
SEE-Classify: Simple Evolutionary Exploration Tool
to Search Classifiers and their Hyper-parameters

Anonymous Author(s)
Affiliation
Address
email

Abstract

Genetic algorithms (GAs) find solutions to search problems through a process1

inspired by evolution. Possible solutions to a problem are randomly selected and2

tested using a fitness function. The best solutions undergo changes (mutations) over3

multiple iterations (generations) to try and find better solutions. There have been4

several studies that use GAs to search over hyperparameters of machine learning5

algorithms to learn values that work well for specific problems. In this work an6

existing GA framework was extended to search over different classifiers and their7

hyperparameters. This will allow scientists from any field to search a classifier8

"algorithm space" to find a specific classifier (Support Vector Machine, Forest of9

Decision trees, Neural Networks, etc.) that works well for their problem. This paper10

demonstrates the feasibility of the SEE-Classify system by testing the system on11

well-known classification examples provided with the Scikit-learn Python Library12

and reproducing results from a previous study that performs simlar hyper-parameter13

genetic search over diagnostic breast cancer data.14

1 Introduction15

Posed as a question, the Algorithm Selection Problem asks: “Which algorithm is likely to perform16

best for my problem?” [11],[12]. Given a plethora of algorithms where no single choice is the best17

for all problems under a certain domain, choosing an algorithm for a specific problem is a nontrivial18

task. In the context of machine learning algorithms, hyperparameters further increase the complexity19

of algorithm selection. This work defines hyperparameters as the set of values that must be specified20

by the user to control the learning process of the algorithm before training begins. Hyperparameter21

tuning is one method to help maximize the performance of a machine learning algorithm. As there is22

no existing analytic approach to selecting hyperparameters a priori, common strategies include but23

are not limited to choosing manually via rules of thumb, testing a predefined set of hyperparameter24

values, or random search [4]. The search space of algorithm selection increases rapidly with each25

additional algorithm, which may bring its own distinct set of hyperparameters. For example, a search26

space of only 5 algorithms, each with 5 distinct parameters, which each can range over 100 possible27

values consists of 5 * 5 * 100 = 2500 distinct choices. If each algorithm takes an average of 3 seconds28

to train and test a classifier searching the entire space using brute force would take 2 hours. Although29

this is reasonable for many small problems adding additional algorithms, parameters and training30

data can quickly scale the problem so that it becomes intractable.31

Algorithm selection is a non-trivial problem that exists across disciplines and is difficult to solve by32

manual search without expert knowledge. The motivation for the SEE tools [2], is to address algorithm33

selection within the domain of scientific image analysis by using a simple Genetic Algorithm (GA) to34

traverse the search spaces over specific data analysis workflows. GAs are popularly used techniques35

for search and optimization problems. It has been used in several studies to search a space of machine36

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

learning classification algorithms. As such it would be appropriate to apply the SEE toolkit and37

framework onto supervised-learning classification algorithms. The goal of this project is to extend the38

SEE toolkit to support classification algorithms via a see-classify module as well as provide a proof39

of concept by comparing the performance of see-classify with a previous work of hyperparameter40

tuning via genetic search [5]. This work utilizes the machine learning algorithms implemented in the41

Scikit-learn package [10].42

2 Related works43

Machine learning models are pipelines that consist in typical stages of pre-processing, feature44

extraction, and applying the machine learning algorithm. There have been several studies that use45

Genetic Search techniques such as Genetic Programming (GP) and Genetic Algorithms (GAs) to46

improve or create high-quality machine learning models. Dhahri et al. used GP to find high quality47

combinations of each stage of the machine learning model [5]. Ferreira, et al used GP to improve the48

interpretability of specific black-box classification algorithms [7]. Wicaksono and Afif used GA to49

tune the hyperparameters of specific machine learning algorithms [13]. There has also been work50

done for using genetic algorithms to tune the hyper-parameters or improve the search of specific51

classification algorithms such as neural networks [8],[9],[15].52

Tackling the Algorithm Selection Problem falls under the larger category of Meta-Learning which has53

become an important field of Machine Learning. While there are many definitions of meta-learning,54

in this work meta-learning is defined as learning about learning algorithm performance. This work55

uses a simple Genetic Algorithm to compare and search for a good Classification algorithm for a56

dataset. As such it falls under the category of meta-learning.57

This work focuses on providing software tools that can be used by others without having to recreate58

the Genetic Algorithm machinery as well as comparing the application of Genetic Algorithms with59

the existing literature as a form of quality-assurance. This is meant to be a general purpose tool60

that can be reused by scientists from any domain. This work also investigates the rate at which our61

GA-based system can converge with results found by the existing literature as well as compare the62

quality of the solutions found by each system.63

3 Proposed method64

3.1 Experimental approach65

This work performs two proofs of concept using a simple GA. The first replicates a demo example66

from the scikit-learn website [1] which consists allegorically generated data-sets including: moons,67

circles, and linearly separable. With the assumption that the algorithms used in the tutorial were68

manually tuned and selected, the algorithm search space is defined using those algorithms and some69

of their parameters. The second attempts to replicate a prior work on hyperparameter tuning and70

algorithm selection via Genetic Programming [5] which uses the Wisconsin Breast Cancer Diagnostic71

(WBCD) dataset [14] and can be found in the UCI Machine Learning Repository [6]. A summary of72

these datasets can be found in Table 1.73

Table 1: Dataset characteristics

Moons Circles Linearly separable WBCD

items 100 100 100 569
features 2 2 2 30
classes 2 2 2 2

Genetic Algorithm (GA) The basis of this work is a simple genetic algorithm. Algorithms are74

represented as lists of hyperparameter values, where all algorithm consists of the same aggregate75

set of hyperparameters. For our experiments, these lists are converted into real machine learning76

models by using the corresponding algorithm and hyperparameters implemented in the scikit-learn77

package. Not all hyperparameters are used for each specific algorithm and some parameters such78

as max_depth and learning_rate are shared by several algorithms. Reducing this aggregate set of79

2

Table 2: Algorithm space

Name Hyperparameters

Ada Boost learning_rate, n_estimators
Decision Tree max_depth
Extra Trees max_depth, n_estimators
Gaussian Naive Bayes var_smoothing
Gaussian Process
Gradient Boosting learning_rate, n_estimators
K Nearest Neighbors n_neighbors
Linear Discriminant Analysis
Logistic Regression C, max_iter
Neural Network activation, alpha, max_iter, solver
Quadratic Discriminant Analysis
Random Forest max_depth, n_estimators
SVC C, gamma, kernel

parameters in a list is an area of future work. Cross-over is performed by swapping random sections80

of each algorithm list. Mutation is performed by regenerating a hyperparameter value from the range81

of possible values for that parameter. In the simple GA, the first population is randomly generated.82

The ten best solutions of are selected via the fitness function and cross-over and mutation is performed83

over them to create one portion of the population of the next generation. The remaining portion of84

the population is randomly generated. This process of selection, cross-over, mutation, and random85

generation continues in a loop and GA terminates after reaching a specified number of iterations (i.e.86

"generations").87

Parameter search space The algorithms included in SEE-classify software are listed in Table 2.88

However, the algorithms explored in the Scikit-learn tutorial are slightly different from those explored89

in Dhahri et al. [5]. For example, the tutorial did not include Extra Trees or Logistic Regression90

which were used in latter. In an effort to be complete the search space for SEE-Classify includes all91

of the algorithms (listed in Table 2, with their corresponding hyperparameters) used in both sources.92

However, experiments were conducted with subsets of the algorithm spaces in order better compare93

the results with the prior work and demonstrate the flexibility of the software and GA approach.94

These subsets were chosen such that they match and correspond to the algorithm spaces used in95

Scikit-learn tutorial and the Dhahri et al. Table 3 lists the two algorithm space subsets used in each96

replication experiment.97

Table 4 lists the hyperparameters implemented in the software. The transformation column for each98

hyperparameter shows how the corresponding input range is transformed into a range of possible99

values that would be used for machine learning algorithms. The transformation column specifies how100

the input range is transformed before being used in a machine learning algorithm. For example, the101

hyperparameter C has an input range from 0 to 6 (inclusive) which step-sizes of 1. The corresponding102

transformation is 10x, which means that internal to SEE-Classify the range of possible hyperparameter103

values for C are: 1, 10, 100, 1000, 10000, 1000000. This work specifies the input ranges, step-size,104

and transformations such that the default hyperparameter value for each algorithm (as specified in105

scikit-learn) is included in the range of possible hyperparameter values (after the transformation is106

applied). Where the transformation is not specified, the corresponding input range is used directly107

as this range. In particular, the "gamma" hyperparameter can be either a string or non-integer. To108

include both possible types of values, this work specifies both the transformation that begets the109

possible non-integer values as well as the explicitly specify all possible string values. The string110

values are listed after the transformation itself.111

Fitness function This work define the normalized fitness function as the ratio: # incorrect labels
total # of items in dataset .112

A solution with a fitness value of zero (0) has labelled all the items correctly; whereas one with a113

fitness value of one (1) will have labelled all the items incorrectly. This paper acknowledges that114

any fitness function that it pick will have some form of bias. For example datasets where there are115

distinct majority and minority subsets of data of different sizes, the GA might prefer solutions that116

3

Table 3: Replication-specific search spaces

Algorithm search space Scikit-learn Tutorial Dhahri et al. 2019

Ada Boost X X
Decision Tree X X
Extra Trees X
Gaussian Naive Bayes X X
Gaussian Process X
Gradient Boosting X
K Nearest Neighbors X X
Linear Discriminant Analysis X
Logistic Regression X
Neural Networks X
Quadratic Discriminant Analysis X X
Random Forest X X
SVC X X

Table 4: Hyperparameter space

Name Type Input Range; Step-size Transformation

activation string ["identity", "tanh", "logistic", "relu"]
alpha numeric [-6, -1]; 1 10x

C numeric [0, 6]; 1 10x

gamma numeric, string [-6, 6], 1 10x; ‘scale’, ‘auto’
kernel string ["linear", "poly", "rbf", "sigmoid"]
max_depth integer [1, 30]; 1
max_iter integer [200, 1000]; 100
n_estimators integer [50, 1000]; 50
n_neighbors integer [1, 30]; 1
learning_rate numeric [-6, 0]; 1 10x

solver string ["lbfgs", "sgd", "adam"]
var_smoothing numeric [-18, 18]; 1 10x

can more correctly label labels in the larger subsets. This is problematic as the classifier may be117

systematically inaccurate when classifying particular minority subsets. Additionally, when finding118

research to replicate, it was noticed that the literature uses several different fitness functions. This119

serves as another challenge that makes true comparison difficult. However, this function was chosen120

for its simplicity and plan to explore alternative fitness functions in the future. The SEE-Classify tool121

is designed such that it should be relatively simple to swap out fitness functions which will be an area122

of future work.123

3.2 Data collection and challenges124

All experiments were run on the Michigan State University (MSU) High Performance Computer125

Center (HPCC) utilizing job arrays with different input seeds on cores across the cluster. In these126

experiments each core consisted of an Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz.127

3.2.1 Scikit-learn tutorial128

The scikit-learn tutorial [1] uses the three toy datasets: moons, circles, and linearly separa-129

ble, which are respectively generated using the following functions: make_moons, make_circles,130

make_classification and applying noise with particular scales. The noise was randomly generated131

using specific random states (i.e. known random seeds) to ensure reproducibility. A 60-40 split was132

used to generate the training and testing sets. To use SEE-Classify to replicate the problem, the133

same 60-40 split is applied during Genetic Search. After the GA ends, the performance of the best134

found solutions are evaluated by fitting them on the entire dataset and scoring them using a series135

of validation sets, which are created by regenerating the noise applied to each dataset on different136

4

random states. Validation is performed on a different set of generated data to check whether the found137

models can generalize well. This experiment ran the GA for 100 different trials using a population138

size of 100 for 100 generations (more than sufficient for these toy examples). The experiment was not139

optimized for time and was run using the MSU HPCC in parallel on 75 independent cores. Each core140

took between 2 to 7 hours to run, for a total of approximately 294 hours and 36 minutes of runtime141

for all of the experiments.142

One of the challenges faced was deciding on the data split. A 60-40 split was specifically chosen so143

that the fitness score can have values of 2.5% increments. This has two benefits. First, the GA would144

be able to find better solutions than had more common splits like 80-20 or 70-30 been used. This is145

because an 80-20 or 70-30 split would limit the fitness function to 5% and 3% increments meaning146

that the best fitness score that could be achieved is either 0 or the value of the respective increments.147

This makes it impossible to detect the minor nuances models that could have had a fitness value of148

2.5 which would have been lost when using either of the more common splits. Second, using the149

same training and testing sets as the tutorial would eliminate the effect that using a different testing150

set might have on the GA.151

Another challenge was regenerating the machine-learning models for validation. The GA framework152

that is extended to create SEE-Classify makes it difficult to preserve the model that was trained and153

tested during genetic search. One of the big assumptions that was made is that retraining using the154

same hyperparameters would yield a similar model, which is not always true. However, doing so155

is easier given the existing framework. Additionally, because the models need to be retrained the156

training and testing subsets were used for training rather than just the training subset before testing157

against the validation sets.158

3.2.2 Partial replication of Dhahri et al.159

To benchmark the real-world performance of the simple Genetic Algorithm (GA) in meta-learning160

classifiers, this work attempts to partially replicate the work by Dhahri et al. [5] as a case study.161

Dhahri et al. analyzed the performance of a similar Genetic Program to build Classification workflows162

for the Wisconsin Breast Cancer Diagnostic dataset, which consists of 569 individuals, comprising163

212 malignant and 357 benign cases. The identities of the individuals are kept anonymous to its users164

via ID numbers.165

This replication was performed over a 60-20-20 spit of the dataset into 3 subsets: training, testing,166

and validation. The GA was run using the training and testing sets To evaluate the fitness of167

each individual, the corresponding classification model was built using the individual’s specified168

hyperparameters. The model is then trained and tested on these two subsets respectively and fitness169

is calculated using the testing performance. The GA was run using 100 trials, each seeded with a170

different random seed, for 100 generations with a population size of 100. This experiment was not171

optimized for time and was run using the MSU HPCC in parallel on 25 independent cores in the172

same cluster. Each core took between 4.5 to 5 hours, totaling at most 125 hours.173

This method differs from Dhahri et al. 2019 on four counts:174

• Different parameter space Dhahri et al. only used the number of kernels as the hyperpa-175

rameter in the parameter space. This difference was challenging to reproduce because the176

range of possible values for this hyperparameter was not explicitly stated in the paper and177

because it was difficult to identify what this meant for some of the chosen algorithms. This178

work uses the same algorithms in the search space; however, the hyperparameter space in179

this work accounts for more than one hyperparameter. The search space is explicitly defined180

in Table 3 and the hyperparameters used for each algorithm is listed in Table 2.181

• Simpler fitness function Dhahri et al. applied a 10-Fold Cross Validation over the entire182

dataset to evaluate individual fitness. Using a simpler fitness function is important as this183

work is being developed for software that is intended to run in close to real time. Exploring184

alternative fitness functions is an area of future work.185

• Final verification step This final verification step is important in order to validate the186

solutions found by the GA in an effort to avoid over-fitting the data.187

• Simple Classification workflow The work presented in Dhahri et al. includes the addition188

of two data transformation stages (preprocessing and feature selection). Although this is an189

area of future work, the results presented in this work do not include these steps. The only190

5

extra step applied is the standard scalar function to preprocess the dataset as it is a typical191

recommended step.192

4 Results193

4.1 Scikit-learn tutorial194

Figure 1 plots the population mean and the mean of the top 10 solutions found by generation number195

averaged over the 100 runs of the GA. The shaded regions are two standard deviations from the196

averages. This shows that the GA was able to rapidly converge onto the best models specified in the197

tutorial.198

Figure 1: Change in fitness over generations for demo datasets

Table 5 records the data of the top 10 solutions found at the end of the GA over 100 runs for each199

data set. It shows that the mean fitness score of the top 10 solutions over all 100 trials found at the200

end of the GA is the same or better than the fitness scores found by the tutorial. The Circles dataset201

stands out in that by the end of the GA, the top 10 solutions have the same fitness scores.202

Table 5: Comparison between GA and tutorial/paper reported accuracy

Tutorial/paper best accuracy GA mean GA std

Circles (Tutorial) 0.075 0.0250 0.0000
Linearly separable (Tutorial) 0.050 0.050 0.0051
Moons (Tutorial) 0.025 0.0250 0.0134
WBCD 0.0176 0.0190 0.0052

6

4.2 Replicating Dhahri et al.203

Figure 2 shows the average mean fitness values of the top 10 solutions found by each generation over204

all 100 trials. The error regions are plotted with 1 standard deviation. This figure demonstrates that205

the GA presented in this work is able to converge at a good solution, both in terms of its top 10 best206

found solutions and that the fitness values of those top 10 are comparable to the best fitness function207

reported by Dhahri 2019.208

Figure 2: Change in fitness over generations for WBCD dataset

4.3 Validation stage209

Figures 3 and 4 show the average performance of each model after training a different portion size210

of the training set. They suggests that although solutions perform well during the GA search, the211

final evaluated fitness tends to be greater than the reported fitness during the GA. In addition, these212

figures suggests that as the amount of training data increases, the performance of the classifiers do213

not improve greatly. For example, in Figure 4, there is no significant improvement in mean accuracy214

after a training size of 50, suggesting that the models are not generalizing well. This indicates that215

either that the data used in the GA is not enough and/or a more complex fitness function is needed.216

The default hyperparameters provided with the scikit-learn algorithms for the chosen classifiers are217

listed in the table below. It shows the best fitness value (0.0176) can already be closely matched using218

these default parameters. This is interesting in that the default parameters are already the best that219

our GA can find. It suggests that the default values are good hyperparameters to start with and more220

interesting datasets need to be explored221

5 Concluding discussion222

This paper presents the new prototyped SEE-Classify tool which uses a simple GA to search the223

hyperparamater space of multiple different classification algorithms to find the best parameters for224

particular problems. The tool was tested using the scikit-learn dataset and the WBCD dataset. Results225

show that the algorithm quickly converges to solutions that reproduce a prior work. However, one226

limitation is that the algorithm has not been optimized for time. As such those with access to high227

compute power can better and more fully utilize this tool over complex problems. Another limitation228

to this prototype is that a simple fitness function is used. This introduces a bias in favor of algorithms229

that can more correctly classify majority subgroups found in the provided data. This present a230

potential negative societal impact if this tool is used to analyze and directly comment on societally231

relevant data. While this tool was benchmarked on a real-world dataset (WBCD), we are not and do232

not intend to make any suggestions with regards to the field of medical science. Future work includes233

testing the library on more complex problems, including a wider options of different fitness functions,234

and optimizing the Genetic Algorithm before presenting this prototype as a more completed and235

mature tool. We will also integrate documentation and tutorials inside of the tool in an effort to build236

a scaffolded-learning tool that can help researchers new to classification, explore and learn about237

7

Figure 3: Learning curve of GA best solutions for demo datasets

Figure 4: Learning curve of GA best solutions for WBCD

the different algorithms that are available. All of the SEE-Classify software has been released and238

incorporated into the SEE-Segment project [3], which is provided under an open source license on239

GitHub, and researchers are encouraged to try the software and contribute to the project.240

8

References241

[1] Scikit-learn classifier comparison demo example. https://scikit-learn.org/stable/242

auto_examples/classification/plot_classifier_comparison.html. Accessed:243

2021-09-01.244

[2] See-insight, . URL https://see-insight.github.io/. Accessed: 2021-09-11.245

[3] See-segment, . URL https://github.com/see-insight/see-segment. Accessed: 2021-246

09-11.247

[4] M. Claesen and B. De Moor. Hyperparameter Search in Machine Learning. arXiv:1502.02127248

[cs, stat], Apr. 2015. URL http://arxiv.org/abs/1502.02127. arXiv: 1502.02127.249

[5] H. Dhahri, E. Al Maghayreh, A. Mahmood, W. Elkilani, and M. Faisal Nagi. Automated Breast250

Cancer Diagnosis Based on Machine Learning Algorithms. Journal of Healthcare Engineering,251

2019:4253641, 2019. ISSN 2040-2309. doi: 10.1155/2019/4253641.252

[6] D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.253

uci.edu/ml.254

[7] L. A. Ferreira, F. G. Guimaraes, and R. Silva. Applying Genetic Programming to Improve Inter-255

pretability in Machine Learning Models. In 2020 IEEE Congress on Evolutionary Computation256

(CEC), pages 1–8, Glasgow, United Kingdom, July 2020. IEEE. ISBN 978-1-72816-929-3.257

doi: 10.1109/CEC48606.2020.9185620. URL https://ieeexplore.ieee.org/document/258

9185620/.259

[8] T. Hospedales, A. Antoniou, P. Micaelli, and A. Storkey. Meta-Learning in Neural Networks: A260

Survey. arXiv:2004.05439 [cs, stat], Nov. 2020. URL http://arxiv.org/abs/2004.05439.261

arXiv: 2004.05439.262

[9] C. Li, J. Jiang, Y. Zhao, R. Li, E. Wang, X. Zhang, and K. Zhao. Genetic Algorithm based263

hyper-parameters optimization for transfer Convolutional Neural Network. page 20.264

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,265

P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,266

M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine267

Learning Research, 12:2825–2830, 2011.268

[11] J. R. Rice. The Algorithm Selection Problem**This work was partially supported by the269

National Science Foundation through Grant GP-32940X. This chapter was presented as the270

George E. Forsythe Memorial Lecture at the Computer Science Conference, February 19,271

1975, Washington, D. C. In M. Rubinoff and M. C. Yovits, editors, Advances in Computers,272

volume 15, pages 65–118. Elsevier, Jan. 1976. doi: 10.1016/S0065-2458(08)60520-3. URL273

https://www.sciencedirect.com/science/article/pii/S0065245808605203.274

[12] K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for algorithm selection.275

ACM Computing Surveys, 41(1):6:1–6:25, Jan. 2009. ISSN 0360-0300. doi: 10.1145/1456650.276

1456656. URL https://doi.org/10.1145/1456650.1456656.277

[13] A. S. Wicaksono and A. Afif. Hyper Parameter Optimization using Genetic Algorithm on278

Machine Learning Methods for Online News Popularity Prediction. International Journal of279

Advanced Computer Science and Applications, 9(12), 2018. ISSN 21565570, 2158107X. doi:280

10.14569/IJACSA.2018.091238. URL http://thesai.org/Publications/ViewPaper?281

Volume=9&Issue=12&Code=ijacsa&SerialNo=38.282

[14] W. Wolberg, W. Street, and O. Mangasarian. Breast Cancer Wisconsin (Diagnostic). UCI283

Machine Learning Repository, 1995.284

[15] X. Xiao, M. Yan, S. Basodi, C. Ji, and Y. Pan. Efficient Hyperparameter Optimization in Deep285

Learning Using a Variable Length Genetic Algorithm. arXiv:2006.12703 [cs], June 2020. URL286

http://arxiv.org/abs/2006.12703. arXiv: 2006.12703.287

9

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://see-insight.github.io/
https://github.com/see-insight/see-segment
http://arxiv.org/abs/1502.02127
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://ieeexplore.ieee.org/document/9185620/
https://ieeexplore.ieee.org/document/9185620/
https://ieeexplore.ieee.org/document/9185620/
http://arxiv.org/abs/2004.05439
https://www.sciencedirect.com/science/article/pii/S0065245808605203
https://doi.org/10.1145/1456650.1456656
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=12&Code=ijacsa&SerialNo=38
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=12&Code=ijacsa&SerialNo=38
http://thesai.org/Publications/ViewPaper?Volume=9&Issue=12&Code=ijacsa&SerialNo=38
http://arxiv.org/abs/2006.12703

1. For all authors...288

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s289

contributions and scope? [Yes] The main claim made in the abstract that this work290

released and benchmarked of a prototype of a software system that uses a Genetic291

Algorithm to search an algorithm space of classification. This is demonstrated in292

section 4 where the performance of the software is discussed and section 5 where we293

provide a link to the project as reference [3].294

(b) Did you describe the limitations of your work? [Yes] In section 4.3 we discuss the295

weakness (low validation performance) of this work and in section 5 we discuss future296

works. We also discuss limitations in the Concluding discussion sction.297

(c) Did you discuss any potential negative societal impacts of your work? [Yes] We discuss298

potential negative societal impacts of this work as consequences of the limitations of299

this work in the Concluding discussion section.300

(d) Have you read the ethics review guidelines and ensured that your paper conforms to301

them? [Yes] We have ensured and believe that our paper conforms to the ethics review302

guidelines. While this research uses human-derived data, we mention that the identities303

of the individuals have been anonymized. In addition, the first half experimentation304

performed in this work relies on demo data (i.e. moons, circles, linearly separable305

data) that is generated mathematically and not derived from humans. Since this work is306

intended to present and discuss the limitations of a first prototype of a research support307

tool, we do not believe that it crosses any major or systemic ethical concerns. However,308

we acknowledge potential ethical concerns in the Concluding discussion section.309

2. If you are including theoretical results...310

(a) Did you state the full set of assumptions of all theoretical results? [N/A]311

(b) Did you include complete proofs of all theoretical results? [N/A]312

3. If you ran experiments...313

(a) Did you include the code, data, and instructions needed to reproduce the main ex-314

perimental results (either in the supplemental material or as a URL)? [Yes] For315

reproducibility, the link to the Juptyer notebook source codes that were used to generate316

the figures in this work are included in the appendix. The instructions to reproduce317

results can be found within the Jupyter notebooks themselves.318

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they319

were chosen)? [Yes] See Tables 2, 4 for hyperparameters. See sections 3.2.1 and 3.2.2320

for data splits.321

(c) Did you report error bars (e.g., with respect to the random seed after running experi-322

ments multiple times)? [Yes] See the captions on the lower right corners of Figures 1,323

2, 3 and on the lower left corner of Figure 4.324

(d) Did you include the total amount of compute and the type of resources used (e.g., type325

of GPUs, internal cluster, or cloud provider)? [Yes] See sections 3.2.1 and 3.2.2.326

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...327

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited the existing328

assets and creators via references [3], [6], [10]. [14].329

(b) Did you mention the license of the assets? [Yes] See section 1 for licenses of the330

SEE-Insight tools [2] (which includes SEE-Segment [3]) and Scikit-learn package [10],331

and section 3.1 for the license of the Wisconsin Breast Cancer Diagnostic Dataset [14].332

(c) Did you include any new assets either in the supplemental material or as a URL?333

[Yes] We provided the URL to the existing SEE-Segment project (see reference [3])334

because rather than releasing new assets under its own name, this work was directly335

incorporated to that existing project.336

(d) Did you discuss whether and how consent was obtained from people whose data you’re337

using/curating? [No] The original source of the published dataset and the relevant338

papers that we looked at did not mention how consent was obtained from people.339

Because of this limitation, we were unable to discuss how consent was originally340

obtained.341

10

(e) Did you discuss whether the data you are using/curating contains personally identifiable342

information or offensive content? [Yes] We mention that the datasets utilized here had343

been anonymized and therefore are not personally identifiable. See section 3.2.2.344

5. If you used crowdsourcing or conducted research with human subjects...345

(a) Did you include the full text of instructions given to participants and screenshots, if346

applicable? [N/A]347

(b) Did you describe any potential participant risks, with links to Institutional Review348

Board (IRB) approvals, if applicable? [N/A]349

(c) Did you include the estimated hourly wage paid to participants and the total amount350

spent on participant compensation? [N/A]351

11

A Appendix352

The source code that was used to generate the figures in this work can be found in the Juptyer Note-353

books at https://github.com/see-insight/see-segment/tree/master/see_classify_354

figures.355

12

https://github.com/see-insight/see-segment/tree/master/see_classify_figures
https://github.com/see-insight/see-segment/tree/master/see_classify_figures
https://github.com/see-insight/see-segment/tree/master/see_classify_figures

	Introduction
	Related works
	Proposed method
	Experimental approach
	Data collection and challenges
	Scikit-learn tutorial
	Partial replication of Dhahri et al.

	Results
	Scikit-learn tutorial
	Replicating Dhahri et al.
	Validation stage

	Concluding discussion
	Appendix

