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ABSTRACT

The spatial processing system of the brain uses grid-like neural representations
(grid cells) for supporting vector-based navigation. Experiments also suggest that
neural representations for concepts (concept cells) exist in the human brain, and
conceptual inference relies on navigation in conceptual spaces. We propose a uni-
fied model called “disentangled successor information (DSI)” that explains neural
representations for physical space and linguistic concepts. DSI generates grid-like
representations in a 2-dimensional space that highly resemble those observed in
the brain. Moreover, the same model creates concept-specific representations from
linguistic inputs, corresponding to concept cells. Mathematically, DSI vectors ap-
proximate value functions for navigation and word vectors obtained by word em-
bedding methods, thus enabling both spatial navigation and conceptual inference
based on vector-based calculation. Our results suggest that representations for
space and concepts can emerge from a shared mechanism in the human brain.

1 INTRODUCTION

In the brain, grid cells in the entorhinal cortex (EC) represent the space by grid-like representa-
tions (Hafting et al., 2005; Doeller et al., 2010; Jacobs et al., 2013). This neural representation is
often related to vector-based spatial navigation because grid cells provide global metric over the
space. Theoretically, an animal can estimate the direction to a goal when representations of a cur-
rent position and a goal position are given (Fiete et al., 2008; Bush et al., 2015). Furthermore,
self-position can be estimated by integrating self-motions when sensory information is not available
(McNaughton et al., 2006). These functions are the basis of robust spatial navigation by animals.

There are not only spatial but also conceptual representations in EC. Neurons called as “concept
cells” have been found in human medial temporal lobe including EC (Quiroga, 2012; Reber et al.,
2019). Concept cells respond to specific concepts, namely, stimuli related to a specific person, a
famous place, or a specific category like “foods” and “clothes”. Furthermore, recent experiments
also suggest that grid-like representations appear not only for physical space but also for conceptual
space if there is a 2-dimensional structure (e.g. lengths of a neck and legs, intensity of two odors),
and those representations are the basis of vector-based conceptual inference (Bao et al., 2019; Con-
stantinescu et al., 2016; Park et al., 2021). Thus, it is expected that there is a shared processing
mechanism for physical and conceptual spaces in EC. Existence of shared neural mechanism may
also explain why humans use sense of physical space (such as directionality) to communicate ab-
stract concepts (conceptual metaphor (Lakoff & Johnson, 1980)). However, a principle behind such
universal computation in the brain is still unclear.

In this paper, we propose a representation model which we call disentangled successor information
(DSI) model. DSI is an extension of successor representation (SR), which stems from a theory
of reinforcement learning and became one of promising computational models of the hippocam-
pus and EC (Dayan, 1993; Stachenfeld et al., 2017; Momennejad et al., 2017; Momennejad, 2020).
Like eigenvectors of SR, DSI forms grid-like codes in a 2-D space, and those representations sup-
port vector-based spatial navigation because DSI approximates value functions for navigation in the
framework of linear reinforcement learning (Todorov, 2006; 2009; Piray & Daw, 2021). Remark-
ably, when we apply DSI to text data by regarding a sequence of words as a sequence of states,
DSI forms concept-specific representations like concept cells. Furthermore, we show mathematical
correspondence between DSI and word embedding models in natural language processing (NLP)
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(Mikolov et al., 2013a;b; Pennington et al., 2014; Levy & Goldberg, 2014), thus we can perform
intuitive vector-based conceptual inference as in those models. Our model reveals a new theoretical
relationship between spatial and linguistic representation learning, and suggests a hypothesis that
there is a shared computational principle behind grid-like and concept-specific representations in
the hippocampal system.

2 CONTRIBUTIONS AND RELATED WORKS

We summarize contributions of this work as follows. (1) We extended SR to successor information
(SI), by which we theoretically connected reinforcement learning and word embedding, thus spatial
navigation and conceptual inference. (2) We found that dimension reduction with constraints for
grid-like representations (decorrelative NMF) generates disentangled word vectors with concept-
specific units, which has not been found previously. (3) Combining these results, we demonstrated
that a computational model for grid cells can be extended to represent and compute linguistic con-
cepts in an intuitive and biologically plausible manner, which has not been shown in previous studies.

Our model is an extension of successor representation (SR), which is recently viewed as a plausible
model of hippocampus and EC (Dayan, 1993; Stachenfeld et al., 2017; Momennejad et al., 2017;
Momennejad, 2020). Furthermore, default representation (DR), which is based on linear reinforce-
ment learning theory, has been also proposed as a model of EC (Piray & Daw, 2021). We show that
our model can extract linguistic concepts, which has not been shown for SR and DR. Furthermore,
we demonstrate vector-based compositionality of words in our model, which expands the range of
compositionality of EC representations (Piray & Daw, 2021) to semantic processing.

Our model produces biologically plausible grid-like representations in 2-D space, which supports
spatial navigation. Previous studies have revealed that non-negative and orthogonal constraints are
important to obtain realistic grid-like representations (Dordek et al., 2016; Sorscher et al., 2019).
Furthermore, recurrent neural networks form grid-like representations through learning path inte-
gration, and those representations support efficient spatial navigation (Banino et al., 2018; Cueva
& Wei, 2018; Gao et al., 2019). Some of those models have reproduced experimentally observed
scaling ratios between grid cell modules (Banino et al., 2018; Sorscher et al., 2019). However, pre-
vious models have not been applied to learning of linguistic concepts, or other complex conceptual
spaces in real-world data. Whittington et al. (2020) proposed a unified model for spatial and non-
spatial cognition. However, their model was applied only to simple graph structures and conceptual
specificity like our model was not observed.

Analogical inference by our model is a same function as word embedding methods in NLP (Mikolov
et al., 2013a;b; Pennington et al., 2014; Levy & Goldberg, 2014). However, a unique feature of DSI
representations is that each dimension of vectors corresponds to a specific concept like concept
cells in the human brain (Quiroga, 2012; Reber et al., 2019). Our model provides biological plau-
sible interpretation of word embedding: each word is represented by combination of disentangled
conceptual units, inference is recombination of those concepts, and such representations emerge
through the same constraints with grid cells. It was recently shown that transformer-based models
(Vaswani et al., 2017; Brown et al., 2020), which are currently state-of-the-art models in NLP, gen-
erate grid-like representations when applied to spatial learning (Whittington et al., 2022). Similarly
to our model, this finding implies the relationship between spatial and linguistic processing in the
brain. However, concept-specific representations has not been found in such model. Furthermore,
clear theoretical interpretation in this study depends on the analytical solution for skip-gram (Levy
& Goldberg, 2014). Such analytical solution is currently unknown for transformer-based models.

3 MODEL

3.1 DISENTANGLED SUCCESSOR INFORMATION

Let us assume Ns discrete states exist in the environment. Successor representation (SR) between
two states s and s′ is defined as

SR(s, s′) = E

[ ∞∑
t=0

γtδ(st, s
′)|s0 = s

]
=

∞∑
t=0

γtP (st = s′|s0 = s), (1)
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where δ(i, j) is Kronecker’s delta and γ is a discount factor. We describe how we calculate SR
in this study in Appendix A.1. SR and its dimension-reduced representations have been viewed as
models of hippocampus and entorhinal cortex, respectively (Stachenfeld et al., 2017).

Based on SR, we define successor information (SI) and positive successor information (PSI) as

SI(s, s′) = log(SR(s, s′))− log(P (s′)), (2)

PSI(s, s′) = max{SI(s, s′), 0}. (3)

In this study, we regard this quantity as a hippocampal model instead of SR (Figure 1A).

Next, we introduce a novel dimension reduction method which we call decorrelative non-negative
matrix factorization (decorrelative NMF). Decorrelative NMF can be regarded as a variant of NMF
(Lee & Seung, 1999) with additional constraints of decorrelation. By applying decorrelatve NMF to
PSI, we obtain representation vectors called as disentangled successor information (DSI), which we
regard as a model of EC (Figure 1A). In decorrelative NMF, we obtain D-dimensional vectors x(s)
and w(s) (D < Ns) by minimization of the following objective function

J =
1

2

∑
s,s′

ρ(s, s′)(PSI(s, s′)− x(s) ·w(s′))2

+
1

2
βcor

∑
i ̸=j

(Corr(i, j))2 +
1

2
βreg

∑
s

(||x(s)||2 + ||w(s)||2), (4)

subject to non-negative constraints ∀i, xi(s) ≥ 0, wi(s) ≥ 0. ρ(s, s′) is a weight for the square error

ρ(s, s′) =
1

NsV

(
1

M
PSI(s, s′) + ρmin

)
, (5)

where M and V are mean and variance of PSI, respectively, and ρmin is a small value to avoid
zero-weight. Corr(i, j) is a correlation between two dimensions in x(s)

Corr(i, j) =

∑
s x̃i(s)x̃j(s)√∑

s(x̃i(s))2
∑

s(x̃j(s))2
, (6)

where x̃i(s) = xi(s) − 1
Ns

∑
s xi(s). The first term of the objective function is weighted approx-

imation error minimization, the second term works for decorrelation between dimensions, and the
third term regularizes representation vectors. Optimization was performed by Nesterov’s acceler-
ated gradient descent method (Nesterov, 1983) with rectification of xi(s), wi(s) every iteration. We
describe additional details in Appendix A.2.

3.2 RELATIONSHIPS WITH REINFORCEMENT LEARNING AND WORD EMBEDDING

We show dual interpretation of our model. On the one hand, DSI approximates value estimation of
linear reinforcement learning, thus support goal-directed decision making and navigation. On the

Figure 1: Interpretation of our model. (A) Biological interpretation of our model. PSI as a model of
the hippocampus and DSI as a model of EC. (B) The setting of a state transition map in which DSI
approximates value functions for spatial navigation.
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other hand, the same representation approximates word embedding in NLP, thus support semantic
computation.

First, our model approximates value functions of linear reinforcement learning (Todorov, 2006;
2009; Piray & Daw, 2021) in the setting of spatial navigation. Linear reinforcement learning as-
sumes default policy and imposes additional penalty on deviation from default policy, then we can
obtain value functions explicitly by solving linear equations. Let us consider a specific condition
in which the environment consists of non-terminal states, and a virtual terminal state is attached to
a goal state sG arbitrarily chosen from non-terminal states (Figure 1B). When the agent gets to the
goal, it transits to the terminal state with a probability pNT . Furthermore, we assume that reward
at non-terminal states are uniformly negative and reward at the terminal state is positive so that the
agent has to take a short path to goal to maximize reward. In this setting, we can obtain value
functions v∗(s) in linear reinforcement learning as

λ−1v∗(s) = log(SRd(s, sG))− logP d(sG) = SId(s, sG) ≈ x(s) ·w(sG), (7)

where SRd(s, sG) and SId(s, sG) are SR and SI under the default policy, respectively. We describe
details of derivation in Appendix A.3. Therefore, SI is proportional to value functions for spatial
navigation and inner products of DSI vectors approximates value functions. Based on this interpre-
tation, we basically regard x(s) as a representation of each state, and w(s) represents a temporary
goal.

Second, DSI is related to word embedding methods in NLP (Mikolov et al., 2013a;b; Pennington
et al., 2014; Levy & Goldberg, 2014). In linguistics, pointwise mutual information (PMI) and pos-
itive pointwise mutual information (PPMI) are used to measure the degree of coincidence between
two words (Levy & Goldberg, 2014). They are defined as

PMI = log

(
P (wordi, wordj)

P (wordi)P (wordj)

)
, (8)

PPMI = max{PMI, 0}, (9)

where P (wordi, wordj) is a coincidence probability of two words (in a certain temporal window).
It has been proven that dimension reduction of PMI approximates a word embedding method skip-
gram (Mikolov et al., 2013a;b), and similar performance is obtained using PPMI (Levy & Goldberg,
2014). GloVe (Pennington et al., 2014) is also based on this perspective. SI can be written as

SI(s, s′) = log(SR(s, s′))− log(P (s′)) = log

(∑∞
t=0 γ

tP (st = s′, s0 = s)

P (s)P (s′)

)
. (10)

In this formulation, we can see mathematical similarity between PMI and SI by regarding words
as states (s = wordi, s

′ = wordj), thus the correspondence between PPMI and PSI. Because of
this relationship, we can expect that DSI, which is obtained through dimension reduction of PSI,
has similar properties to word embedding methods. The difference is how to count coincidence:
the coincidence in SI is evaluated with an asymmetric exponential kernel as in SR, in contrast that
a symmetric rectangular temporal window is often used in typical word embedding (see Appendix
A.4 for further detail).

3.3 DECORRELATIVE NMF RELATES TO GRID CELLS AND DISENTANGLEMENT

Constraints in decorrelative NMF (non-negativity, decorrelation (or orthogonality), and regulariza-
tion) are important for generation of grid cells, as shown in previous theoretical studies on grid cells.
(Dordek et al., 2016; Cueva & Wei, 2018; Banino et al., 2018; Gao et al., 2019; Sorscher et al., 2019).
They are also biologically plausible because neural activity is basically non-negative and decorre-
lation is possible through lateral inhibition. On the other hand, non-negativity (Oja & Plumbley,
2004) and decorrelation (Hyvärinen & Oja, 2000) are also important for extraction of independent
components, and it is known that imposing independence in latent space of deep generative models
results in the emergence of disentangled representations for visual features (Higgins et al., 2017).
Therefore, in word embedding, we expected that those constraints help emergence of independent
and disentangled units for linguistic concepts. Constraints in decorrelative NMF are actually crucial
for results obtained in this study (Appendix A.5).
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As disentangled visual representations explain single-cell activities in higher-order visual cortex
(Higgins et al., 2021), we may similarly interpret conceptual representations in our model as con-
cept cells in the human medial temporal lobe (Quiroga, 2012). Previous studies suggest that each
concept cell respond to a specific concept, whereas population-level activity patterns represent ab-
stract semantic structures (Reber et al., 2019). Such property is consistent with the factorized and
distributed nature of disentangled representation vectors.

4 LEARNING REPRESENTATIONS OF PHYSICAL SPACES

In this section, we empirically show that DSI model forms biologically plausible grid-like repre-
sentations in a 2-D physical space, and they support spatial navigation. These results also apply to
conceptual spaces with the 2-D structure, depending on the definition of states.

4.1 LEARNING PROCEDURE

As an environment, we assumed a square room tiled with 30×30 discrete states (Figure 2A). In each
simulation trial, an agent starts at one of those 900 states and transits to one of eight surrounding
states each time except that transitions are limited at states along the boundary (the structure was not
a torus). Transitions to all directions occur with an equal probability. We performed 500 simulation
trials and obtained a sequence of 100,000 time steps in each trial. We calculated occurrence proba-
bilities (P (s)) and a successor representation matrix (SR(s, s′)) of 900 states from those sequences,
and calculated PSI and DSI (100-dimensional) as described in the Model section. The discount
factor γ was set to 0.99. We additionally tested spatial navigation in a structure with separated and
interconnected rooms (see Figure 3C). In that case, we used the discount factor γ = 0.999.

4.2 EMERGENCE OF GRID-LIKE REPRESENTATIONS

Here we call each dimension of DSI representation vectors x(s) as a neural ”unit”, and we regard
a value in each dimension at each state as a neural activity (or a neural representation). As shown
in Figure 2B, many units exhibited grid-like activity patterns in the space. We performed a gridness
analysis that has been used in animal experiments (Sargolini et al., 2006) and found that 51% of
units were classified as grid cells. Similarly, 53% of units in w(s) were classified as grid cells.

Furthermore, we checked whether DSI representations in the physical space reproduce a property
of biological grid cells. Actual grid cells in the rat brain exhibit multiple discrete spatial scales and
the ratio between grid scales of adjacent modules is

√
2 (Stensola et al., 2012). We constructed a

distribution of grid scales of DSI units by kernel density estimation, which revealed that multiple
peaks of grid scales existed and the ratio between grid scales of adjacent peaks was

√
2 (Figure 2C).

These results show that DSI model constructs biologically plausible grid-like representations in the
2-D physical space. We describe details of analysis methods in Appendix A.6.

4.3 NEAR-OPTIMAL SPATIAL NAVIGATION BY DSI VECTORS

As discussed in Section 3.2, the inner product of DSI representations approximate value functions
for spatial navigation. Therefore, we tested whether DSI representations actually enable near-
optimal navigation in the space.

We assume that a start location (state sinit) and a goal location (state sG) are randomly given in each
trial such that the shortest path length is minimally 10, and an agent has to navigate between them.
To solve the task, we define a vector-based state transition rule. Suppose that the agent exists at a
state s, and a set of neighboring states of s is A(s). Given the goal representation vector w(sG),
a value function of a neighboring state snext ∈ A(s) is estimated by x(snext) · w(sG), and the
agents transits to the state that has a maximum value. This state transition rule can be geometrically
interpreted as the choice of movements that has the closest angle with the goal vector in the repre-
sentation space (Figure 3A). Otherwise, we can interpret that the agent estimates value functions by
linear readout from grid-like DSI representations. Because of the approximation error, this rule did
not always give optimal navigation (the shortest path from the start to the goal). However, the agent
could take the shortest path to the goal in 93.9% of 1,000 trials we tested (an example is shown in
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Figure 2: DSI representations for the physical space. (A) The square room tiled with 30x30 dis-
crete states. (B) Grid-like DSI representations in the space (upper) and their spatial autocorrelation
(lower). (C) The distribution of grid scales of DSI representations. Red and blue broken lines
indicate positions of peaks and 30

(
√
2)n

, respectively.

Figure 3: Spatial navigation using DSI representation vectors. (A) Geometric interpretation of the
state transition rule in the DSI representation space. (B) An example spatial path obtained by DSI-
based navigation. (C) Example spatial paths by DSI-based navigation in the four-room environment.

Figure 3B). Furthermore, 97.2% were near-optimal navigation in which the actual path length was
shorter than 1.1 times the shortest path length. The same framework also worked in a relatively
complex environment with separated rooms (Figure 3C). In this environment, the ratio of optimal
and near-optimal navigation was 68% and 82.6%, respectively. We also confirmed that we can per-
form path integration based on DSI representations using movement-conditional recurrent weights
(McNaughton et al., 2006; Burak & Fiete, 2009; Oh et al., 2015; Gao et al., 2019) (Appendix A.7).
These results show that DSI representations can support spatial navigation, which corresponds to
the contribution of biological grid cells for spatial navigation.

4.4 VECTOR-BASED INFERENCE OF SPATIAL CONTEXTS

We additionally found that we can perform vector-based inference for spatial navigation in a novel
context. First, we constructed DSI representation vectors in spatial contexts A and B, each of which
has a barrier (Figure 4A). Then, we created representation vectors for a novel context A+B with
two barriers by simply adding representation vectors for familiar contexts A and B (Figure 4A).
We tested vector-based navigation (described in the section 4.3) in three spatial contexts A, B, and
A+B, using one of three representations for A, B, and A+B. Naturally, representation vectors for A
and B gave the best performance in contexts A and B, respectively (Figure 4B). Notably, composite
representation vectors for A+B achieved the best performance in the context A+B (Figure 4B). This
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Figure 4: Vector-based inference of a novel spatial context. (A) We constructed representation
vectors for a novel context A+B (a square room with two barriers) by the sum of DSI representation
vectors for two familiar contexts A and B (with either of two barriers). (B) Rates of near-optimal
navigation in various settings of representation vectors and contexts.

result suggests that we can utilize vector-based composition of representations for a novel spatial
context. We describe details of the simulation in Appendix A.8.

Additional analysis by multidimensional scaling (MDS) suggest that summing DSI vectors leads to
composition of an appropriate metric space for the novel context (Appendix A.9). This is potentially
useful for composing multiple constraints that change reachability between states in various tasks
(such as control of robotic arms and playing computer games), like composition of tasks in soft-Q
learning (Haarnoja et al., 2018; Makino).

5 LEARNING REPRESENTATIONS OF CONCEPTUAL SPACES

In this section, we show that the same DSI model can learn representations for a complex conceptual
space from linguistic inputs, and those representations support vector-based conceptual inference.

5.1 LEARNING PROCEDURE

We used text data taken from English Wikipedia, which contains 124M tokens and 9376 words (see
Appendix A.10 for the detail of preprocessing). To construct DSI representations, we regarded each
word as a “state”, and considered the text data as a sequence of 9376 states (Ns = 9376). Then, we
applied the exactly same learning procedure as in the experiment of physical spaces. We obtained
300-dimensional DSI representation vectors for each word. The discount factor γ was set to 0.9.
The setting of other parameters was the same as the experiment of physical spaces.

5.2 EMERGENCE OF CONCEPT-SPECIFIC REPRESENTATIONS

As in the previous section, we regard each dimension of representation vectors as a neural unit, and
checked how various words activate those units. Specifically, we listed ten words that elicited the
highest activities in each unit (TOP-10 words). Consequently, we found that many units are activated
by words related to specific concepts (Figure 5; other examples in Appendix A.12), which could be
named as “game cell” or “president cell”, for example. We quantified this conceptual specificity
through WordNet-based semantic similarity between words (Princeton University, 2010). We com-
pared mean similarity among TOP-10 words and a null distribution of similarity between random
word pairs, by which we determined statistically significant concept-specific units and quantified
the degree of conceptual specificity of each unit (see Appendix A.11 for details). DSI exhibited the
larger number of significantly concept-specific units and higher average conceptual specificity than
other well-established word embedding methods such as skip-gram and GloVe (Table 1) (Mikolov
et al., 2013a;b; Pennington et al., 2014; Levy & Goldberg, 2014). We also analyzed conceptual
specificity of representations in the embedding layer of pretrained BERT model (bert-base-uncased
in Hugging Face transformers) (Devlin et al., 2018; Wolf et al., 2020), which was lower than DSI
(Table1). This result shows that our DSI model forms more concept-specific representations than
other models.

Additional analyses revealed that word representation vectors are non-sparse and distributed (Ap-
pendix A.15). Therefore, each word is represented by the combination of concept-specific units
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Figure 5: Concept-specific representations formed by DSI. Ten words that gave the highest activation
(TOP-10 words) are shown. We also marked each unit with a descriptive label.

Table 1: Evaluation of conceptual specificity. Numbers of evaluated and significantly concept-
specific units, the ratio of concept-specific units, and average conceptual specificity are summarized.

METHOD EVALUATED SIGNIFICANT RATIO SPECIFICITY

DSI 285 100 35% 0.32
Skip-gram 297 14 5% -0.11
CBOW 298 83 28% 0.26
GloVe 297 6 2% -0.07
PPMI-SVD 297 36 12% 0.06
BERT 755 51 7% 0.03

shared by several related words. For example, ”France” can be represented by the combination of
units which we could name French cell and country cell (Appendix A.15).

5.3 VECTOR-BASED COMPUTATION IN THE CONCEPTUAL SPACE

Given that DSI and word embedding methods are mathematically similar (Section A.4), we expect
that DSI vectors have similar properties to representation vectors learned by those word embedding
methods. We evaluated the performance of DSI vectors in two tasks that have been used to eval-
uate word embedding methods: word similarity and analogical inference (Mikolov et al., 2013a;b;
Pennington et al., 2014; Levy & Goldberg, 2014). In the word similarity task, we calculated cosine
similarity between representation vectors of word pairs, and evaluated the rank correlation between
those cosine similarities and human word similarities (WS353 dataset (Agirre et al., 2009); 248/345
word pairs were used). In the analogical inference task, we performed calculation of vectors such as
x(king) − x(man) + x(woman) and checked whether the resultant vector has the maximum co-
sine similarity with x(queen) (Mikolov’s dataset (Mikolov et al., 2013a;b); 3157/19544 questions
were used; examples in Appendix A.13). The result shows that DSI vectors achieved comparable
performance with other well-established word embedding methods (Table 2).

This result indicates that similarity of DSI representation vectors corresponds to semantic similarity.
This property is consistent with the experimental observation that population-level pattern similar-
ity of concept cell activities represents semantic categories (Reber et al., 2019). By visualizing the
structure of DSI representations by MDS, we can actually see clustering of words corresponding
to 10 semantic categories used in Reber et al. (2019) (Appendix A.14). Furthermore, conceptual
inference is possible through arithmetic composition of DSI vectors.We additionally found that this
inference is intuitive recombination of concept-specific units in some cases. For example, transfor-
mation from ”Paris” to ”France” corresponds to activation of country cell and deactivation of capital
cell, which is possible by summing the difference of Germany and Berlin vectors. (Appendix A.15).
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Table 2: Performances of vector-based computations in the conceptual space. The correlation of
word similarity evaluated by vectors and humans, and the rate of correct analogical inference.

METHOD SIMILARITY ANALOGY

DSI 0.70 0.63
Skip-gram 0.69 0.71
CBOW 0.69 0.74
GloVe 0.69 0.71
PPMI-SVD 0.52 0.58

6 DISCUSSION

In this paper, we proposed a theoretically interpretable and biologically plausible neural representa-
tion model for physical and conceptual spaces. We demonstrated that our DSI model forms grid-like
representations in the physical space and concept-specific representations in the linguistic space,
which are assumed to correspond to neural representations in EC. Furthermore, we showed that SI
is mathematically related to linear reinforcement learning and word embedding methods, thus DSI
representations support spatial navigation and conceptual inference. These results suggest that we
can extend the spatial representation model of EC to learn and compute linguistic concepts, which
apparently seems a different computational domain from physical space.

In the section 5.2, we demonstrated concept-specific representations created from text data. To
the best of our knowledge, such property has not been reported in any word embedding methods.
However, we unexpectedly found that continuous-bag-of-words (CBOW) showed relatively high
conceptual specificity. Although DSI is related to PMI, skip-gram and GloVe, we have not found
relationship to CBOW. Further clarification of necessary conditions for conceptual specificity is still
open problem.

Although DSI has clear mathematical interpretation, how biological neural networks can learn DSI
is still unclear. A possible solution is an extension of skip-gram neural network with SR, non-
negativity, and decorrelation. Because SI corresponds to PMI which is the optimum of skip-gram
neural network, we can expect that extended skip-gram network learns DSI. Building such model
and relating it to the circuit mechanism in hippocampus and EC are left for future research.

Our model relates word embedding to conceptual representations in the brain. Previously study
showed that skip-gram representations support high-performance decoding of semantic information
from fMRI data (Nishida & Nishimoto, 2018). Another study revealed that hippocampal theta os-
cillation codes semantic distances between words measured in word2vec subspace (Solomon et al.,
2019). These experimental results support our hypothesis. However, recent studies have shown
that representations in transformer-based models (Vaswani et al., 2017) such as GPT (Brown et al.,
2020) achieve remarkable performance in linear fitting to neural recording during linguistic pro-
cessing (Goldstein et al., 2022; Schrimpf et al., 2021). A major difference between our DSI model
and transformer-based models is that DSI representations are basically fixed (static embedding)
whereas transformer-based models flexibly create context-dependent representations (dynamic em-
bedding). Conceptual interpretation obviously depends on the context, thus activities of concept
cells are context-dependent (Bausch et al., 2021). Therefore, our DSI model should be extended
to process context-dependence, hopefully by combination with other models for learning context-
dependent latent cognitive states (Uria et al., 2020; George et al., 2021; Whittington et al., 2020).

Another direction of future research is application to general conceptual spaces by learning DSI
representations from low-level sensory inputs, like spatial learning from visual and auditory inputs
in previous models (Banino et al., 2018; Taniguchi et al., 2018; Uria et al., 2020). It may be possible
by learning discrete states by unsupervised clustering for deep networks (Caron et al., 2018). As
for the human brain, infants probably form primitive spatial and conceptual representations from
sensory signals, and later linguistic inputs enrich those representations. We speculate that real-world
sensory data also contain the information of the conceptual space, for which DSI can be extended to
learn those structures. Such model would clarify the role of the hippocampal system in computation
of general conceptual spaces.
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A APPENDIX

A.1 CALCULATION OF SR

SR is a variant of value functions in reinforcement learning, thus we can use various methods
such as temporal-difference (TD) learning for the construction. Throughout this study, we used
a direct count method because we performed only offline processing of finite data. In a se-
quence of states {s1, . . . , st, . . . , sT }, we recursively calculated exponential traces of past states
z(s, t) =

∑t−1
τ=0 γ

τδ(st−τ , s) as

z(s, t) = γz(s, t− 1) + δ(st, s), (11)

and calculated SR from state counts and coincidence counts as

SR(s, s′) =

∑T
t=1 z(s, t)δ(st, s

′)∑T
t=1 δ(st, s)

. (12)

A.2 DETAILS OF DECORRELATIVE NMF

In decorrelative NMF, we iteratively updated vectors x(s) and w(s) by Nesterov’s accelerated gradi-
ent descent method to minimize the objective function (Eq. 4), rectifying all elements every iteration.
Gradients are

∂J

∂xk(s)
= −

∑
s′

ρ(s, s′)(PSI(s, s′)− x(s) ·w(s′))wk(s
′)

+ βcor

∑
j ̸=k

Corr(k, j)x̃j(s)√∑
s(x̃k(s))2

∑
s(x̃j(s))2

+ βregxk(s), (13)

∂J

∂wk(s′)
= −

∑
s

PSI(s, s′)(PSI(s, s′)− x(s) ·w(s′))xk(s) + βregwk(s
′). (14)

We note that we regarded mean and variance of xi(s) in the correlation ( 1
Ns

∑
s xi(s),

∑
s(x̃i(s))

2

in Eq. 6) as constants in the calculation of these gradients. Practically, this heuristic did not affect
the performance of decorrelation.

Throughout this paper, the learning rate was 0.05 and the number of iteration was 10000. Parameters
were βcor = 1, βreg = 0.001, and ρmin = 0.001.

A.3 MATHEMATICAL RELATIONSHIP OF DSI AND REINFORCEMENT LEARNING

In this section, we show that our model approximates value functions of linear reinforcement learn-
ing (Todorov, 2006; 2009; Piray & Daw, 2021) in the setting of spatial navigation.

In linear reinforcement learning, an agent aims to maximize “gain” instead of reward. Assuming a
default policy πd(s) (any policy is available; typically random walk in the case of exploration task),
gain function is defined as

g(s) = r(s)− λKL(π(s)|πd(s)), (15)

where r(s) is expected reward at the state s and λKL(π(s)|πd(s)) is the cost imposed on the differ-
ence between the current policy π(s) and the default policy πd(s) (λ is a relative weight of the cost).
Then, previous works have shown that the optimal policy and corresponding value functions can be
determined explicitly by solving linear equations (Todorov, 2006; 2009; Piray & Daw, 2021). Here
we consider an environment that consists of NN non-terminal states and NT terminal states. We
define two transition probability matrices under the default policy: PNT is a NN × NT matrix for
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transitions from non-terminal states to terminal states, and PNN is a NN×NN matrix for transitions
across non-terminal states. Furthermore, rN and rT are vectors of rewards at non-terminal states
and terminal states, respectively. In this condition, a vector of value functions under optimal policy
v∗ = (v∗(s1), . . . , v

∗(sNN
)) is obtained as

exp(λ−1v∗) = MPNT exp(λ−1rT ), (16)

where M = (diag(exp(−λ−1rN ))− PNN )−1 is DR (Piray & Daw, 2021).

To relate v∗ to SI, we consider a specific condition in which the environment consists of non-terminal
states, and a virtual terminal state is attached to a goal state sG arbitrarily chosen from non-terminal
states (Figure 1B). When the agent gets to the goal, it transits to the terminal state with a probability
pNT . Furthermore, we assume that reward at non-terminal states are uniformly negative and reward
at the terminal state is positive so that the agent has to take a short path to goal to maximize reward.
Specifically, we assume all elements of rN are λ log γ, and rT = −λ(log γ+log pNT +logP d(sG))
where γ is an arbitrary value in the range (0, 1), and P d(sG) is a probability of visiting the state sG
under the default policy. Then, we obtain

exp(λ−1v∗) =
1

P d(sG)
(I − γPNN )−1e(iG), (17)

where e(iG) = (0, . . . , 0, 1, 0, . . . , 0)T (iG is the index of the goal state). Because (I−γPNN )−1 is
equivalent to a successor representation matrix with a discount factor γ (Dayan, 1993; Stachenfeld
et al., 2017), we finally obtain

λ−1v∗(s) = log(SRd(s, sG))− logP d(sG) = SId(s, sG) ≈ x(s) ·w(sG), (18)

where SRd(s, sG) and SId(s, sG) are SR and SI under the default policy, respectively. Thus, SI is
proportional to value functions for spatial navigation and inner products of DSI vectors approximates
value functions. Based on this interpretation, we basically regard x(s) as a representation of each
state, and w(s) represents a temporary goal.

A.4 MATHEMATICAL RELATIONSHIP OF DSI AND WORD EMBEDDING

In this section, we discuss the relationship of SI and PMI (Levy & Goldberg, 2014) in detail. PMI is

PMI = log

(
P (wordi, wordj)

P (wordi)P (wordj)

)
, (19)

where P (wordi, wordj) is a coincidence probability of two words (in a certain temporal window).

To relate PMI to SI, we regard words as states: s = wordi, s
′ = wordj . Furthermore, we consider

a specific way to count coincidence probability. In typical word embedding, a finite symmetric
rectangular window is often used:

P (s, s′) =

W∑
t=0

P (st = s′, s0 = s), (20)

where W is a window size. Here, we implicitly assumed that same state (word) is not repeated in
the temporal window to guarantee that P(s, s’) is probability.

However, we may arbitrarily calculate coincidence for P (s, s′). Here we evaluate coincidence with
an infinite asymmetric exponential kernel as in SR:

P (s, s′) = (1− γ)

∞∑
t=0

γtP (st = s′, s0 = s). (21)

We introduced a normalization factor (1 − γ) to guarantee that P (s, s′) is less than one ((1 −
γ)

∑∞
t=0 γ

t = 1). Then, PMI becomes

PMI = log

(
(1− γ)

∑∞
t=0 γ

tP (st = s′, s0 = s)

P (s)P (s′)

)
(22)

= log(SR(s, s′))− log(P (s′)) + log(1− γ) (23)

= SI(s, s′) + log(1− γ). (24)
If we perform dimension reduction, log(1 − γ) can be ignored because it is a constant. Therefore,
we can interpret SI as a special case of PMI in our model.
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A.5 RELATIONSHIP BETWEEN MODEL COMPONENTS AND REPRESENTATIONS

To clarify the contribution of each model component to the results in this study, we performed a
“lesion study” in which we removed some components in DSI and repeated the same evaluation
procedure in the main text. We summarize results in Table 3. First, we tested representations ob-
tained by singular value decomposition of successor representation (SR-SVD), which was regarded
as a model of grid cells in a previous study (Stachenfeld et al., 2017). DSI model exceeded SR-SVD
in all aspects shown in this study. Next, we tested DSI model without decorrelation (βcor = 0)
and DSI model without non-negativity (no rectification of representation vectors). Neither modifi-
cation impaired the performance of navigation and inference, showing the importance of using SI
for vector-based computations as theoretically expected. In contrast, removing decorrelation and
non-negativity significantly impaired the emergence of grid-like units and concept-specific units,
respectively. Thus, decorrelative NMF is crucial to obtain biologically plausible representations.

Table 3: Contribution of each model component to the performance. Rates of grid-like units, near-
optimal navigation, significantly concept-specific units, correct analogical inference.

METHOD GRID CELL NAVIGATION CONCEPT CELL ANALOGY

Full DSI 51% 97.2% 35% 63%
Decorrelation OFF 5% 99.9% 38% 64%
Non-negativity OFF 29% 99.8% 2% 63%
SR-SVD 21% 57.2% 13% 28%

A.6 DETAILS OF EVALUATION OF GRID REPRESENTATIONS

In the section 4.2, we performed the gridness analysis following a previous experimental study
(Sargolini et al., 2006). For each unit, we rotated the spatial autocorrelation map (Figure 2B, lower)
and calculated correlations between the original and rotated maps. Gridness was defined as the
difference between the lowest correlation at 60◦ and 120◦ and the highest correlation at 30◦, 90◦
and 150◦. A unit was classified as a grid cell when gridness exceeds zero.

In Figure 2C, we constructed a distribution of grid scales. Grid scales were determined as the
median of distances between the central peak and the six closest peaks (vertices of inner hexagon)
in the spatial autocorrelation map. The kernel function for kernel density estimation was Gaussian
with a standard deviation 1.

A.7 PATH INTEGRATION BY DSI

We performed path integration based on DSI representations using movement-conditional recurrent
weights. This strategy has been used in previous studies such as grid cell modeling (Gao et al.,
2019) and action-conditional video prediction (Oh et al., 2015). This mechanism is also consistent
with a conventional biological model for path integration in which head direction signals activate
one of attractor networks specialized for different directional shifts of grid patterns (McNaughton
et al., 2006; Burak & Fiete, 2009).

We made an estimate of the next representation vector x̂t+1 by linear transformation of the current
representation vector x(st) as

x̂t+1 = M(at)x(st) (25)

where at represents a movement (one of eight directional movements in this study) and M(at) is
movement-conditional recurrent weight matrix. Here, x(st) was a DSI representation vector, and
we optimized the matrix M(at) by minimizing prediction error ||x(st+1) − M(at)x(st)||22 by
stochastic gradient descent during random walk on the state transition graph (20 simulation trials
of 100,000 time steps). After optimization, we set an initial state s0 and a sequence of movements
{a0, a1, . . . , aT−1}, and performed path integration by recursive estimation x̂t+1 = M(at)x̂t. We
determined a position at each time step by searching a state representation vector that has minimum
Euclidian distance with the estimated vector (st = argmins ||x(s)− x̂t||2). As shown in Figure 6,
this strategy gave accurate estimation of the spatial path from movement signals.
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Figure 6: Path integration using DSI model. (Left) Actual path. (Right) Path estimated from DSI
vectors updated by movement information.

A.8 DETAILS OF VECTOR-BASED INFERENCE OF THE SPATIAL CONTEXT

In the section 4.4, we performed vector-based inference for spatial navigation in a novel context.
Specifically, we define separated states in contexts A, B, A+B as sAi , s

B
i and sA+B

i , where i is a
positional index which indicates a same position in all contexts (i = 1, 2, · · · , 900). We constructed
representation vectors x(sAi ), w(sAi ), x(s

B
i ), and w(sBi ) through direct experiences, then we cre-

ated x(sA+B
i ) and w(sA+B

i ) as

x(sA+B
i ) = x(sAi ) + x(sBi ), (26)

w(sA+B
i ) = w(sAi ) +w(sBi ). (27)

We performed spatial navigation in a given context using one of three representations
{x(sAi ),w(sAi )}, {x(sBi ),w(sBi )}, and {x(sA+B

i ),w(sA+B
i )} for corresponding positions, fol-

lowing the rule described in the section 4.3. In figure 7, we show structures of state transition graphs
for three contexts A, B, and A+B.

To learn representations in contexts A and B, we sampled sequences of {sAi }i=1,··· ,900 and
{sBi }i=1,··· ,900 by random walk in context A and B. The procedure was basically same with the
section 4 except that we increased the number of simulation trials from 500 to 1,000, and state tran-
sition to the same position in the other context occurred every 5,000 time steps (transition between
sAi and sBi ). We added this transition to associate the same position in different contexts. It means
that we assumed that the setting of barriers can change during the experience but this temporal asso-
ciation may be substituted by similarity of sensory inputs across contexts. From sampled sequences,
we calculated PSI for all combinations of {sAi }i=1,··· ,900 and {sBi }i=1,··· ,900, and calculated 100-
dimensional DSI vectors for 1,800 states by simultaneous compression of all states. The discount
factor γ was set to 0.999.

Figure 7: Structures of state transition graphs used in the section 4.4.
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A.9 VISUALIZATION OF SPATIAL STRUCTURES REPRESENTED BY DSI VECTORS

In Figure A.9, we visualized metric spaces defined by representation vectors for contexts A and
B, and composite vectors for the context A+B, by using multidimensional scaling (MDS). This
visualization clearly shows that DSI vectors for A and B capture structures of spatial contexts A and
B, and adding those vectors yields appropriate metric space for novel context A+B.

Figure 8: Visualization of metric spaces defined by representation vectors for contexts A and B, and
composite vectors for the context A+B using MDS. Red, blue, and green dots correspond to states
(positions) in the left, center, and right parts of the original 2-D space (Figure 7), respectively.

A.10 DETAILS OF PREPROCESSING OF TEXT DATA

In the section 5, we used text data taken from English Wikipedia dump (enwiki-latest-pages-
articles, 22-May-2020). We first generated text files from raw data using wikiextrator (https:
//github.com/attardi/wikiextractor). We tokenized texts by nltk Punkt sentense to-
kenizer, and randomly sampled 100,000 articles containing 1,000 tokens at minimum. We lower-
cased all characters and removed punctuation characters in the data. After that, we selected words
that appeared more than 1,000 times in the data, and substituted all other rare words by <unk>
symbol. Finally, we obtained data that contains 124M tokens and 9376 words.

A.11 DETAILS OF EVALUATION OF CONCEPTUAL SPECIFICITY

In the section 5.2, conceptual specificity of each unit was evaluated using WordNet database (Prince-
ton University, 2010). In WordNet, a word belongs to several synsets (sets of cognitive synonyms),
and semantic similarity of two synsets can be evaluated from the shortest path length between them
in the WordNet structure (we used path similarity function in nltk library). We defined similarity of
two words as the highest similarity among all combinations of synsets of those words. We calcu-
lated mean similarity of all combinations of TOP-10 words (ten words that highly activated the unit;
Figure 5A) that are available in WordNet. We evaluated only units which had at least five TOP-10
words available in WordNet. Furthermore, we randomly generated 1,000 pairs of words available
in WordNet, and generated a null distribution of similarity between words. We defined a signif-
icance threshold of similarity as a 95 percentile of the null distribution, and a unit was classified
as a significantly concept-specific unit if mean similarity of TOP-10 words exceeded the threshold.
Furthermore, we quantitatively defined a conceptual specificity of each unit as

sunit
snull

− 1, (28)

where sunit is mean similarity of TOP-10 words and snull is the mean of the null distribution.
This quantity becomes zero if similarity between TOP-10 words is not different from random pairs,
and becomes positive if TOP-10 words are semantically similar. This conceptual specificity was
averaged over all evaluated units.
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A.12 EXAMPLE DSI REPRESENTATIONS FOR WORDS

In the figure 9, we show TOP-10 words of DSI units without manual selection. We found several
non-significant units exhibit conceptual specificity according to manual inspection (for example,
unit4 may be named as university cell). This is probably because of the limitation of knowledge
covered by WordNet. Therefore, we suppose that the current evaluation method tends to underesti-
mate the number of concept-specific units. However, the comparison across models was fair because
we used the same procedure and criteria for all models.

Figure 9: A part of word representations formed by DSI. Ten words that gave the highest activation
(TOP-10 words) are shown for units 1 - 15. Those classified as concept-specific units in our analysis
are boxed with bold lines.
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A.13 EXAMPLES OF THE ANALOGICAL INFERENCE TASK

In table 4, we show some examples of the analogical inference in Mikolov’s dataset. There is a
relationship “WORD1 is to WORD2 as WORD3 is to WORD4”. Then, an expected relationship in
the vector space is WORD2-WORD1=WORD4-WORD3. In this study, we performed inference of
WORD4 by WORD3+WORD2-WORD1. We regarded an inference was correct if the actual vector
of WORD4 had the largest cosine similarity to the inferred vector among all word representation
vectors (except those for WORD1, WORD2, and WORD3). If the number of words is 10,000, a
chance level of the correct answer rate is 0.01%. Therefore, the performance shown in this study
(more than 50%) is far above the chance level.

Table 4: Examples of analogical relationships in Mikolov’s dataset.

WORD1 WORD2 WORD3 WORD4

boy girl king queen
husband wife he she
Paris France Tokyo Japan
China Chinese Italy Italian
big bigger small smaller
free freely quick quickly
convenient inconvenient possible impossible

A.14 CLUSTERING OF SEMANTIC CATEGORIES IN DSI SPACE

Figure 10 shows the structure of DSI word representations visualized by MDS. We arbitrarily chose
words based on 10 semantic categories used in Reber et al. (2019). We used same dissimilarity
metric with Reber et al. (2019) (1 - Pearson’s correlation coefficient).

Figure 10: Visualization of the representational structure of DSI using MDS. Words are plotted in
coordinates embedded in 2-D DSI space. Each color corresponds to a semantic category used in
Reber et al. (2019).
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A.15 INTUITIVE MECHANISM OF WORD REPRESENTATIONS BY DSI

In this section, we discuss how DSI vectors represent and compute words.

First, we analyzed the ratio of each element to the sum of all elements in DSI vectors. We found that
even the largest element accounted for 5% of the sum of all elements on average. (Figure 11). This
result shows that DSI vectors for words are non-sparse and distributed, thus each word is represented
by the combination of multiple conceptual units.

Figure 11: Non-sparsity of word representations. Gray lines show ratio of each element to sum of
all elements in each word representation vector, and the black line is the average of them. Elements
were sorted in descending order.

Figure 12: Words as combination of concepts and inference as recombination. (Upper) The most
active units (the largest absolute values) in representation vectors for France, Germany, Paris, Berlin,
and difference vectors between them. (Lower) TOP-10 words of active units and their interpretation.

Next, for further clarification, we inspected representations of an example set of words: France,
Paris, Germany and Berlin. We can see there are two analogical relationships (country-capital and
French-German relationships). We identified the most active units (TOP-2) in DSI vectors for those
words, and listed TOP-10 words for identified units. As a result, we could see that “France” is
represented by the combination of units that we could name as French cell and country cell, whereas
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“Berlin” is represented by the combination of German cell and capital cell, and so on (Figure 12).
This example also gives a simple interpretation of word similarity in DSI vector space. If words are
similar, they share large number of active units, like the country cell shared by representations of
France and Germany. Thus, semantic similarity between words increases cosine similarity between
word vectors.

Furthermore, we also identified the largest elements (the largest absolute values) in the difference
vectors between words, and found that they correspond to semantic difference between words (Fig-
ure 12). Thus, we can regard analogical inference by DSI vectors as recombination of conceptual
units. For example, adding Germany-Berlin vector to Paris vector deactivate capital cell and activate
country cell, which leads to the transformation of Paris into France.

Such property of the vector space is same as conventional word embedding methods, but unique
feature of our model is that those analogical relationships are factorized into separated units. We
speculate that constraints of decorrelative NMF are sufficient conditions to align each semantic
factors to each axis of the word vector space, and the mechanism is probably related to how disen-
tangled representations emerge in visual feature learning model (Higgins et al., 2017; Carbonneau
et al., 2020).
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