the first sequence, then
all tokens belonging to the second sequence, and so on. However, rather than looping through the
sequences index in this way, we compute on all indexes in parallel. This minimizes the latency
overhead of un-packing the loss calculation. We use the “masked Im weight” [6] input tensor to
represent which sequence a given masked token belongs to (0, 1, 2 and so on). This is consistent
with the canonical BERT implementation where this input takes a value of either 1 (belonging to the
sequence) or 0 (belonging to padding) as detailed in Listing[T} The same methodology can be applied
to the next-sentence prediction loss and accuracy.

Listing 1: Loss calculation

# The number of sequences in each batch may vary

sequences_in_batch = tf.reduce_sum(tf.reduce_max(masked_lm_weight, -1))
sequences_in_batch = tf.cast(sequences_in_batch, tf.float32)

# Create the 0/1 mask that will be used to un-packed sequences

masked_1lm_weight = tf.reshape(masked_lm_weight, [B, 1, -1])

sequence_selection = tf.reshape(tf.range(l, max_sequences_per_pack + 1), [1, -1, 1])
sequence_selection = tf.cast(masked_lm_weight == sequence_selection, tf.float32)

# Apply the mask to un-pack the loss per sequence

nll_per_token = tf.reshape(nll_per_token, [B, 1, -1])

nll_per_sequence = sequence_selection * nll_per_token

# Normalize the per-sequence loss by the number of mlm-tokens in the sequence (as is standard)
attempted = tf.reduce_sum(sequence_selection, -1, keepdims=True)

attempted = attempted + tf.cast(attempted == 0, tf.float32) # prevent NaNs when dividing by attempted
nll_per_sequence = nll_per_sequence/attempted

# Average per-batch loss (so contributions from different batches are comparable)

Im_loss = tf.reduce_sum(nll_per_sequence)/sequences_in_batch

3.4 Hyperparameter adjustment

In terms of convergence behavior, the primary consequence of packing is an increase in the effective
batch size (with respect to sequences and tokens) with some variation over different iterations. For
instance, if each pack on average contains two sequences, the batch size (per optimization step) is
effectively doubled on average. While one could subsequently reduce the computational batch size by
the packing factor (average number of sequences per pack) and keep using the same hyperparameters,
this is typically not desirable as it might imply under-utilizing the memory/compute.

Instead, we propose an approximate heuristic for updating the decay parameters of the LAMB
optimizer [25]. For a packed dataset with a packing factor p, we update the decay parameters as:
B1:= B, B2 := BY. For p = 2, this corresponds to the exact parameters for calculating momentum
and velocity, when updating with the same gradient twice [1]](Section |E). A common approach is to
scale the learning rate with the batch size. Note however, that we take the mean gradient instead of
an accumulated sum and have already a correction by the number of samples in that regard.

Since these adjustments are only heuristics the convergence of the model will be comparable but not
identical. In particular, it is unlikely that simply adjusting the hyperparameters will fully undo the
impact of the increased batch size. However, with these adjustments, researchers should be able to
continue to use existing configurations.

4 Experiments

4.1 Bin-packing algorithm comparison

We evaluate our algorithms using the following metrics: number of packs, number of all tokens,
number of padding tokens, solution time of the packing algorithm (after histogram and strategy
creation), number of strategies used, packing efficiency (the fraction of non-padding tokens in the
packed dataset), the speed-up achieved compared to not packing (depth 1), and the average number
of sequences per sample (packing factor). For SPFHP, we analyse different (maximum) packing
depth, since packing is less efficient with smaller depth and we want to get a general understanding
on how the packing depth influences the processing time. For NNLSHP, we focus on packing depth 3
because it packs the data sufficiently well.



For the speed-up analysis, we focus on the intelligence processing unit (IPU) [[10] (IPU-M2000,
16 accelerator chips). A GPU dynamically loads the code into the accelerator; in contrast, the
IPU works with a static precompiled kernel that gets loaded onto the chip only at the beginning.
While other approaches result in excessive padding or continuous changes of the code, our approach
can work with the same code for the whole dataset. So in this setting the IPU architecture would
especially benefit from our approach since it avoids code changes. Nevertheless, it can be applied
to any implementation on GPU or TPU. For determining the speed-up, we take advantage of the
precompiled kernel. Since time measurements are quite noisy, we can profile the kernel and how
many cycles it takes for processing a batch. That way, we can determine the overhead (in cycles)
from processing the additional attention masking and for unpacking the loss. Combining overhead
and packing factor, we get the speed-up estimate. No experiment repetitions are required since the
algorithms and measurements are deterministic.

The main results for the performance metric evaluation are displayed in Table[T] The processing time
for SBFHP was around 0.03s and independent from the packing depth. We see that the overhead
slightly increases with packing depth but that the benefits of packing outweigh the cost. The best
speed-up is obtained with NNLSHP at depth 3. With a value of 1.913, it is close to the theoretical
upper bound of 2.001. The results show that efficiency, packing factor, and speed-up can be viewed
inter-changeably. The amount of time needed to process a sample (a pack of sequences) is barely
changed relative to the un-packed implementation. The packing factor or the improvement in
efficiency effectively provide an accurate estimate of the speed-up.

pack. pack. | #packs efficiency pack. overhead | realized
depth algo. M] (%) factor (%) | speed-up
1 none | 16.280 49.97 1.000 0.000 1.000
2 SPFHP | 10.102 80.52 1.612 4.283 1.544
3 SPFHP 9.095 89.44  1.790 4.287 1.716
3 NNLSHP 8.155 99.75 1.996 4.287 1.913
4 SPFHP 8.659 93.94 1.880 4.294 1.803
8 SPFHP 8.225 98.90 1.979 4.481 1.895
16/max SPFHP 8.168 99.60 1.993 4477 1.905

Table 1: Key performance results of proposed packing algorithms (SPFHP and NNLSHP).
Packing depth describes the maximum number of packed sequences. Packing depth 1 is the baseline
BERT implementation. Setting no limit resulted in a maximum packing depth of 16. The number
of packs describes the length of the new packed dataset. Efficiency is the percentage of real tokens
in the packed dataset. The packing factor describes the resulting potential speed-up compared to
packing depth 1. With overhead, we denote the percentage decrease in throughput due to changes to
the model to enable packing (such as the masking scheme introduced in Section 3.2). The realized
speed-up is the combination of the speed-up due to packing (the packing factor) and the decrease
in throughput due to the overhead. It is used to measure the relative speed-up in throughput and the
overhead from masking and loss adjustment.

4.2 Learning Curves and Hyperparameter Adjustment

For depth 1 (classic BERT) and NNLSHP with depth 3, we additionally evaluate on the MLPerf 0.7
BERT pre-training benchmark [15]. Briefly, this involves training from a standard checkpoint to a
masked-language model accuracy of 71.2% using 3 million sequences with a maximum length of 512
tokens (refer to [[16] for details). Following this standardized benchmark supports reproduction of
results even on other systems and makes sure that the reproduction effort is moderate and setup rules
are clearly documented. We compare the resulting speed-up as well as the respective learning curves
by evaluating the data on a held-out validation dataset. The objective of this additional evaluation is
to analyse if convergence behavior is changed by the packing strategy and if the theoretical speed-up
can be achieved in practice.

With packing, we effectively increase the average batch size by the packing factor (= 2). However,
with a different batch size, different hyperparameters are required (see Section[3.4)) and there is no
mapping that will generate exact matching of results but only heuristics. In a first comparison, we
use the same hyperparameters when comparing packed and unpacked training except for cutting the
accumulation count by half. This way, we make sure that the batch size is constant on average.



In the second comparison, we evaluate our heuristics and how they compensate the difference in
batch size. This setup is more desirable because it is beneficial to use the hardware to its full potential
and cutting the batch size by half usually reduces throughput. In the third comparison, we compare
two optimized setups.

The learning curves are displayed in Figure[3. In the first setup, we see the curves almost matching
perfectly when normalizing by the numbers of samples processed. Differences can be explained
by the variation of the number of sequences in the packing batch, and general noise in the training
process. Especially after the initial phase, the curves show a near-identical match.

The second setup shows bigger differences since changing the batch size and hyperparameters changes
the training dynamics. We observe slower convergence early on in training due to the increased batch
size. This is expected. The adjustment of the learning rate actually decreases performance probably
because we correct for the increased number of sequences already in the modified loss. With the
adjustment of the decay parameter of LAMB, we see matching performance at the later training
stages. However, it is not feasible to completely recover the early convergence behavior of the smaller
batch size by adjusting the hyperparameters. For instance doubling the batch size of unpacked BERT
to 3000 and adjusting the LAMB decay parameters leads to more of a slow down in convergence
than when running packed BERT with a batch size of 1500 and a packing factor of 2. Overall, in
practice we observe a higher acceleration than the estimated 1.913 that goes beyond 2x. We explain
this with slightly better fitting hyperparameters and improved data transfer.
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Figure 3: Comparison of learning curves for packed and unpacked processing with [left] same
effective batch size (ebs is batch size times packing factor), [middle] different heuristic adjustments
of the hyperparameters (batch size 1500 for all runs, such that ebs for packed runs is 1500 * 2), and
[right] realized time-to-convergence speed-up from packing.

4.3 Scaling Analysis: Impact of the number of accelerators

A further advantage of packing over competing un-padding approaches is the inherent load balancing
provided by packing. So called un-padding approaches rely on dynamically launching custom kernels
that ignore padding. A stated advantage of such implementations is the ability to avoid computing
the complete (512 x 512) attention matrix. This provides additional computational savings compared
to packing, where the attention matrix is computed in its entirety and then masked. Because of these
additional savings, un-padding can exceed the theoretical upper bound for speed-up from packing
(2.013 on Wikipedia). As a result of the dynamic nature of the approach, the processing time with
un-padding is different for each sequence in the batch, and the amount of time required to process a
batch of sequences will be determined by the processing time of the longest sequence in the batch
(with the sequences being processed in parallel). Furthermore, in the multiple accelerator setting the
processing time on each device will vary depending on the sequences in the batch that it receives.
Devices which finish early have to wait for the slowest device to finish before exchanging gradients.
This load-imbalance between the devices (and inside the batch) leads to a considerable decrease in
the speed-up from un-padding as the number of accelerators is increased (see Figure [4)).

In contrast, packing (our approach) is inherently load-balanced. The processing time on each
accelerator is independent of the content inside the batch received by the device. Any number of
accelerators can therefore operate in unison without having to wait for the slowest batch to process
(all per-device batches are equally fast).

To demonstrate the severity of the load-imbalance issue, we consider the scaling of an un-padding
approach with a per-device batch size of 32 running on eight devices [[17]. From there, we readily
extrapolate the performance to both larger and smaller cluster sizes by fitting a Gumbel distribution



to the observed processing times [I]] (Section[F). On a single device with batch size 32 un-padding
outperforms packing and exceeds the theoretical upper-bound for packing.

As the number of devices increases to two or more, the proposed packing approach outperforms the
dynamic un-padding approach. On a cluster with 32 accelerators the speed-up from un-padding drops
to 50% and with 2048 devices the speed-up is only 30%. In contrast, the speed-up due to packing
is independent of the number of accelerators and stays at 1.913. Switching to a smaller batch size
would reduce the load-imbalance issue to some extent, but would also result in under-utilization of
the available memory and compute.
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Figure 4: Comparison of the theoretical speed-up achievable as the number of accelerators is
increased.

5 Conclusion

We showed that packing can be easily implemented without the need for any custom kernels while
still providing a 2x speed-up. Additionally, we showed that any additional speed-ups resulting
from dynamic un-padding approaches diminish for even moderate batch sizes or when additional
accelerators are added. In contrast, packing is load-balanced and maintains the 2x throughput when
scaling to large numbers of accelerators.

Furthermore, the computational overhead introduced by the attention mask and the packed per-
sequence loss are small compared to the achieved acceleration. This overhead remains below 5%
for all tested packing depths. The efficient packing algorithms presented in this paper enable us
to pack millions of sequences in a matter of seconds. Compared to both the pre-processing time
for the Wikipedia dataset and the training runtime, this overhead is negligible. Furthermore, we
showed that performing packing as a pre-processing step does not significantly impact the training
convergence. Our proposed hyperparameter adjustment scheme additionally helps practitioners
easily modify existing validated optimizer settings for use with packed BERT. Further exploration of
hyperparameter selection is left to future work.

When performing packing as a pre-processing step, the proposed NNLSHP and SPFHP methods
achieve near optimal compression efficiency. In this offline setting, we are able to build a histogram of
the dataset, and thus achieve linear time complexity with respect to the number of samples. This makes
packing modern datasets with millions of sequences possible. In the future, it would be interesting to
extend SPFHP to the online setting where a histogram of the entire dataset cannot be built. Another
interesting direction is the packing of images of different sizes to help accelerate computer-vision
applications. This is especially relevant given the recent advances in the use of transformer-based
approaches in the computer vision domain, for example the visual transformer [24]. Masking out
the self-attention within transformers is easier to implement than avoiding cross-contamination of
convolutions applied to packed images. Finally, packing could potentially eliminate the need for two
phase pre-training of BERT. Using short sequences in the first phase to reduce the waste from padding
is no longer attractive for packed sequence BERT where the padding is essentially a negligible
proportion of the tokens. Furthermore, the argument that the model should first learn short-term
dependencies by training on short sequences neglects the fact that these same short-term patterns
can be learned from longer sequences. In fact, longer-sequences may contain multiple short patterns,
while also maintaining long-range consistency. Future work should explore training packed BERT
from scratch and the impact of packing on fine-tuned performance.



Broader Impact

We showed that when pre-training BERT on Wikipedia, the computational overhead taken to process
padding tokens is roughly 50%. By eliminating this wasted computational time, the approach
presented in this paper paves a way to halving the carbon footprint of training BERT-based models.

Furthermore, our approach circumvents the need for custom kernels, making the benefits of packing
readily accessible to a broader audience of NLP practitioners. As such we are hopeful the research
will have a positive impact on the NLP community, and do not see any disadvantage of using this
approach.

Future work would need to investigate the applicability of packing on text produced by different
cultures and in different languages. We have already shown that the speed-up resulting from using
our methods does not only occur when pre-training BERT on Wikipedia but also on other datasets
such as SQUaD and GLUE. Furthermore, the sentence length distribution of the original English
language text shows similar characteristics. Our research leads us to believe that compressible
distributions arise naturally in language tasks and beyond, for instance in DNA sequence lengths [9]
and protein lengths [8]. Many such sequence modelling workloads are based on variations of the
BERT/transformer architecture and would therefore easily benefit from our acceleration.

Failures in NLP can have a big impact on society; many technologies, such as Alexa, Siri, and Google
Home, rely on them. Whilst any errors arising from our approach can be avoided, one potential source
of error comes from the implementation. Both the attention mask and the per-sequence loss need to be
modified to support packing. These changes are significantly smaller than those required by custom
kernels, however they may still be time consuming to implement and debug. To help mitigate the risk
of any implementation errors, we share our reference implementations of the required changes in the
supplemental material [1]].
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